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Abstract

The Antarctic Ice Sheet is a critical component of the Earth’s climate system, with

its role in global sea level regulation becoming increasingly significant in a warming

climate. Snowfall is a key factor in ice mass balance, influencing the ice sheet’s con-

tribution to sea level changes. Previous studies have shown that moisture intrusions

can cause large snowfall events, but by focusing only on the most extreme moisture

events impinging on the ice sheet, these studies only address specific regions of the

ice sheet, omitting many potential mass-building snowfall events across other parts

of the continent. This study examines extreme snowfall events (defined as greater

than the 95th percentile) across each drainage basin in Antarctica. Using the new

Combined CloudSat CALIPSO Snowfall (C3S) that leverages the snowfall detection

capabilities of the CloudSat radar while mitigating errors caused by the radar blind

zone with CALIPSO lidar observations, we find that top 5% of snowfall events in

each basin account for nearly 40% of the total accumulation on the Antarctic ice

sheet. Analyzing MERRA-2 reanalysis and automatic weather station data, we find

that, unlike moderate snowfall, extreme events in many drainage basins exhibit sea

level pressure dipoles that bring warm, moist air to the continent. This comprehen-

sive analysis broadens the findings of recent work, by demonstrating that extreme

snowfall events play a key role in Antarctic ice mass balance and are frequently con-

nected to enhanced atmospheric moisture transport across the entire Antarctic ice

sheet offering valuable insights for climate research and sea level rise projections.



ii

Acknowledgements

First I would like to thank my advisor, Tristan L’Ecuyer. I have greatly appreciated

his advice and encouragement throughout my master’s degree.

I would also like to thank Matthew Lazzara for taking me on as a project assistant

at the AMRDC. Thank you to Matthew and the rest of the AMRDC for supporting

me throughout my master’s and letting me explore my interests.

Thank you to Marian Mateling, who has worked on this project since the begin-

ning and given me lots of code and advice.

Thanks to my committee Angela Rowe and Hannah Zanowski for their feedback

on this thesis.

Thanks to my partner Jack, who has been amazingly supportive and cooked me

yummy food during stressful times.

Thanks to all my friends who I have made in the department. My grad school

experience would not be the same without them.

Last, I want to thank my family, especially my parents, who taught me to love

math and science from a young age.
This work is supported by NSF grants 1951720 and 2301362 through the AMRDC

+ NASA CloudSat project G-3969-1.



iii

Contents

1 Introduction 1

2 Data and Methods 9
2.1 C3S dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Virga and Shallow Snow . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Additional quality control . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Remaining Uncertainties . . . . . . . . . . . . . . . . . . . . . 18

2.2 Defining Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Drainage Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Automatic Weather Stations . . . . . . . . . . . . . . . . . . . . . . . 24

3 Results 27
3.1 How much do extreme snow events contribute to the ice mass of the

Antarctic Ice Sheet? . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 The whole AIS . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Basin Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Ice Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 What atmospheric conditions cause extreme snow and how does this
differ across the continent? . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Sea Level Pressure Analysis . . . . . . . . . . . . . . . . . . . 34
3.2.2 Water Vapor Analysis . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Non-extreme Snow . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 AWS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Summary 48
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



iv

List of Figures

1.1 Elevation map of the Antarctic Ice Sheet derived from CryoSat-2
(Helm et al., 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 An example of virga (red box) and shallow snow (blue box). Each
panel shows the along track path on the x-axis and the 0 to 6 km
vertical of the y-axis. The left panel shows the CloudSat CPR re-
flectivity (dBZe) and the right panel shows the CALIOP backscatter
(km−1sr−1).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Virga frequency (left), shallow snow frequency (right) . . . . . . . . . 14
2.3 C3S climatology: Frequency of snowfall detected by C3S (left), Mean

Annual Accumulation (right) from 2006-2010 . . . . . . . . . . . . . . 15
2.4 As in Fig. 2.1a, but for a case where the DEM is inaccurate. The red

line represents the surface, with the top line (solid) representing the
actual surface and the bottom line (dotted) representing the incorrect
DEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Antarctic CDF (a), weighted CDF (b), total process (c) . . . . . . . . 22
2.6 Drainage basins for the AIS. Basins located in the WAIS are shown

in blue while basins located in the EAIS are shown in pink. . . . . . . 23
2.7 Location of all AWS associated with UW-Madison’s AMRDC as of

2023 (AMRDC, 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Locations of extreme snowfall detected by C3S. Basin outlines can be
seen in black, additionally each basin is assigned a unique color to
show extreme locations. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Extreme snow rate threshold (left) and fraction of accumulation from
extreme snow (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Snow rate corresponding to half the accumulation (left) and percentile
accounting for half the accumulation (right) . . . . . . . . . . . . . . 31

3.4 Total snow mass (left) and mass from extreme snow (right) . . . . . . 33
3.5 SLP anomalies coinciding with extreme cases. Basins circled in blue

experience the strong SLP dipole regime, basins in green experience
the weak SLP dipole regime, and basins in red do not experience a
significant SLP dipole. . . . . . . . . . . . . . . . . . . . . . . . . . . 35



v

3.6 Difference between maximum and minimum SLP anomalies for each
basin. Each basin’s SLP difference is represented by a mark on the
number line in order to demostrate the natural clusters in the data.
The horizontal lines represent the thresholds separating the three
regimes, no dipole present (red), weak dipole (green), and strong
dipole (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 SLP anomalies for strong dipole regime example. Shaded areas rep-
resents statistically significant areas. Vectors represent surface wind
anomalies. The yellow basin highlighted is the basin of interest. . . . 37

3.8 As in Fig. 3.7 but for weak regime . . . . . . . . . . . . . . . . . . . 38
3.9 As in Fig. 3.7 but for no significant dipole . . . . . . . . . . . . . . . 39
3.10 As in Fig. 3.5 but for TPWV . . . . . . . . . . . . . . . . . . . . . . 40
3.11 SLP difference vs Maximum TPWV. Basins with a strong dipole

regime are colored in blue, the weak dipole regime green, and no
dipole present red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 SLP difference vs Maximum TPWV. Basins with a strong dipole
regime are colored in blue, the weak dipole regime green, and no
dipole present red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 As in Fig. 3.6 but for non-extreme cases . . . . . . . . . . . . . . . . 43
3.14 As in Fig. 3.5 but for non-extreme cases . . . . . . . . . . . . . . . . 44
3.15 As in Fig. 3.10 but for non-extreme cases . . . . . . . . . . . . . . . . 45
3.16 Locations of Mizuho AWS (left) and Linda AWS (right) shown in red

with corresponding basins (yellow) and SLP anomalies as in Fig. 3.7. 46
3.17 Histogram of temperature (Top) and wind speed (bottom) at Mizuho

