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ABSTRACT

MULTI-FREQUENCY PASSIVE MICROWAVE AND DUAL-FREQUENCY
RADAR REMOTE SENSING OF SNOWFALL

Benjamin T. Johnson

Under the supervision of Major Professor: Grant W. Petty

At the University of Wisconsin — Madison

In the middle and high latitudes, cold-cloud precipitation systems are dominant,
consisting of snowfall above the freezing level and rain below. Accurate measurement
of precipitation, especially in these regions, is necessary to understand and close the
global water cycle and energy budget. However, cold-cloud precipitation events are
poorly understood in terms of our ability to accurately retrieve and simulate their
physical properties; this is partly due to a lack of field studies, suitable instrumentation,
and global coverage.

The present research describes a novel precipitation retrieval algorithm using com-
bined radar and radiometer observations of snowfall. The algorithm retrieves a 1-D
vertical distribution of precipitation rate, particle size, particle density, and cloud lig-
uid water content using aircraft- or satellite-based co-located dual-wavelength radar
and passive microwave radiometer observations.

The primary basis for the retrieval has both a radar and radiometer component.
A radar observing precipitation at a single wavelength is sensitive to both the num-

ber and physical size of the precipitation particles. The signal from a dual-wavelength
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radar, in this case operating at 2.2 cm (13.4 GHz) and 0.84 cm (35.6 GHz), observes
the same number of particles. The ratio of the two reflectivities is, therefore, sensitive
primarily to particle size. Assuming an exponential particle size distribution and spher-
ical simulated particles, the two parameters of the distribution, Ny (intercept) and A
(slope), can be retrieved. However, the particle composition (e.g., density) is generally
unknown. To address this, a co-located passive microwave radiometer, operating at 89,
150, and 220 GHz, provides a brightness temperatures, which are sensitive to the phase,
size, composition, and spatial distribution of precipitation. The radiometer brightness
temperatures, compared with forward model brightness temperature simulations of the
radar-retrieved 1-D profiles, provides a necessary constraint on the radar retrieval.
The 2003 Wakasa Bay field experiment over the Sea of Japan provided several high-
resolution observations of snowfall using aircraft-based instruments compatible with
the present technique. The dual-frequency APR-2 radar operated at 13.4 and 35.6
GHz, while the co-located the MIR radiometer made cross-track passive microwave
observations of brightness temperatures at 89, 150, 220, 183.3£1, 183.343, 183.3+7,
220 and 340 GHz. The observations are used to test the present retrieval algorithm.
There are two primary results of this research: First is the description of an new,
end-to-end, 1-D forward model for simulating the vertical profile of precipitating clouds
and the subsequent radar/radiometer response. Second is the retrieval and parameter-
ization of snow particle properties, representing a broad distribution of precipitating
snow clouds over the Sea of Japan. Retrieved characteristic particle size, Dy = 3.67/A,
was found to follow a Gamma distributed with a mean value of 1.6 mm and a standard
deviation of 0.6 mm. Retrieved Ny values were normally distributed in log,,(Np), and

had a mean of 0.1 cm™*, with the standard deviation ranging from 0.006 to 1.6 cm™.
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Derived precipitation rates (at all levels) ranged from 0.6 to 16 mm h™! | with a mean
of 3.2 mm h~! . For selected particle density values, agreement with published Zs5-R
relationships were observed.

The techniques described here are being developed with an eye toward the future
satellite-based Global Precipitation Measurement Mission (GPM). Parameterizations
based on these retrievals are already being used to identify and communicate the key
characteristics of cold-cloud precipitation to the larger remote sensing and climate

modeling community.
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1 INTRODUCTION

1.1 Synopsis

On a global scale, precipitation is a critical part of the atmospheric water and
energy cycles. On a local scale, precipitation has important influences on natural water
resources and atmospheric energy exchange through latent heat release. Therefore,
accurate global estimation of both precipitation occurrence and intensity is essential
to improving our understanding of these processes (Simpson et al., 1996). However,
ground based methods, such as radar and rain gauges are limited in coverage; whereas
satellite-based platforms can, depending on their orbit, make global observations of
precipitation.

In the middle and high latitudes, a substantial portion of precipitation reaches
the surface as snow (Adler et al., 2003). In contrast to rainfall, snowfall is tra-
ditionally difficult to accurately quantify using standard precipitation retrieval tech-
niques (Skofronick-Jackson et al., 2004). Broadly speaking, the present research seeks
to improve our understanding of not only the physical properties of falling snow, but
also the response of microwave radiation incident upon snow in the atmosphere. This
is accomplished via a novel snowfall retrieval algorithm, which takes advantage of the
synergy between active radar observations, passive microwave radiometer observations,
and snowfall simulations. The details of the retrieval algorithm and simulation method
are described in detail in the following chapters.

In recent decades, satellite-based passive microwave (PMW) observations have been

employed as a method for reliably detecting and quantifying precipitation, particularly



surface precipitation rate, on a global basis (Adler et al., 2003). Observations made by
PMW radiometers operating in the microwave and submillimeter ranges of the elec-
tromagnetic spectrum sense radiation emitted from the surface and lower atmosphere.
PMW radiometers measure the intensity of incoming radiation, which in the microwave
range, is expressed in terms of a brightness temperature (T) (Petty, 2004). Unlike in-
frared observations, the microwave Tg is linearly related to the physical temperature
of the scene being observed.

Standard microwave channel frequencies range from about 3 GHz or 10 cm wave-
length, up to 300 GHz or 1 mm wavelength. The number and quality of observing chan-
nels has also increased, providing detailed observations of clouds and precipitation in
the atmosphere. The addition of millimeter- and submillimeter-wavelength channels on
current and future missions provides a significantly improved sensitivity to smaller-sized
precipitation particles and lower number concentrations (Skofronick-Jackson, 2003). In
this dissertation, the term precipitation hydrometeor, or just hydrometeor, is often used
interchangeably with “precipitation particles”, meaning particles of liquid water or ice
present in the atmosphere large enough to fall toward the surface.

More recently, satellite-based active radar has provided observations of the vertical
structure of precipitating clouds, and has served as an important validation tool for
PMW observations (Bauer, 2001). In contrast to PMW radiometers, which passively
observe thermally emitted radiation, radars actively emit microwave radiation at select
frequencies and measure the power reflected from precipitating clouds and the surface
at multiple levels in the atmosphere. Specifically, the radar frequencies used in this
research are 13.4 and 35.6 GHz, which are consistent with the dual-frequency radar

onboard the proposed Global Precipitation Measurement Mission (GPM) satellite (Rose



and Chandrasekar, 2004; Smith, 2007). In broad terms, the dual-frequency radar has
the capability to infer information about the particle size distribution throughout the
vertical profile of the snow cloud (Meneghini et al., 1997). This capability serves as the
primary basis for the present retrieval.

As opposed to the vertically probing radar, PMW 7Tg observations represent a
column-integrated response to the region of a precipitating cloud within the satellite’s
field of view. That is, the PMW signal includes contributions from all elements in the
field of view, such as the surface, air, clouds, and precipitation. In a complementary
fashion, coincident radar observations provide the vertical structure information lacking
in the PMW observations. This provides for a more complete characterization of the
precipitating cloud within the combined fields-of-view of the passive radiometer and
the radar.

In general terms, a retrieval represents the process of seeking solutions to the in-
verse problem; that is, attempting to infer information about the precipitating cloud
using a limited set of observations (Tikhonov and Arsenin, 1977). In the present case,
the retrieval is also ill-posed: for a given set of observations, there is no unique solu-
tion (Hadamard, 1902). The solutions to the retrieval are constrained by a number of
techniques, which reduces the ill-posedness of the problem.

In the opposite sense of the inverse problem, the forward problem describes the set
of possible observations arising from a precipitating cloud using physical or statistical
relationships. In practice, the forward problem is simulated through a series of mod-
els, collectively called a forward model. The forward model, described in chapter 2, is
specifically designed to simulate radar reflectivities and passive microwave Tgs origi-

nating from a simulated physical description of a 1-D column of the atmosphere. A



suitable snowfall retrieval algorithm requires an accurate forward model to establish key
relationships between the observations and the physical properties of snowfall and the
surrounding environment. The present forward model provides the primary physical
basis for the retrieval algorithm.

The basic structure of the present forward model begins with a physical description
of the 1-D column of the atmosphere, including precipitation properties. Next, the mi-
crowave response to the precipitation physical properties is computed using a radiative
transfer model (RTM). The RTM consists of a hydrometeor model, which assumes a
spherical shape for our simulated hydrometeors, describes the particle size distribution
(PSD), and computes the Mie-derived optical properties, such as extinction, scatter-
ing, absorption, and radar backscattering cross-sections. The RTM then simulates the
passive microwave brightness temperatures at the top of the 1-D column of the atmo-
sphere, subject to the integrated response of upwelling microwaves to the precipitation
present throughout the column. At each vertical level, the radar reflectivities are also
computed. In short, the forward model provides simulated “top of the atmosphere”
Tps and a vertical profile of radar reflectivites, as may be observed by a satellite-based
passive microwave radiometer and radar, for a specified 1-D column of the atmosphere.

The following sections and chapters expand upon the above general descriptions,
and provide the motivation for key goals of this research. In short, the primary goal of
the present research is to retrieve and characterize the physical properties of snowfall,

such as particle size and composition, using a dual-frequency radar retrieval algorithm
constrained by co-located passive microwave observations and forward model simula-~

tions. The essential components of the present retrieval algorithm were designed to be



applicable to the upcoming GPM satellite, and were tested against the dataset obtained

from the 2003 Wakasa Bay field experiment, described in chapter 5.

1.2 The Importance of Snowfall Measurement

Most of the geophysical and atmospheric cycles of Earth influence or are influenced
by precipitation. Relevant to current climate change concerns, understanding and quan-
tifying the global energy and water cycle depends on measurements of the spatial and
temporal distribution of global precipitation (Chahine, 1992; Trenberth, 1998; Stocker
et al., 2001; Bosilovich et al., 2005). Motivated by these concerns, combined with so-
cial, political, and economic pressures, great strides are being made to improve the
observation and measurement of all aspects of the world climate, with precipitation
being one of the most important and difficult aspects to accurately measure (Stocker
et al., 2001).

A key feature of precipitation in the continental regions is its contribution to sur-
face hydrology. From an everyday perspective, the only significant source of freshwater
renewal over land comes from precipitation, whether from rain or snow (Stocker et al.,
2001). At higher latitudes, precipitation often reaches the surface as snow, and the
subsequent accumulations of snow during the cold season bring water for the warm
seasons (Singh and Singh, 2001). On the ground, snow-cover also protects fragile flora
and fauna from the bitter cold (Hansson and Henttonen, 1985). In the arctic regions,
land-based glaciers and ice packs rely on long-term snowfall accumulation for replen-
ishment (Singh and Singh, 2001).

In the marine environment, precipitation reaching the surface modifies the salinity

balance in the upper layers of the sea, impacting the thermodynamics and fluid density



within the mixed-layer (Huang, 1993). On short time scales, energy and moisture
fluxes are influenced by these changes (Huang, 1993). Over long time scales, the ocean
circulation features are influenced by regions of persistent precipitation (or persistent
evaporation) (Huang, 1993).

Precipitation is also a key indicator of latent heat release in the atmosphere: the
thermodynamic exchange of energy resulting from the phase change(s) from water
vapor to liquid or solid phase precipitation (Houze, 1989). The result of precipitation
formation is a net heating of the local environment. Although latent heating is dominant
in the tropics, where surface precipitation rates are significantly higher, the middle and
high latitudes are affected through teleconnection patterns such as those associated
with El Nino / Southern Oscillation (Tao et al., 2001), and through local latent heat
release (e.g., through midlatitude cyclone formation) (Rutledge and Hobbs, 1984). The
associated local latent heat release often dominates all other heating sources, thereby
strongly influencing local and regional thermodynamics and dynamics (Stocker et al.,
2001).

From a research perspective, knowledge of the global distribution of precipitation
occurrence and intensity is extremely important for validating global modeling efforts
such as general circulation models (GCMs) (Hulme, 1991). Despite recent advances in
computer technologies, many of the intense and localized precipitation processes are
not adequately captured by GCMs because they often occur at smaller scales than

the resolution of the models (Pitman et al., 1990). Therefore, improved knowledge of
localized precipitation characteristics can benefit GCMs and other types of large scale

models.



1.3 Physical Characteristics of Middle and High Latitude Snowfall

In the mid- to high-latitudes, the formation of clouds and precipitation differ sig-
nificantly from that of tropical and warm-cloud precipitation (Houze, 1993). In the
tropics, precipitation is primarily formed through vigorous convective activity; whereas
in the middle and high latitudes, precipitation often originates from clouds formed due
to regional lifting of air-masses, typically via frontal systems, such as the mid-latitude
cyclone, and areas of large scale horizontal convergence. The term stratiform is used
to describe these types of precipitating clouds due to the layer-like structure of the
clouds (Houze, 1997). In addition to regional and frontal lifting, convective storms also
produce stratiform cloud layers. For example, Houze (1997); Heymsfield et al. (1999)
observe that mid-latitude stratiform precipitation is often found trailing convective
events, while having a significantly larger horizontal extent and longer lifetime than
the convective portion of the storm itself.

Figure 1.1 depicts the zonally averaged occurrence of near-surface light precipita-
tion (< 1 mm h™! ) over the ocean obtained from Comprehensive Ocean-Atmosphere
Data Set (COADS) ship-based observations (Woodruff et al., 1998). A few important
features are evident: The first is a general increase in light precipitation occurrence
from low latitudes toward the poles. Second, at latitudes greater than 60 degrees, ice-
phase and mixed phase precipitation occurrence is dominant compared to liquid-only
precipitation. The observation of increased occurrence with respect to increasing lat-
itude is consistent with observation that middle and high latitude precipitation tends
to be horizontally widespread and persistent in time compared to precipitation at trop-
ical latitudes, which are generally convective in nature (Houze, 1993, 1997; Heymsfield

et al., 1999). A third feature is that surface precipitation rates of less than 1 mm h™1! is



common at the middle and high latitudes. Generally speaking, lighter precipitation is
associated with smaller particle sizes (Houze, 1993; Pruppacher and Klett, 1997), ren-
dering it more difficult to detect with traditional passive microwave or ground-based
radar observations (Evans and Stephens, 1995a).

Figure 1.1 does not give a direct indication of intensity, simply occurrence and
phase (ice-phase, mixed, liquid) of light precipitation. To gain insight into intensity,
fig. 1.2 indicates monthly average surface precipitation rate (mm/day) for all months
from 2002-2005 using AMSR-E based retrievals (blue dashed line), and from 1998-2005
using TRMM-based retrievals (green solid line). Figs. 1.3 and 1.4 show the total rainfall
accumulation for January 2003 and July 2003 respectively.

These figures, in combination with Fig. 1.1, indicate that while precipitation oc-
currence is common in the middle and upper latitudes, the intensity tends to be sig-
nificantly lower than in the tropical latitudes. Furthermore, Fig.1.3 and 1.4 show that
different retrieval methods can produce widely varying results, particularly in the mid-
latitudes. All three of these retrievals: “Petty”, “GPROF” (Kummerow et al., 2001),
and “3B43” (Huffman et al., 1997), depend on models of the physical and radiomet-
ric properties of precipitation hydrometeors. Because of this, an unknown portion of
the retrieval uncertainty arises from the choice of method used to describe the particle
properties and the associated radiometric relationships. It is these types of uncertainty
and lack of knowledge that partially motivates this research. More specifically, we seek
to improve the understanding of the microphysical nature of the precipitation through
retrievals of particle size and composition obtained from real observations of snowfall,
which represents the most common light precipitation type (Fig. 1.1) in the regions of

largest retrieval variations (Figs. 1.3 and 1.4).
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Figure 1.1. Zonally-averaged occurrence of light near-surface over-ocean
precipitation (< 1 mm h™! ) for ice-phase (dark gray), mixed phase (light
gray), and liquid (blue); obtained from COADS ship-based data. [Image
courtesy of Dr. Chris Kidd, University of Birmingham; slightly modified
from original.]
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in January, 2003
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Figure 1.3. Comparison of zonally-averaged over-ocean precipitation ac-
cumulation for three major AMSR-E algorithms or products for January,
2003. The largest disagreements in this figure occur at higher latitudes
where direct validation of ocean precipitation amounts has traditionally
been unavailable, resulting in significant uncertainties in the retrieval meth-
ods [Petty, G.W., personal communication].
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in July, 2003
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Figure 1.4. Similar to Fig. 1.3, except for July 2003. Of note is the apparent
seasonal precipitation variation between January and July at middle and
high latitudes for the southern hemisphere, i.e., Latitudes j 0. [Petty, G.W.,
personal communication].
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1.4 A Brief History of Snowfall Remote Sensing

In broad terms, remote sensing is the science and process of collecting observations
of a remote scene and subsequently inferring information about that scene. A familiar
example is human vision: we observe light scattered and emitted by objects both far
and near. The brain interprets the subtle variations of the intensity and color of light
arriving at the eye as information about the physical world around us.

Unlike the spectrum of colors we observe with our eyes, microwave remote sensing
observes only a select few frequencies of microwave radiation. As mentioned previously,
microwave remote sensing is divided into two areas: passive and active. Passive mi-
crowave remote sensing collects and analyses microwave incident upon the sensor (a
radiometer) at specific frequencies. The microwave radiation in the passive case origi-
nates from external sources. On the other hand, active remote sensing, also called radar
remote sensing, emits pulses of microwave radiation and measures the power returning
from the various objects in the scene, such as precipitation, clouds, and the surface.

In this dissertation, the general precipitation remote sensing approach consists of
a dual-frequency active radar retrieval technique with additional constraints supplied
by passive microwave radiometer observations. Traditionally microwave-based precip-
itation retrievals have used passive microwave remote sensing. While this dissertation
does not prescribe a specific passive microwave remote sensing retrieval method, it is
expected that the results will directly benefit existing and future passive microwave
algorithms by providing improved accuracy in the physical and radiometric relation-
ships employed within the standard algorithms. Looking toward the future, co-located

satellite-based radar and radiometer observations will be available from GPM, provid-
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ing an unprecedented detailed look at the 3-D structure and temporal character of both
rain and snow around the globe.
The following sections briefly describe the history of passive and active microwave

remote sensing, with a focus on snowfall retrieval.

1.4.1 Passive Microwave Remote Sensing

The nature and applications of the passive microwave response to precipitation over
both land and ocean have been well documented in the literature. This section provides
a historical development of passive microwave (PMW) remote sensing of precipitation,

with an emphasis on snowfall detection, using passive microwave observations.

Key Physical Principles

Casually speaking, upwelling microwave radiation from the surface and atmosphere
is most strongly influenced by precipitation hydrometeors having sizes comparable to
the wavelength of the radiation. Ice phase precipitation is a poor absorber/emitter
of microwaves, but a strong scatterer. Water phase precipitation is both a strong
absorber/emitter and scatterer. This difference is the primary basis for the inference
of ice and liquid phase precipitation in passive microwave retrievals.

Cloud droplets, however, are much smaller than most wavelengths used in standard
microwave remote sensing channels. Therefore, non-precipitating clouds are normally
transparent to microwaves. With decreasing wavelength (increasing frequency), the in-
fluence of a non-precipitating cloud becomes stronger, acting to absorb/emit microwave

radiation.
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The ability to “see” through clouds provides microwave remote sensing with a unique
advantage of having a direct relationship between the observed radiation and the pre-
cipitation itself. This is in contrast with other common remote sensing bands, such as
visible and infrared, which observe radiation either respectively scattered by or emitted
from the tops of clouds, with no direct relationship with underlying precipitation (if
present).

Another key advantage of microwave radiation, compared to visible and infrared, is
the nearly linear relationship between observed brightness temperature and the physical
temperature of the scene. This results in simplified physical relationships in retrieval
algorithms and improved calibration accuracy for microwave radiometers. The linear
relationship, assuming the Rayleigh-Jeans approximation is valid (section 2.2), can
be simply expressed as Tg = €T, where ¢ is the emissivity, and T is the physical
temperature. The emissivity of an object describes the ratio of the intensity of emitted
radiation to the radiation that would be emitted by a theoretical perfect emitter having
the same physical temperature. € ranges from 0 to 1, i.e., no emission to “perfect” black-
body emission at a specific wavelength of radiation. For further details. see section 2.2
or, for example, Liou (2002); Petty (2004).

Another key feature of microwave radiation is the large range of variability of the
emissivity of the land and ocean surfaces. The emissivity of the ocean surface at
a nadir viewing angle, i.e., 0° , ranges from approximately 0.3 at 3 GHz to 0.8 at
300 GHz. The emissivity of the land surface over the same frequency range and viewing
angle is typically much closer to unity, but exhibits spatial variations according to
soil moisture, snow cover, vegetation, surface type, and other factors. At off-nadir

viewing angles, the emissivity of the ocean surface exhibits a strong linear polarization,
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where the vertically polarized Tgs are larger than the horizontally polarized Tgs for all
frequencies (Petty, 2004). Land observations, however, exhibit negligible polarization
differences at any viewing angle or microwave frequency, although significant bodies
of water may introduce polarization differences (Hewison and English, Jul 1999) at
off-nadir angles. For the passive microwave observations used in this research, all
observations are made over the ocean at a nadir viewing angle, and the emissivity of
the ocean surface ranges from approximately 0.65 at 89 GHz to 0.75 at 220 GHz.

A common disadvantage of microwave compared to shorter wavelength observa-
tions, is that the intensity of observed radiation is significantly smaller than visible and
infrared for the same field of view (FOV). If one imagines a cone with the point at
the radiometer and the base intersecting the surface of the Earth, the FOV is, loosely
speaking, the area of the intersection of the base of the cone. However, in order to
collect enough microwave radiation to overcome noise, the area of the FOV is typically
on the order of dozens of kilometers for long microwave wavelengths. Fortunately, as
the wavelength decreases, the field of view can also decrease, resulting in improved
spatial accuracy.

For precipitation remote sensing, the large FOV also means that sub-scale variability
in observed precipitating clouds is not observed. The observed brightness temperature,
therefore, represents an average across the FOV. The term commonly used for these
types of observation is called the “beamfilling effect”, i.e., the observed FOV may not
be completely “filled” with a precipitating cloud. Generally this issue is more of a
concern in tropical environments, where the spatial distribution of precipitating clouds
tend to be much more widely varied than in the middle and high latitudes (Houze,

1993).
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These topics are further described in the following sections, beginning with a histor-

ical development of passive microwave sensors used in both rain and snowfall detection.

Historical Development

A number of passive microwave radiometers have been used for precipitation es-
timation since the early 1970s. The Electronically Scanning Microwave Radiometer
(ESMR, Wilheit (1972)) was first flown on the Nimbus-5 platform in 1972 and again
on the Nimbus-6 platform in 1976. ESMR was a single channel, cross-track scanning,
passive microwave radiometer that observed at a horizontally polarized frequency of
19.35 GHz, with a 25-by-25 km resolution at nadir, expanding to 160 km at the scan
edge. The second ESMR, flown on the Nimbus-6 platform, was a two channel passive
microwave radiometer operating at 37 GHz, with one channel measuring vertical and
the other measuring horizontal polarization — obtaining some of the earliest polarized
microwave observations of the atmosphere and surface from space.

One of the earliest precipitation retrieval methods, developed by Wilheit et al.
(1977), was based on the assumption that brightness temperatures over the ocean could
be quantitatively related to surface precipitation rate by means of a two-parameter
physical model. The 19.35 GHz ESMR data was used in conjunction with rain gauge
and radar data to validate the model. The “Wilheit model”, variations of which are
still in use, employed a 1-D vertical framework wherein rain concentration, with sizes
described by the Marshall-Palmer distribution (Marshall and Palmer, 1948), is constant
from the freezing level to the surface. Cloud water is modeled as an absorbing layer
below the freezing level, with a fixed amount of cloud water. The key result is that at

19.35 GHz, a precipitating cloud over ocean emits relatively warm brightness temper-
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atures (emissivity near 1) as compared to the radiometrically cold ocean background
(emissivity near 0.4), allowing for the discrimination and quantification of rainfall rate.

Figure 1.5 illustrates the modeled relationship between Ty and Marshall-Palmer
rain rate R for various freezing level heights.

Despite leaving out a variety of factors, such as water vapor and viewing angle,
Wilheit et al. (1977) provides a novel model that is applicable to the inference of light
to moderate surface precipitation rates 1-20 mm h~! over the ocean. At high rainfall
rates ( > 20 mm h~! | larger drop sizes), the 19.35 GHz signal becomes saturated (no
surface emission through the precipitating cloud), and brightness temperatures begin
to decrease again resulting from enhanced scattering.

Weinman and Guetter (1977) used the 37 GHz vertical (V) and horizontal (H)
channels on the Nimbus-6 ESMR to observe rainfall over land and ocean. In particular
they found that radiances emerging from precipitating clouds over water were weakly
polarized (i.e., small 37V-37H) in comparison to surface water, such as lakes, which
emits strongly polarized radiation. They also suggest a simple “polarization-correction”
which eliminates the Ty contrast between land and water, and produces a monotonic
relationship between observed Tgs and surface precipitation rate compared to the non-
monotonic relationship shown in figure 1.5. This concept was further extended by later
researchers (Spencer et al., 1989; Petty, 1994a; Kidd, 1998).

The first multifrequency radiometer was the Scanning Multi-channel Microwave Ra-
diometer (SMMR, Gloersen and Barath (1977)) on-board the Nimbus-7 and SEASAT
platforms, launched in 1978. The SMMR observed at 6.63, 10.69, 18.0, 21.0 and 37.0
GHz frequencies with vertical and horizontal polarizations for each channel. Using

SMMR observations, (Spencer et al., 1983) found unusually cold brightness tempera-
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Figure 1.5. Calculated brightness temperature at 19.35 GHz horizontal
polarization as a function of rain rate for freezing level heights ranging from
1 to 5 km (Wilheit et al., 1977).
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tures at 37 GHz over land. These cold Tgs were correlated with surface observations
of “heavy rainfall”, and attributed Ty depressions to scattering by precipitation sized
ice particles above the raining layer. Therefore, observed Tgs of precipitating clouds
originate not only from the emission by precipitation, but scattering plays a factor
when large ice particles are present such as is the case in large convective storms.

At least three relevant concepts can be inferred from the previously described obser-
vations. First, the vertical distribution of both ice-phase and liquid hydrometeors in-
fluences upwelling microwave radiation, rather than liquid precipitation alone. Second,
the observed Ty depressions due to scattering by ice-phase particles resulted in the sep-
aration of PMW precipitation retrieval algorithms into two categories: emission-based
algorithms, which rely on warm emission of precipitation over radiometrically cold, po-
larized backgrounds; and scattering-based algorithms, which infer surface precipitation
rate according to the magnitude of scattering induced Ty depression (Wilheit, 1986).
Third, by comparison of 18 GHz and 37 GHz observations, Spencer et al. (1983) found
that partially filled fields-of-view can lead to retrieval biases of surface precipitation
rate. This would later be described as the “beamfilling effect”, see for example: Kum-
merow (1998); Kummerow and Poyner (2004); Petrenko (2001). These three concepts
are central to many physically-based PMW precipitation retrieval algorithms to date.

In 1987, The U.S. Department of Defense introduced the Special Sensor Microwave
Imager (SSM/I) on their 5D-2 satellite platforms. The SSM/I is a seven channel, four
frequency, linearly polarized, passive microwave radiometer. The instrument measures
brightness temperatures at 19.3 GHz, 22.2 GHz, 37.0 GHz and 85.5 GHz (Hollinger,

1989). The instrument is conically scanning with a viewing angle is 53.1 degrees. The
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addition of the 85 GHz channel improved the sensitivity to volume scattering by ice
particles above that of the 37 GHz channel.

Spencer et al. (1989) exploited the fact that optically thick, precipitating clouds
exhibit very low polarization differences (Isv — Tsn) using SSM/T’s 85 GHz chan-
nel in comparison to the ocean which exhibits a strong polarization difference. They
employ the polarization corrected temperature (PCT) concept for identifying regions
of strong scattering while minimizing the sensitivity to 7Ty variations resulting from,
for example, liquid water or water vapor. These indices serve as a useful indicator of
volume scattering by ice particles independent of background Ty variations and as an
indicator of column optical depth respectively.

A number of studies using the SSM/I for precipitation retrievals (among many
other topics) were published in the 1990s [for example, Wilheit et al. (1991); Liu and
Curry (1992); Prabhakara et al. (1992); Kummerow and Giglio (1994); Petty (1994b);
Ferraro et al. (1996); Wentz and Spencer (1998); Schols et al. (1999); Prigent et al.
(2001), and others]. Despite the multichannel capabilities of the SMMR, several studies
involved only one or two channel algorithms. The SSM/I channels span both the
emission and scattering regimes allowing for algorithms that could take advantage of
both approaches, as done by (Petty, 1994b).

In the late 1980s and into the 1990s, several algorithm intercomparison projects were
undertaken to compare the capabilities of several precipitation retrieval algorithms.
The Precipitation Intercomparison Projects (PIP 1-3) described in Barrett (10-14 Jul.
1995); Smith et al. (1997); Adler et al. (2001), were primarily focused on comparing
rainfall estimates for selected regions over both ocean and land. Similarly, the Global

Precipitation Climatology Project (GPCP) Algorithm Intercomparison Projects (AIP
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1-3) sought to improve precipitation algorithms as well, with a focus on obtaining an
optimal merged product. Also, different validation techniques were used, compared to
PIP Ebert et al. (1996).

PIP-1 found, in particular, that SSM/I-based precipitation retrievals were superior
to infrared retrievals for obtaining monthly/large-scale precipitation averages, signal-
ing the decline of using IR observations exclusively for precipitation retrieval (Barrett,
10-14 Jul. 1995). PIP-2 focused instead on high-resolution instantaneous surface pre-
cipitation rate retrievals. It was noted that, relevant to the current topic, that more
physically realistic forward models were becoming necessary to further refine the the ac-
curacy of precipitation retrieval algorithms (Smith et al., 1997). PIP-3 returned back
to the style of PIP-1, with an emphasis on evaluating global monthly precipitation
fields. A relevant finding of PIP-3 was that many algorithms exhibited an apparent low
precipitation retrieval bias for middle and high-latitude ocean regions, suggesting that
validation datasets for these regions should be pursued to address the low bias (Adler
et al., 2001).

Consistent with PIP findings, the AIP projects also found that instantaneous PMW
rainfall retrievals were generally more accurate than IR techniques for rainfall estima-
tion. However, snowfall estimation was not a significant component of any of the PIPs,
although AIP-2 did include some snowfall events over both land and ocean (Ebert et al.,
1996). Specifically, AIP-2 found that the SSM/I algorithms underestimated light pre-
cipitation over ocean, which likely included snowfall cases, although it is not explicitly
discussed in any of the AIP literature.

