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abstract

The current scientific understanding of convection from a geostationary satellite and
ground-based radar perspective is used to inform the development and evaluation
of a deep learning model (called ThunderCast) for convective storm (thunderstorm)
nowcasting in the continental United States. The model is trained with four satellite
channels in the visible, shortwave infrared, and longwave infrared bands from the
Geostationary Environmental Operational Satellite-16 (GOES-16) Advanced Base-
line Imager (ABI) as predictors. The target is Multi-Radar Multi-Sensor (MRMS)
radar reflectivity at the −10◦C isotherm in the atmosphere, where any reflectivity
values ⩾ 30 dBZ are positive for thunderstorm activity. ThunderCast has high
accuracy, recall, and specificity but has low precision, indicating the model is prone
to false alarms. To determine the extent of true and false positive predictions with
and without lightning activity in ThunderCast, an object tracking software is used
to identify and track predicted storms. Over half of the true positive tracks were
not associated with lightning and a radar reflectivity threshold cleanly separating
tracks with and without lightning was not found, demonstrating a limitation of a
purely radar-based definition of convection in thunderstorm nowcasting models.
ABI observations for the tracks indicate electrified and non-electrified convective
storms can appear similar in satellite imagery. Four case studies, each containing at
least one instance of a non-electrified storm with red-green-blue (RGB) false color
image signatures consistent with cloud-top glaciation, demonstrate non-electrified
convective storms with similar visual appearances as thunderstorms are not limited
by latitude and can form in an assortment of meteorological environments.



1

1 introduction

Artificial intelligence is a broad term encompassing computer programs designed
to automate intellectual tasks usually performed by humans. Machine learning
refers to particular cases of artificial intelligence where, when presented with
many examples of inputs and the corresponding target (the “truth" or the desired
outcome known for each example) for a given task, a machine learns the rules to
map input parameters to the desired output(s) (Chollet, 2018; Stevens et al., 2020).
The appropriate structure of a machine learning model varies depending on the task.
Models requiring many successive layers, where non-linear data transformations
(associated with patterns in the input dataset) occur, are called deep learning
models. The number of layers are referred to as the depth of the model, hence many
layers categorize the model as deep (Chollet, 2018).

Deep learning has rapidly gained popularity in the atmospheric and oceanic sci-
ences because of its ability to automatically identify patterns, often associated with
physical phenomena by forecasters, in datasets often viewed visually (e.g., imagery
comprised of bands from space-borne satellites). Some of the recent applications
include, but are not limited to, tropical cyclone intensity estimates (Wimmers et al.,
2019; Griffin et al., 2022), synoptic-scale front prediction (Lagerquist et al., 2019),
short term tornado detection (Lagerquist et al., 2020), satellite-driven convective in-
tensity (Cintineo et al., 2020), nowcasting radar echoes (Cuomo and Chandrasekar,
2021; Ravuri et al., 2021), radar estimations for numerical weather prediction mod-
els (Hilburn, 2023), and lightning prediction (Zhou et al., 2020, 2022; Cintineo
et al., 2022). Many deep learning applications in atmospheric science operate in
the 0-60 min “nowcasting" timeframe and are designed for short-term forecasting
of weather phenomena. Nowcasting weather models, and their subsequent im-
provement through innovations in artificial intelligence techniques, are critical for
protecting life and property because they support forecasters’ decision making
processes by synthesizing vast quantities of environmental data into actionable
insights. This statement is reinforced by the 115th United States Congress’ passing
of the Weather Research and Forecasting Act (the Weather Act) in 2017 and its
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reauthorization in 2019. The Weather Act prioritized the National Oceanic and
Atmospheric Administration’s (NOAA) and subsequent organizations’ improve-
ment of weather data, modeling, computing, forecasting, and issuance of weather
advisories, watches, and warnings.

One forecasting area where deep learning is hypothesized to improve the lead
time forecasters are able to obtain prior to the onset of hazards is thunderstorm
nowcasting. Thunderstorms have many hazards associated with them including
hail, strong winds, lightning, and flooding from heavy precipitation. Any additional
time forecasters can provide to the public to prepare for these hazards is critical for
protecting life and property. Geostationary satellite imagery is commonly used by
forecasters to identify the beginning stages of thunderstorm growth. Because deep
learning is well suited for computer vision tasks, and, since satellite data is often
interpreted visually (e.g. through red-green-blue images), it is hypothesized that
deep learning methods can be used to provide additional lead time to thunderstorm
hazards like lightning.

Some models already use deep learning (in the form of a U-Net convolutional
neural network) to predict hazards from thunderstorms with satellite imagery (as
inputs) and lightning observations (as the target), like the LightningCast model
presented in Cintineo et al. (2022). However, ground-based radar signatures asso-
ciated with convective initiation of thunderstorms (see Chapter 2 for more details)
occur earlier in a thunderstorm’s life cycle than lightning. Targeting radar-based
signatures of convective initiation instead of lightning events in a deep learning
model could provide more lead time to hazards (like lightning) than those targeting
observed lightning events. Hence, to provide additional lead time to hazards, this
dissertation develops a model using a similar deep learning architecture to Cintineo
et al. (2022) (a U-Net), geostationary satellite imagery, and ground-based radar
observations to predict the occurrence of midlatitude convection associated with
thunderstorms in the next hour.

In addition to supporting forecasting efforts, artificial intelligence models can
provide valuable scientific insight. Deep learning models are often referred to
as “black boxes" because the computational rules learned to map the inputs to
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the desired output(s) are not straightforward. Methods for understanding these
computational rules are an active area of research and remain exceptionally difficult
to digest. However, each model is only as good as the data supplied for the model
inputs and target (a process described further in Chapter 2). If the data used
are based on the scientific understanding of the phenomena the model is making
predictions for, then the performance of the model can indicate areas where the
current scientific understanding is either adequate or inadequate. Based on this,
the scientific understanding can be improved upon and model improvements can
be made.

This dissertation focuses on using deep learning and the existing scientific un-
derstanding of convection from geostationary satellite and ground-based radar
observations to develop and evaluate a thunderstorm nowcasting model (Thun-
derCast) for the contiguous United States. In doing so, the following research
questions are explored:

1. How well can the occurrence of convection in the next hour be predicted with
a deep learning model developed from the current scientific understanding
of thunderstorm signatures in satellite imagery and ground-based radar
observations?

2. What environmental conditions and/or observational factors (associated with
the selection of ThunderCast’s inputs and target) impact the reliability and
applicability of ThunderCast for thunderstorm prediction?

3. What scientific insights can be gained, what limitations are exposed, and what
potential avenues for model improvement can be identified from evaluating
ThunderCast case studies?

Each of these questions are further motivated and discussed individually in
the subsequent Chapters in this dissertation. Chapter 2 focuses on developing the
deep learning model (called ThunderCast) for detecting convection associated with
thunderstorms in the contiguous United States and exploring the initial capabilities
of the model. A method to evaluate cases of predicted thunderstorm events using
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object tracking is presented in Chapter 3. Chapter 3 also uses statistics and charac-
teristics associated with the tracked predicted storms to highlight the limitations of
using satellite imagery and radar for prediction of initiating thunderstorms. Lastly,
Chapter 4 takes a closer look at some of the limiting cases found in Chapter 3. All
together, this dissertation demonstrates how a deep learning model can provide
valuable insight into the physical processes associated with thunderstorm devel-
opment by determining the limitations of a model built from the current scientific
understanding of thunderstorm characteristics from a ground-based radar and
geostationary satellite perspective.
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2 the development and initial capabilities of
thundercast

2.1 Background
Field studies in the twentieth century documented the relationship between convec-
tion and precipitation radar echoes, forming the basis for radar-based definitions
of convective storms (synonymously referred to as thunderstorms in this paper).
An extensive field campaign called the National Hail Research Experiment aimed
to increase the understanding of the microphysics and cloud dynamics of severe
convective storms by analyzing thunderstorms located in northeastern Colorado,
southeastern Wyoming, and/or southwestern Nebraska (Morgan and Squires, 1982;
Fankhauser and Wade, 1982). As a part of this campaign, Dye and Martner (1982)
and Dye et al. (1982) recorded the environmental conditions, reflectivity structure
from ground-based radar, and microphysical characteristics of a thunderstorm on
25 July 1976 with moderate to heavy precipitation and hail. The Dye and Martner
(1982) case study has acted as the source of “legacy-based" definitions of convective
initiation from a ground-based radar perspective.

According to the non-inductive charging mechanism for thunderstorm elec-
trification, the occurrence of lightning in a thunderstorm depends on collisions
between of ice and graupel particles in developing cumulus clouds (Saunders,
1993). During passes through the developing thunderstorm stage of the Dye and
Martner (1982) thunderstorm the University of Wyoming Queen Air, N10UW, and
a sailplane observed the areas exhibiting the first radar echoes contained ice and
graupel with concentrations consistent with radar echoes between 30 dBZ and
40 dBZ between 0◦C and −5◦C. Dye and Martner (1982) also asserted −10◦C or
colder cloud temperatures are necessary for adequate concentrations of nuclei for
significant precipitation in thunderstorms. Thus, in the past few decades, radar
signatures (thresholds) of convective initiation associated with thunderstorms
and radar reflectivity measurements used for thunderstorm tracking tend to range
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between 30 dBZ and 40 dBZ at various temperature levels including −10◦C.
For example, during a field campaign designed to determine the importance of

radar-observed boundary layer convergence lines in initiating convective storms
over the Colorado plains, Wilson and Schreiber (1986) defined a storm as a reflec-
tivity echo of ⩾ 30 dBZ. This same reflectivity was used as a starting threshold for
the Storm Cell Identification and Tracking (SCIT) algorithm (Johnson et al., 1998).
Alternatively, Roberts and Rutledge (2003) used a radar reflectivity threshold of
35 dBZ to distinguish between weakly precipitating storms (< 35 dBZ) and vig-
orous convective storms (> 35 dBZ). The 35 dBZ threshold was also used in the
verification process for the Auto-Nowcast System detailed in Mueller et al. (2003)
and studies citing a “legacy-based” radar definition of convective storms or initia-
tion of convective storms (Mecikalski and Bedka, 2006; Mecikalski et al., 2010a,b,
2015; Walker et al., 2012). Although 40 dBZ, the highest end of the reflectivity range
observed in Dye and Martner (1982), was used as a proxy for thunderstorm initia-
tion in Sieglaff et al. (2011), it has not been used often in radar-based definitions
of convective initiation of thunderstorms, because it has been shown to correlate
with lightning instead of convective initiation (Zipser and Lutz, 1994; Gremillion
and Orville, 1999; Elsenheimer and Gravelle, 2019). To obtain greater lead time
to thunderstorm hazards, including lightning, ground-based radar signatures are
targeted in this research study rather than lightning (see Chapter 1).

Based on the above discussion, a threshold of either 30 dBZ or 35 dBZ would
be appropriate to reference as a radar signature of convective initiation of a thun-
derstorm. To maximize the amount of lead time obtained with the Thunderstorm
Nowcasting Tool (ThunderCast), the research presented herein defines convective
initiation leading to thunderstorm formation as the first occurrence of a radar re-
flectivity echo of ⩾ 30 dBZ at the −10◦C isotherm level in the atmosphere. This
definition is consistent with the 25 July 1976 case study in the National Hail Research
Experiment (the source of the “legacy" definition used in modeling convective ini-
tiation in the last few decades) and will be used in the methodology presented in
Section 2.2.

As evident from the radar-based definition of thunderstorm initiation, it is clear
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radar is a powerful tool for observing and diagnosing convection associated with
thunderstorms. However, the network of radar instruments in the contiguous
United States (CONUS), although extensive, does not provide full coverage of the
land area. This is especially prevalent in less populated regions in the western
United States, where beam blocking from mountainous terrain is commonplace, and
the nearest radars may be out of range. Additionally, ground-based precipitation
radars (S-band) do not provide information on storm development, prior to the
first echoes detected from precipitation. Satellites can supplement this gap in
observations and provide greater forecast lead time. The Geostationary Operational
Environmental Satellite (GOES) program provides satellite data from the Advanced
Baseline Imager (ABI), summarized in Schmit et al. (2017), with high temporal and
spatial resolution for the entire CONUS, including areas without ground-based
radar coverage.

ABI spectral bands with 0.64 µm (channel 2), 1.6 µm (channel 5), 10.3 µm
(channel 13), and 12.3 µm (channel 15) wavelengths and/or combinations of these
bands are sensitive to pertinent features in thunderstorms, such as cloud type,
overshooting tops, cloud particle size, cloud-top glaciation, and cloud-top height
(Pavolonis et al., 2005; Elsenheimer and Gravelle, 2019). These four ABI bands
are commonly referred to as the red, snow/ice, clean longwave window, and dirty
longwave window bands, respectively (Schmit et al., 2017). With passive visible and
infrared satellite data, various geostationary satellite–based convection nowcasting
tools have been developed. As an example, Roberts and Rutledge (2003), using
GOES-8 (0.62 µm and 10.7 µm wavelengths) and Weather Surveillance Radar-
1988 Doppler (WSR-88D) ground-based data, found the rates of cooling of cloud-
top brightness temperatures were important for discriminating between weakly
precipitating storms and vigorous convective storms. Their work increased the lead
time and accuracy of convective storm forecasts produced by the Auto-Nowcast
System originally developed in Mueller et al. (2003)).

Both ground-based radar and geostationary satellite data contribute valuable in-
formation for detecting thunderstorms throughout their various life stages. Because
of this, a radar-based definition of thunderstorm initiation was used in studies such
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as Mecikalski and Bedka (2006), Mecikalski et al. (2010a,b), and Walker et al. (2012)
to evaluate satellite cloud-top signatures for developing convective storms. The
underlying purpose of these studies was to enhance convective storm forecasting.
Further improvements to convection nowcasting models came soon after with the
adoption of machine learning techniques (Mecikalski et al., 2015; Lagerquist et al.,
2021; Bradshaw, 2021).

Recently, Lagerquist et al. (2021) applied deep learning to nowcast convection
in Taiwan with Himawari-8 satellite data using U-Net convolutional neural net-
work architectures, originally designed for classification of biomedical imagery in
Ronneberger et al. (2015). U-Nets have become popular for semantic segmenta-
tion tasks in atmospheric sciences where pixel-by-pixel predictions are valued (as
opposed to categorizing whole images). However, in order to apply the results
of Lagerquist et al. (2021) to the United States, adjustments are necessary to ac-
count for differing meteorological conditions and satellite coverage. With this in
mind, there are indications that deep learning models, such as the vanilla U-Net
in Lagerquist et al. (2021), can be applied to the CONUS with adjustments to the
deep learning model organization (i.e. size of the images used and hyperparameter
changes) as well as to the selected model inputs and target.

Instead of using Himawari-8 satellite data as inputs (Lagerquist et al., 2021),
geostationary satellite data from the GOES-16 satellite can be used as inputs because
the data has full coverage of the contiguous United States and the satellite bands can
be related to physical cloud processes as suggested by Lee et al. (2021) and Bradshaw
(2021). Lee et al. (2021) identified present time convection using GOES-16 data (at
wavelengths of 0.65 µm and 11.2 µm) and an echo-classification algorithm (detailed
in Zhang et al. (2016)), indicating machine learning models can learn physical
properties of clouds from GOES-16 high-spatial and high-temporal resolution data.
This was also demonstrated in Bradshaw (2021) where a U-Net was implemented
for a small portion of the CONUS to predict daytime convection for the next hour.

In this chapter (Chapter 2) a U-Net, similar to the one implemented for convec-
tive storm nowcasting in Lagerquist et al. (2021), is adapted to nowcast thunder-
storms in the CONUS, using a 60 minute prediction window, based on complex
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spatial and spectral patterns in GOES-16 ABI imagery. The model, referred to as
ThunderCast, is trained using NEXRAD radar data. If successfully demonstrated
in a testbed environment, ThunderCast could be used to support operational appli-
cations by providing lead time to thunderstorm initiation (see Chapter 1 for more
information regarding lead time importance) prior to radar thunderstorm signa-
tures in all CONUS regions, including those without radar coverage. ThunderCast
can also be used to gain insight into the relationship between radar and satellite
products and physical processes.