AWS. Extreme snow is shown in pink and non-extreme snow is shown
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.18 As in Fig. 3.17 but for Linda AWS. . . . . . . . . . . . . . . . . . . . 47



vi

List of Tables

2.1 C3S decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Number of C3S extreme snow counts for each basin, as well as the

number of C3S extreme snow counts from unique overpasses . . . . . 24



1

Chapter 1

Introduction

As the earth’s climate is undergoing significant change, global temperatures continue

to rise with increasing greenhouse gas concentrations. This warming is causing a

number of environmental changes, including rising sea level. Global mean sea level

has increased by approximately 1.5 mm per year over the twentieth century, how-

ever this rate has been accelerating (Hay et al., 2015; Oppenheimer et al., 2019;

Dangendorf et al., 2019). The impacts of sea level rise are far-reaching. Coastal

communities around the world are at risk of flooding, which can lead to displace-

ment, economic loss, and damage to infrastructure. Low-lying areas, such as small

island nations and delta regions, are particularly vulnerable. Furthermore, sea level

rise can exacerbate the effects of storm surges and high tides, increasing the fre-

quency and severity of coastal erosion and flooding events. Some regions of the

globe have already been impacted by these changes. Studies have shown that the

mean tidal range in Miami, Florida has doubled since 1900 and will likely lead to

chronic flooding in the near future (De Leo et al., 2022).

Sea level rise is largely driven by two processes: thermal expansion and ice

mass loss (Frederikse et al., 2020). Among these mechanisms, the Greenland and
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Antarctic ice sheets play a critical role as they hold most of the global fresh water

(Oppenheimer et al., 2019). Between the two ice sheets, the Antarctic Ice Sheet

(AIS) is the larger, covering roughly 14 million square kilometers and containing

about 60% of the Earth’s fresh water (Church et al., 2013). The AIS is divided

into the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet (WAIS),

separated by the Transantarctic Mountains that span the continent.

The stability of the AIS is crucial for maintaining the current sea level (Rignot

et al., 2011). Over the past few decades, however, the AIS has shown signs of

increased ice loss (Rignot et al., 2011; Shepherd et al., 2012, 2019). If the entire

AIS were to melt, it would contribute 58 meters to global sea rise (Oppenheimer

et al., 2019). While complete melting of the ice sheet is unlikely to occur in the near

future, the melting of the AIS could contribute approximately 1.5 meters of sea level

rise by the end of the 21st century (Rignot et al., 2011; Oppenheimer et al., 2019).

The annual mass loss of the AIS was approximately 120 Gt/yr from 2003 to 2019

(Smith et al., 2020). However, the AIS is experiencing increased melting primarily in

its western region. The Thwaites and Pine Island glaciers, located in the Amundsen

Sea Embayment of the WAIS, are particularly vulnerable, showing significant ice

loss and contributing to global sea level rise (Joughin et al., 2014; Rignot et al.,

2014; Gardner et al., 2018). On the other hand, the EAIS remains relatively stable,

although recent extreme weather events have led to temporary gains in ice mass

(Wang et al., 2023; Wille et al., 2024).

Melting of the Antarctic Ice Sheet is largely due to rising ocean and air temper-

atures, increased calving of icebergs, and the flow of warm water beneath ice shelves

(Clem et al., 2023). However, snowfall has the potential to offset some of this melt-

ing. Snowfall is the primary input of surface mass balance (Palerme et al., 2017).

As snow falls on the continent, it gains mass primarily in the center. This snowfall
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eventually redistributes through wind and ice dynamics, contributing to the overall

mass balance of the ice sheet. Snow predominantly falls along the coastal regions,

however despite larger snowfall totals, these regions generally experience mass loss

due to calving, basal melting, and surface melting (Rignot et al., 2011; Clem et al.,

2023).

As the Earth warms, snowfall in Antarctica is predicted to increase due to the

higher moisture-holding capacity of warmer air (Church et al., 2013). Increased

snowfall is expected especially in interior regions of the continent where there is

currently very little snowfall (Frieler et al., 2015). This increase can mitigate some

of the effects of sea level rise from the melting AIS. In the past decades, increased

snowfall has helped to offset some of the ice loss, although it is not enough to balance

the accelerating ice discharge (Medley and Thomas, 2019).

There are still many unknowns when it comes to modeling how snowfall on the

continent will change in the future, underscoring the importance of studying the cur-

rent state of Antarctic snowfall. Current snowfall on the continent mainly occurs on

the coasts, with less in the interior due to the cold, dry climate and the lower capac-

ity of the air to hold moisture (Palerme et al., 2014). Coastal regions receive more

snowfall due to the proximity to moisture sources and the influence of steep topog-

raphy, which enhances precipitation (Palerme et al., 2014). The Antarctic Peninsula

experiences higher snowfall rates due to its unique topographic and climatic condi-

tions, which facilitate more frequent precipitation events (González Herrero et al.,

2023). Elevations across the Antarctic Ice Sheet are presented in Fig. 1.1. From this

map, it can be seen that the interior of the continent lies at a much higher elevation

than the coasts. Furthermore, the EAIS has much higher elevation than the WAIS.

This figure will be referenced throughout the paper as we discuss how elevation is

related to snowfall on the AIS.
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Figure 1.1: Elevation map of the Antarctic Ice Sheet derived from CryoSat-2 (Helm
et al., 2014)

Extreme snowfall events, driven by atmospheric rivers, significantly contribute to

annual snow accumulation in these regions. Atmospheric rivers are narrow bands of

intense moisture transport from the ocean to the AIS, often leading to heavy snowfall

when they interact with the continent’s topography (Gimeno et al., 2014). Certain

regions, like the Amery Ice Shelf and the Thwaites Glacier basin, experience frequent

atmospheric river events, which are critical for understanding snowfall dynamics and

their contribution to the ice mass (Turner et al., 2019; Maclennan et al., 2022).