The study by Schols et al. (1999) of the microwave properties of ice-phase precipita-

tion around a north Atlantic cyclone is particularly relevant to this dissertation. Using
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SSM/I data, they compared the microwave observations of cumulonimbus clouds east
of the cold-front within the cyclone with nimbostratus clouds north of the low pressure
center. Generally, cumulonimbus clouds are short-lived, strongly convective clouds, as-
sociated with locally heavy rainfall. Nimbostratus clouds are longer lived, with a more
horizontally distributed cloud layers with light precipitation. Using the mesoscale cloud
model MMS5, they simulated the cyclone to attempt to infer the microphysical structure
of the storm. In their study, the results suggested that snow aggregates, with densities
that decrease with increasing size, were required to simulate the observed brightness
temperatures observed in the nimbostratus clouds. These inferences support the con-
cept that the particle composition (fraction of ice vs. air) is an important factor in
simulating Tgs consistent with observations.

More recently in November 1997, the Tropical Rainfall Measurement Mission (TRMM)
satellite was launched (Simpson et al., 1996). The TRMM Project is a joint effort be-
tween Japan and the United States to measure rainfall over the tropics. The TRMM
satellite orbits between 35° N and 35° S, confining most of the precipitation observations
to the subtropics énd tropics. The TRMM satellite carries a suite of sensors, including
the TRMM Microwave Imager (TRMM-TMI) and first spaceborne active Precipitation
Radar (TRMM-PR). TMI is a 5-channel, dual-polarized, passive microwave radiome-
ter. The TMI measures passive microwave radiation at frequencies of 10.7, 19.4, 21.3,
37, 85.5 GHz.

The operational precipitation algorithm for TRMM TMI is the Goddard Profiling
Algorithm (GPROF), described by Kummerow et al. (2001). GPROF relies on a large

statistical database of physical profiles and associated radiances to correlate with ob-

served radiances using Bayesian statistical techniques. However, for the mid-latitudes,
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Masunaga et al. (2002) finds “An excess of PR over TMI (GPROF) in near-surface
[precipitable water content] PWC is identified in the midlatitudes (especially in winter)
... these inconsistencies arise from TMI (GPROF) underestimating the near-surface
PWC in midlatitude winter.” From figure 1.2, we also saw discrepancies in TRMM
surface precipitation rates vs. AMSR-E surface precipitation rates, which is especially
evident at southern hemisphere middle latitudes. The key element of discrepancy tends
to point toward microphysical assumptions in retrieval models, rather than satellite bias
or other technical factors (e.g., Negri et al. (1995), as applied to the GPROF). It was
these indications of deficiencies at mid-latitudes that motivated the present research.

Following the continued success of the TRMM satellite, the Advanced Microwave
Scanning Radiometer (AMSR-E) was launched on May 4, 2002, aboard NASA’s Aqua
spacecraft. AMSR-E is a twelve-channel, six-frequency, passive microwave radiometer.
It measures both horizontally and vertically polarized brightness temperatures at 6.9,
10.7, 18.7, 23.8, 36.5, and 89.0 GHz. The spatial resolution of each channel varies from
approximately 5.4 km at 89 GHz to 56 km at 6.9 GHz. Similar to TRMM, GPROF is
the operational precipitation retrieval algorithm. Unlike TRMM, the orbit of AMSR-E
takes it into middle and high latitude regions, where GPROF retrievals tend to be
deficient. Ice-phase precipitation detection remains an issue with AMSR-E. Despite
nearly having global coverage, only the 89 GHz channel is sensitive to moderate and
lighter snowfall rates.

The 2003 Wakasa Bay field experiment was designed specifically to examine the
ability of AMSR-E to detect and quantify snowfall, and serves as a test-case for the
present retrieval algorithm. Recent studies by G.W. Petty (personal communication)

indicate that improved modeling of environmental parameters, combined with the use of
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empirically tuned scattering indices (Petty, 1994a) at 89 GHz yields snowfall retrievals
consistent with in-situ gauge measurements located at high-latitude island stations.
These preliminary results indicate snowfall estimation using PMW-only algorithms is
capable of good correlation and accuracy when precipitating cloud and local environ-
mental properties are well characterized.

The present research is aimed toward developing a combined radar/radiometer
global precipitation retrieval algorithm for use with the upcoming Global Precipita-
tion Mission (GPM), scheduled to launch in 2013. The primary goal of GPM is to
“develop a scientific understanding of the earth system and its response to natural
and human-induced changes.” The core observatory is uniquely instrumented with a
conically-scanning radiometer (GMI), and a cross-track scanning Dual Frequency Pre-
cipitation Radar (DPR). The GMI instrument measures horizontally and vertically
polarized passive microwave brightness temperatures at 10.65, 18.7, 23.8, 36.5, 89.0,
165.5+3, and 183.31£3,9. The addition of the high frequency channels is expected to
provide a significantly enhanced capability to detect lighter surface precipitation rates

consistent with common mid- to high-latitude precipitation types.

1.4.2 Active Radar Remote Sensing

Radar remote sensing of precipitation has a history longer than that of passive
microwave observations. However, the use of radar onboard satellite platforms for

precipitation detection began in earnest in 1997 with the launch of the TRMM satellite.
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Key Physical Principles

In contrast to passive microwave remote sensing, which collects naturally emitted
/ scattered microwave radiation, radar active emits microwave radiation and measures
the power of the microwave radiation reflected back toward the radar. The elapsed time
of the return pulse is generally proportional to the distance from the radar, allowing
for observations at multiple points along the path of the radar beam. Atlas (1990)
provides a standard reference on radar remote sensing for meteorological applications.

In the descriptions that follow, a nadir/downward looking radar is assumed, such as
would be found onboard an aircraft- or satellite-based platform. The primary observ-
able of a radar is the reflectivity. Loosely speaking, the reflectivity is a measure of the
ratio of received power of a pulse of microwave energy compared to the emitted power.
Radar frequencies are typically chosen to minimize absorption by atmospheric gases
and maximize the response to precipitation-sized particles. Standard ground-based
weather radar has a frequency of 3 GHz, which is about 10 cm wavelength, where the
reflectivity at 3 GHz is related to the diameter of the particles by equation 2.11. For
smaller wavelengths, such as those used here, a more accurate accounting of the radar
reflectivity is required — this is described in section 2.5.

Ice-phase particles, such as snow, are react differently from liquid particles, when
observed by radar. In general, the reflectivity from ice-phase precipitation is smaller
than liquid phase, this arises from the differences in the index of refrection of ice in
water. In particular, liquid water generally has a slightly larger real component of the
index of refraction than ice, implying that a water particle would reflect more radiation
back toward the radar than would an ice particle of the same size. These relationships

are further described in section 2.5.
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The primary advantage of using radar for precipitation remote sensing is the ability
to observe the vertical structure of a precipitating cloud. Combined with a suitable
retrieval algorithm or “Z-R” (reflectivity-rainfall rate) relationship, estimates of the
precipitation rate at multiple layers of the atmosphere, particularly the surface, are
possible. This type of measurement is complementary to PMW retrievals, which indi-
rectly infers the surface precipitation rate based on scattering or emission properties of
a precipitating column of the atmosphere.

One disadvantage of radar is that it typically requires significant power levels to
operate effectively, especially from a space-based platform, where power is limited.
Therefore, the expenses associated with a radar can be significant compared to a passive
microwave radiometer. A second disadvantage associated with precipitation retrievals
is that the inferred precipitation properties depends strongly on the assumed rela-
tionship between the microwave radiation and the physical properties of precipitation.
Furthermore, the two-way path-integrated attenuation by precipitation and clouds can
be difficult to account for, requiring techniques to simultaneously account for the at-
tenuation while retrieving particle properties (Meneghini et al., 1997; Battaglia et al.,
2003).

A number of techniques have been developed to overcome these issues. The following
sections presents a historical development of radar as used for precipitation detection

and measurement and addresses the issues described above.

Historical Development

An important development in remote sensing technology came about during World

War II at the Battle of Britain in 1940. Prior to this battle, there had been some



28

attempts at using microwave and radio frequencies to detect objects at a distance.
Radio detection and ranging (radar), is an active remote sensing tool operating in the
microwave band, initially developed for detecting and tracking aircraft. It was noticed
by radar operators that precipitation within range of the radar led to noise on the
radar screen, eventually leading to the development of radar being used in weather
observation (Atlas, 1990).

Following the war, scientists extended their work in developing a use for the observed
noise in the presence of precipitation. In the United States: David Atlas developed the
first operational weather radar. Other developed countries quickly followed. Between
1950 and 1980, reflectivity radars (single frequency, single polarization) were built by
weather services around the world. During the 1970s, radars were organized into formal
networks. In 1964, the National Severe Storms Laboratory (NSSL) in Norman, Okla-
homa experimented with dual polarization signals and on Doppler effect uses, leading
to the next generation of weather radars.

Between 1980 and about 2000, weather radar networks became commonplace in
many developed countries, with reflectivity radars being eventually replaced by Doppler
radar to incorporate the added velocity information (among other features). In the
United States, the network of next generation radars (NEXRAD or WSR-88D), be-
gan development in 1988. Canada, along with France and other European countries
switched to Doppler networks by the early 2000s. Research on dual-wavelength and
dual polarization radars moved into operational use, providing important additional
information about the characteristics of the particles themselves.

One commonly observed feature of both ground and aircraft radar is the so-called

“radar bright band” — a region of marked increase in a vertical profile of radar reflectiv-
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ity. The bright band corresponds to regions in precipitating clouds where ice-phase pre-
cipitation is passing through the melting layer. The liquid water present on the other-
wise ice-phase particles enhance the reflectivity of the falling snow particles (e.g., Fabry
and Szyrmer (1999); Olson et al. (2001a); Battaglia et al. (2003)).

The following section continues with the development of radar, with a focus on

combined radar/radiometer algorithms, such as the one described here.

1.4.3 Combined Passive and Active Remote Sensing

Prior to and following TRMM, several research radars have been incorporated into
aircraft-based platforms, providing a mobile method for probing the vertical and spatial
extent of precipitation (e.g., Heymsfield et al. (1996); Im et al. (2000)). TRMM pro-
vided first uses of combined radar/radiometer algorithms for space-borne precipitation
retrieval (e.g., Olson et al. (1996); Haddad et al. (1997); Bauer (2001); Skofronick-
Jackson et al. (2003), and others). Bennartz and Petty (2001) used co-located ground
based radar and coincident SSM/I passive microwave observations to infer information
regarding the properties of frozen particles. Their approach is conceptually similar to
the present approach in that the radar data is used to retrieve particle properties, then
the SSM/I brightness temperatures are computed based on those properties. Using
the Scattering Index of Petty (1994a), they compare the simulated PMW Tgsto the
observed PMW Tgs.
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Historical Review and Physical Basis

The standard combined algorithm for TRMM, described in Haddad et al. (1997),
first estimates rain profiles using the radar reflectivities, and subsequently constrains the
inversion to be consistent with the radiometer-derived estimate of the total attenuation
within the field of view. However, because there is only one radar frequency, two a priori
assumptions, one about the particle size distribution and the other about the particle
density are required to obtain adequate retrievals. Work continues on the combined
radar-radiometer algorithm, with an eye toward adapting it to GPM retrievals (M.
Grecu and W.S. Olson, personal communication).

Onboard the upcoming GPM satellite, the Dual Frequency Precipitation Radar
(DPR) will operate at both 13.6 GHz (K,-band) and 35.55 GHz (K,-band). The
K,-band radar is expected to provide an improved sensitivity to snow and light rain
(compared to TRMM-PR), serving as a validation point for the GMI high frequency
channel observations described in the previous section. One key feature is the use of
dual-wavelength radar observations, the ratio of which provides a direct relationship to
particle size subject to certain assumptions (Meneghini et al., 1997; Meneghini and Liao,
2000; Kuo et al., 2004). This is contrast to the single frequency used on the TRMM-
PR radar, which requires a priori knowledge or assumptions regarding the particle size
distribution in order to perform retrievals.

The retrieval technique described in this dissertation differs from the TRMM com-

bined algorithm(s) in the following key ways:

e A dual-frequency radar, rather than single-frequency radar is used to retrieve

particle size distribution (PSD) properties of precipitation;
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e The radar-based retrievals are the primary product, rather than the using the

PMW retrieval first;

e PMW Tgs are used to constrain the radar retrievals — unlike the previously men-

tioned studies, where radar is used to constrain PMW retrievals.

e The present technique has the advantage of a direct relationship between obser-
vation and the precipitation, whereas PMW retrievals are less direct. Although
it remains unclear whether there is a distinct advantage to one approach vs. the

other.

1.5 Scientific Objectives

With the above issues and concerns in mind, this dissertation addresses the following

scientific objectives:

1. Construct a simple and accurate, end-to-end forward model to simulate both

PMW radiances and radar reflectivities using established physical relationships;

2. Using the forward model, develop a multi-sensor method to retrieve the micro-
physical properties of ice-phase precipitation consistent with mid- to high-latitude

cold-cloud precipitation types;

3. Quantify uncertainty in the elements of the forward model, simulated results, and

retrieval methodology; and,

4. Characterize the retrieved snowfall properties in a way that is useful to the both

modeling communities (e.g., GCM microphysics) and the remote sensing com-
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munity for use in observations and retrievals of extra-tropical precipitating cloud

systems.

The dataset obtained during the 2003 Wakasa Bay Field Experiment in the Sea of
Japan (WBAYO03) is used extensively in this dissertation to provide high quality in-
situ, radar, and radiometric data (Lobl et al., 2007). As one of the few winter-time field
experiments having co-located aircraft-based radar and radiometer data, WBAY03 pro-
vides a rare and invaluable source of information regarding extra-tropical/cold-cloud
precipitation regimes. The resulting dataset is expected to provide detailed micro-
physical/radiometric information to the passive microwave remote sensing community,
so that existing and future models/retrieval algorithms might benefit from improved

microphysical and radiative relationships.

1.6 Retrieval Approach

Given the above historical perspective and the stated scientific objectives, a quali-
tative description of the retrieval method is given here. The mathematical framework
is provided in chapter 3.

A number of studies indicate that passive microwave remote sensing (PMW) meth-
ods developed for tropical precipitation retrieval have questionable accuracy when ap-
plied to mid- to high-latitude cold-cloud precipitation retrievals, for example, Negri
et al. (1995); Vivekanandan et al. (1997); Schols et al. (1999); Adler et al. (2001):

Skofronick-Jackson et al. (2004). One deficiency is in the characterization of the pre-
cipitation microphysics. A second deficiency is in the inaccurate accounting for envi-

ronmental differences between tropical and extra-tropical regions. In the tropics, the
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precipitation tends to be convective and often consists of intense rainfall; whereas higher
latitudes tend to be more diverse, driven by large scale lifting and shallow convective
mechanisms, producing lighter snow and rainfall ( Houze (1993) and figures 1.2 to 1.3).
These studies indicate that the tropical assumptions about particle size distribution,
types of ice-phase hydrometeors, and rates of precipitation are not necessarily adequate
in the mid- and high-latitude precipitation regimes.

By itself, passive microwave based precipitation retrievals attempt to relate the
observed radiances or brightness temperatures (7g), to some aspect of the precipi-
tation, such as surface precipitation rate (R). These relationships are accomplished
with varying degrees of success through a number of methods ranging from statistical
correlations, for example, Spencer et al. (1983); Spencer (1986), to explicit physical
relationships, for example, Petty (1994a,b); Wentz and Spencer (1998).

However, physically-based PMW retrievals involving ice-phase precipitation (e.g.,
snow, graupel, sleet) are complicated by uncertainties arising from the variety of particle
types, sizes, and uncertainties regarding typical ice-phase particle size distributions; as
well as a general lack of sensitivity to ice-phase precipitation at PMW frequencies in
the 6 to 37 GHz range (e.g., Spencer et al. (1989)). Furthermore, Ts arising from these
observations represent a column-integrated quantity, making it difficult to untangle the
vertical distribution of precipitation.

One method to address this is by making higher-frequency passive microwave ob-
servations. For example, the 89 to 340 GHz range provides an improved sensitivity to
smaller ice-phase particles, with a trade-off of also becoming more sensitive to atmo-
spheric water vapor with increasing frequency due to continuum absorption (Janssen,

1993; Petty, 2004).
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Another approach is to incorporate radar observations (when available) co-located
with the passive microwave observations. As mentioned previously, radar has the advan-
tage of observing the vertical structure of a precipitating cloud, and the observed reflec-
tivities are directly sensitive to particle size (Vivekanandan et al., 1997; Bauer, 2001).
Dual-frequency radar observations at 13.4 GHz (2.2 cm) and 35.6 GHz (0.86 cm), com-
bined with co-located with passive microwave observations at 89, 150, 183%(1,3,7), 220,
and 340 GHz were obtained during the 2003 Wakasa Bay field experiment (WBAY03).
WBAYO03 is the subject of the snowfall retiieval case studies presented in chapter 5.
The present retrieval technique was specifically designed to take advantage of these
types of multi-frequency measurements.

To exploit the dual-frequency radar data, we follow the technique described in Menegh-
ini et al. (1997), who provided a method for relating the ratio of radar reflectivities to
particle size for various levels (“range gates”) of the precipitating cloud. Physical rela-
tionships and standard assumptions allow for the retrieval of particle size distribution
(PSD) parameters that are consistent with three radar observables: radar reflectivities
at both frequencies, the ratio of the reflectivities, and the two-way path-integrated at-
tenuation by the particles and atmosphere within the column being observed by the
radar.

This results in a set of PSD parameters at each range gate — that is, a set of
vertical profiles containing different retrieved microphysical properties while remaining
consistent with the observed reflectivities. Additional considerations for cloud liquid
water and assumptions about particle density are also required. These details are

described in chapter 3.
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To further constrain these profile-sets of retrieved PSD parameters, top of the at-
mosphere brightness temperatures are simulated for each vertical profile and compared
to observed passive microwave brightness temperatures. The profiles that are consis-
tent with the observed TBs within some tolerance are selected. The final result of the
retrieval method is a set of profiles of PSD parameters that are consistent with radar
reflectivities, passive microwave brightness temperatures, and model-simulated physical

relationships.

1.7 Summary

The deployment and development of active and passive sensors in space, air, and
on the ground is a testament to the increasing utility of these instruments and as-
sociated techniques for precipitation detection. Improvement of these precipitation
retrieval techniques motivates the research presented in this dissertation. Embodied
in the methods presented in the following chapters are both physical and statistical
relationships linking the microphysical characteristics of ice-phase precipitation with
the radiative characteristics as would be observed by remote sensing platforms.

A portion of the research presented in this dissertation describes a complete forward
model for simulating a vertical profile of the atmosphere and computing the resulting
passive microwave brightness temperatures and radar reflectivities. The forward model
consists of a combination of both new and existing well-tested methods, all of which
are described in chapter 2.

The retrieval method described in chapter 3 provides a robust characterization of
the microphysical properties of extra-tropical/cold-cloud precipitation regimes, valid

(at least) for the winter-time precipitation in the regions surrounding Japan. It is
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expected that the relationships and datasets resulting from the retrieval technique,
applied to WBAY03 data, will lead to improvements in snowfall retrievals outside the
WBAY03 region as well.

The remaining chapters in this dissertation describe the detailed elements of the
above goals and methods. Chapter 2 describes theoretical construction and specific
elements of the forward model used in the simulations. Chapter 3 details the retrieval
approach outlined above, providing a framework for which particle microphysical prop-
erties can be inferred from combined dual-frequency radar and radiometer observations.
A detailed statistical analysis of retrieved quantities and associated uncertainties is pre-
sented in chapter 4. In chapter 5, the 2003 Wakasa Bay Experiment is described in
detail and the dataset is used as a case-study for validating and analyzing the simu-
lation and retrieval technique. The concluding chapter summarizes the major findings
of the dissertation research, suggests how those findings can be disseminated to and
effectively used by the remote sensing community, and poses the inevitable set of new

questions that have come about during the course of research.
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2 THE FORWARD MODEL

2.1 Introduction

In this chapter, the primary elements of the forward model are described. The
forward model is composed of a series of models describing the physical and radiometric
properties of a 1-D vertical atmospheric column. The goal of this forward model is to
simulate the radar reflectivities and passive microwave brightness temperatures (7gs)
for an atmospheric column containing precipitation. Portions of the forward model are
used in the retrieval database described in chapter 3, and the entire forward model
is used to simulate brightness temperatures Tgs for retrieved profiles. The flowchart
shown in fig. 2.1 identifies the key elements and relationships within the forward model.

In the following chapters, the term parameters is used to identify the quantities that
are explicitly varied within the forward model and retrieval scheme. These are: the
particle density parameter, n, ; the cloud distribution parameter, ng ; the cloud liquid
water path, CLWP; and the near-surface wind speed, W. The term retrieved properties
refers to the exponential particle size distribution properties obtained from the DWR-
retrieval: that is, the slope, A; and intercept parameter, Ny. A is often expressed in
terms of a mass-weighted mean diameter Dy = 3.67/A, providing a characteristic size
for the distribution. The term derived is applied to quantities not directly retrieved,
but derived from the retrieved particle properties, such as ice water content (IWC) and
precipitation rate (R). See equations 2.33 and 2.34.

However, before we get to these properties, the primary basis for the forward model

and retrieval algorithm needs to be established. The following sections outline the
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Figure 2.1. Schematic diagram depicting the elements of the forward model.
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key elements of the forward model, which conceptually consists of a physical model
of the atmosphere containing precipitation, a radiometric model which describes the
interaction of microwave radiation with the precipitation, and a transfer model to

tabulate the radiative properties throughout the entire 1-D vertical profile.

2.2 Thermal Emission

Terrestrial objects naturally emit radiation according to their physical temperature.
The upper limit of thermal emission, as a function of temperature and frequency, is

given by the Planck function (Janssen, 1993). Written as a function of frequency, it is

2hv3
B = oo R =) (2.1)

where A is Planck’s constant [Js|, ¢ is the speed of light in a vacuum [ms™!], ks is the
Boltzmann constant [JK™'], and T is the thermodynamic temperature [K]. See, for
example, Petty (2004); Janssen (1993); Liou (2002) for the values of these constants.
As written above, B, has units of [Wm=2sr~! Hz!].

Gases, clouds, precipitation, ocean surfaces, and land surfaces, all having a tem-
perature above absolute zero kelvin, emit microwave radiation according to the Planck
function, modified by the object’s monochromatic emissivity (¢). The monochromatic
emissivity of an object is a measure, ranging from zero to unity, of how effectively a
particular object emits at a specific frequency relative to blackbody emission at the
same frequency (Petty, 2004). The microwave emissivity of the ocean near 89 GHz,
for example, ranges from about 0.3 to 0.7, depending on a number of factors, some of

which are listed below.
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The microwave emissivity of an observed scene is generally a function of the follow-

ing (Liou, 2002; Petty, 2004):
e thermodynamic temperature,
e material composition and dielectric properties,
e shape, roughness, and distribution of the emitters,
e concentrations of emitting materials (e.g., Oz, HyO, clouds, precipitation)
e relative directions of observation and emission,
e frequency/wavelength of emitted radiation, and
e the polarization state of emitted radiation.

Each of these items are either explicitly accounted for in the forward model or param-
eterizations are used when detailed information or relationships are unavailable.

For a given observed intensity, solving the Planck formula (2.1) for temperature
yields the thermodynamic brightness temperature also called equivalent blackbody tem-
perature. This describes the temperature of a blackbody (emissivity equal to unity)

having the monochromatic radiance B,,, and is written

hv hv3 -
T = - 2 1 .
EBB = [log ( B, & + )} (2.2)

A low-frequency approximation to Planck’s formula can be made in the microwave
region of the electromagnetic spectrum, simplifying the relationship between the tem-

perature and radiance. In the low frequency limit hv <« kT, the Rayleigh-Jeans
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approximation to the Planck formula is given by (Liou, 2002; Janssen, 1993; Petty,

2004)
208kT

5 .

B, ~ (2.3)

c
Solving for T yields the Rayleigh—-Jeans brightness temperature, Try. It is often em-
ployed in microwave remote sensing research due to the linear relationship between
intensity and temperature — specifically, Try = £ T, where ¢ is the emissivity of the
material being observed. However, as the microwave frequency increases, the difference
between Tgpp and Tgry increases. For example, at 3 GHz the maximum absolute differ-
ence between the two is about 0.07K, 0.7K at 30 GHz, and 7K at 300 GHz. The term
brightness temperature (Tg) is equivalent to Tigg for the remainder of this dissertation.
This quantity is used in all simulated passive microwave radiances. For a discussion of

these definitions, see for example, Janssen (1993).

2.3 Radiative Transfer

Beyond the simple blackbody description, we are interested in how microwave ra-
diation passes through and interacts with a region of the atmosphere containing a
precipitating cloud. In the most general sense, three things can happen to microwave
radiation that is passing through a portion of the cloud/precipitation: (1) it can be
absorbed by gas, cloud, precipitation, or the surface; (2) it can be scattered by cloud,
precipitation, or the surface; and (3) may can be transmitted, continuing along it’s
original path. Unimpeded, radiation may continue into outer space. Along with this
simple picture, we note that all of the constituents of the surface and atmosphere are

continually emitting microwave radiation, so the real process is an amalgamation of
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directions, intensities, polarizations, of microwave radiation. The radiative transfer
equation (RTE), described below, allows us to quantify this process. A radiative trans-
fer model (RTM), is simply a computational implementation of the elements of the
RTE.

For the present case, the layered structure of the forward model lends itself to
the plane-parallel approximation for radiative transfer computations, shown in equa-
tions 2.4 and 2.5. A plane parallel atmosphere, is an approximation which assumes
horizontally homogeneity in the region being computed. For the present cases, the
plane parallel approximation is motivated by the computational convenience and con-
sistence with observed cloud structures in chapter 5 which are relatively horizontally
homogeneous on small scales.

The RTM implementation of the RTE used in this research is via a plane-parallel,
adding doubling model, RT4, described by Evans and Stephens (1995b). The 1-D ver-
tical geometry of RT4 provides a convenient method for computing the “top of the
atmosphere” radiances for the 1-D profiles simulated by the microphysical model or
arising from those profiles retrieved from the radar-retrieval method. For the ocean
surface emission, RT4 has been modified to replace the standard Fresnel ocean sur-
face emissivity/reflectivity model with the ocean surface emissivity /reflectivity model,
incorporating the emissivity influence of near-surface winds described in section 2.4.1.

In equation form, the plane-parallel approximation is written following equation
11.13 in Petty (2004), it describes the incremental change in intensity of microwave

radiation within an infinitely thin plane-parallel layer due to a source term J and
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transmission term /. Because we’re only observing at nadir, the viewing angle 6 and
azimuth angle ¢ are set to zero. It is written as,

dl

—=1-J 2.4
dr ’ (24)
where I is the intensity (or brightness temperature), 7 is the optical depth of the layer.
At nadir, we assume that the observed Tgs are unpolarized, therefore 2.4 is a scalar

equation. The source equation, J is

2 1
J=(1-wB+ 2 / / (0,0:4, )T ) 4 (2.5)

where y' = cos(¢') and ¢’ are directions from which microwave radiation is scattered
into the present path, and p(0, 0; i/, ¢') is the scattering phase function, which describes
the probability distribution of microwave radiation being scattered in a given direction.
B is the thermal emission arising from the Planck formula, defined by 2.1, for thermally
emitted microwaves. The second term in 2.5, therefore, represents the contribution to
the source term due to radiation scattered into the path of interest, typically the field
of view of the radiometer. w represents the single scattering albedo, a measure ranging
from zero to unity of the ratio of scattering to the total extinction, where extinction is
the sum total of scattering and absorption within a volume of the atmosphere.

w = 1 implies perfect scattering, and the emission portion of 2.5 becomes zero, and
vice versa when w = 0, i.e., completely absorbing/emitting. For precipitation particles,
w depends on the size, shape, composition, phase, and frequency of radiation. 1 — w
is equivalent to the emissivity, defined in section 1.4.

Equations 2.4 and 2.5, when integrated over the entire path from surface to the top
of the atmosphere, form the mathematical basis for the forward model. The remaining

portions of this chapter describe the individual elements of each part of the source term,
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i.e., the details of how we model each of the components, in particular the emission
component and the scattering component.

The inputs to the RT4 model are the layer optical properties generated from the hy-
drometeor model, the thermodynamic properties from the 1-D physical model, and the
surface properties derived from radiosonde and/or satellite observations. The output

is the nadir brightness temperatures at the frequencies of interest.

2.4 Radiometric Response to the Atmosphere and Surface

Of interest for passive microwave remote sensing of precipitation are the bands
of frequencies where the transmissivity of the atmosphere is generally high (i.e., low
absorption of microwaves) called window channels. For example, regions from 1 GHz
to about 50 GHz, and from 70 GHz to 110 GHz, are relatively transparent from space
to the surface in clear sky cases (Liou, 2002; Petty, 2004). These bands are identified

in fig. 2.2 for a relatively dry winter season atmosphere.

2.4.1 Surface Emission

In the absence of clouds and precipitation, the primary source of the upwelling
thermal emission of microwave radiation is the surface, whether observing over land
or ocean. Over land, the surface emissivity at most microwave window channels is
typically near unity for dry surfaces, but can change significantly (and rapidly) with
variations in vegetation, soil type, snow cover, etc. Over ocean typical ranges are from
0.3 to 0.7, depending on frequency, temperature, salinity, viewing angle, polarization,

waves, and sea-foam coverage (Klein and Swift, 1977; Stogryn et al, 1995; Guillou
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of a winter season atmosphere. Oxygen (O;) absorption bands are present
near 60 GHz and 120 GHz, with water vapor absorption bands occurring
near 22 GHz and 183 GHz. Continuum absorption by water vapor drives
transmittance down with increasing frequency.
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et al., 1998; English and Hewison, 1998; Meissner and Wentz, 2004). Other empirically
based emissivity models have been developed in the past, for example, Klein and Swift
(1977); Wentz (1999); Stogryn et al. (1995); Guillou et al. (1998); English and Hewison
(1998). Surface emission is the primary contributor to the source term in equation 2.5.

A Fortran subroutine (see appendix A.2) was constructed based on the work of Meiss-
ner and Wentz (2004) to compute the complex-valued permittivity of the sea surface.
The user provides the frequency (GHz) and surface temperature (°C ); a fixed salinity
of 35 permil is assumed. The Meissner and Wentz model represents an improvement in
emissivity calculations for a larger temperature and frequency range compared to prior
emissivity models, and is consistent with the range of temperatures and frequencies
used in the present research.