2.2 Methodology

Model Structure

To train a deep learning model, a set of inputs and a corresponding target (also
referred to as the “truth” or desired values) are presented to a deep learning
architecture through many iterations to optimize the resemblance of the model
output to the given target. This process is depicted in Fig. 2.1 and described in detail
in Chollet (2018). The model architecture includes successive layers to transform the
data into meaningful representations, which are characterized by a set of weights
to determine the relative contribution of each layer to the final output. Weight
updating occurs after a subset of the data, called a batch, is processed. A cycle
through all the batches (the entire training dataset) forms an epoch. The model
trains for many epochs until the difference between the model output and inputs,
called the loss as measured by the loss or cost function, is minimized (Chollet,
2018; Stevens et al., 2020). Once trained, the model goes through validation to
tune selected model hyperparameters, such as the batch size and the learning rate.
After training and validation are complete, a set of inputs can be passed through
the model to obtain a set of predictions without using the target. As shown in
Fig. 2.1, cross entropy for a binary model [as defined in Cintineo et al. (2022)]
and Adam (Kingma and Ba, 2017) were chosen as this application’s loss function
and optimizer, respectively. The final model hyperparameters for this study are
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displayed in Table 2.1 and in the code repository provided in the data availability
statement at the end of this paper. The hyperparameters were chosen based on
computing restraints (e.g., number of graphical processing units (GPUs)), trial
and error (e.g., early stopping patience), and the scientific understanding of the
given task as discussed throughout this paper (e.g., number of inputs and class
weights).

Figure 2.1: Diagram of model training for ThunderCast. The cycle is repeated until
the model loss is minimized.

ThunderCast’s layers are arranged in a U-Net convolutional neural network,
as shown in Fig. 2.2. The initial layers (Fig. 2.2 upper left) are the inputs to the
model, with subsequent layers representing data filters, which encode or decode
features of the input data (Chollet, 2018). The number of layers, or depth of
the U-Net, is consistent with the U-Nets described in Cintineo et al. (2022) and
(Ronneberger et al., 2015) and was not varied as a part of the hyperparameter
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Table 2.1: Select hyperparameters configured for the training process.

Hyperparameter Value(s)
Number of Inputs 4
Number of Classes 2

Class Weights [0.05,0.95]
Number of GPUs 4

Batch Size 32
Learning Rate 10−3

Early Stopping Patience 4
Reduce Learning Rate on Plateau Patience 1 epoch

Reduce Learning Rate on Plateau Cooldown 2 epochs
Reduce Learning Rate on Plateau Factor 0.1

Trainable Parameters 1.9 Million

tuning process. Three types of data transformations are used in the U-Net: two-
dimensional convolutions, max pooling, and upsampling. Convolutions use the
scalar product of the model weights (kernel) and the inputs to extract translationally
invariant spatial hierarchies of features (Chollet, 2018; Stevens et al., 2020). During
most of the convolutions, the data are split into 3 × 3 overlapping windows with a
stride of one and padding with zeros to ensure the output has the same dimension
as the inputs. These are accompanied by a rectified linear unit (ReLU) activation
function, allowing for nonlinearity (Maas et al., 2013). However, the last convolution
uses a 1 × 1 window and a softmax activation function to obtain one gridded
segmentation map of probability scores with values between zero and one at 1-km
resolution (320 km × 320 km, matching the target dataset’s resolution) as output.
The convolutions are important for isolating and learning local data patterns, and
max pooling allows for learning at multiple spatial scales, which is for learning
patterns regarding convection. Max pooling aggressively downsamples the data
by taking the maximum of the series with 2 × 2 windows and a stride of two
(downsamples by a factor of two). The size of the layers is halved during this
procedure, so after max pooling, a window will view data from a larger area. Thus,
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Figure 2.2: Depiction of ThunderCast’s U-Net convolutional neural network model
architecture. The figure is adapted for this application from Ronneberger et al.
(2015).

initially, the U-Net learns small-scale data patterns, and it learns large-scale patterns
after max-pooling transformations. At the bottom of the “U” in the U-Net, shown
in Fig. 2.2, the image has a low resolution. Upsampling acts to return the image to a
high resolution in order to obtain a pixel-by-pixel result. In particular, upsampling
is performed with a combination of a three-dimensional transposed convolution
and a concatenation (skip connection). Concatenations retain overall prediction
details while helping to converge on a loss value during training (Ronneberger
et al., 2015).
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Data

GOES-16 (also currently designated GOES-East) ABI spectral bands with wave-
lengths of 0.64 µm (channel 2 reflectance at 0.5 km resolution), 1.6 µm (channel
5 reflectance at 1 km resolution), 10.3 µm (channel 13 brightness temperature at
2 km resolution), and 12.3 µm (channel 15 brightness temperature at 2 km resolu-
tion) compose the model input for ThunderCast. These ABI spectral bands were
selected because they consist of multispectral imagery that is commonly utilized
by forecasters for diagnosing trends and patterns in cumuliform clouds, including
cloud-top glaciation, cloud-top temperature, and morphology (Elsenheimer and
Gravelle, 2019). All four channels are included in the predictors regardless of
solar illumination. However, in the absence of sunlight, the visible and shortwave
infrared channels are near zero and are not expected to contribute to predictions.
As shown in Fig. 2.2, the channels with resolutions of 1 or 2 km are upsampled to
0.5-km resolution at the beginning of the U-Net architecture to preserve the fine
resolution of the visible band. Additionally, each input is normalized by subtracting
the mean and dividing by the standard deviation of each respective spectral band
in the training dataset.

To convey prediction uncertainty, the desired output of the model is interpreted
as a 1-km grid of 60-min thunderstorm probabilities. To train the model to produce
an optimal prediction of this nature, the target represents whether a thunderstorm
has occurred between the input time and an hour afterward and is obtained with a
grid of maximum Multi-Radar Multi-Sensor [MRMS; described further in Zhang
et al. (2016) and Smith et al. (2016)] radar reflectivity at the −10◦C isotherm in the
atmosphere. The grid is binarized such that any pixel with maximum reflectivity
greater than 30 dBZ during the hour after the input time is considered positive for
thunderstorm occurrence. To maximize the lead time obtained with the model,
30 dBZ is selected as the radar threshold because it corresponds to the earliest
thunderstorm radar signature.

Preprocessing is necessary to address data, computing, and machine learning
limitations. Because large data files require more computing memory than is
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Figure 2.3: Example of a sample corner patch (black) with overlapping adjacent
patches (blue and red). The number of pixels are labeled in 0.5 km resolution
(black) and the patches are not drawn to scale.

typically available on current GPU servers for model training, it is not feasible
to supply data from full-domain, high-resolution GOES-16 scans to the model.
To account for this sort of limitation, Liu et al. (2018) implemented a patch-wise
sampling technique, and a similar approach is used here. The GOES-16 scans
are automatically split into small 640 × 640 pixel patches at 0.5-km resolution
(simply referred to as patches or data patches in this paper). To avoid a loss of
contextual information from splitting apart storms along patch borders, patches
overlap adjacent patches by 32 pixels (0.5-km resolution) on each of their sides, as
shown in Fig. 2.3. Additional errors in training or an unreasonable model output
caused by data artifacts is avoided by rejecting patches containing at least one of
the following: any “not a number” (NaN) values, MRMS data at −10◦C with more
than 1% of pixels with no coverage (designated by −999 values within the MRMS
radar reflectivity at the −10◦ isotherm dataset), or any other fill values.

At any one time in the CONUS, the number of negative pixels (without thunder-
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Table 2.2: The number of 640 × 640 pixel (0.5 km resolution) data patches in the
training, validation, and testing datasets are provided. The years used for each
dataset are indicated in parentheses.

Dataset Number of Patches
Training (2019) 131,042

Validation (2020) 65,497
Testing (2021) 64,184

storm activity) far outnumbers the number of positive pixels (with thunderstorm
activity). A sample is considered a positive patch when more than 1% of pixels
are positive. Even positive patches generally have a class imbalance, as there are
many negative pixels in a given scene. If this goes unchecked, a model can be
highly accurate by never making a positive prediction. To mitigate this, a majority
of negative patches are not used. Within a randomized list of negative patches,
every 100th case is selected for use in the model to ensure the model has some
exposure to a variety of midlatitude weather phenomena. The average percentage
of positive pixels in the patches is used to set the class weights prior to training (the
class weights are shown in Table 2.1).

Developing a deep learning model can be broken into three stages, each with
its own separate dataset: training, validation, and testing. The training dataset is
used to learn the weights necessary for an optimized model; the validation dataset
is used for evaluating a model’s skill during training for hyperparameter tuning;
and the testing dataset is used to determine the model’s after-training statistics,
such as accuracy, precision, and recall. To ensure the samples between datasets
are separated temporally, the training, validation, and testing datasets were taken
from the years 2019, 2020, and 2021, respectively. The total data patches in each
dataset are provided in Table 2.2. Within the datasets, patches are collected from
all months in a year, as shown in Fig. 3.4. Additionally, to ensure ThunderCast has
exposure to many types of terrain and environments, patches can originate from
all climate regions in the CONUS as well as from areas with radar coverage near
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the coasts, referred to as outside CONUS (OCONUS). The CONUS climate regions
are shown in Fig. 2.5, where a patch is considered a part of the region where the
center pixel is located. The numbers of patches in each climate region for training,
validation, and testing are shown in Fig. 3.5. Variations in the number of patches
per month and per climate region can be accounted for due to the temporal and
spatial variability of thunderstorms in the United States. The monthly and regional
distributions (Figs. 3.4 and 3.5) indicate that all three datasets (training, validation,
and testing) well represent the thunderstorm climatology for 2019–21.

Figure 2.4: Temporal distribution of data patches comprising the training, validation,
and testing datasets.

During initial model validation, predictions were biased toward west-to-east
storm motion, which is the predominant atmospheric steering pattern in the CONUS.
For example, for a known eastward-moving storm, predictions were elongated east-
ward of existing radar reflectivity at −10◦C, suggesting in the next hour there could
be storm development toward the east of the existing reflectivity, or there could be
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Figure 2.5: Map of the continental United States with state colors corresponding to
the state’s respective climate region in accordance with Karl and Koss (1984).

eastward motion of the existing storm system. The eastward prediction elongation
continued to occur when the storm was flipped over the vertical axis (becoming
a westward-moving storm in a time series of patches). To address this bias, data
augmentation is utilized. When batches of data patches are imported for training,
each batch has a 25% chance the patches will be flipped over the vertical axis, fol-
lowed by a 25% chance of being flipped over the patches’ horizontal axis. This
results in some patches being flipped horizontally, vertically, or both horizontally
and vertically during model training.

Evaluation Statistics

Traditional machine learning and forecasting statistics are used to evaluate model
performance in Section 2.3. Although ThunderCast’s outputs are probabilistic
predictions for the next hour, the predictions are binarized for statistical evaluation.
Predictions greater than or equal to a probability threshold (e.g., greater than or
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Figure 2.6: Spatial distribution of data patches comprising the training, validation,
and testing datasets sorted by climate regions in the CONUS and nearby the United
States coasts with radar coverage (OCONUS). The number of patches are indicated
by the height of the bars as well as the values above each bar (“e+ 0X" indicates
“×10x").

equal to 50% probability) can either be a “yes” thunderstorm (positive) or a “no”
thunderstorm (negative) case. A prediction can then be placed in one of four
categories: true positive (TP), true negative (TN), false positive (FP), or false
negative (FN). True positives or negatives occur when both the prediction and
observation are positive or negative, respectively, false positives are categorized
when the prediction is positive while the observation is negative, and false negatives
are categorized when the prediction is negative while the observation is positive.
Since ThunderCast makes pixel-by-pixel predictions, the total pixels in each category
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are counted for the entire training, validation, or testing set [represented as sums in
Eqs. 2.1-2.6] and used to compute accuracy, precision, recall, specificity, false alarm
ratio, critical success index, and frequency bias [represented in Eqs. 2.1–2.7]. With
potential values in the range of [0, 1], 1 is an ideal value for accuracy, precision,
recall, specificity, and critical success index and 0 is ideal for the false alarm ratio.
Frequency bias ranges over [0, ∞) and is ideally close to 1:

accuracy =

∑
TP+

∑
TN∑

TP+
∑

FP+
∑

FN+
∑

TN (2.1)

precision =

∑
TP∑

TP+
∑

FP (2.2)

recall = Probability of Detection (POD) =
∑

TP∑
TP+

∑
FN (2.3)

specificity =

∑
TN∑

TN+
∑

FP (2.4)

false Alarm Ratio (FAR) =
∑

FP∑
TP+

∑
FP (2.5)

critical Success Index (CSI) =
∑

TP∑
TP+

∑
FN+

∑
FP (2.6)

frequency bias = POD
1−FAR (2.7)

For visual interpretation of the ThunderCast model’s performance, an attribute
diagram [developed in Hsu and Murphy (1986)] and a performance diagram
[developed in Roebber (2009)] are provided in Section 2.3. Forecasts are consid-
ered reliable or calibrated when the relative frequency of occurrence of events is
equal to the probability forecast for those events. Thus, plotting the conditional
event frequency with respect to the forecast probability gives a reliability curve.
The attributes diagram displays the reliability curve, with reference lines for skill
levels (Hsu and Murphy, 1986). The performance diagram combines the recall or
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probability of detection [Eq. 2.3], the success ratio [the false alarm ratio in Eq. 2.5
subtracted from 1], and the critical success index [Eq. 2.6] into one diagram. A
perfect performance diagram case results when the area under a curve with data
points representing many probability thresholds is 1.

Another statistical metric called the fraction skill score (FSS) is used to determine
how ThunderCast’s forecast skill varies with spatial scale (Roberts and Lean, 2008).
For every grid point in a binarized grid of predictions (of size Nx by Ny in the
Cartesian grid), the average number of positive grid points within a centered
square (window) of length n is computed. The result forms a density field P(n)i,j,
where i and j are indices for the x–y Cartesian grid. A similar grid, T(n)i,j, is also
calculated for the target. This process can be described as taking the average
pooling of the binarized predictions and the target. The density fields P(n)i,j and
T(n)i,j are then used to calculate the mean-square error (MSE) for the target and
prediction densities [MSE(n) ; Eq. 2.8] and for a reference case [MSE(n)ref ; Eq.2.9].
These quantities form the basis for the fraction skill score shown in Eq. 2.10). The
definitions are

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
T(n)i,j−P(n)i,j

]2 , (2.8)

MSE(n)ref =
1

NxNy

 Nx∑
i=1

Ny∑
j=1

T2
(n)i,j+

Nx∑
i=1

Ny∑
j=1

P2
(n)i,j

 , and (2.9)

fraction skill score (FSS) = 1−
MSE(n)

MSE(n)ref
(2.10)

In addition to statistical evaluations, ThunderCast is applied to three distinct
thunderstorm growth environments: a mesoscale convective vortex, sea breezes,
and a southwestern monsoon. Each case study includes visual representations of
the satellite spectral band (inputs), radar reflectivity at the −10◦C isotherm (target),
and ThunderCast predictions. Forecast lead times from ThunderCast’s predictions
to the occurrence of 30 dBZ at −10◦C are presented.



21

2.3 Results

Model Performance

Evaluating the model on data the model has not seen before with the testing dataset
provides context on how the model is performing. The pixel-to-pixel statistics
shown in Table 2.3 indicate the model is performing well for accuracy, recall, and
specificity but has a low value for precision. Based on the equations for these
metrics [Eqs. 2.1-2.4], ThunderCast tends to have a high number of false positives,
resulting in low precision. However, a pixel-to-pixel evaluation does not take into
account any slight offsets between the predictions and the target. The fraction
skill score [2.10)] provides insight into whether predictions are skillful within a
spatial range. Fraction skill scores for probability thresholds ranging from 10%
to 90% for varied spatial window sizes are shown in Fig. 2.7. In Fig. 2.7, the
fraction skill score slightly increases for all probability thresholds as the window
size increases, although minimal improvements occur after the windows reach
a length (n) between 13 and 17 pixels (equivalent to 13–17 km, since the spatial
resolution is 1 km). This indicates the skill of the model improves when evaluated
within a spatial range of the predictions.