Extreme snowfall events are essential for maintaining the mass balance of the

AIS. From 2021-2022, the AIS showed record breaking mass gain of about 130 Gt/yr

due to enhanced precipitation (Wang et al., 2023). In one region, two notably

extreme precipitation events accounted for approximately 38% of the precipitation
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anomalies during this time (Wang et al., 2023). Clearly, quantifying and studying the

contributions of extreme events across the continent is essential for future projections

of mass balance of the continent.

In a recent study, Rendfrey et al. (2024) use CloudSat snowfall retrievals to

demonstrate that enhanced integrated vapor transport (IVT) events correspond to

higher snowfall rates and frequency over both the Amery Ice Shelf of the EAIS and

the Thwaites and Pine Island glacier basins of the WAIS. Their research highlights

the significant role of moisture transport in driving snowfall processes across these

regions. They found that during enhanced IVT events, the presence of an anomalous

850 hPa geopotential height pattern, characterized by a pair of low-pressure and

high-pressure anomalies, facilitates moisture transport into the interior of the ice

sheet, leading to increased snowfall rates.

Building on this foundation, this analysis takes a more general approach to un-

derstanding the source of extreme snowfall events on the AIS by characterizing

moisture transport associated with all extreme snowfall events across the continent.

As such, this study broadens the spatial scope of Rendfrey et al. (2024) by examin-

ing all Antarctic basins, rather than focusing on a select few. This comprehensive

approach provides a more complete understanding of the relationship between mois-

ture transport and snowfall across the entire Antarctic continent, highlighting the

importance of extreme moisture transport events in shaping the surface mass balance

of the ice sheet.

Due to its harsh conditions, in situ and ground-based observations of snowfall

are rare in Antarctica. While ground-based instruments provide high temporal res-

olution, they are limited in spatial coverage and are susceptible to conditions like

blowing snow (Grazioli et al., 2017). While some studies such as Gorodetskaya et al.

(2014) have provided important initial evidence of links between isolated extreme
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snowfall events and periods of anomalous water vapor transport, extrapolating these

findings to the entire AIS requires satellite measurements. The launch of NASA’s

CloudSat in 2006 marked the first time spaceborne precipitation observations were

available for the Antarctic ice sheet (Stephens and Ellis, 2008; Liu, 2008). Stud-

ies such as Palerme et al. (2014) have estimated annual snowfall rates across the

AIS using algorithms developed from the CloudSat’s Cloud Profiling Radar (CPR).

However, CloudSat’s snowfall estimates face a significant challenge. In the 1.2 km

closest to the surface, radar side-lobes reflecting off the ground produce clutter that

overpowers signals from hydrometeors in this region (Palerme et al., 2019). This

creates a layer known as the blind zone in which the radar is unable to detect snow-

fall variations (Palerme et al., 2019). To address this issue, the CloudSat snow

algorithm, 2C-SNOW-PROFILE (2C-SP), estimates surface snowfall from the 5th

bin above the surface (Wood and L’Ecuyer, 2018).

This approach has its drawbacks, as snow can sublimate in this layer or shallow

snow can form, which CloudSat will miss (Palerme et al., 2019). Antarctica is known

for its strong and persistent dry wind, referred to as katabatic winds (Parish and

Cassano, 2003). These winds are formed by a cold, thin layer of air that is cooled

by radiation at the surface and then flows down the slope (Wendler et al., 1997).

These winds occur across the whole continent, but are particularly common near

the coasts where there is a steep drop off from the ice sheet (Wendler et al., 1997).

Katabatic winds can sublimate snow as it is falling, referred to as virga, as these

winds create a dry layer near the surface (Grazioli et al., 2017). The authors of

Grazioli et al. (2017) used a ground based radar at Dumont d’Urville station on the

Adelie coast and found that about 36% of snowfall detected was sublimated before

it reached the surface, with a high correlation with the katabatic wind layer. They

further estimated this effect across the continent with model data and found higher
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ratios of sublimated snowfall along the coasts. Many of the effects of sublimation

may be hidden from the CloudSat snowfall estimates.

To mitigate these problems, this study employs a unique dataset from another

satellite. CloudSat is a part of NASA’s A-train satellites, a group of satellites follow-

ing similar orbital tracks (L’Ecuyer and Jiang, 2010). Another A-train satellite, the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), car-

ries the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Operating at

a much shorter visible wavelength with a higher vertical and spatial resolution than

the CPR, CALIOP is not subject to ground clutter at the surface (Winker et al.,

2009). The complementary combination of CloudSat and CALIPSO measurements

has been previously used to capture various cloud properties and radiative effects

(L’Ecuyer et al., 2008; Sassen et al., 2008; Henderson et al., 2013; Mace and Zhang,

2014). This study will utilize a new dataset, the Combined CloudSat CALIPSO

Snowfall (C3S), which uses CALIPSO snowfall estimates to improve issues with the

CloudSat snow in the blind zone.

While satellite observations are essential for studying the AIS, there is still a need

for ground based observations to accurately characterize surface conditions. Unlike

satellite and reanalysis data, in situ measurements have a very high temporal res-

olution and do not rely on assumptions and measure relevant variables directly.

Since 1980, the University of Wisconsin-Madison has managed a network of Auto-

matic Weather Stations (AWS) through the Antarctic Meteorological Research and

Data Center (AMRDC) (Lazzara et al., 2012). Today, the AMRDC has more than

60 AWS sites across the continent, which measure meteorological variables such as

wind, temperature, and pressure (Lazzara et al., 2012). These data uniquely capture

local conditions that would not otherwise be detected by satellite or models. This

study will use AWS data to further explore meteorological conditions of extreme
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snow from a ground-based perspective.

In this thesis, we aim to measure how much extreme snow is contributing to

the ice mass of the Antarctic ice sheet, using the improved estimates of the C3S

dataset. Furthermore, we aim to explore the atmospheric conditions that cause

extreme snow and characterize how this differs across the continent. The next

section will first expand on the C3S dataset and how it will be used in this study

as well as supplemental datasets used to characterize snowfall cases. The following

section will dive into two separate results. The first section of results will answer how

much extreme snowfall is contributing to the mass of the AIS. The second section

will answer what atmospheric conditions cause extreme snow and how this differs

across the continent.
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Chapter 2

Data and Methods

2.1 C3S dataset

The primary source of snowfall information used in this study were remotely-sensed

snowfall intensity observations from CloudSat and CALIPSO. CloudSat carries the

Cloud Profiling Radar (CPR), with a spatial resolution of 1.4 km (cross-track) by

1.8 km (along-track) (Tanelli et al., 2008). The CPR is a W-band radar, operating

at 94 GHz which is sensitive to small hydrometeors such as ice particles and snow.