Because of the difficulties in estimating land surface emissivity and correcting for
terrain variations, the case studies and analysis in this dissertation were limited to
over-ocean cases. However, there is no reason to believe that techniques described
herein would not be equally applicable over land, assuming suitable estimates of the
land surface emissivity are available (Skofronick-Jackson et al., 2004). Retrievals over

land will be explored in future research.

Wind-Induced Excess Ocean Surface Emissivity

Due to the significant wind speeds observed during the 2003 Wakasa Bay experi-
ment (WBAYO03) case studies, a surface emissivity correction for wind-induced excess
emissivity was required. To simulate the effects of wind on surface emissivity, the wave
models described in Wilheit (1979) and Kummerow et al. (2001) are used, and the

surface foam coverage model from Monahan and Woolf (1989). Ocean surface surface
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roughness is modeled following Hollinger (1971). Unfortunately very little validation
data is available to verify these models-at frequencies in the 89 to 340 GHz range and
nadir viewing angle. Wind-direction effects on the surface emissivity at nadir-viewing

angles are presumed to be negligible compared to magnitude (Tran et al., 2002).

2.4.2 Gaseous Absorption

Absorption and emission by water vapor and molecular oxygen play an impor-
tant role in microwave brightness temperatures observed at the top of the atmosphere.
In fig. 2.2, it is evident that certain microwave frequencies are sensitive to absorp-
tion by oxygen near 60 GHz and near 120 GHz, and also by water vapor near 21
and 183 GHz (Rosenkranz, 1998). Continuum absorption/emission by water vapor
becomes increasingly effective with increasing frequency, continuously decreasing the
atmospheric transmittance with increasing microwave frequency. A model based on the
results from Rosenkranz (1998) is used to compute gaseous attenuation by water vapor
and molecular oxygen O,.

When observations are made using window channels, the contribution to attenuation
by water vapor and oxygen are generally relatively minor in comparison to precipitation
(when present) (Skolnik, 1990). At higher frequencies and off-absorption-line frequen-
cies (such as 183.3 £ 1, 3,7 GHz), water vapor absorption is an important part of both
absorption and emission of upwelling microwave radiation, as would be observed from
a satellite or aircraft radiometer. Gaseous absorption (and emission for Ty simulations)
is included in the retrieval algorithm and forward model presented here for both radar

and radiometer applications.
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2.4.3 Attenuation in Clouds

When liquid clouds are present, additional absorption of microwave radiation occurs
compared to clear-sky observations (Matrosov, 1998). Because cloud particle sizes fall
well into the Rayleigh regime (section 2.5.1), scattering by liquid cloud particles is
assumed to be negligible for both passive and active observations, and is not considered
for either passive or active microwave simulation or retrievals (Haddad et al., 1997).
However, absorption by liquid water clouds is significant and is computed according to
the concentration of liquid water (Liebe et al., 1991; Lipton et al., 1999). The mass

absorption coefficient [area per unit mass| of cloud liquid water, Kaps ciw, 1S written as

m? — 1.0
[
R} <m2+2.0)" (2.6)

where A is the wavelength, pyq is the density of liquid water, and m is the index of

6
A Pliq

Rabs,clw =

refraction of water (Petty, 2004). All quantities are expressed in SI units.

Clouds composed of ice particles attenuate radiation much less effectively than their
liquid counterparts. For microwave at frequencies less than about 50 GHz, attenuation
by cloud ice can be safely neglected when precipitation is present. However, at higher
frequencies scattering by cloud ice can lead to a non-negligible attenuation depending
primarily on the size and concentration (number per unit volume) of ice particles and
the frequency of radiation. For this research, we examine frequencies ranging from 13.4
to 340 GHz, therefore the scattering must be accounted for.

For simplicity, the forward model assumes that cloud ice is present only when ice-
phase precipitation is present. The adverse effect of this assumption is that in regions
where 13.4 GHz and 35.6 GHz radar observations detect no reflectivities, undetected

ice clouds could still be present, and therefore influence brightness temperatures. To
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compensate for the lack of an explicit cloud ice model, the retrieved snow fields also
double as scattering by cloud ice. However, clear-sky cases, according to radar observa-
tions, are currently presumed to be completely cloud free. Future research will examine

the sensitivity to the inclusion (or lack thereof) of an explicit cloud ice model.

2.4.4 The Passive Microwave Response to Precipitation

For a given field-of-view, thermally emitted microwave radiation as observed from
space at a single channel/frequency can be characterized using one or more of the

following descriptions:

e upwelling emission from the radiometrically cold, strongly polarized ocean surface:
e upwelling emission from the radiometrically warm, weakly polarized land surface;

e warm, weakly polarized, emission by liquid water, and a continuum of gaseous

absorbers; and,

e cold and weakly polarized brightness temperatures from ice-phase precipitation

sized particles aloft.

Figure 2.3, from Petty (2001a), illustrates an idealized relationship between over-
ocean passive microwave brightness temperatures and surface rainfall rate R. An off-
nadir viewing angle of approximately 53° is used, consistent with the Special Sensor

Microwave Imager (SSM/I) instrument. The key features of the fig. are:

e increasing obscuration of the clear-sky polarized T signal as R increases;

e a Tp decrease near the point where the surface is completely obscured (i.e., no

polarization signal) with further increases in R;
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e and, a non-unique 7y — R relationship for a fixed brightness temperature.

The second point is due to the increased role of scattering by ice particles, which are
required for precipitating clouds to produce larger R. The final point can be seen by
passing an imaginary horizontal line through 230 K at 37 GHz, which intercepts the
curve at 2 points for each polarization, each point corresponds to different precipitation
rates.

For a given window channel, the contribution to the observed brightness tempera-
ture arises not only from the surface emission but also at different vertical levels of a
precipitating cloud. An additional component contributing to observed Txs (not shown)
arises from oblique viewing of surface reflections of downwelling radiation emitted by
precipitating clouds, particularly in tropical convective situations where the vertical
dimension of the precipitating cloud is comparable to the horizontal dimension (Petty,
1994a). In stratiform and low-level clouds and at near-nadir viewing angles this effect
is minimized — this is the standard assumption for the present studies.

In general, over the ocean, the response of brightness temperature to increases
in surface rainfall rate at each frequency is non-monotonic, which is seen in fig. 2.3.
This introduces additional ambiguity into the retrieval problem (e.g., Wilheit et al.
(1977); Petty (1994a) and others). However, this behavior can be mitigated by the use
of polarization information (e.g., Weinman and Guetter (1977); Petty (1994b); Kidd
(1998)). With increasing frequency, the general trend is for the polarization information
to saturate at increasingly smaller rainfall rates.

The inference of precipitation features from measurements made by a combination
of passive and active microwave channels requires specific assumptions (models) re-

garding the frequency dependent physical, vertical and horizontal characteristics of the
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Figure 2.3. Idealized brightness temperature relationship with respect to
surface rainfall rate for common passive microwave channels used in precip-
itation remote sensing.
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precipitating cloud in order to obtain a reasonably accurate retrieval. These elements
are the essence of the physical retrieval paradigm. In the present research, the roles are
different in the sense that the radar observations are used as the primary source of infor-
mation for the retrieval, whereas brightness temperature simulations and observations

are used as a constraint on the retrieval.

2.5 The Radar Response to the Atmosphere and Precipitation

Precipitation hydrometeors are the primary contributors to the radar reflectivity
profile observed at a given microwave frequency. However, both hydrometeors and
atmospheric gaseous constituents attenuate the radar signal as it propagates downward
from the radar and back (i.e., the two-way path-integrated attenuation). Therefore, an
explicit accounting must be made for the attenuators’ properties at each range bin
(distance from the radar) in order to perform an an accurate integration of attenuation
throughout the vertical profile.

In this section, the path from particle physical properties to a radar reflectivity
(the standard observable from radar observations) is described. As was described in
section 2.3, the particle will absorb and scatter a portion of the beam, with the amount
of scattering and absorption determined by the dielectric permittivity (index of refrac-
tion) of the medium and the size/shape of the particle. The scattering phase function,
p(O), describes the angular distribution of radiation scattered by the particle, © is
the scattering angle within the scattering-plane (see Bohren and Huffman (1983)). A
portion of the incident beam that is scattered backward toward the radar through a

solid angle centered at p(© = 180° ) is what the radar receives.
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2.5.1 Radar Backscattering Cross Section

To quantify the amount of this backward-scattered radiation, the quantity backscat-
tering cross section, oy, defines the surface area a theoretical perfect reflector would
require in order to backscatter the same fraction of the incident radiation. For an

individual particle it is expressed as
Op = QbA, (27)

where @)}, is the backscattering efficiency — a dimensionless quantity which is a function
of the material’s index of refraction, m; and the shape and size of the particle. A is the
2-D projected-area of the 3-D particle. For a sphere of diameter D, A = (n/4)D?, and
Qv is computed from Mie theory.

It is convenient to compare the wavelength A of the radiation to the particle di-
ameter D. This is expressed through the size parameter, + = nD/)\. For z =~ 1,
the computation of @)y requires the use of Mie theory when using spherical particles.
However, when z < 1, the Mie solution for ¢, mie can be approximated by using the

Rayleigh scattering approximation (Bohren and Huffman, 1983). Qp ray is written as

2

, (2.8)

m2—1

m2+2

4

Qb,Ray = 4x

where m is the complex-valued index of refraction of the material.

Figure 2.4 illustrates the backscattering efficiency as a function of liquid-equivalent
particle diameter for the two radar frequencies, 13.4 GHz (K,-band) and 35.6 GHz (K,-
band), used in this research. @) was computed for both pure ice and water spheres,
as a function of the individual particle diameter. The primary feature of relevance

is the shift of the beginning of the Mie regime toward smaller particle sizes at 35.6
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GHz compared to 13.4 GHz for both ice and water spheres. This shift, and similarity
in the shapes of the curves, is the foundation of the dual-wavelength radar retrieval
method presented in chapter 3. Figure 2.5 shows the ratio of the two backscattering
efficiencies, normalized by the ratio of the wavelengths to the fourth power, such that

in the Rayleigh regime, the ratio is near unity for ice and liquid phase.

2.5.2 Unattenuated Reflectivity

The backscattering cross section per unit volume, 1, can be expressed as sum of all

of the backscattering cross sections (o1,) of an ensemble of particles in a unit volume

V.

1
n= V Z Ub,i- (29)

Or in integral form,

n = /0 " ou(D)n(D)dD, (2.10)

where n(D) describes the distribution of particle sizes (e.g., an exponential size dis-
tribution) having dimensions of [L™], and oy is the backscattering cross-section with
dimensions of [L?].

7 is sometimes called the “radar reflectivity”. Additionally the term reflectivity

factor is typically defined
7= / D®n(D)dD, (2.11)
0

which is only strictly applicable when the radar is observing in the Rayleigh regime.
In precipitation remote-sensing applications, the radar receiver is receiving backscat-

tered radiation from an ensemble of particles, which may generally consist of a number
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Figure 2.4. Backscattering efficiency versus liquid-equivalent particle diam-
eter for water (solid blue line) and ice (dashed green line) at (a) 13.4 GHz
(Ky-band) and (b) 35.6 GHz (K,-band).
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of different hydrometeor sizes, shapes, and types, such as cloud particles, snowflakes,
raindrops, hailstones, and so on (Atlas, 1990). At the frequencies of interest for this
research, 13.4 and 35.6 GHz, the radar typically observes in both the Mie and Rayleigh
regimes when observing precipitation sized particles.

This requires an accounting for the difference between the radar reflectivity fac-

tor (2.11) and the effective radar reflectivity (factor) Zeg. This is expressed as

Zog(A) = /D DPf(D)n(D)dD, (2.12)

which is the ratio of the Mie and Rayleigh backscattering cross-sections integrated
over the particle size distribution (PSD) (e.g., Liao and Meneghini (2005b)), where
f(D) = o mie(D)/0bray(D). In meteorological applications, Zeg is typically expressed
in either units of [mm® m™?] or in the log-ratio units of [dBZ] by taking 10 log,o(Z). To
avoid terminology ambiguity, the term “reflectivity” will always refer to the “effective
reflectivity factor” Z..

The retrieval technique presented in chapter 3 depends on the 35.6 GHz radar ob-
serving particles primarily in the Mie regime, while the 13.4 GHz is observing particles
in the Rayleigh regime. If both radar frequencies are observing in the Rayleigh regime,
then the ratio f(D) in 2.12 is unity, and the unattenuated reflectivity is proportional
to the integral of the sixth power of the drop diameters per unit volume of air (i.e.,

equation 2.11).
Expanding the ratio, f(D), in 2.12 and using 2.8,

_ obMmie(D) Qo mie
f(D)_ab,Ray(D) = Oir (2.13)
Qb,Mie

= 2.14
4z K |? (2.14)
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A4Qb Mie
—_— 2.15
4mi DA K| (2.15)
where for liquid water, the “K-factor” (|K,|?) is
mi. —1
K, = | = 2.16
K 'm | (2.16)

and myq is the complex index of refraction of liquid water. In computations of the
effective radar reflectivity, the K-factor is set to the conventional value used for water
(| Kw|? = 0.93), employed in 3 GHz radar observations (Smith, 1984; Meneghini et al.,
1997). This allows for consistent comparisons of observed reflectivities.

Substituting equation 2.15 into equation 2.12 yields

Zeg(\) = MO s, pyap
W = ), woigp” ")

A Q—E%WD%(D)CZD. (2.17)
475 [ | Kwl?

Equation 2.17 represents the theoretical unattenuated effective reflectivity for aris-

ing from an ensemble of spherical hydrometeors having an arbitrary size distribution,

n(D).

2.5.3 Radar Attenuation

The atmospheric attenuation of a radar signal occurs through absorption by gases
(air, water vapor) and extinction due to hydrometeors (cloud, ice, liquid) present in
the atmosphere. As the emitted pulse from the airborne or space-based radar passes
downward through these materials, the intensity of the signal decreases through both
scattering and absorption. Radiation scattered backward toward the radar passes up-

ward through the material again, resulting in a two-way path-integrated attenuation.
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Loosely speaking, for a fixed amount of absorbers and scatterers in the atmosphere,
the path-integrated attenuation (PIA) increases as radar frequency increases. In the
present studies, the 13.4 and 35.6 GHz radar observations experienced light attenuation
through snowfall. PIA ranges of 0 to 8 dBZ at 35.6 GHz, and approximately half of
that at 13.4 GHz were observed.

In radar terminology, the term range gate refers to the the nominal volume of the
atmosphere described by a pixel of radar data. This volume is defined by the horizontal
and vertical resolution characteristics of the radar beam.

In order to accurately simulate a profile of reflectivities at a given frequency along
a path s, knowledge of either the gaseous and hydrometeor distribution along the path
or the path integrated attenuation (PIA) is required. These two descriptions are used
in the “forward” and “backward” dual-wavelength ratio techniques respectively, which
are described in chapter 3.

The attenuation for a given path in the atmosphere is expressed through the ex-
tinction law. At a particular range gate, r, the attenuation factor A(r) of the radar
beam can be expressed as the two-way path integrated attenuation between the radar
and range gate r. It is written as

,
A(r) = exp (—2/ kext (8) + Kgas(s) ds) , (2.18)
radar
where Kgas [km_l], represents the combined gaseous and cloud-liquid water extinction
at the current range gate, and k. is the extinction due to hydrometeors. The factor
of two accounts for the two-way path attenuation as the backscattered beam passes

through the same material along the return path.
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The final form of the attenuated reflectivity equation for spherical particles at a

given range gate r and wavelength ), is expressed as

_& Qb,Mie

Zent) = A3 ], TP

mD?*n(D)dD (2.19)
= exp| -2 /7“ kext (8) + kgas(s) ds e Qb’MiewDQn(D)dD (2.20)
. €X gas 47_‘_5 D le|2

adar

6

Again, the units of reflectivity are typically expressed in units of [mm® m™2], or in

[dBZ] by taking 101og,o(Zes)-

2.5.4 Dual-Wavelength Ratio

As described in chapter 1, the Global Precipitation Mission platform will carry
an active radar capable of remote sensing at two different frequencies, specifically
13.4 GHz and 35.6 GHz (http://gpm.gsfc.nasa.gov/). Previously the only other
space-based radar for precipitation remote sensing has been the Tropical Rainfall Mea-
surement Mission Precipitation Radar (TRMM-PR), which had only one channel at
13.8 GHz (Simpson et al., 1996). Retrievals from a single radar channel can infer the
intensity and vertical structure of precipitation, but requires prior assumptions about
the particle size distribution and composition of the particles.

The addition of a second radar channel, sufficiently separated in frequency/wave-
length, provides a much more direct relationship to the particle size distribution —
potentially eliminating a large source of uncertainty in retrievals, especially in snow-
fall. Previous studies have exploited this feature of the dual-wavelength relationship to
retrieval particle size distribution (PSD) properties from both ground-based radar and
airborne radar observations (e.g., Meneghini et al. (1997), Matrosov (1998), Matrosov

et al. (2005)). The key feature of the dual-wavelength ratio method is that one observ-
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ing wavelength is sufficiently long enough such that the observed particles fall within
the Rayleigh regime (i.e., z = D/ < 1); while the shorter wavelength observations
fall outside the Rayleigh regime, x ~ 1 (e.g., Mie regime for spherical particles). The
dual-wavelength ratio (DWR) is simply expressed as the ratio of the effective reflectiv-
ities of shorter wavelength (higher frequency) and longer wavelength (lower frequency)

channels,

DWR = Zeff,high/Zeff,IOWa (221)

where equation 2.20 defines Z.g, and high refers to higher frequency channel (e.g., 35.6
GHz) and low refers to the lower frequency channel (e.g., 13.4 GHz).

DWR values less than unity are assumed to be directly related to the differences in
particle size, more-or-less independent of the number-density of the particles. Given a
sufficient model for radar attenuation and the microphysical properties of particles, one
can determine a set of PSD properties that produce a consistent relationship between
the two sets of observed radar reflectivities. This technique forms the general basis for
the DWR/PSD retrieval method described in chapter 3.

Figure 2.6 shows the DWR- Dy relationship, for 13.4 and 35.6 GHz, with the curves
representing values of ice-phase (ice and air) hydrometeor density, p. At a constant den-
sity, the modeled relationship between DWR and the liquid equivalent mass-weighted
median diameter, Dy = 3.67/A, is generally monotonic for DWR less than 1 and greater
than about 0.2 (for higher density particles). Given an observed DWR value, for ex-
ample, 0.5, it is clear that any allowable value of particle density will return a different

liquid equivalent diameter. This is because DWR is primarily sensitive to the actual



62

particle diameter, relatively independent of the density, as shown in fig. 2.7. The DWR

relationship holds fairly well for D} values (actual diameter) less than 3.0 mm.

2.6 Size Distribution Properties

As a tool for parameterizing the sizes of particles present in a volume of air, func-
tional forms for the size distribution of a given particle type are often employed. The
motivations for choosing a particular form over another are typically consistency with

in-situ observations and computational/analytical convenience.

2.6.1 Modified Gamma Distribution

A convenient form of a unimodal distribution is the modified gamma size distribu-
tion. It has the features of a off-median peak skewed toward smaller particle sizes, with
n(D) approaching zero as D approaches zero and infinity. There are four controlling

parameters: Ng, 4, A, and . It is expressed as
n(D) = NoD* exp(—AD"), (2.22)

where v = 1 yields the “constrained-gamma” size distribution. This is the form most
commonly seen in literature relevant to precipitation size distribution properties (e.g.,

Ulbrich (1983); Testud et al. (2001))
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2.6.2 Exponential Distribution

Setting u = 0 and -y = 1 in 2.22 results in the (negative) exponential size distribu-
tion. The exponential distribution is a two-parameter distribution where A describes

the shape and N describes the total number density. It is written
n(D) = Noexp(—AD), (2.23)

where D is the diameter. The intercept parameter, No, has dimensions of [L.=]; the
shape parameter, A, has dimensions of [L.7!].

The exponential distribution is a simple, yet non-trivial, method for modeling the
size distribution of precipitation-sized particles. It also has a history tracing back
to the widely-used Marshall and Palmer (1948) distribution for raindrops, which was
based on field observations. In falling snow, particle sizes have also been shown to
often be nearly exponential (e.g., Sekhon and Srivastava (1970); Houze et al. (1979)).
Others have shown departures from exponential distributions, such as Mitchell (1991),
who showed departures from the exponential form in regions of aggregation and initial
vapor deposition growth. Mitchell (and others) have suggested using a three parameter
PSD model (e.g., the modified gamma distribution in 2.22) for improved consistency
with observations.

When used in conjunction with the dual-wavelength ratio technique, the retrieval
consists of two independent observations (radar reflectivities) and two unknowns (N,
and A), in the case of rainfall. For snow, there is an additional unknown in the particle
density. Because of these relationships, general consistency with published snowfall
PSDs, and for analytical convenience; the exponential distribution is used exclusively

throughout the remainder of the research presented here.
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Given that we now have an explicit form of the PSD, the two-way attenuation from
equation 2.18 can now be expressed using the exponential size distribution as

r

A(r) = exp (_2 No(8) T (A) + kgasds) , (2.24)

radar
where Ny and A are the PSD parameters of interest, I is the size-distribution-averaged
hydrometeor extinction contribution to the path-integrated attenuation, and kg,s is the

contribution of extinction by gaseous absorption. [ is written
Lo = / Go(A, D) exp(~AD)dD, (2.25)
0

where 0, (A, D) is the extinction cross section of particles having diameter D at wave-
length A\. The dimensions of I, are [L?], so that subsequent multiplication by Ny
[dimensions of L=4] yields [L '], usually expressed in units of [km™].

The extinction cross-section for a single particle is defined by

Oext = Qext A7 (226)

where A is the cross-sectional area of the particle. Similar logic provides the scat-
tering oy, and absorption o,ps cross-sections. For spherical particles, standard Mie
theory (Mie, 1908; Bohren and Huffman, 1983) may be used to compute the required

extinction, scattering, and absorption efficiencies Qext, Qsca, @abs-

2.7 1-D Microphysical Model

The general purpose of the 1-D model, as part of the forward model, is to describe
the thermodynamic and microphysical characteristics of a 1-D column of a simulated

atmosphere using meteorologically self-consistent profiles of hydrometeors based on a
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relatively small number of adjustable parameters. The 1-D model used in this research
was originally developed and described by Petty (2001b), and has been modified for
this research. In Petty (2001b), precipitation microphysical properties were generated
by model parameterizations. In the present model, hydrometeor properties and volume
fractions of ice and water come from the DWR-retrieval method described in chapter 3.
Thermodynamic and other physical inputs are typically provided by ancillary observa-
tions such as nearby radiosonde profiles and satellite-based observations of sea surface
temperature and near surface wind speed (see chapter 5).

The standard inputs to the 1-D model are surface temperature and pressure, surface
dewpoint depression, temperature and height of the tropopause, near-surface wind
speed, cloud properties: base, top, water content; hydrometeor PSD properties: Ny
and A; and hydrometeor volume fractions of ice and water. Outputs are provided to
the hydrometeor and radiative transfer model, following the forward model flowchart

depicted in Fig. 2.1.

2.7.1 Background

A number of microphysical models have been previously developed for the pur-
poses of generating simulated profiles of precipitation, and are subsequently used in
forward models and retrieval models. For example, the recent model of Thériault et al.
(2006) describes a 1-D model employing a 2-moment bulk microphysical scheme to
generate a larger variety of precipitation particle types, including graupel, slush, dry
snow, wet snow, freezing rain, ice pellets, and rain. The Goddard Profiling algorithm
[GPROF, Kummerow et al. (2001)] employs a database composed of a large number of

individual 1-D profiles (originating from a 3-D cloud resolving model) of precipitation
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and associated 1-D radiometric signatures. Similar to the forward model presented
here, GPROF uses an exponential particle size distribution (PSD), and provides an
additional constraint by specifying a fixed relationship between the two parameters of
the PSD. The present technique retrieves these quantities separately.

The primary motivation for using a 1-D model is both computational convenience
and situational relevance. When applied to stratiform mid-latitude cold-cloud precip-
itation cases, the 1-D model seems to be equally acceptable compared to a 2-D or
3-D model, particularly when simulating nadir looking observations of reflectivity and
brightness temperature. However, if applied to deep convective cases, such as in the
tropics, cloud geometry becomes a potentially important issue (Petty, 1994a; Roberti
and Kummerow, 1999). The 1-D model is also quasi-steady state, where vertical deriva-
tives of hydrometeor properties are directly related to local hydrometeor growth rates.
In strongly convective situations, however, this relationship is no longer strictly valid.
Therefore, the validity of the present studies are limited to stratiform, and to a lesser

extent, shallow convective cases.

2.7.2 General Considerations

Assuming an exponential distribution of particles (Eq. 2.23), the k-th moment of

the distribution is given by

No
AR+

/ Noexp(—AD)DFdD = - (k4 1), (2.27)
0

where I'(k + 1) is the mathematical Gamma function evaluated at k + 1, and D is the

liquid equivalent diameter of a spherical particle.
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Prior to this section, the term “diameter” has been used loosely. In reality, precip-
itation particles, especially ice-phase precipitation, are commonly non-spherical, com-
posed of ice, water, and/or air. Throughout the remainder of this dissertation, the
terms “diameter” and “liquid equivalent diameter”, D, are synonymous, referring to
the diameter of an equivalent-mass sphere of liquid water having a constant density of
1000kg m—2 . The term “physical diameter” D’ will be used to refer to the diameter
of the simulated particle when composed of a mixture of ice, water, and/or air. These
quantities are related by D = BD', where 8 = (pn/piq)"/® With pp and py, as the
densities of the simulated particle and liquid water respectively.

It is assumed that hydrometeor fall speed v, and liquid equivalent volume V can be

expressed using power-law relationships as

vy(D) = aD’, (2.28)
and,

V(D) = cD". (2.29)

The coeflicients a and b are functions of particle density, shape and air viscosity and
density (Petty, 2001b). a has dimensions of [L'7°T~!], whereas b, ¢, and d are dimen-
sionless. In the case of spherical particles ¢ = 7/6 and d = 3, forming the equation for
the volume of a sphere having liquid equivalent diameter D. The physical volume of
the simulated spherical particle is V(D) = ¢(871D)e.

Three quantities are commonly employed to describe the characteristic size of a PSD.

They are the mass-weighted median diameter Dy, volume-weighted mode diameter, D,,
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and the mass-weighted mean diameter, D,,. Assuming an exponential PSD with slope

parameter A, these are written

Dy = 3.67/A (2.30)

= 3.0/A (2.31)
Js° D*N(D) dD

Dy, (= DN (D) dD ~ 4.0/A (2.32)

respectively (Ulbrich, 1983). Dy marks the diameter where 50% of particle masses in the
distribution are above and below this point, D, indicates the peak of the distribution
of volumes, and D,, is the mass-weighted average diameter of the distribution. In this
dissertation Dy is employed as the “characteristic” particle size of the exponential PSD,
whereas D, is provided for clarity and comparison with other published research.

Using equation 2.27, non-integral expressions for the mass density or liguid water
content (LWC), w, can be written as

Nopliqc

w:/o Noexp(—AD)chpliqu: AdH

I(d+ 1), (2.33)

where the dimensions are [ML ™3], typically expressed in units of [gm~3]. In the present
study spherical particles are used, therefore d = 3 and ¢ = 7/6.

Similarly, the liquid equivalent precipitation rate, R, is written

Noac

T+ b+ 1), (2.34)

R= / Ny exp(—AD)eD%D%D =
0

where the dimensions are [L T~'], typically expressed in [mm hr™?].
In general, the fall-speed coefficients a, and to a lesser extent b, depend on the
particle shape, density of air, and the hydrometeor composition. A novel method for

modeling these dependencies is employed in the forward model as

R (2.35)
Pa
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where pgg is the density of air at a temperature of 0 °C and a pressure of 1013 millibars,
and p, is the density of air at current temperature and pressure. In snow the value
of ap = 7.2059 (SI units) and b = 0.311 is used following Petty (2001b), who derived
this value based on snowfall relationships provided in Sekhon and Srivastava (1970).
In rain, oy = 628.17 (SI units) and b = 0.7619 are derived from the Marshall-Palmer
distribution (Marshall and Palmer, 1948; Petty, 2001b).

The mass-weighted fall speed of the precipitation, v,,, can also be related to the

precipitation rate and LWC by

_Rpyg T (0+d+1)
o= = aA P (2.36)

2.7.3 Environmental Profile

Petty (2001b) describes a method for generating the environmental profile within the
1-D model framework, and a similar method is employed here, with a few exceptions.
To summarize, the temperature profile is linear between the user-defined near-surface
and tropopause temperatures. A separate surface “skin” temperature has been added
to specify surface temperatures that are different than the air-temperature of the lowest
layer — a requirement for accurate brightness temperature computations. In the present
research, the skin temperature is obtained from the sea surface temperature product of
F. Wentz (http://www.ssmi.com).

Relative humidity is generally controlled by two parameters, the clear sky relative
humidity and the surface dewpoint depression. In layers containing cloud liquid water,
the relative humidity is set to 100%, otherwise either the clear sky relative humidity or

the relative humidity with respect to ice is used.
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As in Petty (2001b), the vertical profile of pressure obeys the hydrostatic law in a
dry atmosphere. Surface pressure, Py is user-defined. Like temperature and relative
humidity, the surface pressure is obtained from radiosonde observations.

Cloud liquid water (CLW) distribution is handled by a separate variational model,
allowing for the rapid production of a variety of CLW profiles, more-or-less independent
of the particle properties. There is no explicit cloud ice model in the current forward

model implementation. The CLW model is described in section 3.3.2.

2.8 Hydrometeor Model

The purpose of the hydrometeor model is to compute the Mie properties for a
distribution of spherical hydrometeors composed of ice, water, and air — depending on
the volume fractions of each constituent. The inputs to the hydrometeor model are
temperature, wavelength of radiation, dielectric permittivities of the ice and water,
volume fractions of ice and water, Ny and A (assuming an exponential distribution).
The computed Mie properties are extinction cross-section oy (eq. 2.26), absorption
cross-section oy, single scattering albedo wy = 0gea/0ext), and radar backscattering
cross-section oy, (eq. 2.7). From the backscattering cross-section, the radar reflectivity
factor can be derived given Ny and A.