If the scope of the target values resulting in true positives is broadened, such
that any positive target value within a 15 km × 15 km window centered on the
location of a prediction would result in a true-positive value, then the precision [Eq.
2.3] improves, as shown in Table 2.3. The broadened target in the testing dataset is
referred to as the buffered target or buffered dataset in this paper. Although other
values could be chosen for the buffer window, the fraction skill score improves
minimally with windows greater than 13–17 km, and 15 km was found to represent
the model well in a trial-and-error attributes diagram analysis. The increased
precision achieved with the buffered dataset indicates ThunderCast’s predictions
may be useful within a buffered area surrounding a prediction. However, there is a
tradeoff in doing this. In Table 2.3, the improvements in precision are concurrent
with decreases in recall. The recall equation [Eq. 2.3] is the same as that for
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Table 2.3: Model performance for the full, daytime-only, and nighttime-only testing
datasets, where probabilities greater than or equal to 20% are considered to be
positive for thunderstorm activity. Additional columns include values computed
using an alternate test set with the same data patches but the target values have
been adjusted such that all pixels within a 15 km × 15 km window centered on a
pixel containing a maximum reflectivity of 30 dBZ or greater at −10◦C for the next
hour are also considered positive for thunderstorm occurrence (called a buffered
dataset here).

Full Set Day Only Night Only

Buffer None 15 km ×
15 km None 15 km ×

15 km None 15 km ×
15 km

Accuracy 0.796 0.854 0.805 0.865 0.783 0.839
Precision 0.156 0.585 0.158 0.634 0.154 0.527

Recall 0.927 0.747 0.928 0.737 0.927 0.761
Specificity 0.790 0.878 0.800 0.896 0.777 0.855

precision, except recall has the sum of false negatives in the denominator instead of
false positives. Thus, a decrease in recall with the buffered dataset indicates there
will be more false negatives than with the original nonbuffered testing dataset.

Using the buffered target in the testing dataset, an attributes diagram and a
performance diagram are provided in Figs. 2.8 and 2.9, respectively. In Fig. 2.8, the
1:1 dashed gray line represents an ideal model. For example, in an ideal model,
predictions of a 40% probability of thunderstorms in the next hour would result
in a thunderstorm (true positive) 40% of the time. The attributes diagram in
Fig. 2.8 indicates predictions between approximately 20% and 35% result in a
thunderstorm more often than anticipated, while forecast probabilities greater than
approximately 38% result in a thunderstorm less often than in the ideal model
case. However, almost all forecast probabilities demonstrate skill because they
are above the diagonal no-skill line shown. In Fig. 2.9, the critical success index
[Eq. 2.6], a measure often used for forecast performance evaluation, falls between
0.4 and 0.5 for all thunderstorm probabilities, with the highest critical success
indices occurring between 20% and 40%. Probabilities less than 50% are slightly
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Figure 2.7: Fraction skill score diagram based on the method presented in Roberts
and Lean (2008). The fraction skill scores [Eq. 2.10] are calculated for probability
thresholds ranging from 10% to 90% for various window lengths. The window
lengths [n in Eq. 2.10] are given in kilometers but can be referred to as pixels or
grid spaces since the spatial resolution is 1 km. The probability thresholds (%) are
colored according to the legend in the upper-right-hand corner of the diagram. The
lower dashed gray line represents the fraction of observed points exceeding 30 dBZ
at −10◦C over the domain and is called the random fraction skill score. The upper
dashed gray line is the uniform fraction skill score and marks halfway between the
random and perfect skill scores.

overforecast (frequency bias is greater than 1), and probabilities greater than
50% are underforecast (frequency bias is less than 1). The 20% probability value,
although overforecast, has one of the highest values for the critical success index
and is skillful according to the attributes diagram, so probabilities greater than
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Figure 2.8: Attributes diagram for the ThunderCast model constructed with the
method presented in Hsu and Murphy (1986). The blue line represents the con-
ditional event frequency (true positives per total positive predictions) for given
forecast probabilities for the testing dataset. The dashed gray lines are reference
lines for determining model resolution. The vertical and horizontal dashed gray
lines are the no-resolution lines equal to the testing dataset’s overall relative fre-
quency of thunderstorm occurrence. The 1:1 dashed gray line (upper diagonal line)
represents a perfect reliability or forecast calibration. The lower dashed diagonal
gray line is the no-skill line, where anything below this line is considered to have
no skill (Brier skill score of 0).

or equal to 20% are considered positive for thunderstorm activity in the statistical
calculations in Eqs. 2.1–2.4, as presented in Table 2.3 and Fig. 2.10.

For further statistical evaluation, the testing dataset is broken into subsets to
analyze performance across the diurnal (day and night) and monthly cycles and
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Figure 2.9: Performance diagram based on Roebber (2009) for the ThunderCast
model on the testing dataset. The y axis displays the probability of detection [Eq.
2.3], and the success ratio [i.e., 1−FAR, or 1−2.5] is on the x axis. The background
colors denote the critical success index [Eq. 2.6], and the dashed contours repre-
sent the frequency bias. Each black data point is labeled with the corresponding
probability threshold (%) used for calculating the indicated quantities.

spatially across the CONUS and nearby OCONUS regions. In Table 2.3, the pixel
by-pixel accuracy, precision, recall, and specificity for the day and night subsets are
consistent with the full testing dataset results. With the target buffer, the differences
in model precision between the day and night subsets are more pronounced, indi-
cating the model may be more precise within a 15 km × 15 km centered window
during the day than during the night. Fig. 2.10 demonstrates the accuracy, precision,
recall, specificity, and critical success index’s spatial and monthly variability. Some
regions (e.g., the northwest) do not have data points for each month in the testing
dataset (2021), because data patches were not present in those regions during the
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Figure 2.10: Accuracy, precision, recall, specificity, and critical success index [Eqs.
2.1-2.4 and 2.6] for ThunderCast’s predictions on the testing dataset, with target
values buffered by a 15 km × 15 km centered window. Probabilities greater than
or equal to 20% are considered to be positive for thunderstorm activity in the
calculations for each statistic. The testing dataset is sorted by region, and each data
point represents the corresponding statistic value for only the testing data patches
in the month given. For spatial reference, the climate regions are distinguishable
by their colors, matching Fig. 2.5.

respective months. Across CONUS and OCONUS regions, the model performs
similarly during the main convective months (midlatitude summer), with higher
variability during the winter months. Although statistical insight is valuable, it is
also important to determine in which cases ThunderCast is performing well and not
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as well. A detailed evaluation of this is left for future work, but a sampling of case
studies is presented in the remainder of this Chapter to demonstrate ThunderCast’s
initial prediction capabilities.

Case Study 1: Mesoscale Convective Vortex

Mesoscale convective systems are organized cloud structures containing convective
(cumulonimbus) and stratiform (nimbostratus) clouds, with a mesoscale cirriform
cloud shield in the topmost cloud layers. In the stratiform region of a mesoscale
convective system, a cyclonic vortex can form as a result of pre-existing cyclonic ab-
solute vorticity and heating gradients. This vortex, often referred to as a mesoscale
convective vortex, can trigger new convection within a mesoscale convective system
(Houze Jr., 2014). On 25 August 2021, a mesoscale convective vortex over eastern
Iowa resulted in thunderstorm development in western Illinois. Fig. 2.11 shows
a daytime cloud-phase distinction false-color red–green–blue (RGB) image [fol-
lowing the methods presented in Elsenheimer and Gravelle (2019)] of one such
storm. The image depicts the beginning of the mature stage of the thunderstorm.
The cold, bubbling, overshooting top is visible in the bright orange/red part of
the cumulonimbus cloud, as is the beginning of the thunderstorm’s anvil. The
underlying green clouds are glaciated cumulus. An animation provided in the
online supplemental material for this paper shows the initiation and development
of the thunderstorm through the mature stage. An animation provided in the Sup-
plementary Materials in Ortland et al. (2023) shows the initiation and development
of the thunderstorm through the mature stage.

Fig. 2.12 shows ThunderCast’s predictions for the storm’s initiation along with
ABI 0.64 µm mm reflectance and the associated MRMS radar at −10◦C. Thun-
derCast’s first predictions of 40% or greater occur at 18:31 UTC, when low-level
cumulus clouds are present. The first signature of convective initiation from radar
occurs at 18:56 UTC, when the clouds have become glaciated, 25 min after Thunder-
Cast’s initial predictions. To provide further context for this event, Fig. 2.13 displays
the storm’s later development between 19:31 and 20:46 UTC with processed data
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Figure 2.11: A daytime cloud-phase distinction false color red-green-blue (RGB)
image for August 25, 2021 at 20:41 UTC centered at 41.44◦ latitude and −90.56◦
longitude. Following Elsenheimer and Gravelle (2019), red is ABI 10.3 µm (channel
13) brightness temperatures, green is ABI 0.64 µm (channel 2) reflectance, and blue
is ABI 1.6 µm (channel 5) reflectance. The light tan line shows state borders.

from the GOES-16 Geostationary Lightning Mapper (GLM) (Rudlosky et al., 2019;
Goodman et al., 2013). According to Fig. 2.13, the storm becomes electrically active
at 19:46 UTC (50 min after 30 dBZ at −10◦C) prior to anvil formation and has
moved northeast of its convective initiation location in Fig. 2.12. ThunderCast’s
predictions in Fig. 2.12 at 18:56 UTC are elongated toward the northeast of the
active convection (30 dBZ at −10◦C) into nonclouded areas. Thus, ThunderCast’s
next-hour thunderstorm predictions demonstrate ThunderCast may be anticipating
something about storm motion through learned data patterns.
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Figure 2.12: A paneled image time series from August 25, 2021 between 18:31
and 18:56 UTC centered at 41.41◦ latitude and −90.85◦ longitude. Each panel
contains a background of ABI 0.64 µm reflectance layered with radar reflectivity at
−10◦C and ThunderCast’s thunderstorm probabilities displayed as contours. The
thunderstorm probabilities are valid for up to 1 h from the time listed above each
panel. The radar reflectivity colorbar is adapted from Helmus and Collis (2016)
and state borders are indicated by the light purple line for spatial context. Each
image is 112 km × 112 km.

Case Study 2: Sea Breeze Convection

Differential heating between the land and the sea is a forcing mechanism for new
convection. High-pressure (cooler) sea air is driven toward the low-pressure
(warmer) air over the land, forcing the warmer air to rise. In satellite imagery, this
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Figure 2.13: A paneled image time series between 19:31 and 20:46 UTC August 25,
2021 centered at 41.41◦ latitude and −90.85◦ longitude. Each panel contains ABI
0.64 µm reflectance, GOES GLM flash extent density in flashes per 5 min (Bruning
et al., 2019), and light purple state borders. Each image is 112 km × 112 km.

type of convection can be identified along coasts with landward-moving surface
winds, cumulus development along the land–sea boundary, and activity in the
afternoon when the temperature difference between the land and the sea is great-
est (Scofield and Purdom, 1986). Oftentimes, sea-breeze convection can develop
rapidly, making it difficult for forecasters to issue timely advisories and warnings.
For this case study, the 45th Weather Squadron, U.S. Space Force, provided 159
cases between July and August 2022 for which they were unable to achieve the
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desired 30 min of lead time prior to observed thunderstorm hazards for regions
of interest in and around Cape Canaveral, Florida. Of these cases, 88 (55%) were
associated with sea-breeze activity, one of which is shown in Fig. 2.14.

Figure 2.14: Daytime cloud-phase distinction false-color RGB image at 19:16 UTC 31
Aug 2022 centered at 28.52◦ latitude and −80.6◦ longitude. Following Elsenheimer
and Gravelle (2019), red is ABI 10.3 µm (channel 13) brightness temperatures,
green is ABI 0.64 µm (channel 2) reflectance, and blue is ABI 1.6 µm (channel 5)
reflectance. The image is 80 km × 80 km, and the light-tan line shows state borders.

In the sea-breeze example shown in Fig. 2.14, scattered low-level cumulus
clouds line the coastline, with an area of towering cumulus-containing ice particles,
signified by the green and orange colors present in the RGB image, near the center of
the figure. An RGB animation of the life cycle of this short-lived storm is provided
in the online supplemental material in Ortland et al. (2023). As shown in Fig.
2.15, ThunderCast is able to identify which cumulus, among the cumulus field, are
likely to initiate a thunderstorm. ThunderCast’s predictions (20% probabilities or
greater) first appear at 19:06:17 UTC, 5 min prior to cloud-top glaciation and MRMS
radar reflectivities greater than or equal to 30 dBZ at −10◦C. The 45th Weather
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Figure 2.15: Paneled image time series between 19:01 and 19:26 UTC 31 Aug 2022
centered at 29.52◦ latitude and 280.65◦ longitude. Each panel contains a back-
ground of ABI 0.64 µm reflectance layered with radar reflectivity at −10◦C and
ThunderCast’s thunderstorm probabilities displayed as contours. The thunder-
storm probabilities are valid for up to 1 h from the time listed above each panel.
The radar reflectivity color bar is adapted from Helmus and Collis (2016), and
coastal borders are indicated by the light purple line for spatial context. Each image
is 80 km × 80 km.

Squadron, U.S. Space Force, issued a lightning hazard watch at 19:23 UTC and
recorded observed lightning at 19:26 UTC. Thus, ThunderCast’s 30 dBZ predictions
occur 20 min before the storm becomes electrically active in this case.

To assess lead time for sea-breeze cases, one randomly selected sample dur-
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ing each of the 22 sea-breeze days highlighted by the 45th Weather Squadron is
collected for statistical analysis. Only one sample was selected each day to avoid
overrepresentation of a single storm due to the close proximity of the sampled
regions near Cape Canaveral (i.e., one storm may span multiple regions and have
multiple data points). On average, ThunderCast’s first instance of a 20% proba-
bility prediction occurred 18.4 ± 5.8 minutes (95% confidence interval) prior to
the first instance of 30 dBZ at −10◦C within a 15 km × 15 km window centered on
the prediction; 30 dBZ at −10◦C occurred, on average, 46.6 ± 16.3 minutes (95%
confidence interval)(95% confidence interval) before observed lightning. Although
more work is needed to test the model in varying thunderstorm environments,
this demonstrates the potential ThunderCast may have for providing forecasters
advance notice of clouds with the potential to become a thunderstorm in the next
hour, perhaps aiding in decision support.

Case Study 3: Southwestern Monsoonal Convection

On 27 August 2022, scattered non-severe thunderstorms were present in the western
United States across Utah, Arizona, New Mexico, and Colorado. Fig. 2.16 shows
some of these storms in northeastern Arizona and northwestern New Mexico, the
area of interest for this case study. Many cumulus at various development stages
are visible in Fig. 2.16, including some thick, high-level cumulus with ice particles
(yellow/orange colors) exhibiting overshooting tops with anvils as well as some
lower-level water-based cumulus and towering glaciated cumulus. An animation
following the development of these clouds is provided in the Supplementary Mate-
rials in Ortland et al. (2023). Fig. 2.17 shows ThunderCast’s predictions as these
cumulus cloud clusters develop.