CALIPSO carries the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

which has a spatial resolution of 333m by 30m (Winker et al., 2009). These two

satellites take measurements from -82◦S to 82◦N, with one orbit taking 98 minutes

and covering the entire earth every 16 days. The analysis spans from the end of

2006 to 2010, when CloudSat has the most complete day-night sampling (Milani

and Wood, 2021). However, 2009 is missing months September through December

due to an issue with CALIPSO. Data from November and December 2006 is used to

supplement for this gap, although September and November only have three years

worth of data. Although daytime-only observations are available for more than a
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decade after this period, the lack of nighttime measurements precludes analysis of

winter time snowfall events at the poles after early 2011.

For this study, a new product the Combined CloudSat CALIPSO Snow (C3S)

is used for snowfall rates. This product is not yet published, but will be in the

near future. C3S is based on the CloudSat 2C-SNOW-PROFILE (2C-SP) algo-

rithm described in Wood and L’Ecuyer (2018), but modifies the product based on a

CALIOP algorithm developed at l’École Polytechnique in order to improve snow rate

estimates in the CloudSat blind zone. C3S takes each CloudSat footprint and uses

a decision tree that we created in collaboration with the CALIPSO group at l’Ecole

Polytechinque, described in greater detail below, to assess the snowfall estimate.

CALIPSO is a good candidate for reducing uncertainties of the 2C-SNOW-

PROFILE missing snow in the blind zone. The CALIOP laser light provides direct

sensitivity to backscatter from snow particles down to the surface with no ground

clutter (Winker et al., 2009). These backscatter observations are related to surface

snowfall rates through relationships developed from ground-based lidar and snow-

fall measurements at Summit Station, Greenland. However, the CALIPSO snowfall

estimate is only valid when CALIOP is not fully attenuated.

C3S evaluates each CloudSat datapoint independently depending on the initial

2C-SP surface snowfall estimate. This value can either be a snowfall rate measured

in millimeters per hour, no snow (a measurement of 0 mm/hr), or invalid snowfall.

Additionally, the CloudSat 2C-SP evaluates the confidence of each snowfall estimate.

For the C3S product, if the estimate is rated at “moderate” or “high” confidence,

the value is referred to as a “good quality” CloudSat estimate. If an estimate is rated

“no”, “very low”, or “low” confidence, the value is referred to as a “bad quality”

CloudSat estimate. An independent surface snowfall estimate is then determined

from CALIPSO observations for the corresponding CloudSat footprint. This value
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can either determine no snow at the surface, give a snowfall estimate, or give an

invalid value if the CALIPSO lidar is fully attenuated, meaning that the lidar is

unable to take measurements near the surface.

As seen in table 2.1, C3S has six decision scenarios. If both the CloudSat algo-

rithm and the CALIPSO algorithm do not detect snowfall at the surface, the C3S

decision retains the original CloudSat decision of no snowfall. Likewise, when the

CloudSat algorithm and the CALIPSO algorithm both detect snow at the surface,

the CloudSat 2C-SP estimate is adopted as the snowfall rate at the surface. For this

scenario, the CloudSat estimate must be good quality and CALIPSO lidar must not

be fully attenuated. When the CALIPSO lidar is fully attenuated, the CloudSat 2C-

SP decision is kept in the C3S decision, regardless of the CALIPSO surface detection

since the lidar cannot detect surface snowfall. In contrast, when CloudSat snow is

deemed bad quality, C3S takes the CALIPSO surface snowfall value regardless of

the CloudSat snow value as long as CALIPSO is not fully attenuated.

Scenario
CloudSat
Surface

CALIPSO
Surface

CloudSat
Quality

CALIPSO
Fully

Attenuated

C3S
decision

Agreement -
No Snow

No Snow No Snow Good No CloudSat

Agreement -
Snow

Snow Snow Good No CloudSat

CALIPSO
Fully

Attenuated
Any Any Any Yes CloudSat

Bad Quality
CloudSat

Any Any Bad No CALIPSO

Virga Snow No Snow Good No CALIPSO
Shallow
Snow

No Snow Snow Good No CALIPSO

Table 2.1: C3S decision tree

The two most important modifications of 2C-SP are captured in the last two
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rows of table 2.1. When CloudSat detects snow at the surface but the CALIPSO

algorithm does not, the C3S estimate determines that snow is not occurring at

the surface. Snow that CloudSat detects in the 5th range bin above the ground is

likely sublimating in the CloudSat blind zone, or virga is occurring in the lowest

1.2 km closest to the surface. Conversely, when CloudSat is unable to detect snow

at the surface but CALIPSO does, the C3S algorithm uses the CALIPSO snowfall

estimate. In this case, snowfall is likely developing in the lowest 1.2 km in the

radar blind zone, causing it to go undetected by CloudSat. This will be referred to

as shallow snow. Both of these final two scenarios require good quality CloudSat

retrievals and CALIPSO is not fully attenuated.

2.1.1 Virga and Shallow Snow

An example of the last two scenarios is shown in Fig. 2.1. On the right, the

CloudSat CPR reflectivity is shown. On the left, the CALIOP backscatter is shown.

Both panels of the figure span the same satellite pathway as demonstrated by the

corresponding latitude and longitude labels. The red box at the left of each panel

highlights an area where the C3S algorithm has identified a case of virga. As seen

by the high levels of reflectivity in the CPR at the height of the blind zone (1.2

km), the CloudSat 2C-SP algorithm has identified that there is snow in this region.

However, when we look at the same region in the CALIOP backscatter, the dark

blue values indicate that there is no snowfall at the surface. This implies that the

snowfall detected at the top of the blind zone was sublimated within the lowest

layer.