For computational convenience, we have adopted the simplest possible shape model
for an individual hydrometeor; namely, an effectively homogeneous dielectric sphere of
mass M composed of a blend of ice, air, and liquid water, with Fice, Fair, and Fjiq giving

the corresponding volume fractions, so that

Eiq + Ece + Fair = 1L (237)
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The hydrometeor density, pp, is specified by the volume-weighted average of the densi-

ties of the individual components

Pr = Figpiiq + Ficepices (2.38)

where pyq is the density of liquid water and pic is the density of solid ice. Here the

mass of air is neglected, but not the volume. The melted-equivalent particle diameter

D= (3M ) 1/3, (2.39)

4,01iq

is expressed as

and the physical or actual diameter is

Pli e
D’=D( 5 ) | (2.40)

Eiqpliq + Ecepice

For spherical particles, standard Mie theory (Mie, 1908; Bohren and Huffman, 1983)
may then be used to compute the required extinction and scattering efficiencies Qeys
and Qsca, backscattering efficiency @y, and asymmetry parameter g. These quantities
depend on both the particle size parameter x = 7D’'A™! (where X is the wavelength
in the same units as D’) and on the particle’s complex dielectric permittivity e or,
equivalently, the complex index of refraction N, where ¢ = N? for most nonmetallic
substances (Bohren and Huffman, 1983).

By increasing F,; in a particle of fixed mass, the physical cross-section is increased
while decreasing its density and thus, presumably, its extinction and/or scattering
efficiencies. Radar reflectivities are strongly sensitive to the particle size. For example,
Z is proportional D% in Rayleigh scattering (section 2.5.1), so there may be competing
effects between decreasing optical properties and increasing particle size. This notion

is indirectly examined in chapter 4.
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2.8.1 Dielectric Averaging of Ice, Water, and Air

To this point little has been said about the dielectric properties of ice, water, and
air — the materials that form a generalized hydrometeor. In reality, a hydrometeor is
often a complex amalgamation of ice with pockets of air, possibly having dendrites,
and other complex structures. When melting occurs the actual physical description
becomes even more complicated due to the distribution of liquid water on ice-phase
hydrometeors (Oraltay and Hallett, 2005). While the present case studies do not include
a melting or rainfall case, these sections (along with the melting layer model) are
presented for completeness in the description of the forward model and to highlight the
novel features of the retrieval algorithm.

Given our assumption of spherical hydrometeors composed of a single homogeneous
dielectric material, we are faced with the task of taking highly complex structures
— represented as distributions of ice, water, and air and simulating a homogeneous
dielectric material with approximately the same bulk-average dielectric properties as
the actual particle.

The bulk dielectric properties of water, ice, and air depend primarily on the wave-
length of incident radiation and the temperature of the material. It is assumed that
the dielectric permittivity of air is essentially indistinguishable from that of a vacuum
for the purpose of computing scattering properties of particles. Therefore the absolute
permittivity and the relative permittivity of the particle is the same for computational
purposes.

The dielectric permittivity of a material, represented as a complex number, consists
of a real and an imaginary component. Loosely speaking, the magnitude of the real

component plays a dominant role in determining the degree of scattering or reflection
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from a particle or surface, while the imaginary component determines the bulk absorp-
tivity by the material. If the imaginary component is zero, then the material will scatter
but not absorb microwave radiation. Both the real and imaginary components change
with wavelength and temperature, with wavelength having a significantly larger impact

than temperature within the ranges commonly encountered in the Earth’s atmosphere.

2.8.2 Permittivity of Pure Water and Ice

For liquid water, the dielectric model of Liebe et al. (1991) is used. The Liebe
model corrects previous models (e.g., Ray (1972)) for frequencies above 100 GHz by
considering additional relaxation and resonance terms, also known as the double-Debye
model terms. The salient characteristic of liquid water is that both the absorption
and scattering properties have the same order of magnitude over the frequency range
between 3 GHz and 300 GHz; thus larger particles of liquid water tend to strongly
attenuate microwave radiation both by scattering and absorption.

For the complex permittivity of ice, we use a routine that interpolates the tabulated
values of Warren (1984), who based these on a critical survey of published laboratory
values. Unfortunately, laboratory measurements in the microwave band are limited,
and there remain considerable uncertainties, especially with respect to the imaginary
part and its dependence on temperature. . It is noted that Matzler (2006) has recently
collected and performed measurements for the dielectric properties of ice at microwave
wavelengths, although it remains to be determined whether or not the results are sig-
nificantly different or provide an improvement over that of Warren.

Ice is often regarded as a scattering-only material, having very little absorption

within the frequency/wavelength ranges of interest. This is due to the relatively low
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imaginary component of the dielectric permittivity. On the other hand, the dielectric
permittivity of liquid water has a relatively large imaginary component, leading to
significant absorption/emission properties. In fact, the presence of small amounts of
liquid water on an otherwise dry, ice-phase particle raises the effective value of the
imaginary component sufficiently to drastically reduce the single-scatter albedo (Olson
et al., 2001a; Liao and Meneghini, 2005a).

The presence of liquid water also serves to increase the backscattering cross-section
of an otherwise ice-phase particle, leading to an enhanced radar signal when ice-phase
particles begin to melt. This effect partially contributes to the observed radar feature
called the “radar bright-band”, a region of enhanced radar reflectivity consistent with
particles melting as they fall below the freezing level in the atmosphere (Zawadzki et al.,
2005). The radar bright-band is regularly observed in precipitating stratiform-clouds

containing a melting layer (Houze, 1993).

2.8.3 Dielectric Mixing

When computing microwave properties of a particle containing several distinct di-
electric components, such as ice, water, and air; Mie theory is only applicable under
the assumption that the mixed-phase spherical particle is effectively homogeneous from
an electrodynamic perspective. Practically speaking, this requires that any discrete in-
clusions of dissimilar materials are much smaller than the incident wavelength and are
randomly distributed throughout the surrounding matrix (e.g., ice inclusions in an air
matrix or a homogeneous mixture of ice and air molecules). See Bohren and Huffman

(1983) for additional discussion of the validity of the homogeneity assumption.
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Two Component Mixtures

Two general methods for two-component dielectric mixing are considered: the
Bruggeman (Bruggeman, 1935) or effective medium approximation, and Maxwell Gar-
nett
(Maxwell Garnett, 1904) or matrix-inclusion method (Bohren and Huffman, 1983).
Both methods are commonly used in the literature (Meneghini and Liao, 2000; Ol-
son et al., 2001b; Petty, 2001b; Liao and Meneghini, 2005a; Kim, 2006) The Maxwell
Garnett (MG) method requires one constituent to be identified as the matrix and the
other as the inclusion. Reversing the roles leads to a different computed value of the
effective permittivity. The Bruggeman method, by contrast, treats both constituents
symmetrically — that is, there is no distinction between “matrix” and “inclusion”.

For two components, the Bruggeman method has the following form

€1 —€12) €2 — €12
161 + 2€¢1 9 ( f1)€2 + 2¢q 2) ( )

where €; is the dielectric permittivity of component 1, €3 is the dielectric permittivity
of component 2, € 9y is the desired average effective dielectric permittivity of the two
materials, and f; is the volume fraction of material 1.

The Maxwell Garnett method for two components is written as

3fi(e1 —€2) / (e1 + 2€2)
1—fi(e1—€)/ (14 2€2) |

6(1 2y = €9 1 —+ (242)

The details of the above formulas are described in the appendix, section A.1.
Note that in actual ice-phase and mixed-phase hydrometeors, the choice as to which
component should serve as matrix and which as inclusion is far from unambiguous,

especially when all three components are present. It seems reasonable to suppose
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that when one component has the largest volume fraction, that component is more
likely than than the others to exist as an electrically connected matrix; especially if the
constituent in question is rather conductive (i.e., the imaginary part of the permittivity
is significantly greater than zero), as is the case for liquid water.

This connectedness can give the constituent a disproportionate influence on the com-
puted effective permittivity. This observation is reflected in the findings of of Szyrmer
and Zawadzki (1999) and Bauer et al. (2000) who, among others, employed the MG
method, with ice inclusions in a water matrix, and found that the addition of very small
volume fractions of liquid water to a ice-phase particle produced significantly warmer
microwave brightness temperatures than the Bruggeman method or MG with water
inclusions in an ice matrix.

The reason for the unusually warm simulated Tgsarises from the fact that the
MG formulation (2.42) is only strictly valid in cases where the volume fraction of
the inclusion material is significantly less than the volume fraction of the matrix mate-
rial (Lakhtakia and Shanker, 1993; Mackay, 2005). Furthermore, the discrete inclusions
should be such that their size parameters, £ = 71D’A™!, of the inclusions are much less
than unity (Bohren and Huffman, 1983). Figures A.1 and A.2 show the potential dis-
parities that arise through the inappropriate application of the MG formulas compared
to the Bruggeman formula.

The above limitations observations in actual composite particles (Mackay, 2005). As
the volume fractions of inclusions increase, the following issues arise: (i) the inclusions
are no longer able to maintain a random distribution within the matrix material; (ii) it
becomes increasingly difficult for the discrete inclusions maintain sufficient separation

such that they are not “electrically” connected; and (iii) the discrete inclusions are
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required to be electrically small such that their size parameters are much less than
unity. A. Lakhtakia, personal communication, indicates that a = 0.3 volume fraction
of MG inclusion components serves as an upper bound. There exist alternative methods
that are contrived to circumvent these problems by way of incremental or differential
application of the Maxwell Garnett formulation, such as Lakhtakia (1998); Michel et al.

(2001). However, these formulations are beyond the scope and purpose of this research.

Three Component Mixtures

When dealing with mixtures of ice, water, and air, a three component mixing
method is desired. One possibility is to apply the two-component methods twice
(e.g., Schols et al. (1999)). However, this results in twelve different permutations of
three component mixtures for the Maxwell Garnett approach and three permutations
for Bruggeman approach, which is no longer symmetric when three components are
used (see table A.1 in the appendix). Given the volume fraction limitations of the
Maxwell Garnett approach, we derived a Bruggeman approach that is symmetric with
respect to changes in the order and volume fractions of mixing ice,water, and air. The
detailed formula is described in the appendix in section A.1.2, the generating formula

is given by

fl(fl—ﬁav)+f2(€2—€av)+(1_f1_f2)<u>:O (2.43)

€1+ 2¢,, €2 + 26,y €3 + 2€qy

where €,, is the effective dielectric permittivity. It is easy to verify that interchanging
constituents has no effect on €,,. We conjecture that this is the general symmetric

form for the three-component Bruggeman formula. The three-component form reduces
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to the two-component form when one of the constituent volume fractions is zero. By
following the same logic, this suggests that the form can be extended to N dielectric
components. However, a solution for €,, may not be analytically possible to compute
for N > 4 constituents, however, a numerical solution could be used.

In fig. 2.8, the permittivities for a melting “fluffy” particle, i.e., one that contains ice,
water, and air, are shown at each stage in the melting process for a frequency of 8 GHz
and temperature of 0 °C . At each square marker, labels indicate the values Fice = Fiir,
where Fiiq = 1 — Fice — Fair. All sixteen permutations of the three-component MG and
Bruggeman formulas are presented without explicit labeling. The purpose of doing so is
to highlight the potential for variation within the complex-valued permittivities arising
from these permutations. In particular, it is clear that the Bruggeman results fall within
the bounds defined by the MG results. This suggests that the Bruggeman results are
well behaved with respect to changes in constituent volume fractions throughout the
entire range.

Because of the symmetric nature (consistent with the two-component Bruggeman
formula) and the smooth behavior over all volume fractions, the symmetric three-
component Bruggeman method (Eq. 2.43 and the explicit solution in A.18) is used
exclusively throughout the remainder of this dissertation for two and three-component

dielectric mixing.

2.8.4 Particle Shape DDA versus Mie Theory

Precipitation hydrometeors are most commonly modeled as homogeneous dielectric
spheres, so that standard Mie codes may be utilized to compute local radiative transfer

properties such as mass extinction coeflicient x, single scattering albedo wy, and the
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Figure 2.8. Real and imaginary components of the dielectric permittivity
of a melting “fluffy” particle for varying volume fractions of ice, water, and
air at 89.0 GHz at 0 °C . Text labels indicate Fice = Fiir, Where Fq =
1 — Fe — Far. All sixteen permittivity mixing methods are shown.
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scattering phase function P(©). In the case of raindrops, the spherical model is clearly
acceptable, at least for smaller drop sizes (Beard and Chuang, 1987; Pruppacher and
Klett, 1997). For most ice-phase hydrometeors (snow crystals and aggregates, rimed
graupel particles, etc.), the spherical assumption is motivated more by convenience, and
by the lack of practical alternatives, than by realism. For example, both observations
and calculations indicate that there are significant polarization effects that arise in
connection with non-spherical ice particles (Evans and Stephens, 1995a; Prigent et al.,
2001; Czekala and Simmer, 2002).

Nevertheless, it seems reasonable to postulate that a snow aggregate or graupel
particle might be at least approximately modeled as a mass-equivalent sphere with an
effective dielectric permittivity appropriate to a mixture of ice, air and, possibly, lig-
uid water, since most of the internal structure of such a particle typically occurs on
scales much smaller than common passive microwave wavelengths. At submillimeter
wavelengths, however, scattering of microwaves by fine scale structures in ice-phase
hydrometeors (e.g., snowflakes) becomes important (Liu, 2004). Other computational
methods are probably necessary at these frequencies, such as the Discrete Dipole Ap-
proximation (Kim, 2004).

The Mie-based methods described here are likely limited to the range of microwave
frequencies between 3 GHz (10 c¢cm) and 200 GHz (1.5 mm) when using spheres to
simulate non-spherical hydrometeors. This frequency range is consistent with channels
on present day passive microwave radiometers such as the Advanced Microwave Scan-
ning Radiometer for EOS (AMSR-E) and the upcoming Global Precipitation Mission
(GPM) Microwave Imager (GMI). During the 2003 Wakasa Bay experiment (WBAY03),

radiometer observations ranging up to 340 GHz were made. In the present research,
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brightness temperatures were simulated for frequencies up to 220 GHz. Studies are cur-
rently in progress to determine the error induced by using spherical versus non-spherical

particles.

2.9 Melting Layer Model

In this section, the melting layer model portion of the forward model is described.
In present case studies, however, no rainfall cases were examined since the model is
still being tested. The section is presented for completeness in describing the forward
model and retrieval algorithm. Future research will focus on the specific issue of melting
particles.

Melting particles in the atmosphere remain poorly understood both from a micro-
physical perspective and a radiometric perspective. A number of studies have attempted
to untangle the issues associated with melting particles from the perspective of both
passive microwave remote sensing and radar remote sensing. Schols et al. (1999), for
example, identifies issues associated with observations of mid-latitude precipitation,
particularly low rainfall rates, melting particles, and the associated microwave signa-
tures. Melting layer (radar “bright band”) modeling has been a recent topic of interest
due to the uncertainty surrounding the microphysical and radiative properties of melt-
ing particles (Szyrmer and Zawadzki, 1999; Fabry and Szyrmer, 1999; Bauer et al.,
2000; Olson et al., 2001b; Battaglia et al., 2003; Sassen et al., 2005).

Physical studies involving the melting of particles in wind tunnels has also yielded
some important observations. For example, Mitra et al. (1990) notes that the distance
for melting dendrites increases by 100 meters when the environmental relative humid-

ity changes from 100% to 90%. They also note that meltwater tends to initially form
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on the tips of dendrites, then migrate inward as they grow larger. Oraltay and Hal-
lett (2005) corroborates the latter observation in their own wind-tunnel observations
for dendrites. They also suggest that shedding of meltwater could contribute to su-
percooled liquid water clouds and/or provide a secondary ice-production mechanism
through the riming/splintering process. It is evident from these studies that detailed
in-situ observations of melting particles would still contribute greatly to the knowledge
of microphysical properties of melting particles. At the present time, however, adequate
instrumentation and observing platforms remain lacking to make accurate and robust

measurements of these systems.

2.9.1 Physical Considerations

Qualitatively the approach for developing the present melting layer model is to
model the mass of melted water as a function of distance below the freezing level
(0 °C isotherm). The thermodynamic process followed is similar to Mitra et al. (1990)
and Pruppacher and Klett (1997). However, the present model does not allow for a
“continuous” modification of the particle size distribution (PSD) from snow to rain, as
is expected in real situations (Pruppacher and Klett, 1997). Instead, the mass median
diameter of the exponential PSD, D,, = 4.0/A, was chosen as the defining particle size
for modeling melting. Once particles of this size have melted, then half of the mass of
the distribution is melted, and then the model automatically switches to a rain-only
regime.

Clearly this approach is lacking in a number of ways. However, it is superior to au-
toconversion techniques or simple linear melting models which do not explicitly account

for the particle mass and relative humidity effects on the melting distance below the
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melting layer. One final assumption made is that the vertical air motions in the melt-
ing layer are negligible, a seemingly reasonable assumption for stratiform precipitation.
Given this restriction, the melting model is not suitable for convective precipitating

clouds.

2.9.2 Theoretical Formulation

The theoretical construction of the melting model loosely follows that of Prup-
pacher and Klett (1997) and Mitra et al. (1990); starting with an empirically derived
relationship for diffusional growth of ice crystals (Eq. 13-3 in Pruppacher and Klett
(1997)),

Dy = 0.211(T/To)"**(po/p), (2.44)

where Dy is the diffusion coefficient [cm? sec™'], T is the air temperature [K], p is the
pressure [mb], with constants Ty = 273.15 K, and py = 1013.25 mb.

The surface temperature of the ice crystal is influenced by ventilation, relative
humidity, evaporative cooling, and other factors. A critical temperature T,,;; is defined

for the environmental temperature required for melting to begin. It is written as

DV LE MW (61(T) ew(T)

— RH——= A4
ko Ryas Th R T )’ (245)

Terie =To +

where Ly = 797.3 cal gm™! is the enthalpy of evaporation, My = 18 gm mol~! is the
molecular mass of water, k, = 5.69 - 1075 cal (cm s °C )~! is the thermal conductivity
of air, Rgqs = 8.314 - 107 erg (mol K)~* is the universal gas constant, e,, and e; are the
saturation vapor pressures of water and ice respectively [Pa], and RH is the relative
humidity expressed as a fraction (rather than percent). The constant values are taken

from Mitra et al. (1990).
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The ventilation coeflicient for vapor and heat transfer are set equal, and assigned a

singular value, f,, given by

1+0.14x? for yx <1
Jo= (2.46)

0.86 +0.28x for x>=1
Given the above quantities, the melting rate (mass of ice converted to liquid per

unit time) is expressed as

dmw _ 4 fv C@
dt Ly

(ka (1 — 1) + DMy [y cul) e“’(T")D . (247)

Riyas T T
where dm,,/dt is the increase of melt-water mass per unit time, C; = 1.0 is the capaci-
tance of the snowflake, and Ly, = 79.7 cal gm™! is the enthalpy of melting.

The mass of melt water (grams per layer) produced as snow falls through the layer
is
1 dmy,

Mpers = -{)—Wdz’ (248)

where v; is the fall speed [m s7* ], dz is the thickness of the layer (nominally 30 meters).
Melting particle fall speeds are continuously modified following Zawadzki et al.

(2005). These are expressed as modifications of 2.35,

a0/ palT, P
0 = o pain Pao/pa(T’ P) — (2.49)
(ao,rain/ao,snow - chliq - cgﬂiq)
where,
cg =105 (————a"’”‘i“ - 1> (2.50)
Q0 snow
and for b,
b rain
b= 0, (2.51)

(bO,rain/ bO,snow - dgﬂiq - dgFl?q)
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where,

b rain
dy = 0.5 ( Orain _ 1) . (2.52)

bO,snow

In the above equations, ag rain = 628.17, @osnow = 7.2059, bg rain = 0.7619, and by gnow =
0.311 in SI units where appropriate. These equations simply express a transition from
snowfall to rainfall fall speeds as a function of liquid water volume fraction, Fjiq. At
Fiq = 0 and Fjq = 1, the fall speeds are equivalent to the speeds for dry snow and rain
respectively.

At each layer below the freezing level, the mass of melt water is summed, and

divided by the mass of snow to obtain the updated water volume fraction,

2
Eiq = Z;Zﬂ Mmelt (Z)

m/6(4/M(2))*pn(2)’

where zg is the height of the freezing level, z; is the current level, z; = 2z, is the level at

(2.53)

which “complete melting” occurs, and p, is the average density of the melting particle.

2.10 Summary

In this chapter, the various key elements of the forward model were described and
referenced. The goal in developing this model was to simulate a precipitating atmo-
sphere and the associated radar and radiometric response. The combination of elements
in the forward model provides a method for computing the vertical profile of radar re-
flectivities and top of the atmosphere brightness temperatures for a 1-D column of a
precipitating atmosphere.

However, no model is a perfect representation of reality, and certainly this is the
case here. Several physical and simulation assumptions were made in development of

this model. Specifically it is assumed that
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e the use of spherical particles composed of up to three dielectric components: ice,
water, and air is a sufficient description of the bulk dielectric properties of actual

snow/melting/rain particles;

e 1-D vertical geometry is sufficient to characterize rain and snow events consistent

with mid-to-high latitude precipitation;

e photon single-scattering is dominant, no multiple-scattering is explicitly accounted

for in radar reflectivity simulations;

e the exponential particle size distribution provides an acceptable basis for both

mid-latitude/cold-cloud snow and rain;

e scattering by ice clouds can be lumped into scattering by smaller-sized snow

particles, while scattering by liquid clouds is negligible;

e directional effects in surface winds have a negligible effect on surface emissivity;

whereas wind magnitude, surface roughness, and foam effects are accounted for.

The next chapter describes the retrieval method and how the forward model is used
in that framework. Chapter 4 is devoted to error and sensitivity analysis, where the
uncertainties/errors related to the above assumptions and the retrieval method are
discussed. Following that, the 2003 Wakasa Bay experiment is described in chapter 5,
with case studies to illustrate the application of the retrieval method and forward model

simulations.
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3 RETRIEVAL METHODOLOGY

The previous chapter described the forward model, which is used to generate radar
reflectivities and brightness temperatures for a simulated 1-D column of a precipitating
atmosphere. Several of the physical and radiative relationships employed in the forward
model are also used in the retrieval methods described in this chapter. Symmetry
between the forward model and retrieval method ensures that the necessary simulated
relationships present in the retrieval are also employed in the forward model, avoiding
potential inconsistencies in the overall retrieval scheme.

The retrieval methods described in this chapter expect observations (input) in the
form of co-located, dual-wavelength, vertical, 1-D, radar reflectivity profiles and co-
located passive microwave observations of the same scene. All observations should
be made at near-nadir viewing angles, as would occur from aircraft or satellite based
observations looking straight down toward the Earth’s surface. The 2003 Wakasa Bay
field experiment (WBAYO03) made observations fitting these criteria, and are used as a
case studies for the retrieval methods presented here.

The chapter proceeds as follows: First, the dual-wavelength radar retrieval method
is described. Next, the method for constraining the radar-based retrievals using forward
model brightness temperature simulations and observed brightness temperatures is de-
scribed. Finally, several simulated contrived cases are examined to ensure consistency

between the forward model and retrieval method.
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3.1 Dual-Wavelength Ratio Method Description

The goal of the dual-wavelength ratio retrieval method is to estimate the two un-
known exponential particle size distribution (PSD) parameters, Ny and A, using dual-
wavelength radar observations. Having two observations and two unknowns allows one
to construct a linear system of equations. However, the relationship between the ob-
served reflectivities and the true PSD properties at a given range gate is influenced
by a number of factors, including path-integrated radar attenuation and the physical
composition/characteristics of the volume of the atmosphere being observed.

The dual-wavelength ratio (DWR) is defined as the ratio of the unattenuated radar
reflectivities for a radar system operating at two different wavelengths. The relationship
is expressed as

Z

DWR =
Zs

(3.1)

where Z represents either the attenuation corrected observed reflectivities, Z,,, or the
simulated reflectivities, I,,, defined in the next sections. Subscripts 1 and 2 represent
the higher frequency channel and lower frequency channel respectively (e.g., Zs5 and
Z14).

A database of simulated radar reflectivities and extinction properties is created
for use in the retrieval. These simulated quantities are expressed as a function of
the exponential distribution slope parameter A, temperature T, volume fraction of
water Fjq, and volume fraction of ice F'ice. The density of individual particles, pp, is
determined by the volume fractions of ice, water, and air (Eq. 2.38). It is assumed
that both radar frequencies are observing the same number of particles (i.e., the same

physical volume of the atmosphere), therefore the simulated DWR is defined to be
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independent of Ny. Once A, Fjce, and Fjiq are known, retrieval of Ny at each range gate
requires a single observed and simulated reflectivity and a measure of attenuation at

the current range gate, r.

3.1.1 Theoretical Considerations

In the previous chapter, the effective radar reflectivity factor (Eq. 2.20) was derived
in terms of an unspecified PSD, and an attenuation factor A. Expressing (2.20) in

terms of the exponential size distribution (Eq. 2.23) yields

Nt
475 Koy |?

Zoa(r) = A(r) /D Qb ate( D)7 D2 exp(—AD)dD, (3.2)

where A is the wavelength of the radar radiation, | K| is the K-factor (eq. 2.16), A is the
attenuation factor (eq. 2.18), Qpmie is the backscattering efficiency from Mie theory,
and D is the liquid-equivalent diameter.

In the retrieval database (section 3.1.2), the simulated reflectivities are stored inde-

pendent of N,

2\
I, = IO K /D Qv Mie( D)7 D? exp(—AD)dD, (3.3)

where the dimensions of I, are L7 and, therefore Z = Nyly. Similarly, the DWR for

the retrieval database is computed by,
DWR = —. (3.4)

For the cases examined in this dissertation, observed DWR values range from near
zero to 1.2 (after compensating for attenuation). For spherical particles, the simulated

maximum DWR value is unity, which implies that both radar wavelengths/frequen-
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cies are observing particles within the Rayleigh regime. Therefore, the particle size
information becomes more ambiguous.

An observed DWR. of greater than unity implies that observed reflectivities at, for
example, 35.6 GHz (K,-band), are larger than the 13.4 GHz (K -band) reflectivities. In
the WBAYO03 observations, DWR values greater than unity typically occur near the tops
of the precipitating structures, where pristine ice crystals are more likely to be present.
It is hypothesized that the DWR values greater than unity arise from particle shape
influences on the observed reflectivities. Other possibilities include biases in the radar
calibration at low reflectivities and a sensitivity to smaller particles at 35.6 GHz (S.
Tanelli, personal communication, 2006). Future work on incorporating non-spherical
particles will be used to test this hypothesis, and it is hoped that additional calibrations

will also be performed on the datasets from WBAY03.

3.1.2 Database Generation

The forward and backward DWR retrieval methods use a Mie-derived lookup table
containing optical properties and radar reflectivities as a function of the exponential
distribution slope parameter A, temperature T', volume fraction of water Fjq, volume
fraction of ice Fice, and radar frequency v (at 13.4 and 35.6 GHz). The primary elements
are derived from the hydrometeor model described in section 2.8. Equations 3.3 and 3.4
describe the computation of the Ny-normalized reflectivities and dual-wavelength ratio.
The Fortran code for generating the database and associated subroutines are contained
in appendix A.2. Figure 3.1 describes the basic features of the database used for lookups

in the DWR retrieval method.



(" Dielectric Mi;(,ing Routines

Inputs: F Ficer T, Vs Mpgq

water’ ' ice’

Store in DWR database

Figure 3.1. Schematic diagram depicting the elements of the database of
Mie-derived parameters used in the dual-wavelength ratio retrieval method.
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In the current implementation, the snowfall database is a three dimensional database;
it is 4-D if melting is included, and is stored as a flat file. Table 3.1 denotes the vari-
ables for the snow-only (no melting) hydrometeor database as implemented. If melting
occurs in the retrieval, an extension to the database is employed which covers all com-
binations of ice, water, and air, in addition to the other parameters present in the
snow-only database. The respective ranges, resolution, and units for each variable are
noted in the table.

In table 3.1, Kex represents the extinction coefficient such that ke, = No Kext, and
similarly Zeg = Ny Ip.

The database is used by the retrieval scheme as follows:

1. Given the attenuation corrected observed DWR value at a given range gate, the

nearest bracketing database DWR values are found.

2. Linear interpolation between the bracketed DWR values is used to estimate A

bracketing values.
3. Given the choice of particle density, the bracketing Fy; values are found.

4. Given these quantities, the pre-computed backscatter I, and extinction Key prop-

erties are selected from the database (sans Np).

Figure 3.2 shows the primary database quantities, DWR and mass-weighted median
diameter (Dy = 3.67/A), plotted against each other in the case of ice-phase precipitation
(Fliq = 0). Particle density variations are defined by the colorbar. The dependence on
temperature in the database is neglected, since the sensitivity to temperature changes
in the retrieval is much smaller than the sensitivity to natural variations in other

parameters, such as the particle density.
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Table 3.1
Mie derived lookup database used in DWR retrieval. Lists variables, ranges,
increments and units used in the ice-phase hydrometeor database, where
square brackets [...] denote an integer range. Melting requires an addition
of Fjq to the database to encompass all combinations of ice, water, and air.

Variable min max progression units
A 4.0 | 1000 | "% 1.0111 A —1) cm!
Fair 00 | 098 [0 : 100]/100.0 -
Fiq 0.0 0.0 - -
Ih134 ~ 1071 | ~ 108 - mm® m—3 cm?*
L 356 ~ 107" | ~ 108 — mm® m~—3 cm?
Kexia | ~10717 | 0.026 - cm?
Kext 35 ~ 10716 | 0.070 — cm?
DWRs56134 | 0.022 | 1.000 - -
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Panel (a) indicates that the database quantities are smoothly varying across the
entire domain, which supports the idea of using interpolation as a means to reduce
memory storage requirements while maintaining the precision of the retrieval.

Panel (b) of figure 3.2 is similar to figure 2.6 in section 2.5.4. For a fixed DWR
value, a large range of applicable Dy (liquid equivalent) values are possible when the
density is unknown. It is also evident that for DWR values below 0.2, Dy values greater
than about 3.5 mm no-longer have a 1-to-1 relationship with DWR, and retrievals are
somewhat ambiguous. To address this, the current retrieval scheme examines Dy values
in nearby layers to determine which side of the minima (for a given particle density)
the database-lookup should occur on. This allows for a more intelligent selection of D,
for a given DWR value within the non-monotonic regions, and allows for retrievals at
significantly larger particle sizes.

Given the above database, we now have a lookup table from which the retrieval
method can infer relevant microphysical and attenuation parameters from radar reflec-

tivity and DWR observations.