ThunderCast’s prediction lead time varies depending on the storm cluster of
interest. However, the initial predictions tend to appear when the clouds are low-
level cumulus, and 30 dBZ at −10◦C coincides with glaciation and colder cloud tops.
In the 17:26 UTC panel in Fig. 2.17, 20% and 40% probability contours are present in
the bottom left. This area reaches 30 dBZ at −10◦C at 18:01 UTC, achieving 35 min
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Figure 2.16: Daytime cloud-phase distinction false-color RGB image at 19:26 UTC 27
Aug 2022 centered at 36.13◦ latitude and−109.56◦ longitude. Following Elsenheimer
and Gravelle (2019), red is ABI 10.3 µm (channel 13) brightness temperatures,
green is ABI 0.64 µm (channel 2) reflectance, and blue is ABI 1.6 µm (channel
5) reflectance. The image is 160 km × 160 km, and the light-tan line shows state
borders.

of lead time. Lightning is observed from the GLM at 1831 UTC, 30 min after 30 dBZ
at −10◦C. In the 18:11 UTC panel of Fig. 2.17, an area containing a 60% probability
contour is present in the upper left. This area’s first predictions of 20% or greater
appear at 18:01 UTC, 30 dBZ at −10◦C is recorded at 19:26 UTC, and lightning
is observed from the GLM at 20:01 UTC. Thus, ThunderCast achieves 25 min of
lead time to 30 dBZ at −10◦C, which occurs 35 min before observed lightning. A
lead time is not available for the storm in the upper right, spanning the Arizona
and New Mexico border, because this area does not have MRMS radar coverage.
However, ThunderCast’s ability to make predictions in a no-coverage radar zone
could be useful for forecasting thunderstorms in similar regions across the CONUS.
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Figure 2.17: Sequence of images depicting the evolution of ThunderCast proba-
bilities for weak thunderstorms in Arizona and New Mexico between 17:26 and
19:26 UTC 27 Aug 2022. Centered at 36.13◦ latitude and −109.56◦ longitude, all
images contain a black-and-white background of ABI 0.64 µm reflectance, the avail-
able radar reflectivity at −10◦C, and contours of ThunderCast probabilities. The
probabilities are valid for up to 1 h from the time listed above each panel, and
the reflectances are not corrected for parallax. The radar reflectivity color bar is
adapted from Helmus and Collis (2016). Each image is 160 km × 160 km, and state
borders are indicated by the light purple lines.
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2.4 Summary
The Thunderstorm Nowcasting Tool, or ThunderCast, was developed for predict-
ing thunderstorm occurrence for both developing and existing storms in the next
0–60 min in the conterminous United States. ThunderCast is a deep learning model
built with a U-Net convolutional neural network for semantic segmentation. The
model was trained with four predictors: 0.64-µm reflectance (channel 2; red band),
1.6-µm reflectance (channel 5; snow/ice band), 10.3-µm brightness temperature
(channel 13; clean longwave window band), and 12.3-µm brightness temperature
(channel 15; dirty longwave window band) from the GOES-16 Advanced Baseline
Imager. All four channels are included in the predictors regardless of solar illu-
mination; however, in the absence of sunlight, the visible and shortwave infrared
channels are not expected to contribute to predictions due to near-zero values. The
target dataset was the maximum Multi-Radar Multi-Sensor radar reflectivity at
−10◦C in the next hour, where anything greater than or equal to 30 dBZ was consid-
ered positive for thunderstorm occurrence. To address computational limitations
and potential biases in the datasets, the model was trained on 320 km × 320 km
data patches, where patches could be flipped vertically or horizontally during data
augmentation, and the model weights were heavily in favor of the positive class
due to the negative pixels being far more common than the positive.

On a pixel-by-pixel basis, ThunderCast performs well statistically in terms of
accuracy, recall, and specificity, but it has a low value for precision resulting from a
high amount of false positive predictions. The precision improves when evaluating
the model within a buffered target region, where any occurrence of 30 dBZ at −10◦C
within a 15 km × 15 km window centered on the prediction is considered positive
for thunderstorm activity. Considering the buffered target, ThunderCast was found
to make skillful predictions with critical success indices ranging between 0.4 and
0.5 for all thunderstorm probabilities, with the highest values occurring between
20% and 40%. These statistics are consistent across CONUS climate regions, with
some increases in variability during the Northern Hemisphere’s winter months.
Similarly, ThunderCast performs fairly consistently during the day and the night
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but tends to have higher precision during the day.
ThunderCast was applied to three case studies to demonstrate the model’s

initial prediction capabilities. Each case study represented convection from varying
convective environments across the CONUS, including convection associated with
a mesoscale convective vortex, sea breezes, and a southwestern monsoon. At least
5 min and up to 35 min of prediction lead time to 30 dBZ at −10◦C was achieved, and
the 30 dBZ at −10◦C radar threshold occurred 30–50 min prior to observed lightning.
In addition to lead time, ThunderCast demonstrated it is able to make predictions
in no-coverage radar zones and anticipate storm motion from a single timestamp
of four GOES-16 ABI satellite bands without additional ambient environmental
context. Although more work is needed to test the model in varying thunderstorm
environments, these initial case studies demonstrated ThunderCast is capable of
providing forecasters advance notice on the location of thunderstorms in the next
hour in the CONUS.

Further analysis is presented in the next chapter (Chapter 3) to determine if
ThunderCast’s identification of areas with the potential for convective initiation
can be used as a proxy for thunderstorm hazards like lightning. In theory, all
thunderstorms will have lightning, because it is needed to produce the characteristic
thunder for which the storms are named. However, there may be instances where
30-dBZ radar reflectivity at −10◦C is observed without lightning or where 30 dBZ
at −10◦C is not observed when lightning is produced. To investigate how often
these cases occur, chapter 3 uses an object-based method to collect instances of
ThunderCast’s predicted thunderstorms along with the corresponding lightning,
satellite, and radar observations.
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3 an object-based evaluation of output from
thundercast

3.1 Background
Semantic segmentation, a pixel-by-pixel labeling technique for computer vision
tasks, was applied to near-term probabilistic forecasting (nowcasting) of thunder-
storms in the contiguous United States in Chapter 2. The deep learning model,
called the Thunderstorm Nowcasting Tool (ThunderCast), can be used day or
night and in any season to predict the occurrence of convection associated with
thunderstorms in the next 0-60 minutes. As described in Section 2.2, ThunderCast
was built with a U-Net convolutional neural network architecture. Four satellite
channels in the visible, shortwave infrared, and longwave infrared bands from the
Geostationary Operational Environmental Satellite-16 (GOES-16) Advanced Baseline
Imager (ABI) served as the predictors. The training target, chosen based on a radar
definition of convective initiation of thunderstorms, was the next-hour maximum
Multi-Radar Multi-Sensor (MRMS) radar reflectivity at the −10◦C isotherm in
the atmosphere. Any next-hour maximum reflectivity at −10◦C ⩾ 30 dBZ was
considered a thunderstorm.

Although performing well during the case studies presented in Section 2.3,
there are situations where ThunderCast’s predictions are not ideal. The statistical
analysis in Section 2.3 showed ThunderCast has low precision (the number of
correct predictions divided by the total predictions), indicating it is prone to false
alarms. This is not surprising because other models involving the prediction of
convective initiation have a similar tendency (McGovern et al., 2023). The second
version of the Satellite Convective Analysis and Tracking (SATCASTv2) convective
initiation algorithm reported an average false alarm ratio for all study domains
of 55% in Walker et al. (2012). Mecikalski et al. (2015) reported lower, but still
present, false alarm percentages (between 22 and 36%) for their random forest
machine learning approach with incorporation of data from numerical weather
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prediction models. More closely related to ThunderCast because of the similar
U-Net architecture and incorporation of all thunderstorm events instead of only
convective initiation, is Lagerquist et al. (2021)’s models for thunderstorm predic-
tion in Taiwan with Himawari-8 satellite data. The false alarm rates ranged between
approximately 40 and 60% for the best probability thresholds (Lagerquist et al.,
2021). Likewise, ThunderCast’s false alarm ratio for the 20% probability threshold
falls in this range at approximately 45%. Although the false alarm rates between
models are not directly comparable due to differences in methodologies and study
areas, all the mentioned models are prone to false positive predictions, which affects
the reliability of the models’ nowcasts.

Additional influences on ThunderCast’s reliability and applicability to thun-
derstorm nowcasting relate to the radar-based definition of convective initiation
used for classifying the target dataset when training the deep learning model. As
discussed in Section 2.1, radar thresholds for convective initiation of thunderstorms
originate from field campaigns such as the National Hail Research Experiment in
northeastern Colorado, southwestern Wyoming, and/or southwestern Nebraska
(Morgan and Squires, 1982; Fankhauser and Wade, 1982; Dye and Martner, 1982).
Microphysical observations during the organizational stage of the storms observed
in the experiment corresponded to reflectivity values between approximately 30
and 40 dBZ (Dye and Martner, 1982). To maximize ThunderCast’s prediction lead
time, a radar reflectivity threshold of 30 dBZ at −10◦C was chosen for convective
initiation of thunderstorms, which agrees with the threshold used in Wilson and
Schreiber (1986). However, defining thunderstorm initiation from a radar defini-
tion is imperfect. Dye and Martner (1982)’s variability in the correspondence of
radar reflectivities to the microphysical observations in developing storms attests
to this. The imperfections associated with the use of a radar reflectivity threshold
have resulted in other techniques for convective storm identification like Lee et al.
(2017)’s echo-class algorithm approach, which was favored by Lagerquist et al.
(2021). With regards to ThunderCast, there could be cases where ⩾ 30 dBZ reflec-
tivities do not result in an electrified storm, and lightning is a necessary ingredient
for a convective storm to be classified as a thunderstorm. Alternatively, there could
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be false positive cases where areas with less than 30 dBZ correspond to lightning
activity. Furthermore, the regionality of radar reflectivity thresholds for convective
initiation could potentially cause erroneous nowcasts when applying one threshold
across a vast spatial area containing many types of terrain (e.g. mountains, coasts,
and plains).

To assess the reliability and applicability of ThunderCast for thunderstorm
prediction in the United States, additional analysis is needed to determine the extent
of false positive and true positive predictions with and without lightning activity
in ThunderCast. However, existing statistical analyses of deep learning models
focus on pixel-by-pixel instead of case-by-case evaluations. This is problematic
because it does not allow for the collection of lead times for storm events, and it is
not aligned with a forecasting standpoint. Forecasters tend to look for regions of
predictions instead of individual pixels through time when evaluating large areas
for potential severe weather activity. To address this, case studies are often included
in convective machine learning applications (Mecikalski et al., 2015; Han et al., 2019;
Lee et al., 2021; Lagerquist et al., 2021; Cintineo et al., 2022) including ThunderCast.
A large-scale case-by-case evaluation expanding on the cases presented in Section
2.3 could provide the desired information for the evaluation of false positive and
true positive cases in ThunderCast.

However, the copious case studies needed to assess the model across the entirety
of the contiguous United States (CONUS) in a statistically meaningful way are not
easily collected due to the need for human evaluation of each case. To overcome this,
the present paper applies object-tracking software to track regions of predictions
in ThunderCast. The tracked predicted storm objects are then classified into true
positive or false positive with or without lightning based on observational data
and used for large-scale statistical analysis and interpretation of predicted storm
events. The resulting method can be applied to other machine learning applications
for forecasting in atmospheric science and support improvements for convective
nowcasting models through the evaluation of potential physical or spatial influences
on erroneous nowcasts.
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3.2 Methodology

Identifying and Tracking Predicted Thunderstorm Objects

To identify and track predicted thunderstorm objects in ThunderCast, tobac, an
established tool for the Tracking and Object-Based Analysis of Clouds described in
Heikenfeld et al. (2019) and Sokolowsky et al. (2023), is applied to ThunderCast’s
deep learning model output. Although developed for cloud tracking, the open-
software Python package is input variable agnostic because it does not rely on
specific input variables or a specific grid. Thus, ThunderCast’s model predictions
can be input into tobac to obtain trackable prediction objects. The process for
doing so is described in the steps below, and tobac’s Python package parameter
configuration for ThunderCast predictions is summarized in Table 3.1.

Table 3.1: Specifications for tobac’s Python package.

Parameter Value(s)
Input Feature Detection Threshold(s) [0.1, 0.9]

Target Maximum
Position Threshold Weighted Difference
Erosion Threshold 4
Sigma Threshold 2

Minimum Number of Pixels 3
Minimum Distance Between Features 15000 m

Segmentation Method Watershed
Linking Method Random

Maximum Tracking Velocity 100 m
s

Minimum Tracking Timestamps 6

Detect Features

In tobac, features are points representing contiguous areas of values above or below
a threshold or series of thresholds (Heikenfeld et al., 2019). The thresholds can be
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based on minima or maxima in a dataset depending on the use case. For this case,
the output from ThunderCast is more likely to result in thunderstorm activity with
higher values, so features are detected based on maxima in the input dataset. The
location of the feature point within a large area of predictions meeting a threshold
is determined with weighted differencing. Following the approach presented in
Heikenfeld et al. (2019), the thresholds are determined by analyzing the distribution
of one day of predictions with a histogram as shown in Figure 3.1. The date chosen
(2022-08-03) represents a variety of convection events during the active convection
season in the United States. Due to the two distinct bins with the highest number
of predictions in Figure 3.1, the thresholds chosen are probabilities of 10% and 90%.
Assigning multiple thresholds allows larger areas of probabilities with multiple
maxima to be broken into pieces. This is beneficial for identifying predicted storms
located close together spatially (e.g. predictions for a multicellular thunderstorm
cluster).

To aid in the feature detection process, ThunderCast’s input values are filtered
with a Gaussian filter and binary erosion. The Gaussian filter smooths Thunder-
Cast’s predictions and binary erosion reduces the size of the detected objects (areas
surrounding a feature) in all directions. The filters are controlled by the sigma
threshold and the erosion threshold integers, shown in Table 3.1, for Gaussian
smoothing and binary erosion, respectively. Furthermore, to reduce spurious ob-
jects, there must be at least three pixels greater than one or both of the probability
thresholds for a feature to be identifiable and the features must be at least 15 km from
other features. This distance is the equivalent of 15 pixels because ThunderCast’s
output is in 1-km resolution (see Section 2.2).

Obtain Objects

After identifying features, a watershed segmentation technique is used within
tobac to associate areas with each identified feature (Heikenfeld et al., 2019). These
areas are referred to as objects throughout the present paper. Inputs into the
watershed algorithm are, as the name implies, treated similarly to a topographic
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Figure 3.1: A histogram of all the pixel-by-pixel ThunderCast predictions for one
day (2022-08-03). The y-axis is logarithmic.

map in a geological context where the map is separated into drainage basins called
watersheds (Meyer, 1994; Soille and Ansoult, 1990; Heikenfeld et al., 2019). The
watershed segmentation technique in tobac is built with scikit-image, an image
processing library in Python (van der Walt et al., 2014; Heikenfeld et al., 2019).
An example of ThunderCast prediction objects with their associated features is
provided in Figure 3.2.

Track Features

To organize the features and associated objects into tracks of predicted Thunder-
Cast storms through time, the features are linked using trackpy (Allan et al., 2023)
within tobac. In particular, the tracker looks for a feature within a search radius
in consecutive timestamps with the random method. In the random method, the
feature point is the center of the search radius and the distance from the feature to
the edge of the search radius is determined from the specified tracking velocity in
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Figure 3.2: An example of the features and objects collected for 2022-08-03
17:01:17 UTC with corresponding observational data for times closest to the pre-
diction time in each dataset. The latitude and longitude for the upper left-hand
corners are 39.4◦ and −111.8◦, respectively. All images contain state borders around
the four corners region of the U.S. in light purple. Panel A contains the output
from ThunderCast with all identified features as colored points and the features’
corresponding objects in matching colors. Any brown objects were initially detected
with tobac but were removed during post-processing. Both Panel B and C display
the objects kept for analysis and the parallax-corrected ABI 10.3 µm brightness
temperatures. Panel B shows radar reflectivity at −10◦C on top of the ABI. The
radar reflectivity color bar is adapted from Helmus and Collis (2016). Finally, Panel
C contains points for lightning events from both the GLM (blue) and ENI (red).

Table 3.1 (Heikenfeld et al., 2019). The velocity chosen is larger than typical thun-
derstorm velocities because the location of the feature from weighted differencing
can shift farther than a storm would travel naturally, especially for larger objects.
Additionally, if multiple features are detected in the search area, the feature with
the lowest sum of squared distance between features is connected as a part of the
track. To ensure the feature tracks are persistent in time, tracks are only recorded
if the track duration is 25 minutes or longer (6 timestamps when timestamps are
5 minutes apart as specified in Table 3.1). More information about tracking with
tobac can be found in Heikenfeld et al. (2019).
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Identify Connected Tracks

Thunderstorm environments can be complex; there are cases where individual
storms merge to create a larger storm system (mergers) or thunderstorms can split
into separate storms (splits). Since ThunderCast predicts regions of thunderstorm
activity, there are similarly complex mergers and splits in the predicted storm tracks.
To identify these complex predicted storm cases, tobac’s merge/split submodule
is implemented. The submodule uses a minimum euclidean spanning tree along
with Kruskal’s algorithm and parent/child nomenclature to assign parent track
identification numbers (IDs) to all tracked features (Kruskal, 1956; Sokolowsky
et al., 2023). The amount of tracks identified with the same parent ID are referred
to as the number of children for the parent track ID. A more detailed description
of the merge/split submodule in tobac can be found in Sokolowsky et al. (2023).
Identifying complex predicted storms is useful for post-processing the ThunderCast
object-based dataset.