The blue box in the center of each panel highlights an area where shallow snow

was identified by the C3S algorithm. Looking at the CloudSat CPR, the top of the

box has very low values of reflectivity, which the 2C-SP algorithm identifies as no
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Figure 2.1: An example of virga (red box) and shallow snow (blue box). Each panel
shows the along track path on the x-axis and the 0 to 6 km vertical of the y-axis. The
left panel shows the CloudSat CPR reflectivity (dBZe) and the right panel shows
the CALIOP backscatter (km−1sr−1).)

snow. On the other hand, the CALIOP panel shows higher values of backscatter

near the surface. The C3S algorithm identifies this as shallow snow, indicating that

that snowfall has formed in the blind zone layer, undetected by CloudSat.

Now that we have explored how the C3S algorithm identities such cases, we can

look at how often this occurs over the AIS. Fig. 2.2 shows the frequency of virga

on the left and shallow snow on the right over the AIS and surrounding southern

ocean. Of all C3S datapoints, the frequency of both of these scenarios is detected

between 0 and 15% of the time. The frequency of virga is highest in east Antarctica

near the coasts. There is much less frequency over the interior of east Antarctica.

In contrast, in west Antarctica, virga frequency is highest in the interior. These

patterns may be due to katabatic winds. Katabatic winds have been shown to aid

in the sublimation of snowfall near the surface (Grazioli et al., 2017). These winds
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Figure 2.2: Virga frequency (left), shallow snow frequency (right)

are especially prevalent in eastern Antarctica near the coast, similarly to where the

virga frequency is higher (Grazioli et al., 2017).

The shallow snow frequency presents an interesting pattern of high frequency

occurrences appearing in bands especially in east Antarctica. These bands of high

frequency shallow snow correspond well to changes in topography of the ice sheet.

Regions that have higher rates of shallow snow frequency, especially in East Antarc-

tica, are consistent with elevation changes seen in Fig. 1.1. Specifically, shallow

snow is occurring where there is a steep gradient in topography.

Finally, the frequency (left) and annual accumulations (right) of snowfall from

the whole C3S dataset are shown in Fig. 2.3. From the frequency of snowfall plot,

we can see that snowfall is more frequently observed over the southern ocean and

the coastal regions of the continent, with frequencies reaching nearly 50% in some

regions. Conversely, the interior of the AIS sees very low snowfall frequency. There is

a contrast between East and West Antarctica, with the interior of west Antarctica

receiving more frequent snowfall than east. In East Antarctica the patterns seen
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Figure 2.3: C3S climatology: Frequency of snowfall detected by C3S (left), Mean
Annual Accumulation (right) from 2006-2010

in the shallow snow plot are still able to be seen. This gives us insight that the

shallow snow modifications made from CALIPSO observations have an impact on

our dataset. However, these patterns have a much lesser impact on the annual

accumulation as seen in the right panel of the figure. From this figure, we can

also see that annual snowfall accumulations are greater in coastal regions and much

lower in the interior of the continent. This annual accumulation result is similar to

that found in Palerme et al. (2014), however the subtle changes in the fraction of

accumulation specific to the C3S product will be essential to this analysis.

2.1.2 Additional quality control

While the C3S algorithm improves CloudSat estimates from the blind zone, some

issues persist. Specifically, the 2C-SP algorithm struggles with steeply varying ter-

rain due to excess ground clutter. In such cases, using the 5th bin above the surface

may not suffice to eliminate surface clutter (Wood and L’Ecuyer, 2018). Addition-
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ally, incorrect surface elevation assumptions can lead to the wrong bin being used

to calculate surface snow. For more general precipitation studies, these issues have

minimal impact. However, the focus of extreme events in this study necessitates

special attention to these cases as they often record unusually high snowfall rates.

We constructed the following methods in order to vet these cases with extreme

precision. The CloudSat 2C-SP has a flag used to identify possible issues such as

those described above. This flag is registered where the snowfall rate at the base of

the snowfall layer is substantially larger than in the profile bin immediately above

(Wood and L’Ecuyer, 2018). If the C3S product had not already replaced a snowfall

estimate where this flag was triggered, the data was replaced with CALIPSO snow

if the CALIPSO lidar was not fully attenuated. If the CALIPSO lidar was fully

attenuated, the snowfall rate was not used in the dataset.

Despite the initial filter, some problematic cases remained. Often, the 2nd bin

from the surface was also affected by surface clutter, failing to trigger the filter.

Through repeated trials, we determined that the ratio between the surface bin and

the 4th bin above the surface was an effective metric for identifying these cases.

Cases with a ratio greater than 50 indicated an unrealistically large gradient than

could not be supported by shallow snow microphysics. These cases were either

replaced with CALIPSO snowfall estimates or removed from the dataset.

The DEM elevation used in the CloudSat 2C-SP product is sometimes inaccurate,

especially around coastal regions in Antarctica, leading to extreme overestimates

in snowfall. An example of this issue is illustrated in Fig. 2.4. In this figure,

the CloudSat CPR reflectivity values are shown along with two surface lines: the

upper red line (solid) indicates the actual surface, while the lower red line (dotted)

represents the DEM surface data. In cases such as these, high reflectivity values due

to ground clutter are sometimes misclassified as high snowfall rates. To correct this,
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we used the 2B-GEOPROF product to identify the vertical reflectivity for each snow

profile. The bin with the maximum reflectivity was identified as the actual surface, as

it produces a much higher reflectivity value than the snow measured in our dataset

(Palerme et al., 2017). This correction is evident in Fig. 2.4, where the actual

surface line corresponds to reflectivity values exceeding 25 dBZe, shown in gray on

the colorbar. Cases where the difference between the maximum reflectivity bin and

the surface height bin where greater or equal to two were flagged as problematic.

This data was then replaced with CALIPSO if the lidar was not fully attenuated or

taken out of the dataset.

Figure 2.4: As in Fig. 2.1a, but for a case where the DEM is inaccurate. The red
line represents the surface, with the top line (solid) representing the actual surface
and the bottom line (dotted) representing the incorrect DEM.