3.2 Forward DWR Method: Theory

The forward method for the DWR retrieval method starts at the storm top, the
first radar range gate, and proceeds downward, layer-by-layer. Each step accumulates
attenuation information from gas, water vapor, and hydrometeors. Attenuation from
prior levels is used to provide an attenuation corrected dual-wavelength ratio at each

range gate via the two-way path integrated attenuation.
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DWR = Z /2,

Particle Density [g cm ]

DWR vs. Do' colorbar <= density [g cm™]

1 T T T T T T T T

1 ' 3 4 5 E 8 9
Mass-Weighted Median Diameter D, = 3.67/A [mm]

Figure 3.2. Relationship between particle density penew, dual-wavelength ra-
tio, and median particle diameter Dy. A and pgpoware independent variables:
DWR is a function of these three variables for the snow case.
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Similar to Meneghini et al. (1997), the (forward) DWR method equations at the

j-th range gate and i-th frequency, are written

Ai(r;) = exp —25zi(kext(rn)+kgas(rn)) , (3.5)
_ Zma(ry)Aa(ry)
DWRn1z = Zm2(r)As(ry) (3:6)
. Ib,l(A(rj>7psnow(7"j)>
DWR1’2 B Ib,Q(A(Tj)7psnow(rj)) (37)
A = DWR; 2 ' [DWRy1,2(7))] (3.8)
Zm,l
N = R ) A7) A1) 39)
Zm,2

Ina (A(r5), psnow(r5)) Az (rs)

Equation 3.5 represents the accumulated attenuation contribution from gas and hy-
drometeors from the radar to the current range gate (similar to equation 2.18). &,
represents the thickness of the current layer, and the units of the sum cancel. It is
important to note that the attenuation correction assumes that the only sources of at-
tenuation are from hydrometeor extinction, cloud liquid water absorption, and gaseous
absorption. Furthermore, any errors or uncertainties in the estimates of these quanti-
ties propagate as the retrieval progresses from the top of the cloud toward the bottom.
If the total path-integrated attenuation is large, then this method of solution is subject
to increasingly large uncertainties as the retrieval works toward the surface.

Equation 3.8 represents the “retrieval” of A by matching the observed DWR,, and

simulated DWR, then finding the A in the database that is consistent with the two
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reflectivity values and DWR. Retrievals are only currently performed if DWR,, < 1.0,
which is generally the case in snow and light rainfall for the 13.4 GHz and 35.6 GHz
combination.

Once A is known, Ny can be retrieved using either of the reflectivities, as indicated in
equation 3.9, although the results aren’t always equivalent due to sensitivity differences
between the two radar frequencies. For consistency, the high-frequency channel is
always used to retrieve Ny in the current retrieval scheme, since it is likely to be
sensitive to smaller particles. At each range gate, a large range of “candidate” A and
Ny values are retrieved if the particle density is unspecified or unknown. Section 3.3.3
describes the method for specifying particle density profiles in order to provide an
artificial constraint on the retrieval.

The present DWR. method proceeds by successive repetition of equations 3.5 through
3.9 starting at the cloud-top, i.e., the first observed reflectivity value, and progressing
toward the surface. The two-way path integrated attenuation (3.5) accumulates from
top-to-bottom.

An alternative method (not shown here), described by Meneghini et al. (1997),
starts at the surface and proceeds toward the radar. This is the so-called “backward”
method, which is primarily used in regions of strong attenuation. The present method
is referred to as the “forward” DWR method (not to be confused with the forward

model).

3.3 DWR Implementation

The flowchart for the DWR retrieval method is presented in figure 3.3. This depicts

the actual implementation of the equations presented in the preceding section.
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Figure 3.3. Schematic diagram depicting the elements of the DWR retrieval
algorithm.
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3.3.1 Interpolation

As described previously, the relatively low resolution of the database requires in-
terpolation between simulated DWR values to match observed DWR values. Accord-
ingly, the retrieved values are also interpolated, assuming linearity between bracketing
DWR, Fiq, Fair, A, I, and Koy ; quantities. Visual inspection of figure 3.2 indicates
smooth variations over all ranges of interest within the database, so that interpolation
is expected to only introduce very small uncertainties. An additional benefit of using
interpolation is a factor of 10 or more reduction in computation time compared to when
a higher resolution database is used (not shown). On a modern computer, the DWR-
retrieval requires approximately 30 minutes to preform all permutations for the entire
snowfall case, consisting of 450 individual observed 1-D radar profiles, presented in sec-
tion 5.3. However, Ty computations for each permutation on the entire dataset requires
a few weeks of continuous operation. A method for reducing the Ts computation time

is discussed in section 3.4.

3.3.2 Cloud Liquid Water Variational Model

Radar observations in the presence of precipitation are also affected by cloud liquid
water and, to a lesser extent, water vapor and atmospheric gaseous absorption. No
explicit modeling of cloud ice is performed, since it is assumed that precipitation sized

particles (when present) would swamp any reflectivities originating from cloud ice.

Also, the sensitivity range for the DWR-method, using 13.4 and 35.6 GHz observations,

precludes measurement of cloud ice particle sizes.
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Cloud liquid water (CLW) behaves differently from ice-phase precipitation in both
the radar and radiometric observation regimes, due to the differences in the dielectric
properties of ice and water (Evans and Stephens, 1995a). At 13.4 and 35.6 GHz, it
is assumed that cloud liquid water only absorbs the radar beam without contributing
to the observed reflectivities. Specifically, the retrieval method assumes that observed
reflectivities arise only from precipitation sized particles, whereas the two-way path
attenuation has contributions from precipitation, cloud, water vapor, and gaseous ab-
sorption.

It should be noted that at higher radar frequencies, such as 95 GHz, cloud particles
are no longer a negligible source of reflectivity and should be considered explicitly.
Although WBAYO03 had 95 GHz radar observations co-located with the 13.4 and 35.6
GHz observations, the present research does not use the 95 GHz observations due to
uncertainties in the calibration and the strong path-integrated attenuation present in
heavy precipitation. Future research will examine the inclusion of the 95 GHz channel
within the retrieval framework, as it could be employed for determining both cloud
water contents and particle density.

A novel model for the inclusion of CLW information in the retrieval framework
was developed to compensate for the lack of external/ancillary CLW observations.
The CLW model consists of 10 possible variations in cloud liquid water height and
distribution, given a user-provided maximum cloud top height (z;,) and cloud liquid
water path (CLWP). The ng parameter is used in the forward model and retrieval to
identify these 10 variations; the respective values are listed in table 3.2.

To model the vertical distribution of CLW, a parabolic CLW distribution model,

following Petty (2001b) is employed. For the case study presented in chapter 5, 16
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values of CLWP ranging from 0.0 to 3.0 kg m~2 are used. Cloud liquid water content
(CLWC) values at a given level are determined by the following: the CLWP, the ng
parameter, and the value of the parabolic shape at the given level in the 1-D profile.
Table3.2 lists the various choices for cloud height and thickness options. The purpose
of this model is not to precisely retrieve cloud liquid water amount and distribution,
but rather attempt to provide a suitable amount and position of CLW such that the
forward model simulated Tgs are consistent with observations.

Each DWR retrieval is performed for all ten values of ng, to provide a set of possible
CLW position and extent. ng = 0 represents the “no attenuation” case, where A = 1.0
throughout the entire profile. In the case studies presented in chapter 5, each of the
9 variations (ng = [1: 9]) of cloud position and extent, and up to 16 values of CLWP
are computed. This results in as many as 144 possible cloud liquid water variations for
each retrieved profile of PSD properties. Section 5.3.3 provides further descriptions on
how the CLW profiles are used in the retrieval method.

Figure 3.4 illustrates the distribution of cloud liquid water for various values of ng.
As an example case, the cloud liquid water path is constant at 0.3 kg m~2 for each

curve, while the vertical distribution differs.

3.3.3 Particle Density Variational Model

Radar-based retrievals of ice-phase precipitation particle properties are sensitive to
both the particle size and the dielectric properties of the material, namely ice and air.
In a ice-phase particle, the actual size and average dielectric constant are controlled by

the particle density or, equivalently, the volume fractions of ice and air (Eq. 2.38).



Variable parameters provided by cloud liquid water model.

Table 3.2

user-provided maximum possible cloud top height.

ng | description position and extent
0 | no cloud Ztop = Zsurface

1 | low, narrow 0.15240p £ 0.125244p
2 | low, medium | 0.1524,p & 0.250240p
3 | low, broad 0.152t0p £ 0.5002¢0p
4 | mid, narrow 0.502¢0p £ 0.1252¢0p
5 | mid, medium | 0.502p = 0.2502p
6 | mid, broad 0.50240p £ 0.5002¢0p
7 | high, narrow | 0.8524p % 0.1252,
8 | high, medium | 0.852¢p £ 0.2502¢0p
9 | high, broad 0.852¢0p £ 0.5002¢0p

Zgop is the
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Figure 3.4. Example vertical profiles of cloud liquid water (CLW) for the
ng parameters from table 3.2. The cloud liquid water path for each curve
is 0.3 kg m—2 .
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As mentioned in previous sections, the particle density is an important, yet unknown
parameter in the present DWR-retrievals. Figure 3.5 provides an example where the
DWR retrieval method is allowed to choose the “best fit” with an unconstrained pos-
sibility of densities at each range gate. The scattered results show that the retrieved
particle properties can yield valid mathematical solutions to the retrieval problem for a
wide range of variations of particle densities at each layer. Such variations are unlikely,
therefore subjective assumptions regarding the vertical distribution of particle densities
are required.

In the present case studies, a novel approach is taken to prescribe a vertical profile of
particle density. This approach is contrasted with that of Meneghini et al. (1997) who
have employed a constant density value. The present assumption is that the volume
fraction of air in the ice-phase particles varies linearly with altitude in the model,
independent of the structure of the precipitating cloud. This allows for a consistent
application of the particle density model for a variety of cloud heights having tops below
5 km (for the present case). The slope of the density profiles mimics observations that
pristine crystals (highest density) occur at high altitudes and aggregates/dendrites (low
density) occur at lower altitudes (Pruppacher and Klett, 1997). Some profiles are simply
constant throughout the vertical column. The wide variety in the density profiles are
intended to reasonably cover the entire range of particle density variations expected in
winter-time mid-latitude precipitation.

Variations of the linear density profiles for snow are computed as a function of
altitude. The sensitivity of changes in density to the retrieved hydrometeor properties
are explored in section 3.5 and in chapter 4. In all, 14 total density profile variations

(n, ) were explored. The individual density profiles are described in table 3.3, and are
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Figure 3.5. Example radar reflectivity profile (a) and dual-wavelength ratio
(b) taken from Wakasa Bay observations on 29 January 2003 (snow case).
Panels (c) and (d) show retrieved A and Ny values in the case where the
vertical profile of ice-phase particle density is unconstrained.
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expressed in terms of the density of the snow particle as a function of altitude (in some
cases). Figure 3.6 graphically depicts the prescribed density height relationships for
various values of n, .

Given the above density constraints, the resulting retrieval at n, = 2 (pspow =
0.4 g cm™? ) is shown in figure 3.7. Compared to unconstrained-density retrieval shown
in figure 3.5, the application of the linear density constraint results in a more smoothly
varying retrieval of A and Ny. In actual stratiform precipitation, it has been observed
that the ice-phase precipitation density generally varies relatively smoothly through
standard growth or depletion processes (Houze, 1993; Rogers and Yau, 1989). By using
the linear density model, we have assumed that the particle density is either constant
or decreases with decreasing altitude, consistent with the model of having pristine ice
crystals near the cloud tops and growth by vapor deposition, aggregation, and riming as
the particles fall through the atmosphere (Pruppacher and Klett, 1997). These growth
modes results in a lower bulk density (psuow) When using the spherical approximation

of real particles.

3.4 Brightness Temperature Retrieval Constraints

Because of the ill-posedness of the DWR-retrieval method, particularly in the choice
of density and cloud liquid water distribution, additional constraints on the retrieval are
desirable. During the 2003 Wakasa Bay (WBAY03) field experiment, the aircraft made
not only dual-wavelength radar observations, but also co-located passive microwave
observations using the MIR instrument (section 5.1.2). To constrain the DWR-based

retrievals using passive microwave brightness temperatures (73s), the DWR-retrieved



Parameters for the 14 linear particle density models used in the retrieval
algorithm. The units of the altitude, alt, is kilometers. The maximum
density values assume an aircraft altitude of ~ 5 km.

Table 3.3

n, | equation min(Psnow) | Max(Psnow)
g cm?) gem?] | [gem™)
0 | penow = 0.10 0.10 0.10
1 | psnow = 0.20 0.20 0.20
2 | Penow = 0.40 0.40 0.40
3 | penow = 0.60 0.60 0.60
4 | psnow = 0.80 0.80 0.80
5 | penow = alt/17.0 + 0.10 0.10 0.40
6 | Penow = alt/17.0 + 0.30 0.30 0.60
7 | Psnow = alt/17.0 + 0.50 0.50 0.80
8 | Psnow = alt/17.0 + 0.70 0.70 0.917
9 | psnow = alt/33.0 + 0.25 0.25 0.40
10 | psnow = alt/33.0 + 0.45 0.45 0.60
11 | psnow = alt/33.0 + 0.65 0.65 0.80
12 | psnow = alt/33.0 + 0.05 0.05 0.20
13 | psnow = alt/33.0 + 0.20 0.20 0.50
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set of candidate profiles are fed into the forward model described in chapter 2 to generate
a set of simulated Tgs at the same frequency as the observed Tys.

The simulation of passive brightness temperatures requires information about the
sea surface temperature and surface emissivity, which are additional parameters not
required in the DWR-only retrieval. Over open ocean, the primary source of variations
of surface emissivity is the near-surface wind speed. For each retrieved DWR profile, a
large number of Ty simulations must be made at each frequency to cover the possible
range of variability in the surface wind speed. However, rather than computing nu-
merous T simulations for each possible wind speed value, detailed sensitivity studies
were performed (not shown here) to determine the best-fit wind-speed over clear-sky
regions in the case studies presented in chapter 5. The optimal wind speed value of
17 m s7! for the WBAY03 snowfall case was then presumed to be constant for the
entire observation set, consistent with AMSR-E and radiosonde observations.

A standard error measure, the root-mean-square error (RMSE), is computed by
first obtaining the mean of the summed squared error between observed and simu-
lated Tps(summed over the number of channels), then the square root is applied (Taylor,
1997). The RMSE is written as

RMSE = (1 Zn: [(Ts.0n Ts s )201/2 (3.10)

=\ - ,obs,y ™ LB simw ; .
where n represents the number of radiometer channels (frequencies) present; n = 3
in the present studies (v = 89, 150, and 220 GHz). Minimizing the RMSE for all
simulated Tgs, a “best fit” to the observed T data is determined. The parameters n,, ,
ng, cloud liquid water path, and wind speed resulting in the best-fit (i.e., the lowest

RMSE between simulated and observed Tgs) are said to be the parameters of the Tq-
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constrained retrieval. Combined with the Ny and A profile, these quantities provide

the complete results of the present retrieval algorithm.

3.5 Contrived Retrieval Case

The most basic test of the retrieval method is apply it to a contrived set of observa-
tions where the microphysical profile and thermodynamic structure is known ahead of
time. Using the forward model, a single 1-D profile was created such that it smoothly
and continuously increased in reflectivity from the top near 5 km down to the surface.
Figure 3.8 shows the contrived profile. In the following figures, the “true” values are
represented by blue x’s, and the simulated/retrieved values are black circles. To sim-
plify the initial analysis, the forward model is set to have no attenuation throughout
the vertical profile, similarly the retrieval assumes no attenuation (i.e., ng = 0 and,

thus, A; = 1.0).

3.5.1 Basic Retrieval

To test the retrieval method, the first step is to apply the DWR-algorithm to the
“observed” radar-reflectivities for while modifying the particle density parameter, n, .
The results for a single, first guess density (psnow =~ 0.7g cn™2 using n, =11) is shown in
figure 3.8. Clearly, the retrieved Ny and Dy profiles are not close to the true quantities,
despite a perfect match for both the radar reflectivities and dual-wavelength ratio.
As with real data, it is impossible to discern which n, value provides an optimal fit
using the DWR-method alone. Additional constraints are imposed here via simulated

brightness temperatures for each of the available n, values, listed in table 3.3. Each
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simulated Ty set is compared to the “true” forward-model T; set to determine the best
fit.

The true particle density profile was chosen (pgow = 0.4 g cm™ ) such that none
of the standard 14 n, values provided a sufficient Ty fit to the “true” Tgs. Therefore,
an additional “foating” n, value was added to the retrieval and was adjusted until
the simulated Tgs fit the observed Tgs. The constant value of pgow = 0.4 g cm™3 was
found to provide the best Tgfit, and the results are shown in figure 3.9. The only
change between figure 3.8 and 3.9 is in the particle density, from pgew ~ 0.7 g cm™ to
Psnow = 0.4 g cm™3 .

These figures illustrate the application of the retrieval method for contrived cases
where the truth is known a priori. Even in these contrived cases, some imperfection
is expected due to numerical differences between the forward model and retrieval al-
gorithm. Slight variations in the forward model density relating to changes in density
with temperature also result in some deviations from a perfect retrieval.

It should be noted that there’s an implied assumption here that the particle density
is largely responsible for the goodness of fit between observed and simulated Tgs. Other
parameters, such as wind speed, temperature, water vapor profile etc. also influence
observed Tgs. Without external validation of the selected density, it is impossible
to select the “most correct” density profile for a given retrieval. We cannot state
with any certainty that it is the best representative particle density for the actual
particle. Rather, the compelling argument here is that the selected density profile

provides a general consistency between the radar observations, radiometer observations,

and simulations.s
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Figure 3.9. Similar to figure 3.8, except that the Tg-constraint method
has been applied to find the particle density value providing the smallest
RMSE between the true and simulated Tgs. The best-fit density is found
to be psnow = 0.4 g cm™2 |, equivalent with the true particle density.
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3.5.2 Basic Retrievals With Reflectivity Noise

In the previous section, the basic retrieval was performed on a smoothly varying
dataset. In real data, the source and magnitude of radar “noise” is generally unknown
— it could be due to real variations in the precipitation microphysics, instrument noise,
viewing geometry, etc.

To simulate the retrieval under noisy conditions, random noise in the range of
+0.5 mm h™! was added to the liquid equivalent precipitation rate: a basic quantity
that the forward model simulates, which in turn influences the other simulated values,
such as the true/“observed” radar reflectivity — the primary input to the retrieval
algorithm.

Figure 3.10 shows the result of adding noise to the precipitation rate in the forward
model. The true/observed reflectivities and DWR are clearly influenced by the noise;
however, the DWR-retrieval is still able to retrieve Ny and Dy accurately. As in the
base example, the true particle density is pgnow = 0.4 g cm™ | and the Tg-constraint
method correctly identifies this in the retrieval. These results indicate that the retrieval
is robust in the presence of variations in the observed radar reflectivities, while the true

particle density remains smooth or constant.

3.5.3 Basic Retrievals With Particle Density Noise

In real observations, the particle density is unlikely to be constant throughout the
entire profile. However, the DWR-retrieval always assumes a linear density profile. By

adding noise to the density profile, the robustness of the retrieval method is tested.
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Figure 3.10. Random noise in the range of +1 mm h~! is been added to
the base precipitation rate (fig. 3.9) in the forward model, and the retrieval
algorithm is subsequently applied. The true particle density of pgow =

0.4 gcm™3

is unchanged. The Ti-constraint method was applied and the

particle density value of pgow = 0.4 g cmn™3 provides the best Ty fit.
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Figure 3.11 shows the effect of adding random noise to F,; in the range of £0.15
relative to a base value of F,;;=0.56, which results in a particle density range of ap-
proximately psnow = 0.4 =+ 0.14g cm™ . Despite the large variation in retrieved prop-
erties, the Tg-constraint portion of the retrieval finds that the particle density value of
Psnow = 0.4 g cm™3 provides the best average fit.

To reduce the spread in the retrieved quantities, a 9-layer smoothing window is
applied to the vertical profile of reflectivities, this is shown in figure 3.12. This has
the effect of smoothing out rapid variations in the vertical profile, however there’s no
longer a direct match between the observations and simulations. The best Tgfit density
is, as before found to be pgow = 0.4 g cm™3 . Relative to figure 3.11, the simulated
Ty values are slightly higher than the true values after the application of smoothing.
The retrieved Dy and Ny values are more closely constrained to the true observations,
despite some telescoping effects near the storm bottom. A similar smoothing technique
is applied to WBAY03 observations to reduce spurious retrievals, and is described in

section 5.2.3.

3.5.4 DBasic Retrievals With Both Density and Reflectivity Noise

If noise is added to both the precipitation rate and to the true particle density
profile, as seen in figure 3.13, the accuracy of the DWR-retrieval further decreases.
The precipitation rate and density noise are randomly added as previously described.
The addition of both sets of noise results in an large spread in both true and retrieved
parameters. While the retrieval is able to find simulated DWR and reflectivities that
match the observations, the retrieved properties have a large spread, even under the

best-fit Tg-constraint simply due to the fact that our simple linear density profiles
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Figure 3.11. Following figure 3.10, random noise added to the true particle
density profile, rather than to the precipitation rate. The retrieval, however,
assumes a constant density, which results in a large spread in retrieved prop-
erties relative to the true values. Nevertheless, the Tg-constraint method

correctly finds the particle density value of pguow 0.4 g cm™2 to provide the
lowest RMSE value.
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cannot capture the random variations in the true densities. Nevertheless, the best fit
particle density is still found to be near the true value of pgow = 0.4 g cn™3 | this is
presumably because the average true particle density still falls near this value.

This finding is of interest since it implies that while an actual retrieval may not
accurately characterize the true particle density at each level, a characteristic linear
density profile may be found such that the retrieval requirements are satisfied within
a certain tolerance. In this case, the simulated and true Ty values are nearly identical,
indicating the utility of the Tg-constraint method.

In figure 3.14, smoothing is again applied, as was done in the density-noise-only case
(fig. 3.12). In this case, the retrieved profiles are much more confined in their variations.
However, the smoothing results in simulated Tgs having higher values compared the true
Tgs when the retrieval assumes the true particle density value of pgow = 0.4 g cm™2 .
This indicates that the smoothing method may introduce unintended biases into the
retrieval. This issue will be explored in future research.

In this case, if the Tg-constraint method is applied, we find that n, = 6 (psnow = 0.3
to 0.6 g cm™3 ) results in a closer agreement between observed and simulated Tgs, as
illustrated in figure 3.15 It should be noted that this range of values is not far from the

true particle density value of pyow = 0.4 g cn™3 .

3.6 Summary

The retrieval method described in this chapter has two primary components. The
first component uses the dual-wavelength ratio method to obtain particle size distribu-
tion properties. This method exploits the fact that two wavelengths of radar radiation

will be influenced by the same physical volume (number density) of particles. Because
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Figure 3.13. Random noise is added to both the precipitation rate and the
density in the “truth” forward model to test the robustness of the retrieval.
The result is a large spread in both true and retrieved parameters. The sim-
ulated and retrieved Tg values are quite similar when the retrieval density
matches the true particle density, ponow = 0.4 g cm ™3 .
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Figure 3.14. Similar to figure 3.13, except a 9-layer smoothing window has
been applied to the reflectivity profiles. Here we’ve simply assumed that
p=0.4 g cm™3 in the retrieval.
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Ny =6 (Psnow = 0.3 t0 0.6 g cm™> ) as the optimal density profile, rather

than the true value of pguow = 0.4 g cm™3

result of the data smoothing technique.

. This is presumably due to the
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of this, the ratio of the two radar reflectivities is presumed to be independent of Ny pa-
rameter, and therefore is only sensitive to variations in particle size, shape, composition,
and the path-integrated integration. Under the spherical particle shape assumption,
particle size and composition (density) act as proxy parameters for the lack of shape
knowledge.

Particle size can only be accurately retrieved when the particle composition (i.e.,
density) is correctly specified. However, the particle composition/shape/density of a
true particle is generally unknown or largely uncertain. To compensate for this, 14
different linear profiles of density were tested. An additional unknown for both radar
and radiometer simulations is the amount and vertical distribution of cloud liquid water.
A set of 10 distribution profiles for cloud liquid water is employed, with 16 values of

2 | This results in a set of

total cloud liquid water path ranging from 0 to 3.0 kg m™
approximately 2000 DWR-retrieved particle profiles for a single set of radar reflectivity
observations — all of which are mathematically valid solutions to the DWR-retrieval
method, but not all of which are necessarily physically realistic.

To address this, the second component of the retrieval method seeks to constrain the
ill-posed DWR-retrieval by comparisons between simulated and real passive microwave
brightness temperatures. This constraint method allows for the selection of the den-
sity and cloud liquid water parameters that provide best-fit retrieved profiles, which
are consistent both the observed radar data and the co-located radiometer brightness
temperatures.

Retrievals were performed on contrived cases, where the true values were known a

priori. These cases showed that the Tg-constraint method is essential to obtaining an

accurate retrieval of Ny and Dy when the particle density is unknown. When applied



127

to a larger set of observational data, the retrieval method provides a three-way (simula-
tion, radar, radiometer) consistent set of particle-size parameters which can be further
distilled into general relationships for use in a variety of meteorological applications.
The next chapter seeks to apply standard statistical methods to estimate the un-
certainties in the observations, simulations, and retrieval processes described in this

dissertation.
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4 UNCERTAINTY ANALYSIS

In the previous chapters, the framework for the forward model and retrieval algo-
rithm was described. The uncertainty and sensitivity to various aspects of the model
were discussed qualitatively. In this chapter, the uncertainties arising from observa-

tions, simulations, and retrieval methods are quantified.

4.1 Considerations

Broadly speaking, all observation and simulation of physical phenomena are natu-
rally subject to uncertainty due to the inherent limitations of either the measuring/ob-
serving device or the lack of knowledge of the properties of the phenomena. That is,
no measurement is perfect, especially for remote sensing where the “true value” of the
quantity being observed or simulated is generally unknown within a potentially large
range of uncertainty.

The difference between the measured value of a given quantity and true value is
the error. Often the true value is unknown, making the error difficult to quantify.
The term uncertainty, as used here, is defined as the typical range of error that occurs
when simulating a quantity or making an observation/measurement. That is, repeated
measurements or simulations of the quantities under similar conditions has a range of
probable values. This range of probable outcomes from these processes is the uncer-
tainty, and is expressed as some base value %4.

The terms error and uncertainty are often used interchangeably and informally to

indicate a sense of confidence in measurement or simulation Taylor (1997). Given the
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vagaries of the usage of these terms, the primary concern of this chapter falls under
the category of “uncertainty analysis”; that is, attempting to identify and quantify
both the magnitudes and propagation of key sources of uncertainty associated with the
various observations, methods, and models described in this research.

Uncertainty can be further divided into two distinct types: uncertainty arising from
variations in the physical and simulated systems, sometimes termed random or stochas-
tic uncertainty. This will be termed “Type A” uncertainty. Type A uncertainty arises
from sources that are defined, such as the mathematical and physical models that com-
prise the forward model, or a set of events that occur within a discrete system. “Type B”
uncertainty, sometimes termed epistemic, reducible, or subjective uncertainty; is that
which results from a lack of knowledge of the physical systems under consideration.
Type B uncertainty is more prevalent in the present study, but also less quantifiable
than Type A (see for example,
http://physics.nist.gov/cuu/Uncertainty/index.html).

There are cases where both Type A and Type B uncertainties of a particular method
are either unknown or unable to be estimated without significant time, specialized
equipment, and years of effort. In fact, a primary stated goal of the present research is
to reduce total uncertainty in the simulation and retrieval of particle size distributions of
snowfall. However, due to the considerable task of performing a complete and rigorous
uncertainty analysis, two relatively straight-forward approaches for quantifying the

uncertainty are employed to reduce the effort involved.

In this chapter, we estimate localized uncertainty through sensitivity studies using
published uncertainties when available. Given the results of these individual analyses,

a combined uncertainty is estimated for the observations, simulations, and retrieved
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properties. Unless otherwise specified, the uncertainty estimates are presumed to be
independent from one another. The propagation and computation of uncertainties
follows Taylor (1997).

In the following sections, the sources of uncertainty contributing significantly to
the overall simulation and retrieval uncertainties are quantified. Secondary sources of

uncertainty are identified when knowledge is available.

4.2 Observation and Instrument Uncertainties

A number of different instruments provided data that was used in the present re-
search, their uncertainties are described in this section. Satellite based observations and
retrievals from AMSR-E were used to initialize and guide constraints within the retrieval
and forward model portions of this research. Radiosonde profiles from stations in close
proximity to the flight path, for the 2003 Wakasa Bay field experiment (WBAY03),
described in chapter 5, were used to initialize the vertical profile of temperature and
humidity for the radiative transfer portion of the retrieval scheme. APR-2 radar re-
flectivities (section 5.1.1) provided radar data, which were used in the DWR-retrieval
method. Passive microwave observations of brightness temperature were obtained from
the MIR instrument (section 5.1.2) and were subsequently used to constrain the DWR-

retrievals.

4.2.1 Satellite-Based Observations: AMSR-E

Products based on AMSR-E observations were used to initialize the ocean surface

properties and the atmospheric thermodynamic profile for Ty computations from the
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WBAYO03 case studies presented in chapter 5. Specifically, the sea surface temperature
(SST), Cloud Liquid Water (CLW), and near-surface wind speed values were inferred
from images obtained at http://remss.com/ (see acknowledgment). Preliminary esti-

mates of the retrieval error of these quantities are shown in table 4.1 (Wentz, 2000).

4.2.2 Radiosonde Profiles

Radiosonde profiles from the Wajima and Fukui radiosonde sites in Japan were used
in this research (see table 5.3). However, the types of radiosondes used were unknown to
the author. Instead, we use the uncertainty results summarized in Fetzer et al. (2003)
and reproduced in table 4.2, which state the generalized measurement uncertainties

resulting from numerous radiosonde observations of the troposphere.

4.2.3 APR-2 Radar Reflectivities

According to Tanelli et al. (2006), the 13.4 GHz channel (K -band) calibration
uncertainty is estimated to be +1 dB, and the 35.6 GHz (K,-band) calibration uncer-
tainty is estimated to be £1 dB relative to 13.4 GHz, resulting in £2 dB uncertainty
for K,. Beamwidth uncertainty from a quasi-specular surface is on the order of 0.2 dB
or less at nadir. 35.6 GHz reflectivities were under-illuminated to provide a comparable
beamwidth with 13.4 GHz (see table.5.1 for beamwidths). It should be noted that the
APR-2 data used in the present studies was recalibrated after the official release of
the data, these uncertainty estimates apply to the original released data — the current

dataset may have reduced uncertainty values.



Table 4.1
Estimated retrieval error for AMSR-E observations of sea surface tempera-

ture, wind speed, columnar water vapor, columnar cloud water and precip-
itation rate (Source: Wentz (2000)).

Observable Error
Sea-Surface Temperature 0.58 °C
Wind Speed 0.86 m s~*

Columnar Water Vapor 0.57 mm
Columnar Cloud Water | 0.017 mm
Precipitation Rate 2mmh™!

