Box 15.1 Climate Research: The Pioneers

The French mathematician Jean-Baptiste-Joseph de Fourier (1768-1830) sug-
gested in 1827 that the atmosphere keeps the Earth
warm by trapping heat as a plate of glass would. It
is known today that the comparison of the atmo-
gphere to a greenhouse is incorrect, but Fourier did
suggest that the natural climate could be perturbed
as a result of human activities. In 1859, the Imsh
physicist John Tyndall (1820-1893) measured the
absorption of various gases, and established that
water vapor, carbon dioxide, and methane were trap-
ping infrared (terrestrial) radiation, while the most
abundant atmospheric gases, nitrogen and oxygen,
were not. He suggested that ice ages in the past could
have been caused by changes in the atmospheric Tyndall
abundance of radiatively active gases.

In 1896 the Swedish scientist Svante Arrhenius
(1859-1927), who was awarded the Nobel Prize for
Chemistry in 1903, theorized that a doubling in the
natural concentration of carbon dioxide in the air
would increase the Earth’s global mean temperature
by 5-6 degrees Celsius. He pointed out that such
a change was likely due to the rapid expansion of
industry, and because, as he stated, “we are evap-
orating our coal mines into the air” In 1938 Guy
Stewart Callendar, an engineer working for British
Electrical Industries, noted that the level of CO4 had
increased by some 10 percent since the 1890s and
: that it could explain the ¥ise in temperature recorded

Arrhenius over the same period of time.

It was not, however, until the early 1960s that the potential importance
of global warming was recognized after the American geochemist Charles D.
Keeling reported a continuous increase in the abundance of CO; observed
in a region as remote as the Mauna Loa Observatory in Hawaii. In the past
decades, the question of global warming has led to much debate and even to
controversies. The complexity of the problem, including the role played by
atmospheric constituents other than COg, is taken into account in current
studies.
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Seasonal (3-month) sea level estimates from Church and White (2011) (light blue line) and University of
Hawaii Fast Delivery sea level data (dark blue). The values are shown as change in sea level in millimeters
compared to the 1993-2008 average. NOAA Climate.gov image based on analysis and data from Philip
Thompson, University of Hawaii Sea Level Center.
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Departure of temperature from long term average (°F)
March 2014




January 2019 departure from 1880, color range -2 to +4F

https://climate.nasa.gov/vital-signs/global-temperature/
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Global Monthly Mean N,O
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N,O Annual Increase (ppb)
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Global Monthly Mean CH,4
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SF¢ “Sulfur hexafluoride”™
The lifetime of SF, in the atmosphere is ~ 580 years - 3,200 years.

It 1s primarily used in electrical circuit breakers and high-voltage gas-
insulated switchgear.

On average, one SF, gas molecule traps 25,000 times more heat in the
atmosphere than one CO, molecule, over a century-long time scale.

Its emissions are likely to influence the Earth’s climate for thousands
of years.

Luckily, it is still in the parts per trillion category (parts per 10'?).
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Northern Hemisphere, December 31, 2015
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SPECIFICATIONS
Photographer: James Balog
Subject: Polar bear

Where: Oregon Zoo
Camera: Nikon F3 with
50mm lens

Film: Polaroid transparency

Disappearing Act One of James Balog’s most popular prints is this remarkable
shot of a floating polar bear as seen above and below water. Photographed at the zoo
in Portland, Oregon, with a battery of strobe lights placed at aquarium windows and
on the ceiling, the bear “seems almost toylike and cuddly,” Balog comments. “But
you can sense its tremendous power.” The picture, he adds, "also speaks to the global
warming crisis and the knowledge that polar bears are losing their place on earth.”

Facts: Insulated by two to six inches of fat against cold Arctic seas, polar bears
can swim for hours without rest. Dog-paddling with their front paws and using their hind feet as rudders,
they’ve been known to cross 100 to 150 miles of open water at a speed of 2 to 3 miles per hour. There are
19 subpopulations of polar bears scattered over the Arctic’s vastness, and while the animals on Canada’s
western Hudson Bay, for one, have been well studied, other groups inhabit inaccessible areas. So scientists
conjecture that the world’s polar bear population might be 20,000 to 25,000 animals.