Post-Processing

After the tracked predicted storms are obtained and connected feature tracks are
identified, the predicted storm dataset undergoes post-processing to ensure the
dataset avoids superfluous feature tracks and focuses on simple cases containing
the initiation stage of development. First, any feature point not associated with a
predicted storm track is disregarded to avoid short-lived predicted storms. Next,
predicted storms that may be incomplete spatially due to the close proximity to
the border of the study domain (CONUS) are ignored as well as those that may
be incomplete temporally due to their existence at the first and/or last timestamps
during a given day. Furthermore, in initial testing some predicted storm tracks
were associated with existing convective systems rather than new convection. To
avoid these cases contaminating calculations of lead time or inflating true or false
positive counts by counting one storm multiple times, any track with an initial
object containing greater than 2000 pixels is removed. Lastly, complex predicted
storm cases with merging or splitting are considered out of the scope of this work,
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so any tracks with greater than one child are ignored.

Analysis Techniques

To evaluate the extent of false positive and true positive cases with and without
lightning in ThunderCast, a variety of data is collected for the predicted storm
tracks (along with their associated features and objects) generated with tobac for
7 randomly selected days from each month in the 2022 convective season in the
United States (April to September). For diurnal, seasonal, and spatial analysis,
each track’s time, date, and location are recorded. The location for each track is
simplified to the CONUS climate region of the track’s initial feature. The climate
regions are west, west north central, southwest, northwest, east north central, south,
southeast, central, northeast, and outside of the CONUS (OCONUS), matching
those specified in Section 2.2 and Karl and Koss (1984). For simplicity, only tracks
originating over land and tracks in areas with MRMS radar coverage are used
during the analysis in this paper.

Determining if a case is true positive or false positive requires comparison to
the target data used in ThunderCast, so radar reflectivity at −10◦C is obtained from
the Multi-Radar Multi-Sensor [MRMS; described further in Zhang et al. (2016)
and Smith et al. (2016)] dataset. If reflectivity values ⩾ 30 dBZ are present in a
storm track, the track is considered a true positive case. All other cases are false
positive. To avoid extraneous false positives from storm tracks without MRMS radar
coverage, any objects (and associated tracks) containing data points without radar
coverage are disregarded. The time difference between the object’s first prediction
greater than or equal to a specified probability threshold and the first occurrence
of ⩾ 30 dBZ reflectivity is recorded as the lead time to 30 dBZ at that probability
threshold.

Lightning data observed from cloud-top via the Geostationary Lightning Map-
per [GLM; Bruning et al. (2019)] and from Earth Networks, Inc. [ENI; Earth
Networks (2024)] ground-based sensors (total lightning dataset) are used to deter-
mine which true positive and false positive cases achieve electrification. Both GLM
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and ENI are used to ensure all possible lightning observances are captured as either
dataset could miss instances collected by the other (e.g. satellites are limited to
observing flashes visible from the cloud tops and ground-based sensors may miss
in-cloud lightning). Because the format of the GLM and ENI lightning data for this
analysis are points, a spatial polygon is created with SciPy’s convex hull algorithm
(Virtanen et al., 2020) from the outer points of the predicted storm objects within
each track. If any lightning occurs within a timespan of ± 2.5 min of an object in
the predicted storm track and the lightning’s latitude and longitude are within the
associated polygon, the predicted storm is considered electrified. Similar to the
lead time to 30 dBZ, the time difference between the object’s first prediction greater
than or equal to a specified probability threshold and first observed lightning in the
storm track is recorded as the lead time to lightning at that probability threshold.

Additionally, observational ABI data from the GOES-16 satellite are collected
for the predicted storm tracks to gather information about cloud-top properties.
To ensure ABI multispectral cloud properties are captured by the appropriate
predicted storm objects, the ABI data are parallax corrected using a constant cloud-
top height of 8 km. The ABI spectral bands are evaluated for statistical patterns
with respect to the true positive and false positive classifications to determine if
any of these quantities could help reduce false positive or non-electrified cases. A
work-flow chart describing the order of information collection in each predicted
storm track is shown in Figure 3.3. For each storm track, the coldest cloud-top
brightness temperature prior to electrification is collected by identifying the pixel
with the minimum 10.3 µm (channel 13) brightness temperature. At the same
location and time the 1.6 µm (channel 5) reflectance is recorded. These bands
are sensitive to pertinent cloud-top features of thunderstorms, such as cloud type,
cloud-top glaciation, cloud particle size, cloud-top height, and overshooting tops
(Pavolonis et al., 2005; Pavolonis, 2010; Elsenheimer and Gravelle, 2019). Because
classification into true positives and false positives with and without lightning
happens toward the initiation part of each storm track, ABI data are collected until
lightning is observed from both ENI and GLM or the end of the predicted storm
track is reached.
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Figure 3.3: The workflow for collecting observational and model data for each
predicted storm track.

Anticipated Track Limitations

Due to the decisions and specifications necessary to obtain objects and tracks
for ThunderCast’s predictions as detailed above and specified in Table 3.1, there
are some inherent sources of errors within the dataset. For example, although
a maximum tracking velocity of 100 ms−1 may be appropriate for the majority
of cases, it could result in a new, distinct object nearby an older object from the
previous timeframe being recorded as one continuous track instead of a new track.
To quantify the extent and potential impact the errors may have within the analysis,
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100 randomly sampled predicted storm tracks from the predicted storm dataset
(discussed in Section 2.2) were evaluated manually. Each track was labeled in a
“yes" or “no" style where tracks were recorded as having a noticeable error during
tracking or not. Of the 100 tracks evaluated, 9 of them were identified as having
an error from tracking. This indicates less than 10% of predicted storm tracks are
anticipated to have errors from the tracking specifications chosen for this task. Since
fewer than 10% of the analyzed predicted storms are expected to have an imperfect
tracking history, the dataset is suitable for assessing the accuracy and lead time of
ThunderCast predictions.

Additionally, the tracks were separately labeled in a “yes" or “no" fashion for
noticeable errors in child counts from tobac’s merge/split algorithm. Although any
tracks with more than one feature (more than one child) were filtered out, there
are cases that appear to have merges or splits that were incorrectly counted as only
having one feature/child by tobac. This was identified in 33 of the 100 tracks, so
some of the merge/split cases unintentionally remain in this dataset.

3.3 Results
Each predicted storm track identified with tobac is sorted into true positive (⩾
30 dBZ) and false positive (< 30 dBZ) categories with and without lightning based
on the data collected for the track using the flow-chart in Fig. 3.3. The total counts in
each category are shown in Table 3.2. To the nearest tenth of a percent, true positives
compose 67.8% of tracks. Because precision is the total true positives divided by
the total predictions made (optimal closest to 100%), this value is synonymous
to precision. The precision from the pixel-by-pixel evaluation in Section 2.3 was
recorded as 15.6% and the precision buffered by a 15 km x 15 km window was
58.5%. The precision from the object-based evaluation of ThunderCast is closest to
the buffered precision. This is expected because the object-based method and the
buffered method in Chapter 2 are both informed by areas outside of an individual
pixel. However, the object-based prediction is larger than the buffered precision,
which can be accounted for due to methodology differences. The buffered method
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is based on a fixed distance instead of areas of related pixels and could be inflated
by reflectivities ⩾ 30 dBZ from unrelated prediction clusters within the buffered
window or deflated if a storm larger than the buffered window contains reflectivities
⩾ 30 dBZ outside of the area specified. Additionally, it is important to keep in
mind that the precisions from Section 2.3 incorporate all possible occurrences of
convection while the object-based method presented in this paper filters the dataset
to focus on new convection. Taking these conditions into account, the statistics
collected with the object-based method presented in this paper are thought to
better represent initiating predicted storms than the buffered approach in Chapter 2
because it uses a watershed method to determine related pixels instead of assuming
a distance.

Table 3.2: The number of tracks identified from ThunderCast predictions with
tobac for true positive (TP) and false positive (FP) predicted storms. The table is
divided into two sections. Each section can be separately summed to equal the total
predicted storm tracks. The bottom section splits the TPs and FPs into subcategories
according to electrification status. All percentages are rounded to the nearest tenth
of a percent.

Category Number of Predicted
Storm Tracks

Percent of Total Tracks
(Total = 24770)

All TPs 16790 67.8%
All FPs 7980 32.2%

TPs without lightning 9964 40.2%
TPs with lightning 6826 27.6%

FPs without lightning 7940 32.1%
FPs with lightning 40 0.2%

The second section of Table 3.2 differentiates between electrified and non-
electrified predicted storm tracks by identifying whether lightning occurred in
the track’s lifetime. True positive cases without lightning activity consisted of 40.2%
of all predictions. Just considering the true positives, 59.3% of all true positive
predictions do not result in electrified convection. This indicates the radar-based def-
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inition of convection initiation is not well correlated with lightning initiation. Thus,
ThunderCast is more skilled at predicting convective precipitation than lightning
initiation.

The sorted predicted storm tracks are further sorted temporally and spatially
in Figs. 3.4 and 3.5, respectively. Consistent with the percentages presented in
Table 3.2, Fig. 3.4 shows most of the months used for the convective season (April-
September in 2022) contain more true positive tracks than false positive tracks and
all months contain more true positive tracks without lightning than those with
lightning. April’s false positives are an exception to this generalization because April
contains more false positives than true positives. Characterized by the transition
from spring to summer, April typically includes midlatitude cyclones that generate
a variety of cloud types and precipitation modes. More variability in the type of
convection present could contribute to the larger false positive to true positive ratio
in April.

Fig. 3.5 shows all climate regions contain more true positive tracks than false
positive tracks, which is consistent with Table 3.2. Also, all of the climate regions
contain more true positives without lightning than with lightning except for the
southwest. During the 2022 convective season, the southwest was impacted by
the North American Monsoon System from mid-June through September. The
monsoon transports moisture from the Pacific Ocean, the Gulf of Mexico, and
the Gulf of California to normally dry areas, fueling thunderstorm development.
In 2022, moisture levels were at a record high during the monsoon season and
steering winds were generally weak until early September. It is not clear from this
analysis why predictions for convection primarily resulting from the southwestern
monsoon produce lightning more often than predictions in other regions of the
United States. Carlaw et al. (2017) found the greatest frequencies of lightning in
southwestern Arizona were concentrated in the regions with the highest terrain
suggesting terrain-driven mesoscale circulations have an important role in the
development of afternoon thunderstorms in the area. Future work comparing the
predicted storm track characteristics in southwestern Arizona with the results from
Carlaw et al. (2017) could help inform an improved understanding of observable
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Figure 3.4: Temporal distribution of ThunderCast’s predicted storm tracks. The
tracks in each month are labeled true positive (TP) and false positive (FP) with
(w/) and without (w/o) lightning.

convection processes necessary for electrification in the southwest. Comparison
of such results to evaluations for other U.S. climate regions could also be useful
to understand how the electrification processes in the southwest differ from the
other climate regions, which could help inform improvements to thunderstorm
prediction models.

During data collection for each predicted storm track, the maximum MRMS
radar reflectivity at −10◦C is recorded. The maximum is taken from reflectivities
between the start of the track and lightning initiation (both GLM and ENI are
observed) or the end of the track for non-electrified cases. Fig. 3.6 presents the
storm tracks’ maximum radar reflectivity distribution in a histogram. Although
the number of true positives without lightning decreases with higher reflectivity
values, predicted storm tracks without lightning can reach high reflectivity values
(⩾ 40 dBZ). A distinct reflectivity threshold separating the tracks with and without
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Figure 3.5: Spatial distribution of ThunderCast’s predicted storm tracks. The tracks
in each U.S. climate region are labeled true positive (TP) and false positive (FP)
with (w/) and without (w/o) lightning.

lightning is not clearly discerned, demonstrating the limitations of using a radar
reflectivity threshold as a definition of a thunderstorm. In the false positive cases,
the lowest reflectivities recorded can contain stratiform cloud structures rather
than convective structures. Also, ThunderCast sometimes predicts convection in
areas associated with physical features like rivers or lakes due to their high contrast
in the satellite bands used as predictors. ThunderCast’s identification of these
features could be improved by adding more samples of clear-sky cases over these
physical features to the deep learning training dataset. Although shifting the deep
learning model’s target reflectivity to a higher value could filter out more stratiform
convection cases, it will not completely filter out cases without lightning. Thus, the
use of a “legacy-based" radar reflectivity threshold at the −10◦C isotherm in the at-
mosphere is not adequate to define a thunderstorm when used solely. Additionally,
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Figure 3.6: MRMS maximum radar at −10◦C for ThunderCast’s predicted storm
tracks. The maximum radar reflectivity is measured up to whichever comes first:
both GLM and ENI are observed or the end of the storm track. The tracks are
labeled true positive (TP) and false positive (FP) with (w/) and without (w/o)
lightning.

this indicates the microphysical observations and their corresponding reflectivity
values in the organizing stage of storms from midlatitude field campaigns such as
Dye and Martner (1982) do not necessarily represent midlatitude thunderstorms
broadly because storms can form in a variety of environments and their growth
is influenced by a variety of factors such as atmospheric moisture content, wind
shear, and entrainment.

Rather than using a maximum radar reflectivity at an atmospheric temperature
threshold to characterize thunderstorms, some studies have focused on evaluating
the importance of areas or volumes of radar reflectivity for lightning intensity
(Carey et al., 2019; Liu et al., 2012). Supporting this, a research study detailed in
Liu et al. (2012) found a strong correlation between the area of 35 dBZ at −10◦C to
lightning flash rate for land-based storms. All of the precipitating storms in Liu et al.
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Figure 3.7: Predicted storm tracks’ maximum area of pixels greater than or equal
to an MRMS maximum radar at −10◦C threshold during the true positive tracks’
initiation stage. To obtain the maximum, areas are recorded until both ENI and
GLM lightning are observed. The areas are given in km2 because the dataset has
1-km resolution, and all areas included are non-zero. True positives (TPs) with
(w/) and without (w/o) lightning are included in orange and blue, respectively.
The percentages in the upper right hand corner of the plots indicate the percent of
true positives with or without lightning with areas greater than or equal to the given
thresholds. The colors of the boxes around the percents match the corresponding
datasets shown in the histograms. Any predicted storms with areas greater than the
values shown on the x-axis are omitted for ease of viewing, but they are included
in the percentages provided.

(2012) contained at least one lightning flash, so the reflectivity area correlations
found strictly apply to lightning producing storms. To get a better idea whether
areas of radar reflectivity can be used to differentiate between electrified and non-
electrified storms in a thunderstorm prediction model, Fig. 3.7 provides histograms
of the true positive predicted storm tracks by area greater than or equal to four
reflectivity thresholds: 30 dBZ, 35 dBZ, 40 dBZ, and 45 dBZ. It is important to
note that not all true positive tracks contain reflectivities ⩾ 35 dBZ, so the percent
of the total datasets included in the histograms decreases with higher reflectivity.
Consistent with Fig. 3.6, a higher percentage of the true positives with lightning
reach reflectivities ⩾ 35 dBZ, 40 dBZ, and 45 dBZ than those without lightning.
The true positives without lightning are concentrated at lower areas ⩾ 30 dBZ than
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those with lightning. However, there is still a significant amount of true positives
with lightning at the same areas as those without lightning. This is similar for areas
⩾ 35 dBZ, 40 dBZ, and 45 dBZ, but the areas with the concentrations of each dataset
are more aligned.