Table 4.2
Estimated uncertainties from radiosonde retrievals for parameters relevant
to simulations and retrievals in the current model. R.H. is the relative
humidity. (Source: Fetzer et al. (2003))

Observable [ Uncertainty
Temperature 0.2 to 1.5 K, increasing with altitude
Lower Troposphere R.H. 5%, absolute

Upper Troposphere R.H. 15%, absolute

132
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4.2.4 MIR Brightness Temperatures

According to Racette et al. (2006), the brightness temperature (Tg) uncertainty of
the MIR instrument is less than 1 K within the range of 240 to 300 K.
Given this set of observational uncertainties, the next section explores how these

uncertainties impact the overall retrieval uncertainties.

4.3 Retrieval Sensitivity to Input/Observation Uncertainties

In this section, the uncertainties identified in section 4.2 are applied as biases to
a single 1-D vertical profile taken from the 29 January 2003 snowfall case from the
WBAYO03 experiment (section 5.3). The bias approach explores the “worst case” sce-
narios by assuming that the observations are biased by the maximum value of the

uncertainty. The resulting uncertainty in the Ty simulations or retrieval is identified.

4.3.1 Retrieval Sensitivity to Uncertainty in 13.4 and 35.6 GHz Reflectivities

Scan number 395 (Fig. 3.7), from WBAY03 29 January 2003 at ~0315 UTC WBAY03
is shown in Fig. 5.11, was used for the baseline reflectivity profile. We assume, based on
nearby radiosonde temperature profiles, that this single profile contained only snowfall
(i.e., no melting or rain) and very little cloud liquid water. For consistency, the same
profile is used for all of the sensitivity studies in the following section.

The worst-case scenarios for radar reflectivity uncertainties are simulated by adding
or subtracting the maximum uncertainty from observed 13.4 and 35.6 GHz reflectivities,
i.e., a constant bias. There are 9 permutations with respect to how the bias can be added

or subtracted, including the unbiased option. For each of the 9 permutations, there
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are 14 choices of particle density profiles used in the DWR-retrieval (see section 3.3.3).
Because we’re dealing with real observations, the true particle density is unknown.
Therefore, the Tg-constraint method is applied to determine the best-fit T values
(relative to the co-located MIR observation) and associated density parameter n, .

Table 4.3 shows the result of this analysis. The notation, [+ — X, + — X], represents
whether a reflectivity bias was added (+), subtracted (—), or not applied (x) to the
base [Z14, Z35] reflectivities respectively (i.e., [+, —] = [Z14 + 1.0 dBZ, Z35 — 2.0 dBZ]),
where the uncertainties were described in section 4.2.3.

For this specific profile, the lowest Ty RMSE is 1.95 K, which is the base case
(no bias added). These results indicate that if the worst-case biases were present in
the observed reflectivities, this would result in inconsistencies when simulated Tgs are
compared to observed Tgs. That is, there would no longer be a 3-way consistency
between simulation, radar observations, and radiometer observations. It is possible,
however, that certain biased cases could be contrived to have equally low RMSE value
and still be biased. Without additional information, the current retrieval method would
not be able to determine which is is the more appropriate solution.

Figures 4.1 and 4.2 shows the radar-retrieved vertical profiles of the particle size
distribution properties, Ny and Dy = 3.67/A, subject to the uncertainties in the APR-
2 reflectivities described above. In both figures, the error is computed relative to the
“base” value. When the uncertainties are combined (Fig. 4.2), the resulting errors are
are typically larger than the errors due to the uncertainties applied to each channel

individually.



best-fit is also provided.

Table 4.3
An example of Ty sensitivity to 1-D profiles retrieved from biased radar
reflectivities. [+ — X,+ — X] represents whether a reflectivity bias was
added (+), subtracted (—), or not applied (x) to the [Zy4, Zs5) reflectivities
respectively (i.e., [+, —] = [Z14 + 1.0 dBZ, Z35 — 2.0 dBZ]). For each bias
option, Ty mm — Ts are shown for the Tg-constrained retrievals (i.e., the
“best-fit” profiles). The density parameter, n, (table 3.3), resulting in the

type Tgso | TB1so | Te220 | RMSE | optimal
units | [K] [K] K] (K] n,
MIR | 1939 196.4 | 206.2 000 ——
[x,x] | -1.9 23! -1.6 1.95 13
[+, x] | -0.3 9.2 11.6 8.55 9
-, x]| 21 3.6 -14.0 8.44 1
[x,+]| 25| -50| -21.1| 1261 1
[x,—=]| 3.0 19.5| 27.7| 19.63 9
[+,+] | 105| 104 | -43| 8.88 0
[+,—] | 4.0| 222 303]| 21.81 7
[—,+] | 15.3 341 -16.2 | 13.00 1
[, =] 24| 169| 227| 16.40 9
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Figure 4.2 shows the worst possible case scenario of error if the maximum APR-
2 uncertainties are treated as biases. The result is an approximate uncertainty of
+0.75 mm for retrieved Dgy, and —15%, +30% in retrieved Ny values.

These cases highlight the worst possible case given the stated uncertainties of the
APR-2 radar. In reality, instrument noise contributing to the uncertainty in observed
reflectivities is likely to be more randomly distributed about a mean value — resulting
in smaller RMSE values than stated here (Tanelli et al., 2004). The contrived examples
presented in section 3.5 further indicate that the Tg-constraint is relatively insensitive
to random errors.

Similarly, biases are unlikely to be constant, but not randomly distributed. Dr.
Simone Tanelli at NASA-JPL has indicated, via personal communication, that the
APR-2 biases are largest at low reflectivities, i.e., typically near the cloud tops and
cloud edges, and smallest at the highest reflectivities. However, there is no indication

that the biases on the APR-2 observations are nearly as large as simulated here.

4.3.2 Retrieval Sensitivity to Uncertainty in Observed MIR Brightness Temperatures

As described in section 4.2.4, the observed MIR brightness temperature uncertain-
ties are on the order of 1 K. Using the same data and analysis method as sec-
tion (4.3.1), the single-profile retrieval is performed for the worst-case possibilities —
namely, when the MIR Tgs are individually biased by the minimum and maximum
values of the observation uncertainty. Table 4.4 shows the results of the analysis.

In this case, biases added to the MIR observed brightness temperatures result in
several RMSE values that are smaller than the base value, [x, X, x]|. This indicates

that uncertainties in the observed brightness temperatures have an influence on the



best-fit is also provided.

Table 4.4
An example of Ty sensitivity to 1-D profiles retrieved from biased MIR Ts.
[+~ X, +—X, +—x] represents whether a T bias was added (+), subtracted
(—), or not applied (x) to [Tg g9, Ts,150, T'p,220] respectively (i.e., [+, —, x] =
[TBygg + 1K, TB,150 - 1K, TB’22O +0 K]) For each bias option, the Tg-
difference relative to the base MIR value are shown for the retrieval (i.e.,
the “best-fit” profiles). The density parameter, n, , resulting from the

type TB,89 TB7150 TB,QQO RMSE optimal

units [K] [K] K] K] np
MIR-base | 193.9 | 1964 | 2062 0.00| —
[-.+,-] | 08| -1.32| 062| 098| 13
[—,+,%x] | 0.85| -1.32| 1.62| 131 13
[X,+,—] | 1.75| -1.32| 0.82| 1.35 9
[—,x,—] | 0.85| -232| 0.62| 1.47| 13
[x,+,x] | 1.85| -1.32| 1.62| 1.6l 13
[-,x,x] | 085] -232| 1.62| 1.71 13
[x,x,—] | 1.75| -2.32| 0.82| 1.75 9
[—,+,+] | 085 -1.32| 262 1.77| 13
+.+,-] | 275] -1.32| 082 183 9
[x,x,x] | 1.85| -2.32| 1.62| 195| 13
[<,+,+] | 1.85| -1.32| 2.62| 2.00| 13
[-,—,—] ] 0.85] -3.32| 062| 201 13
[+,+,x] | 2.85| -1.32| 1.62| 2.04| 13
[-,%,+] | 08| -2.32| 262| 208| 13
[+,x,—=] | 275| -2.32| 0.82| 213 9
[—,—,x] | 085| -3.32| 1.62| 219| 13
[x,——] | 1.75| -3.32| 0.82| 222 9
[x,x,+] | 1.85| -2.32| 2.62| 229| 13
[+, x,%x] | 285 -2.32| 1.62 2.32 13
[+,+,+] | 285 | -1.32| 2.62| 236| 13
[x,—,x] | 1.85| -3.32| 1.62| 239 13
[—,—+] | 085| -332| 2.62 2.49 13
[+,— =] | 275 | -3.32| 0.82| 254 9
[+,x,4+] | 285 | -2.32| 2.62 2.61 13
[x,—,+] | 1.85| -3.32| 2.62| 267| 13
[+,—,%x] | 2.85| -3.32| 1.62| 270 13
[+,—+] | 2.85| -332| 262| 295 13
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retrieval because RMSE is the common selector for “best-fit” Ty values. Additionally,
some of the lower values find n, =9 (p = 0.25 to 0.40 g cm™ ) to be the optimal
density parameter, rather than the base value of n, = 13 (p = 0.2 to 0.5 g cm™3 ).
However, the density profiles are quite similar, both represent “moderate density” snow
particles. There appears to be no significant impact on the overall retrieval scheme,
since the primary purpose of the T-constraint portion of the retrieval is to identify the

best-fit n, values.

4.3.3 Sensitivity to Environmental Parameters

Other than the observed radar reflectivities, the retrieval method and forward model
are also sensitive to the environmental parameters, such as ocean-skin temperature
(Tein), temperature profile (Tyus, Tirop), clear-sky relative humidity (RH_jear), near
surface wind speed (W), and cloud liquid water path (CLWP). Given the uncertainties
in section 4.2, a sensitivity analysis was performed for a single precipitation profile —
the same one used in section 4.3.1. The goal here is to determine the inﬂuence of the
uncertainty of environmental inputs on the radar-retrieved microphysical properties
and simulated Tgs.

Table 4.6 shows the Ty variations due to changes in the above listed environmental
parameters. “Base” defines the standard baseline value selected from the Ty con-
strained retrieval applied to the nominal WBAY03 observations/. “MIR” represents
the observed Tgs at the current scan position. Each variable is modified from a base
value by adding (+) or subtracting (—) the uncertainty (listed in table 4.5), while
other variables are held at their base values. Conservative estimates of the uncertainty

are made by adding and subtracting the stated errors from table 4.1. “Total(+)” is
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the Ty value when all of the positively contributing uncertainties are applied, rather
than each one individually. Similarly for “Total(—)”, with the combined negatively
contributing uncertainties applied.

In table 4.6, the quantities having the largest Ty sensitivity are cloud liquid water
path (CLWP), wind speed (W), Total(+), and Total(-). Figure 4.3 shows the radar-
retrieved profiles and associated error (relative to the base value) that arise from the
Total(+) and Total(-) contributions. “CLW” cases refer to when cloud liquid water
(0.3 kg m™2 ) was artificially placed in the retrieval, “no CLW” is the standard case
without cloud liquid water present.

From Fig. 4.3, the error in retrieved Dy and Ny resulting from Total(+) and Total(-
) in the environmental parameters is relatively small compared to the error due to

uncertainties in the radar observables (Fig. 4.2).

4.4 Retrieval Sensitivity to Hydrometeor Model Relationships

In the spherical-particle approximation, Mie theory is used to compute the optical
properties of individual spherical particles. Mie theory requires that the sphere be
composed of a homogeneous isotropic dielectric material (Bohren and Huffman, 1983).
In order to obtain a homogeneous mixture (i.e., a single dielectric constant value for
the entire sphere), two dielectric mixing formulas were employed: the Maxwell Garnett
and Bruggeman formulas, which are also known as “matrix-inclusion” and “effective
medium approximation” respectively. The details of these formulas are discussed in
section 2.8.3.

Figure 4.4 shows the dielectric constant at 89 GHz for varying volume fraction of ice

and air, where Fi. + F,i = 1. Square brackets in the legend indicate the inclusion com-



Table 4.5
Uncertainties in the user-defined model environmental parameters. Base
values and associated uncertainties are taken from section 4.2.
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Variable Uncertainty Description
Texin 10 £0.58 °C Sea surface temperature
Tourf 0+£0.20 °C Surface air temperature
RH 0.2+0.01 Clear Sky relative humidity
\\% 174+0.86 m s~! near-surface wind speed
CLWP | 0.3£0.017 kgm™2 Cloud liquid water path
Total(+) — combined positive uncertainties
Total(—) - combined negative uncertainties

Table 4.6
Simulated passive microwave response (Kelvin) to DWR-retrieved profiles
subject to uncertainties in the model environmental parameters (table 4.5).
The Tp differences due to the various uncertainties are expressed are relative
to the base values, as appropriate.

v base Tskin("f‘/‘_) Tsurf('*'/_) Ttrop(+/—)
89 GHz 1911 K -0.2/0.7K 0.0/ 0.0 K 0.0/ -0.1 K
150 GHz 2004 K -0.1/0.1 K 0.0/ -0.1K 0.1/-01K
220 GHz 2079 K 0.1/0.0 K 0.1/00K 0.2/-0.1K

v base RH (+/—) | W(+/—) (no CLW)
89 GHz 191.1 K 0.1/-0.1 K- 1.2/ -12K
150 GHz 2004 K 0.2/-0.2K 14/-14 K
220 GHz 2079 K 0.2/ -0.2 K 1.5/-14K

v base(w/CLW) | CLWP(+/-) Total(+) Total(—)

(no CLW/CLW) (no CLW/CLW)

89 GHz 2200 K 0.9/ -09 K 1.1/ 19K -1.2/-18 K
150 GHz 2255 K 0.5/ 03 K 1.6/ 13K -1.7/-14 K
220 GHz 2285 K 0.6/-0.5K 20/ 13K -19/-13K
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ponent for the Maxwell Garnett dielectric mixing formulas. Angle brackets represent
the averaging of the constituents. Other frequencies exhibit similar characteristics, but
they are not shown here. Loosely speaking, the imaginary component of the dielectric
constant is proportional to absorption and tends to increase with increasing frequency
(not shown). The real component is proportional to scattering. For ice, the real com-
ponent approximately 200 times larger than the imaginary component, and remains
nearly constant with increasing frequency (not shown).

For all of the frequencies of interest in this research, i.e., 13.4, 35.6, 89, 150, and
220 GHz, ice is predominantly a scattering medium. Specifically, this means that a
large fraction of microwave radiation at these frequencies incident upon an ice particle
will be scattered rather than absorbed. In comparison, liquid water has a nearly equal
real and imaginary component of the dielectric constant. This makes water much more
effective at extinguishing, through both scattering and absorption, incident radiation
than an equivalent mass of dry ice.

Figure 4.5 and table 4.7 show the influence of the choice of dielectric mixing for-
mula on the DWR-retrieved particle size distribution properties, and on the forward
model simulated 7gs. In Fig. 4.5, no variations are observed in the retrieved D, val-
ues (panel b), while the variations in Ny (panel c) are primarily responsible for the
variations in the liquid equivalent precipitation rate (panel d). For all of the retrievals
in this research, the default choice of dielectric mixing is the Bruggeman technique.
As described previously, the Bruggeman technique is valid for all ranges of ice volume
fraction Fic., whereas the Maxwell Garnett methods are only strictly valid for inclusion

volume fractions of less than 0.3. This was also described in section 2.8.3.



Imaginary part, dielectric constant

Figure 4.4. Real and Imaginary components of the dielectric constant for
three choices of dielectric averaging methods versus ice volume fractions
Square brackets indicate the inclusion
component within the external matrix in the Maxwell Garnett cases.

at 89 GHz, where Fi+F,= 1.
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Figure 4.5. Retrieved Dy, Ny, and precipitation rate for three choices of
dielectric mixing formula (psnow=0.4 g cm™ ). Panel (a) shows the observed,
smoothed, radar reflectivity factor; (b) shows the dual-wavelength ratio
(green line) and the retrieved mass-weighted median diameter, Dy; (c) shows
Np for the three choices of dielectric mixing, and (d) shows the derived
liquid equivalent precipitation rate and the influence of the dielectric mixing

formula choice.
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Table 4.7 shows that the various choices of dielectric averaging method can result in
slightly different brightness temperature RMSE values. The three lowest RMSE values
for each mixing method are shown, along with the associated optimal n, value, i.e.,
the density parameter. For the Maxwell Garnett approach with ice as the inclusion,
MG ([I]A), the RMSE values are relatively larger. Also, compared to the Bruggeman
method, the optimal n, value switched from 13 (pspow= 0.20 to 0.50 g cm™ ) to 9
(Psnow= 0.25 to 0.40 g cm™2 ). This does not represent a significant change in terms of
an average density, but it is representative of the sensitivity of the retrieved parameters

to slight changes in the dielectric properties.

4.5 Summary

This chapter examined the sensitivity of the forward model and retrieval algorithm
to uncertainties in observational data, and to uncertainties in the simulated relation-
ships. In particular, the overall uncertainty is dominated by the stated uncertainties
in the observed radar reflectivities of Z44+1 dBZ and Z3;+2 dBZ. Other sources of
uncertainty/error are approximately a factor of 5 to 10 smaller. Therefore, a conserva-
tive estimate of the total uncertainty is covered by the APR-2 observational uncertainty
alone. Simulated Tgs are certain to within +10%, or approximately £20 K at 220 GHz.
The resultant uncertainties in the characteristic particle size, Dy, are on the order of
+0.75 mm, and —15%, +30% in Ny. However, as previously noted, if such large biases
were actually present, the 3-way consistency between radar, radiometer, and forward-
model simulation would break down. Therefore, a judicious, although subjective, choice

of allowable Tg RMSE values is required to obtain a reasonable retrieval.
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Table 4.7
Using the same observed profile as Fig. 4.5, three best fit Ts (lowest
RMSE) for three choices of dielectric mixing method are shown here. The
the largest Ty variations relative to the base observed MIR, values occur at
220 GHZ. In the first column, “BR” stands for the Bruggeman dielectric
mixing method, and “MG” stands for Maxwell Garnett method. Square
brackets represent the inclusion component for the MG cases.

type TB’gg TB,150 TBQQO RMSE optimal
units K K K K N,
MIR 193.9 | 196.4 | 206.2 0.00 ——
BR (1A) | -16| 24| -17| 196| 13
BR. (IA) 17| 24| -16| 196] 9
BR (1A) | -13| 32| -25| 248| 2
MG ([1]a) | -1.7| 23| 24| 218| 9
MG ([1]a) | -16| 23| -26| 223| 13
MG ([1]a) | -14| 31| -36| 288| 2
MG (A]T) | -16| 24| -1.7| 196| 13
MG (A]T) | -1.7| 24| -1.6| 1.96| 9
MG (A1) | -13| 33| -23| 246| 2
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In the next chapter, a snowfall retrieval case study from the 2003 Wakasa Bay field
experiment is examined. A maximum T RMSE value of 10 K is subjectively chosen for
the T constraint in the retrieval, rather than ~20 K RMSE that would be imposed by
the worst-case combined uncertainties. The 10 K constraint on the maximum RMSE
enforces a more stringent consistency between simulations and radar/radiometer ob-
servations, but also presumes that any biases or noise present in the radar/radiometer
observations and simulations are not on the order of these worst case scenarios pre-
sented here. For most of the observations in the case study, the best-fit RMSE values
falls well below the 10 K threshold value.



150

5 2003 WAKASA BAY PRECIPITATION EXPERIMENT

The Wakasa Bay Precipitation Field Experiment conducted in 2003 (WBAY03)
over Japan and the Sea of Japan was designed as a validation experiment for the
Advanced Microwave Scanning Radiometer, AMSR and AMSR-E, radiometers. The
primary stated goal is to validate AMSR and AMSR-E light rainfall and snowfall re-
trieval capabilities using an ensemble of ground and aircraft based active and passive
observations. The experiment is part of the AMSR Rainfall Validation Implementation
Strategy 2001-2005 (Wilheit et al., 2002).

The data collected during the experiment included downward-looking aircraft-based
radar measurements at 13.4, 35.6, and 95 GHz, and passive microwave radiometer
measurements ranging from 10.65 to 340 GHz. Several nearby radiosonde stations
operated at regular intervals, and a variety of Japanese ground-based and aircraft
instruments were employed. Currently the Japanese data is not publicly available. The
dual-wavelength ratio (DWR) retrieval algorithm described in chapter 3 was used to
retrieve the particle size distribution (PSD) properties of snow-clouds over the Sea of
Japan. However, the DWR method is ill-posed due primarily to two key unknowns:
particle density / composition and cloud liquid water content / distribution. Brightness
temperature (Tg) observations from the MIR instrument were compared to simulated

Tws to further constrain the DWR retrievals.
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5.1 Instrument Description

Figure 5.1 summarizes the dates, types of observations, and general location of the
P-3 aircraft-based observations made during WBAY03. Figure 5.2 illustrates the posi-
tions of the instruments onboard the P-3 aircraft. Image Source:
http://www.nasa.gov/centers/goddard/news/topstory/2003/0122japansnow. html.

Several instruments were deployed for WBAY03, the following list introduces the

capabilities of the various instruments onboard the P-3 aircraft:

e Airborne Multi-channel microwave Radiometer (AMMR), passive Tj
observations at 21 and 37 GHz; upward-looking observations of clouds and pre-

cipitation

e Millimeter-wave Imaging Radiometer (MIR); passive T observations at

89, 150, 183+£1,3,7, 220, and 340 GHz; conical or cross-track scanning radiometer

e Advanced Precipitation Radar 2 (APR-2); active radar at 13.4 and 35.6

GHz; HH / HV polarization, 30 m vertical resolution

e Polarimetric Scanning Radiometer (PSR); passive T observations at 10.7,

18.7, 21.5, 37, and 89 GHz; conically scanning; V and H polarization

e Airborne Cloud Radar (ACR); active radar at 94 GHz; 120 m vertical reso-

lution.
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Figure 5.2. Schematic showing the relative locations of the primary obser-
vation instruments onboard the P-3 aircraft.
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5.1.1  Airborne Second-Generation Precipitation Radar (APR-2)

The Airborne Second Generation Precipitation Radar (APR-2) made observations
during precipitating events over the sea of Japan on board the NASA P-3 aircraft. Ob-
servations were made at 13.405 (K,-band) and 35.605 GHz (K,-band) in a downward-
looking, cross-track scanning geometry. In the present research, only the downward-
looking nadir beams are used. Table 5.1 summarizes some of the relevant instrument
characteristics of the APR-2 (Im et al., 2000; Sadowy et al., 2003).

The Level 1 data product consists of the calibrated reflectivity at both 13.405 and
35.605 GHz, as well as the Doppler-velocity and linear depolarization ratio (LDR) at
13.405 GHz (Im, 2003). Due to a later (unreleased) data re-calibration, the doppler-
velocity data was deemed to be unreliable due to low sensitivity and velocity magnitude
issues. The APR-2 reflectivity data is currently calibrated on a case-by-case basis
through Simone Tanelli at NASA Jet Propulsion laboratory. There appear to be no
plans (at the time of writing) to release a complete recalibrated dataset.

Figure 5.3 conceptually illustrates the role of the APR-2 in estimating precipitation
rate. The essential elements of the APR-2 are the dual frequency radar beams, sep-
arated in frequency such that light rainfall/snow and heavy rainfall/snow are covered
by at least one radar frequency. In the region where the two overlap, particle size
distribution information can be directly inferred using the DWR method described in

chapter 3.



Table 5.1

155

APR-2 instrument characteristics during the 2003 Wakasa Bay Ex-
periment (WBAYO03) prior to data recalibration

Frequency 13.4 GHz | 35.6 GHz
Polarization HH, HV HH, HV
Antenna diameter 0.4m 0.14 m
Beamwidth 3.8° 4.8°
Antenna scan angle +25° +25°
Antenna gain 34 dBi 33 dBi
Polarization isolation -25 dB -25 dB
Peak power 200 W 100 W
Bandwidth 4 MHz 4 MHz
Pulse width 10-40 ms 10-40 ms
Pulse Rep. Freq. (PRF) 5 kHz 5 kHz
6 dB Pulse Width 60 m 60 m
Vert. Range Bin spacing 30 m 30 m
Hor. Resolution (@ 6 km) 400 m 500 m
Ground Swath (@ 6 km) 4.5 km 4.5 km
(10 km range) 5 dBZ 5 dBZ
Doppler precision 04ms™?t | >1ms™!
Scan Cycle 1.82 s 1.82 s
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5.1.2 Millimeter-wave Imaging Radiometer (MIR)

The Millimeter-wave Imaging Radiometer (MIR) is a six-channel aircraft-based pas-
sive microwave radiometer designed to observe millimeter and submillimeter radiation
originating from the surface, water vapor, clouds, and precipitation. Table 5.2 shows
the MIR’s primary instrument characteristics (Racette et al., 2006).

Data obtained by the MIR instrument during the 2003 Wakasa Bay field experiment
(WBAYO03) is used extensively in this research to provide nadir-viewing observations of
passive microwave brightness temperatures co-located with APR-2 radar data (Wang,

2003). See Fig. 5.11 for the MIR Ty values used in the present studies.

5.1.3 Radiosonde Observations

Table 5.3 shows the locations of nearby radiosonde stations in use during WBAY03
in 2003. Radiosonde observations are used to initialize the near surface air temperature,
relative humidity, and tropopause height and temperature profile in the retrieval and
radiative transfer portions of the model. Figure 5.4 indicates the location of sounding

stations on land (yellow points) and on ship (brown points).

5.2 Data Description

Datasets for each instrument employed in the present studies (APR-2, MIR, ra-
diosonde) were obtained from the 2003 Wakasa Bay field experiment ftp-site at
ftp://sidads.colorado.edu/pub/DATASETS/AVDM/data/rainfall/wakasa_bay/.

The data storage format for each product is different: APR-2 data is stored using

Hierarchical Data Format version 4 (HDF4), MIR uses a customized binary format, and



Table 5.2

MIR instrument characteristics during WBAY03

Frequency (GHz) | Bandwidth (GHz) | Sensitivity (K)
89.0 1.0 0.13
150.0 1.0 0.16

183.3 =+ 1.0 1.0 0.34
183.3 = 3.0 2.0 0.28
183.3 £ 7.0 2.0 0.28
220.0 3.0 0.26
340.0 3.0 < 0.35
Scan Angle +50 °
Scan Cycle 3.0 sec
Beamwidth 3.5°
Table 5.3

Latitude, longitude, name, and station ID of the P-3 aircraft, ra-
diosonde sites, and the observing ship used during the WBAY03 29

January 2003 observations.

Latitude | Longitude Name Station ID
37.4N 136.9E Wajima 47604
35.4N 133.4E Yonago 47744
36.1N 136.2E Fukui 47616
36.2N 133.4E | Chofu-Maru | Ship (0300 UTC 29 Jan. 2003)
36.6N 135.5E | P-3 Aircraft | Segment Start at 0318 UTC
38.6N 135.5E P-3 Aircraft Segment End at 0337 UTC

158
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‘End: 29 Jan. 0337 UTC
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Stari: 29 Jan. 0318 YTC

29 Jan. Chofu-Maru (ship)

e YONAQYO

Figure 5.4. Map of Wakasa Bay region indicating location of sounding
stations, ships, and start and end points for the flight line used in the 29
January 2003 case study presented in section 5.3. Table 5.3 provides the
latitude and longitude of the land and ship-based sounding sites.
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radiosonde data from several Japanese land and ocean sites comes in form of ASCII
files and postscript plots, originally obtained from the website. However, radiosonde
data taken during the experiment appears to be no longer publicly available via the
website.

The specific details of the data formats and structures are provided in the appen-
dices. For APR-2, see section A.3.1, and for MIR see section A.3.2.

Although the MIR and APR-2 were onboard the same aircraft, careful consideration
of the spatial and temporal co-location of the observational data was required. Both
of these instruments were operating in the cross-track scanning mode during the 29
January 2003 case. In the interest of generating vertical profiles of retrieved quantities

and simplifying co-location, only the nadir beam was selected.

5.2.1 Nadir Beam Position Location

The APR-2 dataset contains information regarding the 3-D orientation of the radar
relative to a locally fixed earth coordinate system. This is called the “look vector” (see
table A.2 in the appendix); it is a 3 component unit-vector describing the z, y, and z
orientation of the radar emitter/receiver relative to a fixed reference frame.

Because the aircraft itself is not a fixed platform, the look vector changes in response
to changes in aircraft pitch, roll, and yaw. The goal for obtaining the nadir beam is to
pick the beam number that has the minimum (closest to —1) z-component look vector

using the following pseudo-code relationship

nadir_beam_number (i) = find(look_vector(i,:, 3) == min(look_vector(i,:, 3))),(5.1)
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W.»

where i is the scan number, is the range of beam numbers, 3 is the z-component
of the look vector. By locating the nadir-most beam (i.e. the one that is closest to
looking straight down), we provide the retrieved 1-D vertical profiles with a stronger
physical basis.

No look vector data is provided in the MIR dataset, therefore the roll and pitch (see
table A.5) are used to attempt to locate the most nadir-viewing position when MIR is

operating in the cross-track scanning mode.

The first of two steps of the relationship is, in pseudo-code form,
nadir_beam_MIR(¢) = round(29 — sign(roll(s)) (270(1 — cos(roll(s))))),  (5.2)

where % is the scan number, 29 represents the nominal nadir beam position for level
aircraft flight. This method assumes that roll is the only factor affecting the left-
right adjustment of the beam position. Yaw and pitch combinations contribute to
the beam position, however, large pitch and yaw maneuvers are already filtered from
the observations by the time it reaches this point in the processing. The second step
occurs through the data rejection bounds described in section 5.2.3. After application
of the roll and pitch bounds from MIR data and the previously described APR-2 nadir
location, the set of observations that are accepted represent reasonably stable/level

flight in terms of both the APR-2 instruments and MIR instrument observations.

5.2.2 Temporal Co-location

The temporal sampling at the nadir position is different between the APR-2 and
MIR instruments. The MIR and APR-2 instruments make observations at the nadir

position every 3.0 seconds and 1.82 seconds respectively. At each APR-2 scan position,
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the nearest MIR observation (in time) was selected. The time difference between the
MIR and APR-2 position was never larger than 3.0/2 = 1.5 seconds, with a mean
absolute difference of 0.7 seconds. For a nominal P-3 aircraft ground speed of approx-

1 this difference translates into a maximum surface offset of up to

imately 180 m s~
approximately 270 meters and mean offset of approximately 130 meters, relative to the

APR-2 beam position.

5.2.3 Data Rejection and Noise Removal

Aircraft-based observations are influenced by the motion of the aircraft itself, re-
quiring a method for either adjusting for the motion or rejecting the data. In the
previous sections the methods for selecting the nadir beam were discussed. However,
the observational data still needs to be further quality controlled. In this section, the
methods for data rejection are described.