But polar bears depend on sea ice for their survival year-round, and summer sea ice is declining at a rate of
about 8 percent per decade in the rapidly warming polar basin. Steven Amstrup, a wildlife biologist involved
in an important new study on Alaska’s Beaufort Sea that may produce bad news, puts it bluntly: “We know
that the complete disappearance of sea ice would mean the end of polar bears.”—Les Line
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Southern Hemisphere, December 31, 2015
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Summer Sea Surface Temperatures by Ocean Basin 1970-2005

Summer SST by Ocean Basin
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Fig. 1. Running 5-year mean of
SST during the respective hurricane
seasons for the principal ocean
basins in which hurricanes occur.
the North Atlantic Ocean (NATL
90° to 20°E, 5° to 25°N, June-
October), the Westermn Pacific
Ocean (WPAC: 120° to 180°E, 5°
to 20°N, May-December), the East
Pacific Ocean (EPAC: 90° to
120°W, 5° to 20°N, June-October),
the Southwest Pacific Ocean
(SPAC: 155° to 180°E, 5° to 20°S,
December-April), the North Indian
Ocean (NIO: 55° to 90°E, 5° to
20°N, April-May and September-
November), and the South Indian
Ocean (SIO: 50° to 115°E, 5° to
20°S, November-April).



Global Tropical Cyclones 1970-2005
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Fig. 2. Global time series for 1970-2004 of (A) number of storms and (B) number of storm days
for tropical cyclones (hurricanes plus tropical storms; black curves), hurricanes (red curves), and
tropical storms (blue curves). Contours indicate the year-by-year variability, and the bold curves
show the 5-year running average.
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Major Atlantic Hurricanes 1944 - 2000

Fig. 1. Number of ma-
jor hurricanes from
1944 through 2000
(32). Less reliable data
before routine aircraft
reconnaissance  dic-
tate caution in the use
of these data before
1944 (33). Solid hori-
zontal reference line
corresponds to sample
mean (2.3). Dashed
curved line is S-year
running mean. Also
shown is the threshold
of three major hurri-
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Tropical Atlantic SON Area with Weak Vertical Wind Shear 1944 - 2000

Fig.3.PefCeﬂtageOf 1wlllllllllllllllllllllllllll
south-central portion "

(10°-14°N, 20°- 70°W)
of the main develop-
ment region (see Fig
2A) where IV,| < 6 m
s (values extremely
conducive for tropical
cyclone  development)
for ASO, Dashed curved
line is 5- running
mean. Higher and lower
percentages  indicate
conditions that are more
or less conducive to de-

velopment, respectively. 0

~
o

IV,| (% Coverage <6 m s~)
&

N
o




Atlantic Meridional Mode Variation

Fig. 2. Atlantic sector
of the first rotated
EOF of non-ENSO
global SST variability
for 1870-2000 re-
ferred to as the “At-
lantic  multidecadal
mode” (38, 39). (A)
Spatial distribution of
correlations between
local monthly SST
anomalies and the
modal reconstruction
over the indexed re-
gion (northern rec-
tangle), the general
area where the mode
amplitude is the strongest. This distribution has a similar spatial
structure to the actual rotated EOF and gives a measure of the local
fractional variance (squared temporal correlation) accounted for at
each grid point. Dashed lines give north and south boundaries of main
development region (MDR) and box (10° to 14°N, 20° to 70°W) is
region used to calculate data for Fig. 3. (B) Temporal reconstruction
(annual means) of the mode-related variability averaged over the
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Although the signal is stronger in the North Atlantic, it is global in
scope with positively correlated co-oscillations in parts of the North
Pacific (55). For the multidecadal variations shown here, the coher-
ence between the MDR and far North Atlantic is a robust feature. The

SST fluctuations in the far North Atlantic could be used as a proxy for
changes in the MDR.
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. 3 Decadal frequency of large fires within NOAA Divisions. Note the decade 2020 is represented by a single year.

Keely and Syphard, Fire Ecology, 2021