For further evaluation, the area histograms are broken up by U.S. climate region
in Figs. 3.8 and 3.9. The areas with the highest concentrations of true positives
with and without lightning are similar to Fig. 3.7 for all climate regions, indicating
areas of radar reflectivity are unable to differentiate between true positive predicted
storm tracks with and without lightning. One important difference between the
regions is the percentages of true positives with and without lightning containing
areas ⩾ 35 dBZ, 40 dBZ, and 45 dBZ. Regions typically associated with higher
humidities during the convective season have more predicted storm tracks with
larger reflectivities than those without. For example, in the southeast climate region,
77% (99%) of the true positive predicted storm tracks without (with) lightning
reach reflectivities ⩾ 35 dBZ, 43% (89%) reach ⩾ 40 dBZ, and 12% (53%) reach
⩾ 45 dBZ. In the northwest only 44% (93%) of the true positive predicted storm
tracks without (with) lightning reach reflectivities ⩾ 35 dBZ, 13% (69%) reach
⩾ 40 dBZ, and 2% (27%) reach ⩾ 45 dBZ. This indicates the maximum radar
reflectivity achievable by both true positives with and without lightning depend on
the location, and corresponding environmental conditions, of convective initiation.
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Figure 3.8: The maximum MRMS radar reflectivity area at −10◦C sorted into
northwest, west north central, central, east north central, and northeast U.S. climate
regions. The plots are set-up similarly to Fig. 3.7 except each row contains predicted
storm track datasets for the U.S. climate region indicated on the left-hand side of
the row.
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Figure 3.9: The maximum MRMS radar reflectivity area at −10◦C sorted into
west, southwest, south, southeast, and outside of the continental United States
(OCONUS) U.S. climate regions. The plots are set-up similarly to Fig. 3.7 ex-
cept each row contains predicted storm track datasets for the U.S. climate region
indicated on the left-hand side of the row.
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Figure 3.10: Two-dimensional histogram of the minimum 10.3 µm brightness tem-
perature and the MRMS maximum radar reflectivity at −10◦C for ThunderCast’s
predicted storm tracks. The maximum radar reflectivities and the brightness temper-
atures are measured up to whichever comes first: both GLM and ENI are observed
or the end of the storm track. The tracks are labeled true positive (TP) and false
positive (FP) with (w/) and without (w/o) lightning. The horizontal dashed line
marks the freezing temperature of water.

The ABI spectral bands used as predictors in ThunderCast’s deep learning archi-
tecture were selected because they form multispectral imagery commonly utilized
by forecasters for diagnosing trends and patterns in cumuliform clouds such as
cloud-top glaciation, cloud-top temperature, and cloud morphology. In order for
the deep learning model to differentiate between electrified and non-electrified
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Figure 3.11: Two-dimensional histogram of the minimum 10.3 µm brightness tem-
perature and the 1.6 µm reflectance at the minimum brightness temperature for
ThunderCast’s predicted storm tracks. The values are measured up to whichever
comes first: both GLM and ENI are observed or the end of the storm track. The
tracks are labeled true positive (TP) and false positive (FP) with (w/) and without
(w/o) lightning. Because the 1.6 µm satellite band is only available during the day,
the storm tracks are daytime only (⩽ 85◦ solar zenith angle). The vertical dashed
line marks the freezing temperature of water.

storms, patterns in the predictors must be distinguishable and relatable to the target
dataset (radar reflectivity at −10◦C). To identify relationships between storm tracks’
radar reflectivities and the ABI bands, Figs. 3.10 and 3.11 present two-dimensional
histograms of maximum radar reflectivity at −10◦C with cloud-top brightness tem-
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perature from the 10.3 µm band and the daytime only 1.6 µm reflectance (snow/ice
band), respectively. In Fig. 3.10, most of the predicted storm tracks have brightness
temperatures below freezing indicating most cases, regardless of the presence of
lightning or radar reflectivity, achieve cloud-top glaciation and/or contain super-
cooled water at cloud-top. The bins with the highest concentrations (darker colors)
in the histograms shown in Fig. 3.10 generally cover similar regimes between true
positive and false positives with and without lightning. Although the brightness
temperature mean of the true positives with lightning appears colder than the
other categories, there are still high concentrations of predicted storm tracks at
the same temperatures. The predicted storm tracks’ 1.6 µm reflectances at their
minimum 10.3 µm brightness temperatures are shown in Fig. 3.11. Most of the
predicted storms have low 1.6 µm reflectance values. Snow and ice surfaces are
strongly absorbing at 1.6 µm, so these values indicate the predicted storms likely
contain ice at cloud-top, which is considered to be necessary for thunderstorm
development. The predicted storms warmer than freezing in Figs. 3.10 and 3.11
tend to be small cumuliform structures discernible with higher resolution bands
such as the 0.64 µm band. The relatively low resolution of the 10.3 µm band can
cause a small feature’s cloud-top to blend with the surrounding warmer area, mak-
ing the 10.3 µm brightness temperatures appear larger than the actual cloud-top
temperature. The similarities between true positive and false positive categories
with and without lightning indicate the predicted storm tracks likely appear similar
visually in multispectral imagery, especially since the values shown in Figs. 3.10
and 3.11 indicate the presence of glaciation and ice at cloud-top. Considering this,
additional predictors from additional data sources may be necessary to reduce the
number of ThunderCast’s true positives without lightning.

One of the benefits of an object-based evaluation technique is it allows for a
bulk analysis of lead times for predicted storm events. Fig. 3.12 and Fig. 3.13
show ThunderCast’s median and mean lead times, respectively, to 30 dBZ, GLM
lightning, and ENI lightning calculated at various probability thresholds with this
object-based technique. Because small probabilities often appear earlier than larger
probabilities, they have the highest lead time values in Figs. 3.12 and 3.13. Section
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Figure 3.12: Median ThunderCast lead time (LT) to the first observation of a radar
reflectivity echo ⩾ 30 dBZ at −10◦C, lightning from the Geostationary Lightning
Mapper (GLM), and lightning from the total lightning product from Earth Net-
works, Inc. (ENI). The lead times are calculated from the first occurrence of a
probability ⩾ to the value [%] indicated except for the 0% probability threshold
where lead time is calculated from the first occurrence of any probability > 0%.
The black line incorporates all predicted storm tracks in the dataset, while the other
colored lines break the dataset into climate regions.

2.3 indicated ThunderCast’s highest critical success index occurred at approximately
20% probability. The median lead times at 20% for all climate regions (black line in
Fig. 3.12) are 5.4 min to 30 dBZ, 21.7 min to GLM lightning, and 22.9 min to ENI
lightning. The mean lead times at 20% for all climate regions (black line in Fig. 3.13)
are 11.8 min to 30 dBZ, 30.9 min to GLM lightning, and 31.7 min to ENI lightning.
The southeast, south, and OCONUS regions consistently have some of the longest
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Figure 3.13: Mean ThunderCast lead time (LT) to the first observation of a radar
reflectivity echo ⩾ 30 dBZ at −10◦C, lightning from the Geostationary Lightning
Mapper (GLM), and lightning from the total lightning product from Earth Net-
works, Inc. (ENI). The lead times are calculated from the first occurrence of a
probability ⩾ to the value [%] indicated except for the 0% probability threshold
where lead time is calculated from the first occurrence of any probability > 0%.
The black line incorporates all predicted storm tracks in the dataset, while the other
colored lines break the dataset into climate regions.

lead times while the northwest has the shortest. A variety of factors can contribute
to lead time differences including sampling during deep learning model training,
the variation in atmospheric conditions leading to and sustaining convection in
different regions, and the presence of terrain-based forcing mechanisms.

Because 30 dBZ is considered a threshold of convective initiation for Thun-
derCast, the lead time to 30 dBZ can be compared to those obtained from other
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convective initiation models. When comparing lead times, it is important to keep
in mind the method for obtaining the values could influence their reliability. Many
machine learning models do not present bulk statistical analyses of lead time, and,
instead, use case studies to demonstrate the model’s lead time capabilities. Case
studies are useful for model interpretation, but it is not clear how well their values
generalize to a broader range of situations, hence, this paper presents an object-
based evaluation technique for large-scale analyses of lead time. One convective
initiation model with a large-scale lead time analysis applicable to the CONUS
is SATCASTv2, an object-based 0-2-h nowcasting algorithm (Walker et al., 2012).
Walker et al. (2012) reports the following lead times to convective initiation for
SATCASTv2: 23.8 min. in Melbourne, FL, 32.7 min in Memphis, TN, 32.9 min in the
central United States, and 27.4 min in the northeastern United States. These values
are all larger than ThunderCast’s average lead times to 30 dBZ at 20% probability
in Fig. 3.13, which range from 9.2-13.5 min across the United States. The greater
lead times observed in SATCASTv2 could indicate incorporating thunderstorm
objects into the deep learning target dataset may result in larger lead times. Also,
Mecikalski et al. (2015)’s random forest method improved on SATCASTv2 along
with their incorporation of parameters from numerical weather prediction models.
Perhaps numerical weather model parameters or other environmental observations
could improve the performance of ThunderCast.

There are other machine learning models designed specifically to predict light-
ning occurrence instead of convective initiation in the CONUS such as ProbSevere
LightningCast (Cintineo et al., 2022). Similarly to ThunderCast, LightningCast
uses a U-Net architecture and the same ABI predictors, but it uses GLM lightning
observations as the target instead of radar reflectivity at −10◦C. One of the reasons
ThunderCast used radar instead of lightning observations as a target was to in-
crease lead time to thunderstorm hazards like lightning by using a predictor that
occurs prior to lightning observations. This idea is consistent with the findings
in Fig. 3.6, Table 3.2, and Fig. 3.12. Lightning typically occurs after 30 dBZ as
shown in Fig. 3.6 and Table 3.2 where less than 1% of the predicted storm tracks
with lightning corresponded to reflectivities < 30 dBZ. Also, Cintineo et al. (2022)
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reported LightningCast’s median lead time as 17.5 min at LightningCast’s 30 and
40% probabilities while ThunderCast’s lead time to GLM is about 21.7 min at these
probabilities. ThunderCast achieves approximately 4 min of additional lead time
to GLM lightning than LightningCast when applied to electrified storm cases. Al-
though models using a radar reflectivity threshold target can achieve greater lead
times to lightning hazards than models with lightning observations as a target, it is
important to keep in mind the limitations associated with such a model like the
tendency to make predictions for non-electrified convection.

3.4 Summary
ThunderCast is a deep learning model designed to predict the occurrence of convec-
tion associated with thunderstorms in the next 0-60 minutes from a radar reflectivity
perspective. To determine the extent of true positive and false positive predictions
with and without lightning in ThunderCast, an established tool for the Tracking and
Object-Based Analysis of Clouds (tobac) was applied to ThunderCast’s probabilis-
tic output for 7 randomly selected days in each month of 2022’s convective season
(April to September). Tobac’s flexible software framework detected features in
ThunderCast, used a watershed technique to obtain regions of related probabilities
surrounding the features (objects), tracked the features through time, and identified
connected tracks with a merge/split algorithm. A series of post-processing steps
simplified the resulting dataset to avoid non-persistent predictions, incomplete
tracks, predictions associated with existing convection, and complex merge/split
cases. Each track’s date, time, and location were recorded along with Multi-Radar
Multi-Sensor (MRMS) radar reflectivity at −10◦C, Geostationary Lightning Mapper
(GLM) lightning, Earth Networks, Inc. (ENI) total lightning, Advanced Baseline
Imager (ABI) brightness temperature at 10.3 µm, and ABI reflectance observations
at 1.6 µm.

Each predicted storm track was sorted into true positive and false positive cate-
gories with and without lightning based on the data collected for each track. Any
predicted storm track with a MRMS radar reflectivity at −10◦C ⩾ 30 dBZ was
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categorized as a true positive due to the definition of convection used in Thunder-
Cast’s development. Out of the 24,770 land-based tracks with radar coverage, 67.8%
were true positive and 59.3% of the true positive cases were not associated with
GLM or ENI lightning. Because less than half of the predicted storms achieved
electrification, ThunderCast is unable to differentiate between convective structures
with and without lightning activity. Although the amount of true positives without
lightning decreases with higher reflectivity values at −10◦C, they can reach high
reflectivity values (⩾ 40 dBZ). This indicates a radar-based definition of convection
alone is inadequate for isolating convection associated with thunderstorms. Addi-
tionally, because the “legacy-based" radar reflectivity definition of a thunderstorm
came from microphysical and radar observations during the organizing stage of
thunderstorms from early field campaigns in the midlatitudes, case studies from
field campaigns, like those in Dye and Martner (1982), do not necessarily represent
midlatitude thunderstorms broadly. The maximum reflectivity achievable by a pre-
dicted storm depends on the location of and the environmental conditions present
for convective initiation.

ABI 10.3 µm brightness temperatures were compared to the maximum radar
reflectivity at −10◦C and the corresponding 1.6 µm reflectance for each predicted
storm track. Most of the predicted storm tracks, regardless of their true positive or
false positive with or without lightning categorization, had cloud-top brightness
temperatures less than freezing and, for the daytime cases, low corresponding
1.6 µm reflectances. These observations are consistent with the presence of ice at
cloud-top and cloud-top glaciation, so the predicted storm tracks likely appear
similar visually in multispectral imagery. Since the predictors appear similar for
the cases the model is supposed to distinguish between, additional predictors from
additional data sources may be necessary for ThunderCast to reduce the number
of false positives and true positives without lightning.

Existing statistical analyses of deep learning models focus on pixel-by-pixel
instead of case-by-case evaluations, which make automated, large-scale collection
of lead times for storm events difficult. Lead times are useful to understand the
benefits of a model for forecasting meteorological phenomena. The object-based
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approach presented in this paper allows for a bulk analysis of lead-time for pre-
dicted thunderstorm events and can be applied to other deep learning models.
ThunderCast’s median lead times at 20% probability for all CONUS climate regions
were 5.4 min to 30 dBZ, 21.7 min to GLM lightning, and 22.9 min to ENI light-
ning. The mean lead times at 20% probability for all CONUS climate regions were
11.8 min to 30 dBZ, 30.9 min to GLM lightning, and 31.7 min to ENI lightning. The
lead times to 30 dBZ were shorter than Walker et al. (2012)’s model for convective
initiation nowcasting, but the lead time to lightning was longer than LightningCast
(Cintineo et al., 2022), a prominent deep learning lightning nowcasting model with
a similar U-Net architecture and the same ABI predictors as ThunderCast. Using
a radar-based target for convection associated with thunderstorms can achieve
greater lead times than a lightning target. However, not all predictions from a
radar-based model will produce lightning.

Further analysis is needed to determine how additional, scientifically informed
predictors and/or a different target dataset can improve thunderstorm predictions
by reducing false positive predictions or true positive predictions without light-
ning. An alternative target dataset to evaluate could be based on the echo-class
algorithm used by Lee et al. (2021). For the predictors, perhaps numerical weather
prediction model parameters, atmospheric moisture at various levels in the atmo-
sphere, or information pertaining to cloud entrainment properties could provide
the additional environmental context needed to improve thunderstorm predictions.
Additional evaluation of predicted storm tracks’ temporal and spatial characteristics
could inform an improved scientific understanding of midlatitude convection and
electrification, which may better inform what predictors or target would be optimal.
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4 the limitations of using satellites to identify
convective initiation

4.1 Background
The Geostationary Operational Environmental Satellites (GOES; 16, 17, or 18) Ad-
vanced Baseline Imager (ABI) Day Cloud Phase Distinction (DCPD) red-green-blue
(RGB) false color composite images, detailed in Elsenheimer and Gravelle (2019),
are commonly utilized by forecasters in the United States for diagnosing trends and
patterns in cumuliform clouds such as cloud-top glaciation, cloud-top temperature,
and cloud morphology. The red component of the imagery uses the inverse of the
10.3 µm ABI band, known as the clean longwave infrared window band, to identify
surface and cloud-top brightness temperatures. A small (large) red component in
the imagery indicates warm (cold) brightness temperatures, characteristic of low
(high) clouds and warm (cold) surface features. The green component uses the
0.64 µm visible ABI band to distinguish between highly reflective surfaces (large
green component) like clouds and snow with lower reflectance (small green com-
ponent) features such as water and vegetation. Particle phase is distinguishable by
the blue component comprised of the 1.6 µm near-infrared ABI band, commonly
known as the snow/ice band. Because ice clouds absorb more radiation at 1.6 µm
than liquid water clouds, large (small) blue components in the RGB indicate highly
(poorly) reflective liquid (ice) clouds (Elsenheimer and Gravelle, 2019; Connell
et al., n.d.).

At the beginning of a thunderstorm’s lifecycle, the cumulus cloud appears light
blue or cyan in the DCPD RGB. As the cumulus cloud grows vertically into agitated
cumulus and towering cumulus, the top of the cloud changes from liquid to mixed
phase (with supercooled water and ice) to predominately ice crystals, a process
known as cloud-top glaciation (Houze Jr., 2014). In the DCPD RGB, this change in
phase is represented by the color of the cloud changing to green-yellow because
the blue component decreases as the ice increases at the cloud-top (Elsenheimer
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and Gravelle, 2019). This stage of a storm’s development is important for lightning
formation because the non-inductive theory for charge separation in thunderstorms
relies on the presence of ice, graupel, and supercooled water in the cloud, as well as
the particles’ collisions in turbulent air and their separation by the cloud’s updraft
(Baker et al., 1987; Saunders, 1993; Baker and Dash, 1994; Dash et al., 2001; Saunders
et al., 2006). As the storm continues to grow vertically to the upper levels of the
troposphere and transitions to a cumulonimbus cloud, the cloud-top will begin to
appear orange in the DCPD RGB and overshooting tops can be clearly discerned.