The MIR and APR-2 data for all cases described in this dissertation are lim-
ited to over-ocean observations. Although some over-land cases were observed dur-
ing WBAY03, the purpose of using over-ocean cases was to ensure a relatively easy
to simulate ocean surface emissivity, and to remove any topographical influence on the
radar and radiometer observations. The APR-2 surface_index variable (section A.3.1)
provides the basis for acceptance or rejection of observations by surface type. If the
surface_index== 1, the data is over ocean and was accepted for further analysis.

Figure 5.5 shows an example of “Pulse compression sidelobes” (IPCS), a noise fea-
ture in the observed APR-2 reflectivities occurring near the surface reflection (Tanelli
et al., 2004). This significant noise source presented a serious drawback for particle

size distribution (PSD) retrievals within approximately 750 meters from the surface.
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Observation of the noise feature in near-surface higher reflectivity regions revealed that
a signal was still present, although increasingly positively biased as the radar range
gates approached the surface.

The following approach was devised for PCS noise removal. First, a running mean
was applied to the region affected by noise, which is typically located within 1 km of the
surface. Next, a polynomial fit was applied to the smoothed region. The polynomial
was subtracted from the original data to reveal the signal. The signal itself was also
proportionally biased by the magnitude of the contamination. An additional reduction,
using the same polynomial, was applied to the signal to obtain a signal having a dynamic
range and behavior consistent with radar observations outside of the noise contaminated
portion of the profile. While this approach is preliminary, it is preferred over the
alternative approach of simply removing the range gates affected by the PCS noise or
replicating the lowest unaffected range gate to the surface. Future research will focus
on a more accurate noise characterization, removal methods, and physical models to
simulate the noise will also be explored.

Figure 5.5 panel (a) shows a typical Z14 and Z35 vertical reflectivity profile prior to
noise removal near the surface (solid line); the signal with the PCS noise removal applied
is plotted for comparison (dashed line). Panel (b) shows the change in dual-wavelength

ratio before and after PCS noise removal.

5.2.4 Data Smoothing

For APR-2 observations, the original reflectivity data appeared to be noisy by visual
inspection, containing rapid variations in reflectivity. This also resulted in unrealistic

variations in the computed DWR, i.e. the solid black line in Fig. 5.6. To address this,
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Figure 5.5. (a) Example vertical profile comparing observed 13.4 and
35.6 GHz reflectivities before and after pulse-compression sidelobe noise
removal, and (b) dual-wavelength ratio comparison.
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the reflectivity profiles (Z;4 and Z35) were averaged using a 9-bin (30 meters per bin)
window average, starting at the cloud top, and proceeding to the surface. No smoothing
was applied to LDR or doppler data.

Figure 5.6 shows an example profile of 13.4 and 35.6 GHz reflectivities before and
after smoothing (panel a). This also resulted in the smoothed DWR profile, shown in
panel (b). It is apparent that the original DWR is sensitive to noise in the reflectivities,
and that smoothing helps to alleviate spurious DWR values, improving overall PSD
retrieval quality.

Finally, reflectivities (Z14, Z35) and linear depolarization ratio (LDR) values less
than —30 dBZ are presumed to be either clear or completely attenuated, depending
on the vertical location within the scan. Scans having layer where no reflectivities are
present above the surface (after noise removal) are considered clear-sky scans. Layers
with reflectivities above the current layer are presumably either attenuated or overlaying
cloud. The former can usually be discerned by high reflectivities within scan. Low
reflectivity regions with empty spaces beneath them are likely to be sub-detectable
clouds or clear air. In the present studies, clear-sky scans are skipped in the retrieval,

since the primary interest is in retrieving precipitation particle properties.

5.3 Snow Case: 29 January 2003

On 29 January 2003, widespread snowfall were forecast and observed moving into

the sea of Japan. From the flight report:

Weather: The low that had been just west of Hokkaido had
moved northwards to the middle of Sakhalin Island and deepened
to 979 mb. Strong northwesterly flow over all of the Sea of
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Japan and extensive areas of snow off the coast of Honshu and
the western side of the Japanese Alps.

Flight Lines: We departed Yokota over chino to kocho where we
began a northward run over the ground truth site at Fukui and
headed westward over the Sea of Japan to our entry point (36
25N; 135 38E) into the protected airspace. We defined a line
from 36 30N; 135 30E to 38 30N; 135 30E and flew it three
times each way beginning at the south end. On the second and
third trip to the north end we flew the PSR calibration
maneuver. As we approached the south end for the third time,
the Gulfstream II was about 10 minutes behind us on their
final leg. We doubled back and flew north to the approximate
position of the Gulfstream II before departing to the east.

We flew to Komatsu and then to Fukui to overfly the ground
truth site again. These data lines were at FL 220. There
wasn’t a useful Aqua pass. There was a TRMM pass at about the
time of our landing that may be marginally useful for the
overland portion of the return trip. Takeoff was at 0212Z for
a duration of 4h 43m. The Gulfstream II flew the line at
altitudes ranging from 15500 ft down to 1500 ft.

Instruments: The AMMR was inoperative for the whole
flight--it was also irrelevant to the flight lines flown. The
ACR lost about 5 minutes of data because of an apparently
false over-temperature indication. The MIR, PR2 and PSR
worked flawlessly.

Observations: Widespread snow was observed on the western
slopes of the Japanese Alps and into the Sea of Japan. The
radars observed snow more often than not as we flew the flight
lines and over water transits. Through the few holes in the
clouds we could see that the wind at the sea surface was quite
strong and there was a great deal of whitecapping.

Results: This case with wide-spread snow coverage complements
the previous day’s scattered snow showers. We have a rather
good snow data set now.

The flight segment used for this case study begins at approximately 0318 UTC and
continues until 0337 UTC, starting from 36.6 degrees north latitude and 135.5 degrees

east longitude and continuing to 38.3 degrees north latitude and 135.5 degrees east
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longitude (a straight line from south to north). Figure 5.4 indicates the line for the 29

January 2003 case relative to Japan and nearby sounding stations.

5.3.1 Observations

Figure 5.7 shows the 0000 UTC 29 January 2003 6-hour forecast of weather pat-
terns, encompassing the flight time range. The black box denotes the region of interest
following Fig. 5.4. Wind vectors are labeled using wind barbs. Wind direction is given
by the orientation of the post, with speed given by the barbs and/or flags at the end
of the post. The head of the post is the location at which the wind was determined;
speeds are indicated using three symbols : a flag (triangle) indicating units of 50 knots,
a full-barb (long line) indicating units of 10 knots, and a half-barb (shorter line) indi-
cating units of 5 knots. For reference, 1 knot equals approximately 0.514 meters per
second.

Figure 5.8 indicates the AMSR-E derived sea surface temperature (SST), wind
speed, column water vapor, and column cloud liquid water obtained from www. ssmi . com,
(courtesy of F. Wentz). Wind speed comparisons appeared to be consistent with the
6-hour forecasted wind speeds and with the AMSR-E derived winds for the region
of interest. The forecast for 0600 UTC was 30 knots (approximately 15 m s™! ).

AMSR-E derived winds, shown in panel (b), indicated wind speeds ranging from 12-20

1 1

m s~ along the flight line. Regional wind speeds were no less than 10 m s™" , and
often larger.

Radiosonde observations taken from Wajima (Fig. 5.9) and Fukui stations (Fig. 5.10)

were the nearest in time and space to the flight path. The Wajima sounding, taken at



169

- o
L]

...Q_‘q
g
i

- A
el f‘__
{

1t o

W
-1
B0E . G M et et 3
n AA){MMS T5 7000 7500 mb CORTOUR THICKAESS m Tved 20 Jan 200 00.00 BHR \/AL!D Wed 29 Jan 2003 0o:00
m A ME-TG 1000 - $00 mb CONTOUR THICKNESSI’I‘IW&G 29 Jan 2003 Q000 GHR \ d 28 Jan 2
W ARMNVE.TE MSL CONTOU FRS REDUGED TO MSL m| Wld 24 Jan 2003 IJD EID GHR \u"ﬁLlD Wed 20 Jln 2003 ﬂﬂ €0
o AN GRID PLOT M. 2003 00:00 6HR VALID Wed 29 Jan 2
2 A DERMVED IMAGE TCITN. FRECIFITATIIJN Viled 29 Jan 2003 00:00 6HR VN.ID Wed 20 Jan 2003 0600
3.00

149 1.75

0.99

0.73 1.25

0.50
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Figure 5.8. 29 January 2003: (a) AMSR-E derived sea surface temperature
(C), (b) wind speed (m s™! ), (c) column water vapor (mm), and (d) column
cloud liquid water (mm). The white rectangle depicts the region of interest.
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0230 UTC, was closest to the flight time ranging from 0318 UTC to 0337 UTC. The
Fukui sounding at 0000 UTC is included for comparison.

Observed radar reflectivities for the 29 January 2003 case are shown in Fig. 5.11
panels (a) Zi4, and (b) Zz5. Panels (c) and (d) show the co-located nadir-looking pas-
sive microwave brightness temperature (Tg) observations made by the MIR instrument
(Table 5.2). Based on the temperature profiles from the soundings, and the lack of
brightband information in the radar observations, it is assumed that the reflectivities
arise primarily from frozen precipitation particles from cloud-top (i.e., the highest al-
titude reflectivity) to the surface (z = 0 km). The two-way path attenuation of the
radar signal occurs from precipitation, cloud liquid water, and gaseous absorption.

Figure 5.11 showed a number of interesting features when 7Ty observations are paired
with the radar observations. Colder Ty depressions were correlated with higher altitude
storm tops, with a few lower frequency 7 peaks associated with regions of strong
attenuation in radar (for example, panel (d), near 6.5 minutes). Doppler data (not
shown) also indicated strong vertical updrafts in this region. Clear sky regions tended
to show a separation of about 20 K between each of 89, 150, and 220 GHz respectively.
This was observed from about 4.5 minutes to 6.25 minutes, and is to a lesser extent
between 2.1 and 2.9 minutes.

The water vapor channels near 183.3 GHz are primarily sensitive to cloud top height
in the snow regions. The 183.3 + 1 GHz channel senses nearest to a strong water vapor
emission line, therefore the channel generally shows the coldest Tgs as it is strongly
sensitive to emission from cloud liquid water and water vapor near the cold cloud
tops. The 183.3 +3 and 183.3 = 7 GHz channels sense deeper into the cloud, revealing

relatively warmer 7gs in most cases.
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Figure 5.10. 0000 UTC 29 January 2003: Radiosonde observation from
Fukui station (36.1N, 136.2E). Surface air temperature is approximately
-3 °C . Surface wind speed is approximately 25 knots (13 m s~1).
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In the present retrieval scheme, the passive microwave and radar observations are
quite complementary to each other. Radar observations sense the vertical structure
and distribution of precipitation within the cloud. Cloud liquid water exhibits a minor
influence on radar path-integrated attenuation. Dual-frequency radar observations are
' directly sensitive to particle size and composition (i.e., density for simulated dry snow
spheres).

On the other hand, passive microwave (PMW) measurements represent a column
integrated measurement; only limited vertical information can be inferred based on
Ty values. PMW observations are also quite sensitive to thermal emission from liquid
water and scattering by frozen precipitation particles. The combination of both radar
and radiometer observations provides the primary observational data for the retrieval
algorithm. In the present case study, only the 89, 150, and 220 GHz MIR channels are
used for Tg-constraints (section 3.4) on the DWR-retrieved vertical profiles.

In the brightness temperature (7g) constraint portion of the retrieval (section 3.4),
both parameters and size distribution properties are said to be “retrieved” in that
we find the set of parameters and properties that minimize the root-mean-square er-
ror (RMSE) between observed and simulated Tgs. The final products of the present
retrieval scheme are, therefore, the parameterized values of: particle density psnow, par-
ticle size distribution Dy and Ny, the vertical structure of precipitation, cloud liquid
water (CLWP) and vertical distribution (CLWC), and the near surface wind speed W.

From the retrieved PSD properties Ny and Dy, additional derived quantities such as

the precipitation rate and ice water content can be computed.
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5.3.2 Retrieval Results

As was described in chapter 3, the DWR-retrieval technique was applied to the APR-
2 radar observations, and subsequently constrained by the Tg-constraint technique. To
initialize the retrieval, radiosonde information was obtained from the nearby Fukui and
Wajima sites. From the radiosonde data a simple linear profile of temperature was
inferred from the surface to the tropopause. Humidity information was taken from the
dew point depression at the surface and was converted to relative humidity. This value
is assumed to be the clear sky relative humidity throughout the column. When liquid
clouds are present, the model assumes 100% relative humidity in those regions.

The sea-surface temperature (SST), critical for accurate Ty simulations, was visually
estimated from the Wentz/ AMSR-E SST product. There was no assumption of equality
between the lowest layer air temperature and the SST. For the 29 January 2003 case
study, the SST was approximately 10 °C , whereas the near-surface air temperature
was near 0 °C | according to nearby radiosonde observations.

The Wentz/AMSR-E wind speed product indicated a surface wind speed in the
12-22 m s~ ! range (Fig. 5.8, panel (b)). This range was also consistent with the visual
observations described in the flight report. The effect of wind on the ocean surface is
an increase in the surface emissivity through wave and foam action. The models used
to simulate these effects were described in section 2.4.1.

The 0000 UTC January 29 2003 sounding from the Fukui radiosonde site indicates
near-surface winds at 25 knots (approximately 13 m s~ ). The 0230 UTC January 29
2003 sounding from Wajima indicates a 20 knot near-surface wind speed (approximately
10 m s™1 ). According to a sensitivity study in clear sky regions, a nominal surface wind

speed of 17 m s~! was found; this was also consistent with the AMSR-E estimated wind
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speeds and visual observations of whitecapping from the P-3 aircraft (Stogryn et al.,
1995).

Table 5.4 lists the thermodynamic and physical parameters that define the atmo-
spheric state. These values are obtained from either ancillary observations, such as
radiosondes and AMSR-E products, or from testing and intercomparisons. The dielec-
tric mixing method (selected by “mixflag”) used was the Bruggeman method, which
was previously described in section 2.8.3.

Figure 5.12 shows an example of the retrieved slope A and intercept Ny parameters
for the 29 January 2003 snowfall case for a fixed density profile with n, = 10 (0.45 to
0.6 g cm™3 ), see table 3.3 in section 3.3.3). In this case, the single density profile was
applied consistently for each of the 450 scans, i.e., 450 1-D profiles of dual-wavelength
radar reflectivity.

Taking an individual profile from Fig. 5.12 at approximately minute 12, Fig. 5.13
shows vertical profiles of reflectivity, dual-wavelength ratio, retrieved mass median di-
ameter (eq. 2.30), and retrieved Ny displayed on a log,, scale. According to the retrieval,
the median particle size increases as altitude decreases, consistent with expectations for
natural snow growth processes (Pruppacher and Klett, 1997; Rogers and Yau, 1989).

For comparison with retrieved snowfall rates, a Z35-R relationship for snowfall de-
scribed in Noh et al. (2006) was used. Expressing their relationship in terms of precip-

itation rate R yields

1

R35,snow(j) = WZ?»S(]')ULM» (5'3)

where Zs5 is the observed reflectivity values at 35.6 GHz, computed at the j-th range

gate. The units of the liquid equivalent snowfall rate, R is [mm h™! ], and Zzs has



Standard atmospheric parameters used in retrievals and simulations

Table 5.4

for the 29 January 2003 0318-0337 UTC segment.

parameter | value units | description

Tekin 10.0 °C ocean skin temperature
Tourt 0.0 °C surface air temperature
Tirop -43.0 °C tropopause temperature
Ty 2.0 °C dew point depression
Ztrop 6.25 km | tropopause height

Zsnow 0.0 km snow region base
Zsnowtop 4.5 km snow region top

RH ear 0.2 - clear air Rel. Humidity
RH;., 1.0 - R.H. for ice/snow

W 170 | ms™! | near surface wind spd.
mixflag 'BRUG’ - dielectric mixing method

178
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(a) Z(13.4 GHzl) [dBZ]

Time (min)

Figure 5.12. 29 January 2003: (a) Denoised/smoothed Zi4 reflectivities
[dBZ], (b) denoised/smoothed Zs5 reflectivities [dBZ], (¢) dual-wavelength
ratio, (d) Retrieved exponential distribution intercept parameter: log;y(Np)
[m™], (e) Retrieved mass-weighted median diameter: Dy = 3.67/A [mm)].
DWR-only retrieval was performed using n, = 10 (0.45 to 0.6 g cm™® ).
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Figure 5.13. 29 January 2003: (a) Denoised Zj4 reflectivities [dBZ] and
denoised Zss reflectivities [dBZ], (b) dual-wavelength ratio, (c) Retrieved
mass-weighted median diameter: Dy = 3.67/A [mm)], (d) Retrieved expo-
nential distribution intercept parameter: log,;,(No) [m™], for n, =10 (0.45

t0 0.6 g cm™3 ).
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units of mm®m=3. Figure 5.14, panel shows the Zss-R relationship applied to the 29
January 2003 case.
The ice water content can written with respect to the rainfall rate using the form:

w = Rpiiq/Vm, where R and v,, are defined by equations 2.34 and 2.36,

I'(d+1)
aol'(d+b+1)

where b = 0.311, ap = 7.2059, d = 3, and A is the liquid equivalent slope parameter.

(5.4)

— b
w35,sn0w - R35,SHOWA

All of the values are expressed in SI units. These quantities and relationships were
previously described in section 2.7.2.

Following equations 2.33 and 2.34, the ice water content and liquid equivalent pre-
cipitation rate are computed using the retrieved Ny and Dy values. The results are
displayed in Fig. 5.14. For comparison, Zss-R and Zss-IWC relationships (Egs. 5.3
and 5.4) from Noh et al. (2006) are shown in panels (d) and (b) respectively. Agreement
is good in most regions. Comparing panels (c¢) and (d), The Z35-R relationship seems
to be over estimating precipitation rate in 1-4 km altitude region of the left-most cloud
system, whereas the retrieval produces a more consistent precipitation rate throughout
the column, presumably due to the inherent attenuation correction in the present re-
trieval algorithm. Simple Z-R relationships cannot explicitly account for attenuation,
and therefore tend to underestimate precipitation rates as attenuation increases.

A single profile taken from the segment shown in Fig. 5.14 at approximately 12 min-
utes into the flight is shown in Fig. 5.15. Zzs-R relationship slightly underestimated
precipitation rate relative to the retrieval when using the density parameter n, =10
(0.45 to 0.6 g cm™® ). Retrievals in the lowest 0.5 km were generally treated as sus-
picious, due to the significant pulse compression side lobe contamination — which has

been partially accounted for here, but in an ad hoc fashion.
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(a) Retrieved Ice Water Content [g m™]
. T 1

(b} Z,,-IWC Ice Water Content [g m?]
I T

|
8

Time (min)

Figure 5.14. 29 January 2003: (a) Derived ice water content [g m=2 |, (b)
Z35-IWC relationship computed using 5.4, (¢) Derived liquid equivalent pre-
cipitation rate [mm h™! ], (d) liquid equivalent Zs5-R relationship computed
using equation 5.3 from Noh et al. (2006). DWR-only retrieval performed
using a constant value of n, =10 (0.45 to 0.6 g cn™? | see table 3.3).
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Figure 5.15. 29 January 2003: A single profile taken from Fig. 5.12 show-
ing (a) the denoised Zy4 reflectivities [dBZ] and denoised Zss reflectivities
[dBZ], (b) dual-wavelength ratio, (c) derived ice water content [g m~2 ] and
Z35-IWC relationship, and (d) Derived liquid equivalent precipitation rate
[mm h™! | and liquid equivalent Zss-R relationship from Noh et al. (2006)

(eq. 5.3).
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Example Ty simulation

The profiles from the above Z35-R comparisons (depicted in Figs. 5.12 to 5.15) were
passed into the forward model to simulate the passive brightness temperatures for each
vertical profile. These results were then compared to co-located MIR observations at
the same frequencies, with the results shown in Fig. 5.16.

Casual inspection reveals deficiencies in the 7 simulations in Fig. 5.16. Because
the DWR retrieval method cannot retrieve cloud liquid water (CLW), no information
about CLW was available. To compensate for this, the cloud liquid water path (CLWP)
was allowed to vary between 0 and 3.0 kg m™2 , and the ng parameter (representing
cloud height and thickness) was varied between 0 and 9. Wind speed was fixed at
17 m s7' . The particle density parameter was fixed at n, =10. The mean Ty RMSE
value, averaged over the entire flight segment, was 4.5 K with a standard deviation of
28 K. |

Despite the derived properties in Fig. 5.14 having a strong similarity with the Zs5-R
relationships, this approach for handling a DWR retrieval did not appear to accurately
represent the atmospheric state in the retrieval due to the mismatch in simulated vs. ob-
served brightness temperatures. Therefore, we sought solutions to the retrieval problem
such that the DWR-retrieved profiles provided simulated Tgs that were more consistent

with observations. The following sections describe these efforts.

A Plethora of Solutions

Prior to this point, the choice of ng (CLW model parameter) and n, (particle

density model parameter) has been subjectively chosen by comparison with with the
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Z35-R relationship. Figure 5.17 shows the entire range of possible retrievals using
only the DWR method for a single observed reflectivity profile. These included 14
variations in density profiles, 10 variations in cloud liquid water profiles, and 11 values
of liquid water path resulting in approximately 1400 candidate profiles. Black profiles
indicate the 4 lowest RMSE-valued profiles constrained by the T method described in
section 5.3.3 and table 5.5. Ny and DWR were artificially limited in their maximum
extent to avoid computations falling outside the physical limits defined by the retrieval
method.

The primary point of Fig. 5.17 is to show the entire range of variation in DWR-
only retrievals. All of these profiles are “mathematically acceptable” solutions to the
DWR retrieval under the current set of constraints. To further constrain the candidate

solutions, additional observations or assumptions were necessary.

5.3.3 Constraining Retrievals Using MIR Brightness Temperature Observations

From the theory presented in chapter 3, the DWR-based retrievals of A and N, were
shown to be ill-posed. More specifically, there are a nearly infinite number of combina-
tions of A, Np, particle density, and other factors within the multiple vertical layers of
a 1-D profile of the atmosphere that mathematically solve inversion described by equa-
tion 3.8. However, physical reality precludes many solutions, and physical plausibility
adds further constraints. The primary uncertainty under the current formulation is that
the “true” particle densities are generally unknown for frozen precipitation. The term
density is used loosely here, as usual, since we’re referring to a spherical approximation

to irregular particles, whereby the density acts as a proxy for shape and composition.
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Simulated passive frequencies were selected to match the MIR “window channel”
frequencies at 89, 150, and 220 GHz (see Fig. 2.2). The water vapor channels of 183+1,3,
and to a lesser degree 183+£7 GHz, were difficult to correctly simulate since they are
strongly sensitive to the vertical distribution of water vapor within the 1-D profile.
Without adequate radiosonde soundings at the time of the Ty observations, it was
difficult to correctly simulate the vertical distribution of water vapor throughout the
column. The 340 GHz observations were not selected for a similar reason: continuum
absorption and emission by water vapor strongly influenced the simulated Tgs. Having
said that, our primary concern was with the retrieval of snow particle properties, rather
than water vapor or cloud liquid water, so the channels most suitable for this task (89,
150, and 220 GHz) were used for the remainder of the research

Following the Tg-constraint technique from section 3.4 and using a simple selection
criterion based on the root mean square error (RMSE) between the observed and sim-
ulated Tgs, a significant portion of the candidate profiles were readily removed from
the solution set. An example of this is illustrated for a single profile in Fig. 5.17.

Accurate simulation of brightness temperatures requires an additional critical as-
sumption, one that is unimportant to the DWR-retrieval method: passive microwave
emission from the ocean surface. The primary factors influencing passive microwave
emission from the ocean surface are sea surface temperature (SST) and surface emis-
sivity. Section 2.4.1 described the ocean surface emissivity model used herein.

Surface skin temperature and the near surface wind speed were derived from AMSR-
E SST observations (see section 5.3.1, Fig. 5.8). However, the wind speed product was
not well defined in regions of strong precipitation, indicated by black areas in Fig. 5.8.

In an attempt to determine the optimal wind speed, T computations for a range of
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wind speeds ranging from 9 to 20 m/s were tested in clear-sky regions. This wind speed
range was selected to cover the entire range of AMSR-E /radiosonde derived wind speeds
in the region surrounding present case studies. Although not shown here, the optimal

1| the value used in the following

wind speed was found to be approximately 17 m s~
case studies.

Nevertheless, a bias still appeared in the clear sky regions, which could not be
fully accounted for by wind variations alone. It is believed that undetected cloud liquid
water, water vapor distribution uncertainty, or variations in the ocean surface emissivity
were responsible for some of the bias. As a result, the regions which were deemed “clear

sky” were removed from the analysis, as these regions contribute no new information

to the precipitation particle retrievals.

Brightness Temperature Simulation Results

Table 5.5 on page 189 provides an example of the simulated brightness temperatures
dataset for scan number 395 of the 29 January 2003 snowfall case, covering the 20
simulated Tg sets having the smallest root mean square error (RMSE) value compared
to the observed MIR values. Only Tgs at frequencies 89, 150, and 220 were simulated.
For this detailed case, approximately 60,000 sets of Tgs were simulated and compared
to the single set of MIR observed Tgs.

Figure 5.17 illustrates the 4 best-fit Tg-constrained profiles (black curves) overlaid
on the much more varied DWR-only retrievals. This is a strong visual indicator of the
degree of constraint that comparison with the Ty observations can provide. However,
as table 5.5 shows, even variations on the order of 1-2 K in the RMSE can result in

a wide variety of retrieved properties. For the lowest three RMSE values, the density
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Table 5.5
29 January 2003: MIR observed Tgs and 20 best-fit simulated Tgs sets for
scan number 395. The Ty RMSE is computed for 89, 150, and 220 GHz.
Associated retrieval parameters of cloud distribution(ng), cloud liquid water
path (CLWP), and density parameter (n, ) are also given.

ng | CLWP | n, | RMSE | T5(89) | T(150) | Tp(220)
- |kem™]| —| [K] K] K] K]

MIR| - —170.00 | 194.2 | 194.2 | 200.1
6 0.050 | 13| 0.90 | 194.0 | 196.0 | 204.7
9 0050 | 9| 145 | 193.2 | 1978 | 208.2
9 0025 | 2| 152 | 1952 | 1986 | 2058
6 0025 | 6| 1.65 | 195.7 | 1984 | 205.4
5 0.300 |12 | 1.69 | 192.8 | 1967 | 203.5
7 1 0025 | 2| 171 | 1947 | 1988 | 207.7
6 0150 | 1| 174 | 193.0 | 1977 | 2088
8 0025 | 2| 1.84 | 1949 | 199.0 | 207.7
5 0025 | 6| 1.86 | 1954 | 198.0 | 203.9
5 0.150 | 5| 1.94 | 196.6 | 197.9 | 205.0
5 0.050 | 13| 218 | 1904.2 | 1958 | 202.5
6 0025 | 2| 219 | 1952 | 1969 | 2027
1 0.000 | 10| 225 | 194.6 | 1981 | 202.8
6 0100 | 5| 227 | 1904 | 1945 | 206.0
4 0.025 | 6| 234 | 1953 | 1975 | 202.6
1 0.005 |10 | 247 | 1954 | 1986 | 202.9
4 0.005 | 10| 249 | 195.6 | 200.2 | 205.2
8 0.025 |13| 252 | 190.2 | 1941 | 205.4
2 0.005 | 10| 2.54 | 195.7 | 199.0 | 203.2
9 0.025 6 2.64 195.6 200.0 208.4
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parameters cover similar particle density ranges. However, within a RMSE of 2.6 K, it
is evident that a much larger range of density parameters was covered. These results
are not particularly troublesome, although it is evidence that the combined observation

sets did not fully constrain the retrieval.

Tg-Constrained Retrieval Results

Logically extending the previous single-profile analysis to all observed scans in the
flight segment provided a multiparameter retrieval at each scan position. The goal of
this approach was to find the DWR-retrieved physical profiles that produced simulated
Tgs similar to the observed MIR Tgs. Figure 5.18 shows the simulated Tgs, indicated by
black traces, that minimize the RMSE as compared to the MIR-observed Tgs, indicated
by red traces. Qualitatively speaking, the fit appears to be quite good in most regions.
The mean RMSE values were around 2.6 K, with a standard deviation of 2.2 K — nearly
2 K lower than the earlier case having a fixed density parameter, n, =10 (Fig. 5.16).
Regions without simulated Tgs are clear-sky regions.

For each of the 450 scans, the best-fit 75 set had an associated 1-D physical profile
which produced those Tgs. These represented the best-fit “retrieved” profiles. More
specifically, the best-fit profiles consisted of: A and Ny values at each vertical level,
the linear density parameter n, , the cloud liquid water path, and the cloud liquid
water distribution parameter ng . As seen in table 5.5, a number of different parameter
combinations provided RMSE values which fell within one standard deviation from the
mean minimum RMSE value (2.6 + 2.2 K).

Figure 5.19, shows only the singular set of parameters which resulted in the min-

imum 75 RMSE values shown in Fig. 5.18, considering all possible combinations of
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parameters. It is clear that this method produced wide variations in the particle den-
sity and cloud liquid water contents. Part of the reason for this is the sensitivity of the
retrieval to relatively small variations in the brightness temperatures.

Figure 5.20 shows the Tg-constrained retrieved mass-weighted median diameter,
Dy = 3.67/A, exponential distribution intercept parameter, log;,(Ny), and derived
liquid equivalent precipitation rate [mm h™! ]. Casual inspection of the precipitation
rate in panel (c) of Fig. 5.20 indicates that the retrieval was not completely physically
plausible, despite having the “best-fit” determined by the RMSE values.

At this point there was no additional information to further constrain the retrievals.
If one considered the DWR-retrieval only, the solution set for a single profile was quite
large, even after the density and cloud distribution parameterizations. The key point
is that the Tp-constraint method was not intended, by design, to identify/retrieve a
single correct retrieved profile, but rather it was designed to ezclude candidate profiles
inconsistent with the simulations, and radar/radiometer observations. The resulting

“reduced” dataset provides a range of probable PSD properties and density parameters.