While these additional quality control methods are time-consuming, it was im-

portant to make sure that higher snowfall rates were properly identified in order to

measure the impact of extreme snow.
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2.1.3 Remaining Uncertainties

Even with the addition of CALIPSO lidar data and additional quality control, the

C3S dataset may not capture all snow correctly due to uncertainties inherent in

radar and lidar retrievals. While C3S snowfall estimates have yet to be evaluated

with ground based radar estimates, a number of studies have done so for the 2C-SP

product. Instantaneous snowfall estimates generally exhibit uncertainties of a factor

of two or more for individual CloudSat fields of view (Wood and L’Ecuyer, 2021),

but these errors have a large random component that often decreases substantially

when averaged over thousands of samples (Palerme et al., 2017). However, some

studies indicate that the 2C-SP product may underestimate heavy, wet snowfall

(Cao et al., 2014; Norin et al., 2015; Chen et al., 2016). Specifically, these studies

concluded that 2C-SP underestimates snowfall over 1 mm/hr, possibly due to atten-

uation of the signal. However, studies that evaluated the 2C-SP product specifically

over the Antarctic ice sheet found that snowfall had good agreement with snowfall

climatology near micro-rain radar observations (Souverijns et al., 2018; Lemonnier

et al., 2019). This is consistent with the fact that snowfall rates are generally much

lighter over the AIS than in the regions analyzed in the midlatitudes (Mroz et al.,

2021). Even the extreme Antarctic snowfall events analyzed in this study tend to

be light when compared with global snowfall and rarely exceed 1 mm/hr as we find

below. One exception is the Antarctic Peninsula where we find extreme snow rates

to exceed this threshold more often, the results from this region should be taken

with some caution.

While C3S provides a clearer picture of snowfall in the lower atmosphere, the

CALIPSO observations in the three lowest layers introduce another source of uncer-

tainty that was not previously an issue in the 2C-SP product. Because of Antarc-

tica’s strong, persistent winds, blowing snow is a frequent occurrence across the
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continent (Palm et al., 2017). Since studies such as Palm et al. (2011, 2017) have

shown that CALIOP can be used to detect these types of events, it is logical to

conclude that the CALIPSO estimates of falling snow may be influenced by blowing

snow.

2.2 Defining Extremes

The methods found in this section of the paper are based on those found in Pender-

grass and Knutti (2018). In this paper, the authors sought to measure the variability

in global rainfall distribution, highlighting that heavy rainfall events contribute dis-

proportionately to annual rainfall. More specifically, they wanted to answer the

following question, what fraction of total rain occurs beyond the top p percentile of

days in a period? They found that rain events from greater than the ninety-fifth

percentile account for over half of the global rainfall. Following these results, we ex-

amine what fraction the ninety-fifth percentile of intense snowfall events contribute

to total Antarctic snowfall. The ninety-fifth percentile snow was therefore chosen

as the threshold for extreme snow in this study. Like Pendergrass and Knutti, we

also answer the question of what snowfall intensity percentile accounts for half of

precipitation accumulation on the AIS.

In order to find the 95th percentile snow, a cumulative distribution function

(CDF) was created from all C3S instantaneous snow rates over the Antarctic con-

tinent. From the CDF, the 95th percentile snow rate was determined. Fig. 2.5a

demonstrates the CDF curve for the whole Antarctic continent, with snow rates

on the x-axis and the cumulative percentile on the y-axis. Furthermore, the figure

demonstrates the 95th percentile with a horizontal line and the corresponding snow

rate with a vertical line.
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To calculate the fraction of accumulation from extreme snow, a cumulative ac-

cumulation was computed. First, the mean snow rate is determined as the average

of all instantaneous snow rates, as shown in equation 2.1. Next, the annual accumu-

lation is calculated by multiplying the mean snow rate by the number of hours in

a year, as described in equation 2.2. Once the total annual accumulation is estab-

lished, the annual accumulation for all snow rates less than a given snow rate X is

computed. Specifically, for a given snow rate X, the accumulation from snow rates

less than X is defined as the mean snow rate for snow rates below X, multiplied by

the number of hours in a year, as shown in equation 2.3. When this is repeated

for all snow rates of X, the resulting function is a continuous cumulative accumula-

tion that indicates the accumulation contributed by snowfall with rates up to any

specified value.

mean snow (mm/hr)

= average of all instantaneous snow rates in Antarctica (mm/hr)

(2.1)

annual accumulation (mm/yr)

= mean snow (mm/hr) x # of hours in a year (hr/yr)

(2.2)

annual accumulation (snow rates < X)

= mean snow (snow rates < X) x # hours in a year

(2.3)

Finally, if each cumulative accumulation is divided by the total accumulation,

the resulting function is a cumulative percent of the accumulation, shown in Fig.

2.5b. Like Fig. 2.5a, the x-axis shows snow rates, however the y-axis represents the

percent of the total accumulation. For a given X, the curve shows the percent of
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accumulation from snow rates less than X. This function will be called a weighted

CDF because the cumulative sum is weighted by the accumulation of each snow

rate.

Once the CDF and weighted CDF are calculated, the fraction of accumulation

due to extreme snow can be found. Using the 95th percentile snow rate found ear-

lier, the corresponding weighted percentile can be found. Fig. 2.5c demonstrates

the final step in this process. Both the CDF (red curve) and the weighted CDF

(blue curve) are overlaid in this figure. In addition to the 95th percentile and corre-

sponding snow rate, the second horizontal line represents the corresponding percent

of accumulation. This fraction must be subtracted from 100 since the weighted per-

centile is defined as the percent of accumulation less than X. This number represents

the percent of accumulation that comes from the top 5 percent highest snow rates

on Antarctica.

Alternatively, in order to calculate the percentile that accounts for half of the

accumulation, first the 50 percent accumulation snow rate must be calculated from

the weighted CDF. Once this snow rate is found, the unweighted CDF value is

calculated for the same snow rate. This value gives us the percentile for which

half of the accumulation comes from. In other words, snow rates greater than this

percentile makeup half the snow accumulation on Antarctica.

2.3 Drainage Basins

In order to understand variations in the contributions of extreme events and the

conditions that cause them across the AIS, we divided the AIS by basin. Therefore,

in addition to performing this analysis on the Antarctic continent as a whole, we

repeated the analysis on Antarctic drainage basins defined by Zwally et al. (2012)
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(a) (b)

(c)

Figure 2.5: Antarctic CDF (a), weighted CDF (b), total process (c)

shown in Fig 2.6. These basins have a consistent surface slope relative to atmo-

spheric advection (Zwally et al., 2012). Ice mass balance can be considered for each

individual basin, which is relevant to this analysis.