As the DCPD’s name implies, the color transitions in the DCPD during thun-
derstorm development are only applicable during the day. At night, an alternative
false color RGB image called the Nighttime Microphysics (NtMicro) RGB can be
used to identify cloud types in the mid and upper atmosphere (Connell et al., n.d.).
The red, green, and blue components of this RGB are comprised of the difference
between ABI 12.3 µm and 10.3 µm bands, the difference between ABI 10.3 µm and
3.9 µm bands, and the 10.3 µm band, respectively. Large (small) contributions of
the red component in the NtMicro RGB indicate thick (thin) clouds because the
12.3 µm and 10.3 µm band difference physically relates to optical depth. Because the
difference between the 10.3 µm and 3.9 µm bands relates to particle phase and size,
small (large) contributions of green component correspond to ice (small water)
particles or surface features. Large (small) blue contributions from the 10.3 µm
band indicate warm (cold) surface features. Thick, developing cumulus clouds
appear dark red in the NtMicro RGB and can contain some yellow when the clouds
are very cold. The visual color transition of cumuliform clouds in the thunderstorm
lifecycle contribute to both the DCPD and NtMicro RGBs’ usefulness in forecasting
thunderstorms and their associated hazards.

Because the convective lifecycle is well captured visually by satellite spectral
bands and satellite data is routinely available in areas where data from ground-
based precipitation detecting radars are unavailable or are of reduced quality due
to beam blocking from mountainous terrain, convective storm (thunderstorm)
nowcasting models use spectral bands to identify and predict convection. For exam-
ple, varied combinations of satellite channels from the visible, shortwave infrared,
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and/or longwave infrared bands, including those with wavelengths matching the
DCPD RGB, were used as predictors in Walker et al. (2012), Mecikalski et al. (2015),
Lagerquist et al. (2021), Ortland et al. (2023), and Fan et al. (2024). In addition to
relying on satellite data, all of the mentioned models were trained and/or validated
with Multi-Radar Multi-Sensor (MRMS) data, where MRMS radar reflectivities ⩾
a threshold (30 dBZ or 35 dBZ) were considered positive for thunderstorm activity.
However, models involving the prediction of convective initiation from a satellite
and radar perspective tend to have high false alarm ratios (McGovern et al., 2023).
For the models mentioned, the false alarm ratios ranged from 22% to 60%.

To determine the extent of false alarms in Ortland et al. (2023)’s model, called the
Thunderstorm Nowcasting Tool (ThunderCast), Chapter 3 applied object-tracking
software to track regions of ThunderCast predictions. The predicted storm tracks
were then labeled as either true positive (⩾ 30 dBZ at −10◦C per ThunderCast’s
definition of a thunderstorm in Ortland et al. (2023)) or false positive (< 30 dBZ
at −10◦C). The tracks were further classified by the presence (or lack thereof)
of lightning from either the Geostationary Lightning Mapper (GLM) or Earth
Networks, Inc.’s (ENI’s) total lightning product. Over half of the true positive
tracks identified in Chapter 3 were not associated with GLM or ENI lightning, and a
radar reflectivity threshold cleanly separating tracks with and without lightning was
not found. This indicates a purely radar-based definition of convection associated
with thunderstorms is inherently flawed because large radar signatures are not
always indicative of thunderstorm activity, and false alarm rates in such models
may be higher than originally estimated.

Additionally, Chapter 3 compared the maximum radar reflectivities at −10◦C
for each predicted storm tracks to the tracks’ ABI 10.3 µm brightness temperatures
and 1.6 µm reflectances. Regardless of their true positive or false positive with or
without lightning classifications, most of the predicted storm tracks had minimum
10.3 µm brightness temperatures below freezing and low corresponding 1.6 µm
reflectances in the daytime cases. These results are consistent with the presence
of ice at cloud-top, and indicate the predicted storm tracks likely appear similar
visually in multispectral imagery like the DCPD RGB. In order for computer vision
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artificial intelligence methods, like those presented in Mecikalski et al. (2015),
Lagerquist et al. (2021), Ortland et al. (2023), and Fan et al. (2024), to differentiate
between electrified and non-electrified storms, patterns in the predictors must be
distinguishable. The similarities between the electrified and non-electrified storms
from the ABI perspective during convective initiation could make it difficult to
identify unique patterns at cloud-top and could contribute to high false alarms.

Following the results found in Chapter 3, this chapter presents four case studies
where ABI cloud-top signatures in DCPD RGBs (or NtMicro RGB imagery in cases
at night) appear consistent with thunderstorm development during convective
initiation but do not end up producing lightning. The cases were chosen to demon-
strate breadth in meteorological conditions, formation environments, and locations
during the midlatitude convective season. For each case, the meteorological condi-
tions, according to National Weather Service forecast discussions, leading up to
and during the convective initiation event are discussed. Additionally, the satellite
imagery, MRMS radar reflectivity at −10◦C, lightning observations (ENI and GLM
when available), and model predictions from ThunderCast are provided.

4.2 Case Studies

May 15, 2022: Severe Weather Day in Oklahoma

Conditions were favorable for thunderstorm development in northeastern Okla-
homa (OK) and northwestern Arkansas during the afternoon and evening hours on
May 15, 2022. According to National Weather Service Tulsa Office (2022), the convec-
tive available potential energy (CAPE) reached extreme values (4000-5000 J kg−1)
and convective inhibition (CIN or sometimes referred to as the strength of the
cap) was weakening. Developing flow aloft contributed to deep level wind shear
(50-60 kts), sufficient for sustaining supercells (National Weather Service Tulsa
Office, 2022). Near surface relative humidity ranged between 62% and 66% be-
tween 21:00 UTC and 23:00 UTC at a nearby Mesonet site in Pryor, OK (Oklahoma
Climatological Survey, 2022). These conditions resulted in rapid thunderstorm



72

development and many severe hail and wind reports were recorded (National
Weather Service, 2022a). The time series of images in Figs. 4.1 and 4.2 follow the
development of two storm cells (near the center of the images) in this primed thun-
derstorm environment to the east of Tulsa, OK. The first column in Figs. 4.1 and 4.2
display the Day Cloud Phase Distinction (DCPD) red-green-blue (RGB) images,
discussed previously in Section 4.1, for eight time steps in the late afternoon.

In Fig. 4.1, the DCPD RGB shows glaciating cumulus clouds (light green in
color) concentrated around the two developing cumulus towers. The towering
cumulus clouds appear oranger than the surrounding cumuli, indicating vertical
growth, cold cloud-tops, and the presence of ice. The bright orange colored cloud-
tops are shown distinctly for both the left-most and right-most storms in the DCPD
RGBs in Fig. 4.1. Fig. 4.2 focuses on the right-most storm from Fig. 4.1 during
it’s most active initiation stages, after the left-most storm has dissipated. Both
towering cumulus clouds start growing at similar times in environments exhibiting
key meteorological ingredients for thunderstorm development (high CAPE, low
CIN, and large wind shear). However, the left-most tower quickly starts to dissipate
at 22:11 UTC (about 50 min after glaciating) before producing lightning while the
tower on the right continues to grow into a mature thunderstorm with a distinct
overshooting top and observed lightning (at about 23:01 UTC, shown in Fig. 4.2).
Both towering cumulus structures were identified by ThunderCast as having a
high probability of developing into a thunderstorm and both contained radar
reflectivities ⩾ 30 dBZ at −10◦C, supporting Ortland and Pavolonis (2024)’s finding
that artificial intelligence models based on satellite and radar observations are
unable to differentiate between electrified and non-electrified storms. Furthermore,
key meteorological quantities for general areas used in forecasting like CAPE, CIN,
and wind shear are not sufficient, in some cases, to determine which cumulus
towers will initiate into thunderstorms because both cumulus towers in this case
study formed in similar environments. As a result, this case study demonstrates the
complex nature of thunderstorm development. More work is needed to determine
the causes of premature storm death and what datasets can be used to identify those
cases with current or more complex satellite imagery pattern recognition techniques.
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Such work is critical for understanding thunderstorm physical processes and what
datasets can be used in convective initiation models to reduce false alarms.
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Figure 4.1: A time series of GOES-16 ABI images with corresponding radar, light-
ning, and model (ThunderCast) data for the times closest to the ABI time (written
to the left of each row) collected from 21:46 to 22:01 UTC on 2022-05-15. The first
column contains GOES-16 DCPD false color RGB images. The second column con-
tains output from ThunderCast, MRMS radar reflectivity at −10◦C, and GOES-16
ABI 10.3 µm brightness temperatures. The last column contains ENI total lightning
events (points), GOES-16 GLM flash extent density, and GOES-16 ABI 0.64 µm re-
flectances. Each image is 80 km × 80 km and the latitude and longitude coordinates
of the lower lefthand corners are 35.7◦ and −96.1◦, respectively.
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Figure 4.2: A time series of GOES-16 ABI images with corresponding MRMS radar
data, model (ThunderCast) predictions, and GLM and ENI lightning data for the
times closest to the ABI time (written to the left of each row) collected from 21:51 to
22:01 UTC on 2022-05-15. The plots are set-up in the same manor as Fig. 4.1 except
the latitude and longitude coordinates of the lower lefthand corners are 35.7◦ and
−95.6◦, respectively.
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July 24, 2022: Sea Breeze Convection along Texas’ Gulf Coast

Differential heating between the Gulf of Mexico and the Texas coast can fuel new
convection as cooler sea air is driven inland, forcing the warmer air over the land
to rise (Scofield and Purdom, 1986). The resulting sea breeze convection can
rapidly develop into thunderstorms. On July 24, 2022, the mid-morning wind
surface conditions, shown in Fig. 4.6, were favorable for sea breeze convection
development since the wind direction along the coast indicated landward air motion.
Local National Weather Service forecasters described a potential for showers and
thunderstorm development along the sea breeze during the morning and early
afternoon (National Weather Service Houston/Galveston Office, 2022). Consistent
with the forecast, thunderstorms did develop along the Texas coast, such as the
case shown in Fig. 4.4. However, some of the cumuli initiating along Texas’ Gulf
Coast, with similar characteristics to the initiating stage of sea breeze thunderstorms
nearby, did not produce lightning. Fig. 4.5 shows one such case for four time steps
starting at 15:31 UTC (10:31am CDT).

In Figs. 4.4 and 4.5, similar to the Oklahoma case study, the green and yellow
colors visible in the DCPD RGB images indicate the presence of ice at cloud-top, the
radar reflectivities at −10◦C reach at least 30 dBZ, and the vertical cumulus towers
are maintained for a similar amount of time (approximately 45 min from glaciating
to dissipating). However, the meteorological conditions in the coastal environment
where this case study takes places is much different that of Oklahoma’s in the first
case study. This demonstrates patterns associated with convective storms in satellite
imagery and radar can fail to distinguish between electrified and non-electrified
cases in varied meteorological environments.
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Figure 4.3: Meteorological surface conditions for Sunday, July 24, 2022 at 15:00 UTC.
This image was produced by the National Oceanic and Atmospheric Administration
(NOAA) and is available to the public (National Weather Service, 2022b). Each
standard weather station plot in the image contains information for wind direction,
wind strength, sky cover, temperature, dew point, pressure, and pressure trend.
Surface pressure also provided by the dark red contours, and frontal boundaries
are marked in red and blue.
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Figure 4.4: A time series of GOES-16 ABI images with corresponding MRMS radar
data, model (ThunderCast) predictions, and GLM and ENI lightning data for the
times closest to the ABI time (written to the left of each row) collected from 17:06
to 17:21 UTC on 2022-07-24. The plots are set-up in the same manor as Fig. 4.1. In
the second and third columns, light purple lines display the Texas coastline. Each
image is 112 km × 112 km and the latitude and longitude coordinates of the lower
lefthand corners are 28.6◦ and −96.0◦, respectively.
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Figure 4.5: A time series of GOES-16 ABI images with corresponding MRMS radar
data, model (ThunderCast) predictions, and GLM and ENI lightning data for the
times closest to the ABI time (written to the left of each row) collected from 15:31
to 15:46 UTC on 2022-07-24. The plots are set-up in the same manor as Fig. 4.1 with
the same dimensions and coordinates as Fig. 4.4. In the second and third columns,
light purple lines display the Texas coastline.
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September 7, 2022: Sustained Convection in Tennessee with
Tropical Characteristics

Convective storms are influenced by the heating and circulation characteristics
of their region of origin because growth and transport within a cloud depend on
the cloud’s interactions with the environment. In the tropics, towering, sustained
cumuli are commonplace and do not always result in lightning production. This
has been attributed, in part, to differences in entrainment rates between electri-
fied and non-electrified storms (Singh and O’Gorman, 2013). According to Singh
and O’Gorman (2013), large entrainment rates can reduce buoyancy, especially
in warmer atmospheres, and decrease the strength of storm updrafts. Strong up-
drafts are important for charge separation in the non-inductive charging theory
for lightning formation (Saunders, 1993), so towering cumulus cloud structures
with high entrainment rates and, consequently, weaker updrafts could contribute
to the frequency of non-electrified convective storms. Although high entrainment
rates and weaker updrafts have largely been attributed to tropical convection, it is
possible for them to be present in the midlatitudes as demonstrated in Tennessee
(TN) on September 7, 2022.

On this date, moderate instability (CAPE values between 1000 J kg−1 and 2000
J kg−1), weak wind shear, and high precipitable water (about 2 inches) were present
in the mid-south region of the U.S throughout the afternoon and evening. CIN
values indicated a weak cap that strengthened throughout the evening (National
Weather Service Memphis Office, 2022). The surface temperature (82◦F) and dew
point temperature (72◦F) at 18:00 UTC from the westernmost weather station in
TN, shown in Fig. 4.6’s surface plot, indicated high relative humidity (about 71%).
Relative humidities remained high throughout the afternoon and evening.

In the early afternoon, scattered cumulus clouds were visible over western TN.
The cumuli grew vertically and aggregated into an organized line traveling to the
southwest along TN’s western state border. At approximately 20:01 UTC the cloud-
tops appeared to change from cyan to green in the DCPD RGB, indicating cloud-top
glaciation. In Fig. 4.7, the DCPD RGBs in the first column display some orange
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Figure 4.6: Meteorological surface conditions for September 7, 2022 at 18:00 UTC.
This image was produced by the National Oceanic and Atmospheric Administration
(NOAA) and is available to the public (National Weather Service, 2022b). Each
standard weather station plot in the image contains information for wind direction,
wind strength, sky cover, temperature, dew point, pressure, and pressure trend.
Surface pressure also provided by the dark red contours and frontal boundaries
are marked in red and blue.

pixels at cloud-top, suggesting continued vertical growth. The orange pixels are
only present for the last two time steps in Fig. 4.7. Afterwards, the cumuli sustain
their glaciated coloring for at least 2 more hours before dissipating. Although only
showing reflectivities around 30 dBZ at −10◦C in Fig. 4.7, high reflectivity values
(up to 51.0 dBZ) were observed at other time steps not shown.
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Figure 4.7: A time series of GOES-16 ABI images with corresponding MRMS radar
data, model (ThunderCast) predictions, and GLM and ENI lightning data for the
times closest to the ABI time (written to the left of each row) collected from 20:21
to 20:31 UTC on 2022-09-07. The plots are set-up in the same manor as Fig. 4.1. In
the second and third columns, light purple state lines show TN’s western border.
Each image is 160 km × 160 km and the latitude and longitude coordinates of the
lower lefthand corners are 34.7◦ and −90.7◦, respectively.

This case study’s non-electrified, long-lasting, and organized cumulus structure,
formed in an environment with high humidity, is reminiscent of the towering trop-
ical cumulus structures discussed earlier. It is speculated that high entrainment
rates, weak updrafts, or the strengthening cap could have contributed to the lack of
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lightning in this case. The existence of a tropical-like convective case in the midlati-
tudes indicates these structures are not confined to the tropics and could complicate
the reduction of false alarms in thunderstorm nowcasting models. Additionally,
more work is needed to determine how the frequency of such structures could
change with the changing climate and the corresponding Hadley cell circulation
expansion (Lionello et al., 2024).