5.3.4 Parameterization of the Tg-Constrained Profiles

For the present case, there were 450 individual scans, some of which did not record
any reflectivity from the aircraft to the surface, presumably indicating a precipitation-
free scene. Of those 450 scans, 388 had radar reflectivity profiles that were determined
to be originating from precipitating and/or thick clouds. The DWR-retrieval operated
on each scan using the 14 different particle density profiles (n, ), 10 cloud liquid water
distributions (ng ), and 11 values of CLWP, resulting in as many as 1400 retrievals per

scan. Many profiles had 896 retrievals per scan, under the assumption that the CLWP
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Figure 5.20. 29 January 2003: The profiles resulting in the best fit 75 shown
in figure 5.18. The following panels show (a) the particle density [g cm™ ];
(b) Ts-constrained retrieved mass-weighted median diameter: Dy = 3.67/A
[mm]; (c) the Tg-constrained retrieved exponential distribution intercept
parameter, log,q(No) [m~%], and (d) the derived liquid equivalent precipita-

tion rate [mm h™!].
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would not go above 0.3 kg m~2 . For the present case study, there were 450,000 total
retrieved profiles. It bears repeating that each profile represents a mathematically valid,
although not necessarily physically realistic, retrieval using only the DWR-retrieval
method.

For each of the 450,000 1-D profiles from the DWR-retrieval, the forward model was
run using each profile as the input. The resultant simulated Tgs were compared to the
observed MIR Tgs, and the RMSE was calculated. At the end of chapter 4, a Ty RMSE
constraint was chosen at a 10 K maximum based primarily on the uncertainty analysis.
Those profiles resulting in a Tg RMSE value of less than 10 K were, therefore, selected
as our Tg-constrained solutions. This constraint reduced the number of profiles from
450,000 to 81,000 profiles. Additionally, the removal of redundant retrievals brought
the number down to 63,171 profiles.

For testing purposes, an additional subjective constraint on the 7g RMSE was also
imposed, such that the maximum RMSE for a given scan was no larger than 2.5 K plus
the minimum RMSE value for the scan. For example, if the minimum RMSE value for a
set of candidate profiles was 1.0 K, all profiles yielding RMSE values up to 3.5 K would
be considered as solutions. This resulted in a further reduction in the total number of
profiles from 63,171 to 17,469 profiles, 4% of the original 450,000 candidate profiles.

Figures 5.18 through 5.20 showed the Tgs and retrieval parameters for the best
RMSE values under this constraint. However, little useful information is obtained from
the images. It is more insightful to characterize the ranges of the physical properties
consistent with the current retrieval.

Using the retrieval parameters from scan 395, described in table 5.5, the minimum,

mean, and maximum values of the retrieved particle size distribution properties, Ny
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and A, are examined in table 5.6. The key features are that most of the A values are
reasonably consistent with each other, with a couple of exceptions. The exceptions
can be explained by the unusually low particle density parameters chosen due to the
Ty constraint. The Ny parameters tend to vary more widely in response to changes in
the particle density.

Extending the above analysis to all 450 scans in the 29 January 2003 case, fig-
ures 5.21 through 5.24 show the histograms of the various properties of interest in the
retrieval. Figures 5.25 through 5.30 show scatterplots of these quantities vs. each other,
giving an indication of both range and inter-dependence.

The histogram of retrieved liquid equivalent mass-weighted median diameter Dy =
3.67/A is shown in figure 5.21, encompassing retrieved values for the entire 29 January
2003 WBAYO03 flight segment, subject to the 2.5 K + min(RMSE) Tg-constraint. Most
of the values range in the Dy = 1 to 2 mm range, with a mean value of 1.6 mm and
standard deviation of 0.6 mm. The shape of the distribution more closely follows a
Gamma or Beta distribution, rather than a normal distribution.

Figure 5.22 shows the histogram of retrieved N, values (log;, scale). The mean
logo(Np) value is -1.0 (0.1 cm™), and the standard deviation of log,,(NVy) is 1.2 (a range
of 0.006 to 1.6 cm™*). The shape of the distribution is nearly normal (in log,,(Ny)).

From Dy, Ny, and the particle density pspow, the histogram liquid equivalent pre-
cipitation rate R (for all vertical levels) is shown in figure 5.23. Here the distribution
of log)o(R) is nearly normal, with a mean of 0.5 (3.2 mm h~! ) and standard devi-
ation of 0.7 (approximately 0.6 mm h™' to 16 mm h~! ) — a reasonable range, al-
though it is expected that the actual liquid equivalent precipitation rates are less than

5 mm h™' (based on the Z3s-R relationships). A significant second hump is notice-



Table 5.6
Ranges of retrieved parameters for a single-profile T-constrained retrieval
using scan number 395. The retrieval parameters are listed in table 5.5
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RMSE | min(A) | mean(A) | max(A) | min(Np) | mean(Ny) | max(Ny)

K] | fem™] | fem™ | fem™'] | fem™) | fem™] | [em™]
0.90 18.9 33.3 94.2 0.09 1.43 20.43
1.45 18.9 34.1 99.6 0.09 245 47.02
1.52 18.5 33.2 98.5 0.03 1.40 37.57
1.65 18.7 32.4 90.2 0.04 0.73 11.25
1.69 214 38.1 105.2 1.34 53.80 1195.8
1.711 18.5 33.3 98.5 0.03 1.44 37.57
1.74 19.6 35.7 102.9 0.20 10.72 184.49
1.84 18.5 33.3 98.5 0.03 1.44 37.58
1.86 18.7 324 90.2 0.04 0.73 11.25
1.94 19.8 35.3 101.8 0.23 5.73 81.93
2.18 18.9 33.3 94.2 0.08 1.39 20.42
2.19 18.5 33.0 98.5 0.03 1.36 37.57
2.25 18.5 31.8 38.2 0.02 0.45 8.50

2.27 19.4 35.0 101.8 0.25 5.44 81.81
2.34 18.7 324 90.2 0.04 0.71 11.25
247 18.5 31.8 88.2 0.02 0.45 8.50

2.49 18.5 31.8 88.2 0.02 0.45 8.50

2.52 18.7 33.3 94.2 0.09 1.46 20.43
2.54 18.5 31.8 88.2 0.02 0.45 8.50

2.64 18.7 32.6 90.2 0.04 0.77 11.25
2.75 18.7 33.4 94.2 0.10 1.46 20.42
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Figure 5.21. 29 January 2003: Histogram of Dy [mm)] for the Tg-constrained
case.
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rate R [mm h™! ] for the T-constrained case.
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able for R > 10 mm h™! | indicating that there may be two largely different particle
density parameters (i.e., a low density and high density) providing equally acceptable
Ts-RMSE values. These higher R values are positively correlated with larger mass per
unit volume M.

A relatively unambiguous measure of the overall retrieval is the retrieved distribu-
tion of total precipitation mass per unit volume of air (also known as ice/liquid water
content), shown in figure 5.24. Like precipitation rate, a nearly bimodal distribution is
observed in the retrieved mass, expressed in log;o(M). The second (right-most) hump
is strongly associated with high precipitation rates, as is shown in figure 5.27.

The mean value for log,( (M) is approximately -0.7 (0.2 g m™® ) with a standard
deviation of 0.6725 (0.04 to 1.0 g m—® ), which according to McFarquhar and Black
(2004) is with the nominal range for stratiform precipitating clouds observed in the
tropics. Schols et al. (1999) found that ice water contents (mass of ice per unit volume)
were less than 0.2 g m~ for frozen stratiform precipitation (above the melting layer),
and less than 3.0 g m~3 for a frozen precipitation in an intense squall line in the middle
of a North-Atlantic cyclone.

Figures 5.25 shows the retrieved Ny and liquid equivalent precipitation rate (at all
vertical levels) as a function of the particle density pg.ow depicted by the the color bar.
Both Ny and precipitation rate cover a large range of variability. The particle density
influence is also evident, but much less clearly defined. The highest precipitation rates
appear to be associated with the largest Ny values, consistent with equation 2.34.

Figure 5.26 indicates a much less cohesive relationship between the precipitation

rate and the liquid equivalent diameter, Dg. The density dependence is still evident.
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Figure 5.24. 29 January 2003: Histogram of retrieved mass (per unit volume
of air) M [g m~3] for the Ts-constrained case.
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In figure 5.27, the retrieved mass per unit volume is plotted vs. retrieved precipi-
tation rate. There is a strong positive correlation between mass and precipitation rate
(as noted previously), with the largest mass values being associated with the highest
precipitation rates. If one selects a nominal precipitation rate of 1 mm h™?! | nearly the
entire range of particle densities is covered, while the range of masses per unit volume
covers a relatively small range from about 0.02 to 0.2 g m™3 | depending on the particle
density.

Figure 5.28 shows the relationship between Dy and Ny. Colors indicate the density
variations, and it’s clear that there is a dependence in both parameters, slightly stronger
in the Ny parameter. Inspection of the equation for retrieving Ny (eq. 3.9) shows that
there’s a primary dependence on the single channel radar reflectivity, which itself is
sensitive to changes in particle density.

Figures 5.29 and 5.30 show the relationships between the radar reflectivities (at-
tenuation corrected), and the liquid equivalent precipitation rate. The colors represent
Ny. Of note is the strong Ny dependence in these relationships, with the highest pre-
cipitation rates corresponding to highest Ny and reflectivity values.

Many of the above scatterplots simply show relationships that are already known
from the relationships provided by the forward model and retrieval algorithm. How-
ever, of interest is not necessarily the relationships, but the range and distribution of
the Tg-constrained retrieved properties, especially Ny and Dy. With the above dataset,
we now have a reasonable estimate of the expected range of relevant particle size distri-
bution parameters (if one assumes an exponential distribution). If the particle compo-

sition/densities were are able to be estimated prior to the retrieval (e.g., using aircraft
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or ground based observations), this would provide a much stronger constraint on the

retrieval.

5.4 Summary

In this chapter, the 2003 Wakasa Bay field experiment was described, including
instrumentation and relevant data collection procedures. The techniques for data re-
jection and acceptance were also outlined. On 29 January 2003, the P-3 aircraft made
observations of several snow events; and data from the APR-2 radar and co-located
MIR radiometer was used as a test-case for the present retrieval method.

It was found that selecting a fixed density value for the snow particles of (n, =10
(0.45 to 0.6 g cm™3 ) resulted in the closest match to published Zs5-R relationships
from Noh et al. (2006). The simulated vs. observed Tgs for this single density profile
case exhibited a mean RMSE on the order of 5 K, with several regions crossing above
10 K RMSE mark. This indicated that either the Z35-R relationship does not strictly
apply to the current observations, or that there some sort of bias in the three-way
relationship between simulation, radar observation, and radiometer observation.

In order to further constrain the retrieval and better select the appropriate density
parameters, the Tg-constraint method was applied to the 450,000 candidate profiles,
obtained from the DWR-method, in an attempt to constrain the parameter space and
number of retrieved profiles for this case study. It was found that the “best-fit” case
provided a wide variety results in retrieved properties, mostly due to the lack of particle
density information.

The real utility of the Tg-constraint method lies in not what it provides, but what it

leaves out. From the 450,000 candidate profiles, the basic Tg-constraint requirement of a
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maximum 10 K RMSE across all scans reduced the number of profiles to approximately
63,000, thereby eliminating a large number of profiles which did not fit into the three-
way relationship.

An example case for “subjective” constraints was examined. The results indicate
that additional constraints to the 7y RMSE value results in a more compact agreement
among the ranges of retrieved parameters Ny and A, although it appears that additional
information is required to have a stronger constraint on the retrieval. One such piece
of information would be cloud liquid water content and, more preferably, an estimate
of the particle density, which would help significantly in nailing down the potential
variations in the retrieval.

Using the subjective Tgconstraints, the relationships between key variables: size
distribution parameters Ny and Dy, precipitation rate, particle density pgpow, mass per
unit volume M, the radar dual wavelength ratio (DWR), and the radar reflectivities
themselves (Z14 and Z35) were shown. The distribution of retrieved properties, com-
pared with previously published values indicate that the retrieval is generally providing
consistent reasonable ranges of values. The presence of unrealistically high precipita-
tion rates (; 50 mm h™' ) indicates that the combined retrieval does not quite remove
all of the physically unrealistic profiles. In order to accomplish a more precise retrieval,

additional observational constraints are required.
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6 SUMMARY AND CONCLUSION

Accurate local measurement of precipitation is a critical component of understand-
ing the larger-scale water, energy, and climate across the entire globe. The present
research has described a method for combining passive microwave (PMW) observa-
tions and active radar observations to retrieve snow particle size distribution (PSD)
properties, assuming exponentially distributed particle sizes.

Specifically, a dual-wavelength ratio (DWR) retrieval technique, following Menegh-
ini et al. (1997), was developed with the express purpose of retrieving particle expo-
nential size distribution parameters Ny and A (or Dy). The DWR method is strongly
sensitive to particle size, independent of number density and physical particle compo-
sition/density. We chose to use spheres composed of ice and air to simulate actual
ice-phase precipitation particles, primarily so that standard Mie-theory could be used
to compute the radiometric properties of the precipitation particles. However, due to
the relative insensitivity of the DWR-~method to particle “density”, is inherently ill-
posed unless the physical composition of the ice particles (density for ice spheres) is
known prior to the retrieval. To limit the density options, a set of 14 linear density
profiles were selected to cover a large range of possible density configurations.

Since explicit particle shape/composition information is not generally available, an
additional constraint was imposed on the DWR-retrieval technique. For each of the
many DWR-retrieved profiles, the top-of-the atmosphere passive microwave brightness
temperatures (Tgs) were computed using a forward radiative transfer model, which ex-

hibits a stronger sensitivity to particle density than the DWR-technique. The simulated
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Tpscan then be compared to observed Tgs, providing a stronger constraint. Presumably
this would allow for a more well constrained set of retrieved profiles.

As a first step in testing the retrieval method, a series of contrived cases were
created using the forward model. The forward model was used to produce a 1-D profile
of ice-phase precipitation, associated radar reflectivities at 13.4 and 35.6 GHz, and top-
of-the-atmosphere PMW Tpsat 89, 150, and 220 GHz. These simulated quantities were
treated as input to the retrieval. Since the retrieval and forward model are based on
the same set of physical relationships, it was expected that the retrieval method would
perfectly retrieve the PSD parameters (for which the true values are known).

In the most simple contrived cases the retrieval worked flawlessly, however when
random noise was added to the density profile, the retrieval was no longer able to
accurately retrieve the PSD properties, since it always assumes some sort of linear
profile. However, using the Tg-constraint method described in section 3.4, the combined
retrieval was generally able to accurately retrieve the PSD properties and provide the
correct density parameter. These tests showed that the Tg-constraint approach was
critical at culling out those particle density profiles which were not consistent with the
radar/radiometer observations and simulated relationships.

The next step was to estimate the primary sources of uncertainty within the re-
trieval and observational data from the 2003 Wakasa Bay AMSR/AMSR-E ground
validation experiment (WBAY03). In WBAY03, a P-3 Orion aircraft carrying a suite
of instruments including the Millimeter-wave Imaging Radiometer (MIR) and the Ad-
vanced Precipitation Radar 2 (APR-2) made co-located nadir viewing observations of
shallow convective snowfall events on 29 January 2003 over the Sea of Japan. These

observations were consistent with the present retrieval scheme, so they were selected as
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a case study. However, the uncertainties of the observations and the subsequent impact
on retrievals was unknown.

To address this, the estimated uncertainty of each of the primary observations (two
radar frequencies: 13.4 and 35.6 GHz, and three PMW channels: 89, 150, and 220 GHz
was determined. Using sensitivity analyses, the impact of the observation uncertainties
on retrieved PSD parameters was estimated. It was found that the uncertainties in
the radar observations, on the order of +1 dBZ at 13.4 and +2 dBZ at 35.6 strongly
influenced the retrieval, being a factor of 10 larger than the uncertainties arising from
PMW and radiosonde observations.

A simple radar-only retrieval on the WBAY03 29 January 2003 snowfall case (sec-
tion 5.3) involves simply selecting a fixed density parameter, and performing the DWR-
only retrieval. For DWR values less than unity (and greater than about 0.1-0.2), and
a fixed particle density, a monotonic relationship exists between the mass-weighted
median diameter Dy and the DWR. By comparison with a published Z;5-R relation-
ship (Noh et al., 2006), a linear density profile of (0.1 t0 0.4 g cm™3 , n, =5) was found
to provide a similar fit for many of the 450 observed profiles of radar data. However,
subsequent 75 computations showed that the root-mean-square error (RMSE) between
observed and simulated Tgswas rather large, having an average of approximately 5 K
for the entire flight segment, with some individual RMSE values higher than 10 K.

Given the large uncertainties in the radar observations, and the propagation of these
uncertainties to the simulated PMW Tgs, additional subjective constraints were deemed
necessary for the retrievals performed on the WBAY03 datasets. In order to provide a
more constrained retrieval, the RMSE criterion was reduced from 10 K (obtained via

sensitivity analysis, chapter 4), to a floating value of 2.5 K plus the minimum RMSE
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for all profiles at a given scan. The maximum of 10 K was still held. This provided
a 94% reduction in the number of candidate profiles from 450,000 using the DWR-
only retrieval, to 17,500 Tg-constrained profiles. These profiles were selected as the
“solutions” to the retrieval in that they exhibited consistency with both observation
and simulation.

Despite the strong constraints, the quantities still represented a diverse range of
retrieved and derived parameters. Figures 5.21 through 5.30 attempted to capture the
key features of the retrieved properties for the entire dataset. In spite of a small fraction
of physically implausible values, the retrieved dataset was found to be consistent with
published ranges of the relevant quantities.

In short, the primary utility of the present combined radar-radiometer algorithm
is that it selects sets of “candidate” profiles of PSD properties which have radar and
radiometric consistency with observations, and is consistent with the physical relation-
ships employed by the forward model and retrieval algorithm. When the composition
of the particle can be known or estimated a priori, the retrieval becomes much more
well posed.

A primary goal of the present research was to develop and test a retrieval method
for instrumentation similar to what is proposed for the upcoming Global Precipitation
Measurement Mission (GPM). GPM will contain a dual-wavelength radar (at 14 and 35
GHz), and a co-located passive microwave radiometer. However, GPM differs from the
present observations in that the GPM GMI radiometer is conically scanning, offset from
nadir at an angle of approximately 52 degrees, rather than viewing at nadir like the
MIR does. However, using techniques developed for the Tropical Rainfall Measurement

Mission (TRMM) spacecraft, these geometry issues can be addressed. Regardless, the
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same physical principles in the retrieval will apply. There will also be a further key
advantage to using the GPM PMW Tgs in that the conically scanning observations,
over ocean, have polarization information, which is useful for determining the optical

depth of a precipitating cloud.
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A APPENDIX

A.1 Dielectric Mixing

In order to satisfy the homogeneity requirement for the dielectric constant of a
simulated 2 or 3 component particle, methods for averaging the dielectric properties of

these components are required. They are described here and in section 2.8.

A.1.1 Two-Component Dielectric Mixing

The Bruggeman method (Bruggeman, 1935) has the following form

€1 — €12

€2 — €(12)
+1-fi)——==0 Al
et = 1) (A1)

€2+ 2€(1 2 ’

where €; is the dielectric permittivity of component 1, € is the dielectric permittivity
of component 2, € 9 is the effective dielectric permittivity of the two materials, and
f1 is the volume fraction of material 1.

Algebraic manipulation of (A.1) yields an equation with the form

€12) = —%ﬁo + % (ﬁé’ + 26261)% ) (A.2)
where
fo=3[(1 =30~ A)e+1-3m)a] (A.3)

The Maxwell Garnett method (Maxwell Garnett, 1904) for two components is written

as

3f1 (1 — €2) / (&1 + 262) J . (A4)

€ =€ |14
@2 2[ 1—fi (e —€)/ (a + 26)
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In the complex plane, figure A.1 illustrates the effects of the permutations on the
real and imaginary components of the dielectric permittivity for continuously varying
fractions of ice and water (e.g., a melting particle) at 10.65 GHz and 89.0 GHz and a
temperature of 0° C. Each curve represents the application of the three permutations of
the two-component averaging methods. Figure A.2 shows the dielectric permittivity’s
dependence on averaging method for varying fractions of ice and air (e.g., a frozen

particle).

A.1.2 Extension to Three Components

Both the Bruggeman and Maxwell Garnett methods may be extended to three
components by applying the two-component form once for the first two components
and again for the two-component mixture and the third component. A volume fraction

is defined for the first two components 1 and 2
fi=F/(F+ F,), (A.5)

where f; is the volume fraction of component 1. For the two-component form, the
denominator is unity. The second volume fraction, for components 1 and 2 mixed with
component 3, is given by

faoy=F1+ F. (A.6)

For the MG method, applying the similar technique results in two possible sets of

combinations. The first set is the “two-component inclusion” method

3 a2 (caa —es) / (e oy + 2€3)
1= fay (a2 —€)/ (eaa +2e) |

€aw = €3 |1+ (A.7)
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Figure A.1. Real and imaginary components of the dielectric permittivity
of a melting particle for varying volume fractions of ice and water at 10.65
GHz and 89.0 GHz at 0° C. Text labels indicate Fic., where Fiee + Fiiq = 1
at all points.
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Figure A.2. Real and imaginary components of the dielectric permittivity
of a frozen particle for varying volume fractions of ice and air at 10.65 GHz
and 89.0 GHz at 0° C. Text labels indicate Fi., where Fi, + F, = 1 at all
points.
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Alternatively, the intermediate value €1 5y can be used as the outer matrix, with com-

ponent 3 as the inclusion. The “two-component matrix” method is written

3f3(es—eq 2) / (€3 + 2eq9)
1~ fs(es—ean) /(e +2eny)

(A.8)

€av = €(12) 1+

The asymmetrical nature of the MG form leads to a different set of dielectric permit-
tivities depending on the ordering of components 1, 2, and 3. In total there are twelve
possible permutations for MG three-component mixing: six for the “two-component
inclusion” variations, and six for the “two-component matrix” variations. Table A.1
provides a summary of the computationally distinct permutations.

A similar approach for the Bruggeman method results in

Nl=

1 1
€av = —55 + 3 (B +2e3e19)) 2, (A.9)

where

[(1-3(1~fuzy))es+ (1-3fuz)ens].

N =

8=

As shown by Meneghini and Liao (2000), the Bruggeman mixing formula for three
components has an order dependence, despite the symmetry of the two-component
form. Specifically, swapping components 1 and 2 in (A.9) does not affect the result.
However, swapping 1 with 3 or 2 with 3 in (A.9) does affect the mixture, resulting in
three permutations of the Bruggeman mixing formula in the case of three dielectric

material components.



Table A.1
Maxwell Garnett (MG) and Bruggeman (BR) combinations for water (W),
ice (I), and air (A) mixtures. Column 1 consists of the two-component
mixture as the inclusion in the third component matrix. Column 2 has
the single component in a two-component mixture matrix. Angle brack-
ets denote a two-component mixture with square brackets representing the
inclusion.

MG Bruggeman
(WIT)A | W(zja)
(s | () | (A
(AT | W(AlT)
(| agury | 02
(AW | 1AW
o | aqmey | ¥
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Symmetric Bruggeman Formula

To address the asymmetry in the successive application method for the Bruggeman

formula, we propose a logical extension of (A.1) to include three dielectric components

€1 — €ay €2 — €ay
fi (——61 n 2€av> + f2 (—'—62 n 2€av> + (A.10)
€3 — €ay
(- i= ) (S ) =0 (A1)

where €, is the effective dielectric permittivity. It is easy to verify that interchanging
constituents has no effect on €,,. We conjecture that this is the general symmetric form
for the three-component Bruggeman formula. This suggests that, by following the same
logic, the form can be extended to N dielectric components. However, a solution for
€.y May not be easy to compute for N > 4 constituents.

Seeking to solve (A.10) explicitly for e,y,, we rewrite it in the form of a cubic equation
a3€gv + G’QEiv + @16y + a0 =0, (A12)
where algebraic manipulation of (A.10) yields the polynomial coefficients
1 1
Ay = = (61 + €y — 263) + §f1 (—361 -+ 363) -+

2
1
§f2 (—362 + 363)

1
ay =— Z (6162 — 26163 - 26263) + (A14)
1 1
Zfl (—36162 -+ 36263) + ZfQ (—36162 + 36163)
1
ag = —1616263. (A15)

If we further define

9
p = 2z (A.16)
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— 27a0 — 2a3
g = 9@1&2 2:;CLQ a2; (A].?)

one root of (A.10) can be expressed as

1
€ay = W — 5% — 302 (A.18)
where
1 4
= 2= 24 —p3]. Al
w 2<q+ q+27p> (A.19)

Of six possible solutions in w (only one shown here), this one was chosen such that
the one complex root having both positive real and imaginary components is obtained,
consistent with the constituent permittivities. Although the expression is somewhat
cumbersome, it has the desirable advantage of being easily programmable. Unfortu-
nately, there does not appear to be a reasonably simple closed-form expression for ¢,,

for the general case of N constituents.

A.2 Code

In creating the forward model and retrieval algorithm, over 10,000 lines of cus-
tomized code were created. Several times that many were borrowed from existing
subroutines. The programs and subroutines used in the present research were primar-
ily written in Fortran 90/95. Several Matlab scripts were created to aid in the analysis
and processing of the aircraft data and retrieval results. The relevant set of Fortran
codes, Matlab scripts, and datafiles are available (subject to copyright) online at:

http://rain.aos.wisc.edu/MWWiki/index.php/JbenJam:Dissertation
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A.3 Additional Technical Details

This section contains the miscellaneous technical details that did not comfortably
fit into the regular chapters in the dissertation. Nevertheless they provide important
information required to reproduce and clearly understand the concepts presented in the

main body.

A 3.1 APR-2 Data Format

Each WBAY03 APR-2 data-file is organized on a flight segment-by-segment basis.
Tables A.2 and A.3, reproduced from
http://nsidc.org/data/docs/daac/nsidc0195_rainfall wakasa_apr2.gd.html, con-

tain the details of the data format for a given flight segment file, where

e nscan is the number of scans in a file;
e nray is the number of rays, or beams, within a cross-track scan;

e and nbin is the number of bins within a ray.

The altitude and look vector are provided in two estimates: alt_nav and look_vector
items are calculated based on the aircraft navigation information, but alt_radar and
look_vector_radar are calculated based on the observed surface return in APR-2
data. The latter pair is reliable only when flying over the ocean, as it provides a more
accurate geolocation than the navigation-based pair. The look vector is a 3-element
vector of direction of the antenna relative to a global coordinate system where z is

along the aircraft ground track and z is vertical.)
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Table A.2
APR-2 data format, part 1, aircraft and geolocation information

Name Format | Size Notes

fileheader int32 18

scantime int32 nscan X nray Beginning of scan in sec-
onds since 1 January
1970

scantimus int32 nscan X nray Beginning of scan; mi-
croseconds past scantime

lat float nscan X nray From P-3 navigation files

lon float nscan X nray From P-3 navigation files

roll float nscan X nray From P-3 navigation files

pitch float nscan X nray From P-3 navigation files

drift float nscan X nray From P-3 navigation files

alt_nav float nscan X nray From P-3 navigation files
(meters)

alt_radar float nscan X nray From APR-2 surface echo
(meters)

look_vector double | nscan x nray x 3 | From P-3 navigation files

look_vector_radar | double | nscan x nray x 3 | From APR-2 surface echo

range0 float nscan X nray Distance of the first
radar range bin from
aircraft

isurf int32 nscan X nray Index of radar range
bin intersecting surface
(starting from 0).

sequence int32 nscan X nray Ray number within the
file

v_surfdc8 float nscan X nray Apparent surface
Doppler  velocity as
estimated from P-3
navigation

v_surf float nscan X nray APR-2 measured surface
Doppler velocity

beamnum float nscan X nray Ray number within a
scan

surface_index float nscan X nray Preliminary surface clas-

sification index



Table A.3
APR-2 data format, part 2, reflectivity data
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Name | Format | Size Notes

zhh14 | intl6 nscan X nray X nbin | Radar Reflectivity at Ky-band
(scaled dBZ, scaling factor is given
in file header)

zhh35 | int16 nscan X nray X nbin | Radar Reflectivity at K,-band
(scaled dBZ, scaling factor is given
in fileheader)

ldr14 | int16 nscan X nray X nbin | Linear Depolarization Ratio at K-
band (scaled dB, scaling factor is
given in fileheader)

velld | intl6 nscan X nray X nbin | Doppler Velocity at K,-band

(scaled m s7! | scaling factor is

given in fileheader)
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The surface_index is estimated by analyzing APR-2 surface return. Roughness,
angle dependence of the surface normalized radar cross section, apparent surface in-
clination, and LDR at nadir contribute to the surface return (Tanelli et al., 2006).
surface_index assumes one of six values listed in table A.4. In the present research,
only the observations having a surface_index = 1 are used to ensure reasonably level

flight over ocean.

A.3.2 MIR Data Format

The MIR data sets are stored in binary files. All values are in four-byte IEEE float-
ing point. Each logical record contains one calibrated MIR scan. Each logical record
has a length of 4 bytes-per-word and 579 words of data. For the sake of compact-
ness, only the relevant variables are described here, the remainder of the information

is located to appendix A.3 for completeness.
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Table A .4
APR-2 surface_index values used as a preliminary classification of sur-
face type.
surface_index | Description
0 Rough land
1 Ocean (level flight)
2 Ocean (roll maneuver)
3 Flat land (level flight)
4 Flat land (rolling maneuver)
5 Antenna not scanning (unknown surface)

Table A.5
MIR data format, part 1, aircraft and geolocation information
Word # | Description Notes/Units
1 Record Number
2 Month Real time clock (RTC)
3 Day Real time clock (RTC)
4 Hour IRIG
5 Minute IRIG
6 Second IRIG
7 Julian Day Navigation
8 Hour Navigation
9 Minute Navigation
10 Second Navigation
11 Latitude Degrees
12 Longitude Degrees (-West, +East)
13 Air Temperature | °C
14 Altitude feet
15 Pitch Degrees (+ for nose down)
16 Roll Degrees (+ for roll right)
17 Heading Degrees




Table A.6

MIR data format, part 2, calibration information
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Word # | Description

18-26 | HouseKeeping Temperatures
27 Hot average temperature for this scan
28 Cold average temperature for this scan
29 Hot temperature, 8-scan moving average
30 Cold temperature, 8-scan moving average

31-39 | Hot average counts for this scan

40-48 | Cold average counts for this scan

49-57 | Hot counts, 8-scan moving average

58-66 | Cold counts, 8-scan moving average

Table A.7

MIR Data Format, Part 3, brightness temperature observations.

Word # | Description

67-123 | 57 brightness temperatures degrees Kelvin at 89 GHz
124-180 | 57 brightness temperatures degrees Kelvin at 150 GHz
181-237 | 57 brightness temperatures degrees Kelvin at 183.3+£1 GHz
238-294 | 57 brightness temperatures degrees Kelvin at 183.3+3 GHz
295-351 | 57 brightness temperatures degrees Kelvin at 183.3£7 GHz
352-408 | 57 brightness temperatures degrees Kelvin at 220 GHz
409-465 | unused

466-522 | 57 brightness temperatures degrees Kelvin at 340 GHz
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