The number of C3S snowfall data points for each basin is shown in table 2.2. The

first row shows the number of C3S extreme snowfall counts in each basin. To avoid

counting the same storm multiple times when establishing the synoptic conditions

that favor extreme snowfall events, the second row shows the number of C3S extreme

snow counts when data repeated in the same CloudSat orbit is removed. The details

of how this second value are used are described in the reanalysis section below. This

table shows that while the number of extreme snowfall cases differs between basins,
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Figure 2.6: Drainage basins for the AIS. Basins located in the WAIS are shown in
blue while basins located in the EAIS are shown in pink.

all basins contain at least 60 cases, with many greatly exceeding that number.

2.4 Reanalysis

To understand the atmospheric conditions associated with extreme snowfall for the

Antarctic drainage basins, we examined sea level pressure, total precipitable water

vapor, and surface wind vectors from reanalyses. NASA’s Modern-Era Retrospec-

tive analysis for Research and Application (MERRA-2) provides an hourly gridded

reanalysis product with a horizontal resolution of 0.625 × 0.5 and 72 levels in the
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Basin 1 2 3 4 5 6 7 8 9
C3S 28334 6827 25216 7644 3885 9478 6399 2109 2213
Unique C3S 904 213 844 244 109 283 227 82 66
Basin 10 11 12 13 14 15 16 17 18
C3S 11917 2763 11703 12674 8632 1987 2673 29889 12417
Unique C3S 668 90 349 370 277 86 145 1052 534
Basin 19 20 21 22 23 24 25
C3S 15115 10474 9518 8138 4590 7100 3646
Unique C3S 603 443 301 284 242 396 194

Table 2.2: Number of C3S extreme snow counts for each basin, as well as the number
of C3S extreme snow counts from unique overpasses

vertical (Gelaro et al., 2017). The MERRA-2 dataset spans from 1980 to present,

however only months matching the C3S dataset (November 2006 - December 2010)

were used in this analysis. The variables used were sea level pressure, surface wind

speed, and total precipitable water vapor.

Times identified as extreme snow from the C3S dataset were co-located with the

nearest time from the MERRA-2 reanalysis. Since CloudSat and CALIPSO take

multiple data points in a single overpass of the continent, only one time was taken

per granuale as to not have repeating MERRA-2 data. Composites were taken from

the departure from monthly averages, so as to detrend the data from any seasonal

biases. Finally, a two-tailed t-test at the 99% confidence level was performed to

identify regions of significance in the composites.

2.5 Automatic Weather Stations

As an independent verification of the principle findings in this study, data from

the Antarctic Meteorological Data and Research Center’s (AMRDC) Automatic

Weather Station (AWS) network were used to examine conditions at the ground

during satellite-detected extreme snowfall events. This data contains 10 minute
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observations of temperature, pressure, wind speed, and wind direction. For this

analysis, Mizuho AWS and Linda AWS data were used (AMRDC, 2022). The

location of these two stations is shown in Fig. 2.7 along with all AWS managed

by the AMRDC. The locations of Linda and Mizuho are marked with a star. These

stations were used because of the largely continuous data in the time period of

interest and the contrasting conditions of these two AWS. As seen from the figure,

Mizuho and Linda lie on opposite sides of the continent. Furthermore, Mizuho

AWS sits at a much higher elevation of 2260 meters whereas Linda AWS is only 46

meters above sea level. These vastly different locations will give us insight into how

conditions vary in these region.

To analyze extreme snow conditions at these stations, AWS data were matched

with the times identified as extreme snow events by C3S. Extreme snow cases were

selected from the basin in which each AWS station is located: Mizuho AWS in basin

7 and Linda AWS in basin 17. Similar to the MERRA-2 analysis, only one time

point per granule was chosen to avoid duplicate data. Anomalies were calculated as

deviations from the monthly averages to remove any seasonal biases from the data.
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Figure 2.7: Location of all AWS associated with UW-Madison’s AMRDC as of 2023
(AMRDC, 2022).
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Chapter 3

Results

3.1 How much do extreme snow events contribute

to the ice mass of the Antarctic Ice Sheet?

In this section, we present the findings on the distribution and impact of extreme

snowfall rates across the Antarctic Ice Sheet. We begin with a continental overview,

followed by a detailed analysis of individual drainage basins, and conclude by ex-

amining contributions to ice mass balance. This analysis provides insights into the

spacial variability of extreme snow and their significance in the context of Antarctic

ice mass accumulation.

3.1.1 The whole AIS

Using the process shown in Fig. 2.5, extreme snow rates were found for the whole

continent. The 95th percentile snow rate for all of Antarctica was found to be 0.57

mm/hr. From Fig 2.5, the fraction of accumulation from extreme snow was found to

be 40.3%. In other words, the top 5% most extreme snow events account for 40.3%

of the annual accumulation for the whole continent.
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Following the methods of Pendergrass and Knutti (2018), the snowfall rate re-

sponsible for half of the accumulation on the whole continent was found to be 0.42

mm/hr and higher. This snowfall rate corresponds to the 92.5th percentile snow so,

half the accumulation on the continent originates from the top 7.5% most extreme

events. While this is lower than the global precipitation found in Pendergrass and

Knutti (2018), the authors did find some regions fell below the 50% accumulation

mark, such as the tropical western pacific.

3.1.2 Basin Analysis

To determine how this result varies across distinct regions of the AIS, this analysis

was then repeated for each drainage basin using the same process as Fig. 2.5.

Extreme snow is calculated as the top 5% of the total snowfall in each basin. For

context, the location of extreme snow events found in each basin are plotted in

Fig. 3.1. The location of each recorded extreme snow rate is plotted with a dot

corresponding to that basin’s unique color. While the number of extreme rates

differs between basins, each basin still contains 5% of its respective snowfall rates.

This results in the number of extremes being scaled by differences in the number of

events.

A stark contrast can be seen in basins that lie on the EAIS and the WAIS. On

the EAIS, extreme snowfall rates are primarily found near the coastal regions. The

interior of these basins is largely void of any extreme snow rates, with the exception

of basin 10. The location of extremes in basin 10 is anomalous due to its unique

shape that contains very little coastal area compared to other basins. In contrast,

for basins in the WAIS, extreme snowfall rates are found throughout the basin, with

no discernible preference for the coast or other region.