July 27, 2023: Convective Activity in Alaska

The cases presented thus far have all been selected from central or southern U.S.
regions. However, non-electrified towering cumuli, with similar appearances to
thunderstorms in satellite imagery, have been observed at higher latitudes including
the upper midwestern U.S. states and Alaska. In this final case study from Alaska
on July 27, 2023, imagery from two non-electrified convective storms are compared
to nearby thunderstorms. On this day, an upper level ridge in the area caused well
above average temperatures and scattered thunderstorms across the Central and
Eastern Interiors (National Weather Service Fairbanks Office, 2023). Multiple time
steps for each towering cumulus case for this day are presented in Figs. 4.8, 4.9,
and 4.10.

In Fig. 4.8, ThunderCast identifies an area with cold 10.3 µm brightness tem-
peratures in the lower right-hand corner of the image as having a high probability
of producing a thunderstorm in the next hour. The corresponding NtMicro RGB
displays the potential thunderstorm as dark red with some lighter colors in the
middle. The large red contribution in the RGB indicates the cloud is thick and
the lighter yellow colors indicate it is very cold, both characteristics of towering
cumulus or mature cumulonimbus. There are no ENI lightning events observed.
However, in the upper left-hand corner similarly colored areas in the NtMicro RGB
with ThunderCast predictions have observed lightning.

Additionally, in Fig. 4.9, the developing cumulus just left of center exhibits colors
(bright oranges and greens) in the RGB consistent with the early development
stages of thunderstorm growth. The indicated developing cumulus in Fig. 4.9 does
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not produce lightning, but the dissipating cumulonimbus to its right did contain
lightning about 40 min earlier. The initiation stage of the dissipating cumulonimbus
in Fig. 4.9 is shown in Fig. 4.10 and contains similar colors in the RGBs. The
cloud-tops are more saturated with red in Fig. 4.10 than Fig. 4.9, but this can be
accounted for by the close temporal proximity to sunrise. Altogether, Figs. 4.8-4.10
demonstrate non-electrified convective storms can appear similar to electrified
storms in satellite imagery at high latitudes.
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Figure 4.8: A time series of GOES-18 ABI images with corresponding lightning and
model (ThunderCast) data for the times closest to the ABI time (written to the left
of each row) collected from 12:30 to 13:00 UTC on 2023-07-27. The first column
contains GOES-18 NtMicro false color RGB images. The second column contains
output from ThunderCast, GOES-18 ABI 10.3 µm brightness temperatures, and
ENI total lightning (blue points). Each image is 144 pixels × 144 pixels at 1-km
resolution in a geostationary projection and the latitude and longitude coordinates
of the lower lefthand corners are 62.3◦ and −151.6◦, respectively.
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Figure 4.9: A time series of GOES-18 ABI images with corresponding lightning and
model (ThunderCast) data for the times closest to the ABI time (written to the left
of each row) collected from 17:10 to 17:40 UTC on 2023-07-27. The first column
contains GOES-18 DCPD false color RGB images. The second column contains
output from ThunderCast and GOES-18 ABI 10.3 µm brightness temperatures. The
last column contains ENI total lightning events (red points) and GOES-18 ABI
0.64 µm reflectances. Each image is 96 pixels × 96 pixels at 1-km resolution in a
geostationary projection and the latitude and longitude coordinates of the lower
lefthand corners are 61.4◦ and −148.1◦, respectively.
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Figure 4.10: A time series of GOES-18 ABI images with corresponding lightning
and model (ThunderCast) data for the times closest to the ABI time (written to the
left of each row) collected from 16:00 to 16:20 UTC on 2023-07-27. The plots are
set-up in the same manor and with the same dimensions as Fig. 4.9
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4.3 Summary
False color red-green-blue (RGB) composite imagery, such as the Day Cloud Phase
Distinction (DCPD) or Nighttime Microphysics (NtMicro) RGBs, are important
for visually identifying convective lifecycle stages because the satellite spectral
bands comprising the imagery are physically relatable to cloud microphysics and
morphology. Because of their applicability to convective initiation and existing,
manual thunderstorm identification forecasting methods, satellite spectral bands,
including those used in the DCPD and NtMicro RGBs, have been incorporated
along with radar data into artificial intelligence models for short-term forecasting
of thunderstorms. However, recent work from Chapter 3 suggested developing
convective storms with lightning (thunderstorms) often appear similar in satellite
imagery and contain similar radar signatures to those that do not produce light-
ning. Four case studies containing non-electrified convective storms with similar
appearances, in either the DCPD or NtMicro RGB images, to thunderstorms were
presented in this chapter, verifying the results from Chapter 3.

In the presented case studies, non-electrified convective storms with similar
appearances to thunderstorms were not limited by latitude or known environmental
conditions. These non-electrified storms were located at a variety of latitudes,
ranging from approximately 28◦ (Texas’ Gulf Coast) to 63◦ (Alaska). Also, the
storms formed in an assortment of meteorological environments including a coastal
environment with an active sea breeze (Texas on July 24, 2022), a high humidity
case with similar properties to tropical environments (Tennessee on September 7,
2022), and an environment exhibiting key meteorological ingredients for severe
weather activity like high convective available potential energy, low convective
inhibition, and large wind shear (Oklahoma on May 15, 2022). In some of these
environments, other convective storms were able to successfully produce lightning,
demonstrating the complexity of thunderstorm formation processes. Additionally,
characteristics of the Tennessee case were similar to convection observed in the
tropics, demonstrating tropical and midlatitude convection may not be as distinctive
as the latitudinal labels imply.
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Further analysis is needed to determine why some convective storms die pre-
maturely while others continue to grow and if any remote sensing observations
can be used to distinguish between initiating non-electrified and electrified storms.
In doing so, potential avenues for convective initiation model improvement can be
explored. The frequency of observing convection with tropical properties in the
midlatitudes remains a topic of future work as well as how such frequencies could
change with a warming climate.
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5 conclusion

5.1 Summary of Research Questions
Deep learning, a form of artificial intelligence, has been increasingly used for short-
term forecasting (nowcasting) of weather phenomena because of its ability to
synthesize vast quantities of environmental data into actionable insights. In this
dissertation, the current scientific understanding of convection from a satellite and
radar perspective was used to inform the development and evaluation of a deep
learning model for convective storm (thunderstorm) nowcasting in the continental
United States. In doing so, three primary research questions were explored. In this
section, each research question is reiterated and the key findings, as they relate to
the research questions, are summarized.

1. How well can the occurrence of convection in the next hour be predicted with
a deep learning model developed from the current scientific understanding
of thunderstorm signatures in satellite imagery and ground-based radar
observations?

The Thunderstorm Nowcasting Tool (ThunderCast) was developed for predict-
ing thunderstorm occurrence in the next 0-60 min using a U-Net convolutional
neural network for semantic segmentation. The model was trained with four satel-
lite spectral bands from the Geostationary Environmental Operational Satellite-16
(GOES-16) Advanced Baseline Imager (ABI) as predictors: 0.64-µm reflectance
(channel 2; red band), 1.6-µm reflectance (channel 5; snow/ice band), 10.3-µm
(channel 13; clean longwave window band) brightness temperature, and 12.3-
µm (channel 15; dirty longwave window band) brightness temperature. These
particular bands were selected because they are commonly utilized by forecast-
ers for diagnosing trends and patterns in cumuliform clouds including cloud-top
glaciation, cloud-top temperature, and cloud morphology. The target dataset, used
for training and model validation, was the maximum Multi-Radar Multi-Sensor
(MRMS) radar reflectivity at −10◦C in the next hour, where anything ⩾ 30 dBZ was
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considered positive for thunderstorm occurrence. This target dataset was chosen
because it represents the earliest radar signature of convective initiation in previous
research studies and it agrees well with radar signatures observed in storms during
field campaigns.

Statistical analysis of ThunderCast revealed the model performs consistently
across the contiguous united states (CONUS) and does well in terms of accuracy,
recall, and specificity. However, the model is prone to false alarms, resulting in low
precision. Accentuating this issue, the precision values were found to be higher
during the day than at night, indicating false alarms are further elevated at night.
This demonstrates a deep learning model, built with the current scientific under-
standing of thunderstorm signatures in satellite imagery and radar observations,
can be highly accurate when predicting thunderstorm occurrence in the next hour
but exhibits a tendency to over predict storms. Despite the false alarms, Thunder-
Cast effectively identifies regions of interest for convective development and can be
used to inform situational awareness.

2. What environmental conditions and/or observational factors (associated with
the selection of ThunderCast’s inputs and target) impact the reliability and
applicability of ThunderCast for thunderstorm prediction?

To gather environmental and observational data for ThunderCast’s predicted
storms, an established tool for the Tracking and Object-Based Analysis of Clouds
(tobac) was applied to ThunderCast’s probabilistic output. In doing so, regions
of ThunderCast predictions were identified and tracked for 7 randomly selected
days in each month of the convective season in 2022. For simplicity, the dataset
was filtered to focus on new convection without complex merge or split scenarios.
MRMS radar reflectivity at −10◦C, lightning observations from the Geostationary
Lightning Mapper (GLM) and Earth Networks Inc.’s (ENI) total lightning product,
and satellite observations from the 1.6µm and 10.3µm spectral bands were collected
for each predicted storm track. Based on the observations collected for each track,
the tracks were sorted into true positive (MRMS radar ⩾ 30 dBZ at −10◦C per
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ThunderCast’s radar definition of convective initiation) and false positive (< 30 dBZ
at −10◦C) categories with and without lightning.

Out of the 24,770 land-based predicted storm tracks identified, 67.8% were true
positive and 59.3% of the true positive cases were not associated with GLM or ENI
lightning observations. The large percentage of new convection without lightning
affects the reliability and applicability of ThunderCast for thunderstorm prediction
because the predictions can not be relied upon to correspond to thunderstorms
even when they reach MRMS reflectivities ⩾ 30 dBZ. Although the number of true
positive cases without lightning decreased with higher maximum reflectivity at
−10◦C, there were still non-electrified tracks with high reflectivity values (⩾ 40 dBZ
at −10◦C). This indicates definitions of convective initiation that rely on thresholds
in radar observations are not adequate for isolating convection associated with
thunderstorms. Additionally, most of the predicted storm tracks, regardless of true
or false positive with or without lightning categorization had cloud-top brightness
temperatures less than freezing and low 1.6 µm reflectances, consistent with the
presence of ice at cloud-top and cloud-top glaciation. Because true and false posi-
tive tracks with and without lightning contain these signatures, the tracks likely
appear similar in satellite imagery, which could contribute to high false alarm rates.
Thus, both cloud-top conditions and radar observations can appear similar for non-
electrified and electrified convective storms, impacting ThunderCast’s reliability
and applicability for thunderstorm prediction.

3. What scientific insights can be gained, what limitations are exposed, and what
potential avenues for model improvement can be identified from evaluating
ThunderCast case studies?

In the exploration of the second research question, non-electrified and electrified
convective storms were found to likely exhibit similar cloud-top properties from
a satellite perspective. For further investigation, four case studies were presented
where ABI cloud-top signatures in the Day Cloud Phase Distinction (DCPD) and
Nighttime Microphysics (NtMicro) RGBs appeared consistent with thunderstorm
development during convective initiation but did not go on to produce lightning.
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The case studies demonstrated non-electrified convective storms can occur at a wide
range of latitudes (ranging from 28◦ and 63◦ in the case studies) and under a variety
of meteorological conditions (e.g., sea breeze, high humidity, and in a primed
severe weather environment). In some of the case studies’ environments, other
convective storms were able to successfully produced lightning. This demonstrates
known, generalizable precursors for thunderstorm initiation from remote sensing
and ground-based observations are not able to provide enough information to
determine which developing cumuli will grow into mature, electrified cumulonimbi.
This limitation impacts the ability of artificial intelligence models to make precise
predictions, and more work is needed to determine how to address this knowledge
and observation gap.

In addressing the three primary research questions in this dissertation, a deep
learning model, built from the current scientific understanding for thunderstorm
characteristics from a radar and satellite perspective, provided valuable insight into
how well our observations and scientific understanding can be used for thunder-
storm prediction. The high false alarm rates in the model and the model’s inability
to distinguish between electrified and non-electrified storms reveals the model’s
limitations. Future research will be needed to address these limitations in terms of
both improvements to the scientific understanding of the thunderstorm lifecycle
and thunderstorm prediction models.

5.2 Future Work
There are many avenues for future work stemming from the research described in
this dissertation. One option is to test different types of deep learning models to
determine which architecture is best for thunderstorm nowcasting. ThunderCast is
a deep learning model built with a U-Net convolutional neural network. However,
there are many other types of architectures that could, potentially, perform better
than a U-Net. Some possibilities include using transformers (Lin et al., 2022)
or adapting attention models for attention-based semantic segmentation (Guo
et al., 2022). Also, ThunderCast did not use time as a parameter in the model.
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Instead, it used 1-hour maximum radar reflectivity values from ground-based
radars as the target dataset to provide some context of convective activity in the
next hour. Other model types could incorporate time into the analysis such as
U-Time (Perslev et al., 2019) or satellite image time series (SITS) models (Pelletier
et al., 2019). Although this dissertation did not focus on testing different model
types, future research studies could investigate which models perform optimally
for thunderstorm prediction.

In Chapters 2 and 3, statistical analysis of ThunderCast’s output revealed Thun-
derCast is prone to false alarms. In Chapter 3, some of the false alarms corresponded
to regions of predictions where clouds were not present, and these cases tended to
occur near high-contrast physical features in the satellite imagery like lakes and
rivers. To reduce false alarms, more clear-sky training cases near high-contrast
physical features could be incorporated into ThunderCast’s training dataset to
ensure the model has adequate exposure to such features. Additionally, in Chapter
3, using a ground-based radar threshold of convective initiation did not completely
filter out stratiform convection from the dataset, which resulted in thunderstorm
predictions for non-cumuliform cloud types. Future work can investigate alterna-
tive methods to identify convection associated with thunderstorms in the target
dataset, which could reduced false alarm rates. Another motivation for using an
alternative method for identifying convection from thunderstorms is the majority of
ThunderCast’s predicted thunderstorm cases, with a ground-based radar signature
meeting the defined threshold (MRMS ⩾ 30 dBZ at −10◦C), did not have any asso-
ciated GLM or ENI lightning. This indicates the ground-based radar threshold was
not able to distinguish between electrified and non-electrified storms, so additional
research is needed to determine if an alternative methodology could eliminate
non-electrified storms from the training dataset.

Furthermore, the non-electrified and electrified predicted storms were found to
have similar 10.3 µm brightness temperatures and 1.6 µm reflectances in Chapter 3.
They also appeared similar during initiation in the satellite imagery presented in the
case studies in Chapter 4. In order for a deep learning model to distinguish between
non-electrified and electrified storms, patterns need to be discernible in the satellite
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data. This indicates, if forecasters desire a model identifying convection only asso-
ciated with electrified storms, additional predictors may need to be incorporated
into future deep learning models for thunderstorm nowcasting in order to avoid
identification of non-electrified cases. More work is needed to determine which
predictors would be appropriate, but some potential options include additional
satellite bands (6.2 µm, water vapor for example), dual-polarization radar data,
radar data from satellites, or numerical weather prediction models.

Another avenue for future work is to implement more spatial and temporal
comparisons of predicted storm characteristics. For example, in Chapter 3, all of
the U.S. climate regions had more cases with MRMS reflectivity values ⩾ 30 dBZ
at −10◦C without lightning than with lightning except for the southwest. Carlaw
et al. (2017) recently found the greatest frequencies of lightning in southwestern
Arizona were concentrated around the highest terrain. The location of Thunder-
Cast’s predicted storms with and without observed lightning could be compared
to the findings in Carlaw et al. (2017). Additionally, new ThunderCast models
could be trained for specific regions in the United States (e.g., a model trained
just for the southwest). The resulting model statistics could be compared to the
original ThunderCast model to see if a smaller regional model could have improved
performance over the larger national model in the same area.

As detailed in this, final section of this dissertation, there are many avenues
for future work. More research is needed to deepen the current scientific under-
standing of thunderstorm lifecycles, the relationship between observations and
thunderstorms, and how observations can be best synthesized for forecasting thun-
derstorms and their associated hazards.
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