Compared to the topography map shown in Fig. 1.1, this difference may be
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Figure 3.1: Locations of extreme snowfall detected by C3S. Basin outlines can be
seen in black, additionally each basin is assigned a unique color to show extreme
locations.

explained by the difference in topography found in the two regions. Eastern Antarc-

tica is characterized by higher elevation and steeper elevation slopes that make it

difficult for moisture to reach the interior. Western Antarctica does not contain as

high of elevation, with more gradual slopes, which are more favorable for interior

snowfall events.

The extreme snow rate (left) and the fraction of accumulation from extreme

snow (right) for each basin are shown in Fig. 3.2. The extreme snow rate thresholds

range from 0.1 mm/hr to 1.2 mm/hr. These extreme snow rates are still very modest

when compared to snow in the midlatitudes. This further confirms that CloudSat’s

bias for heavy snow discussed in section 2.1.3 is of minimal concern for this most

basins in this analysis. It can be seen that extreme snow rates are greater in more
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Figure 3.2: Extreme snow rate threshold (left) and fraction of accumulation from
extreme snow (right)

coastal basins, whereas basins with little coastal area exhibit much lower extreme

snow rates. These interior basins have a higher elevation, which hinders moisture

intrusions, leading to lesser snow rates even for the most extreme events. The

considerable variation in extreme snow rates between basins highlights the necessity

for each basin to define extreme snow individually, reflecting their distinct snowfall

patterns and amounts.

The fraction of accumulation from extreme snow ranges from 30% to 42%. East-

ern Antarctic basins generally exhibit higher fractions of accumulation from extreme

snow, often exceeding the 40.3% threshold observed for the entire continent. Con-

versely, many basins in West Antarctica show a lower fraction, often less than 32%.

Notably, a higher extreme snow rate does not necessarily correlate with a higher

fraction of total accumulation from extreme snow. For instance, the West Antarctic

Peninsula basin (basin 24) has the highest extreme snow rate of 1.2 mm/hr, yet

these rates contribute only 32% to the total accumulation. This is likely due to the
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peninsula’s geography, which favors high snowfall rates in general, thus reducing the

relative impact of the top 5% most extreme events. In contrast, basin 16, located to

the east of the Ross Ice Shelf, has a much lower extreme snow rate of 0.25 mm/hr,

but this accounts for nearly 40% of the accumulation. This significant contribution

is because most snowfall rates in this basin are very low, making any higher snow-

fall rates critically important to the total accumulation. This contrast highlights the

differing snowfall distributions and climatological conditions between the basins.

Figure 3.3: Snow rate corresponding to half the accumulation (left) and percentile
accounting for half the accumulation (right)

Building on the approach of Pendergrass and Knutti (2018), it is instructive to

compare the percentile and corresponding snow rates that account for half of the

accumulation in each basin (Fig. 3.3). The snow rates accounting for half of the

accumulation in each basin exhibit a wide range from 0.06 mm/hr to 0.77 mm/hr.

Similarly to the previous figure, snow rates are higher in more coastal basins and

lower in more interior basins. While intensities vary widely, the percentile accounting

for half the accumulation only ranges from the 88th percentile to the 93rd percentile.
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So while no basin’s percentile reaches the 95th percentile, as was found by Pender-

grass and Knutti (2018) for global rainfall, some basins get close. Furthermore, this

highlights how some more moderate events, below what we define as extreme, are

still important for accumulation totals. As is the case for the 95th percentile, higher

snow rates do not correlate with a higher or lower percentile accounting for half of

the accumulation. Unlike the previous figure, higher percentiles do not necessarily

favor East Antarctica and do not appear to be characterized by a particular pattern.

3.1.3 Ice Mass

While accumulation is an important metric for measuring the contribution of ex-

treme snow rates, when describing the contributions to ice mass balance of the

continent, snow mass contribution may provide a more useful metric for comparing

to mass balance models. In Fig. 3.4, the total mass from snowfall in Gigatons per

year is plotted on the left alongside the mass from just extreme snow on the right.

The total mass from snowfall for the continent is 1318 Gigatons per year, this is

comparable to other estimates by CloudSat and models (Palerme et al., 2014; Clem

et al., 2023). Two factors contribute to the snow mass of individual basins: their

mean snow rate and their area. Thus basins with high snowfall rates and/or large

basins with moderate snowfall rates have the largest contributions to the annual

mass gain of the ice sheet. Looking at the mass from just extreme snow tells a

similar story. Basins with higher extreme snow rates and greater surface areas have

the greatest snow mass gain from extreme snow. Extreme snow can contribute up

to 52 gigatons per year in a single basin, such as basins 12, 13, and 14 in East

Antarctica. Extreme snow contributes 476 gigatons per year from all basins which

is about 36% of the total snow mass contributions for the whole continent. This

again highlights the importance of extreme snowfall for the continent especially in
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regards to ice mass balance.

Figure 3.4: Total snow mass (left) and mass from extreme snow (right)

3.2 What atmospheric conditions cause extreme

snow and how does this differ across the con-

tinent?

To infer how the distribution of snowfall intensity and the contribution of extremes

might change in a warmer climate, it important to understand the synoptic condi-

tions that promote extreme snowfall events in Antarctica. For this purpose, we ex-

amined sea level pressure (SLP) anomalies, total precipitable water vapor (TPWV)

anomalies, and local Automatic Weather Station (AWS) observations associated

with the 95th percentile snow events identified in section 3.1. By analyzing these

variables during times of extreme snowfall, we aim to identify the atmospheric pat-

terns and moisture transport mechanisms contributing to these extreme events. This
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section details the findings from SLP anomalies, TPWV anomalies, and AWS anal-

ysis, providing a comprehensive view of the atmospheric conditions during extreme

snowfall.

3.2.1 Sea Level Pressure Analysis

In order to show synoptic conditions during extreme snowfall, sea level pressure

anomalies were plotted during times experiencing extremes for each basin. Extreme

snowfall is defined the same as in the previous section, snow rates greater than the

95th percentile.

In Fig. 3.5, sea level pressure anomalies during extreme snow cases are shown

for all 25 basins. Positive anomalies are shown in red and negative anomalies are

shown in blue. Many basins exhibit a sea level pressure dipole, with a low pressure

anomaly to the west of the basin (highlighted in yellow) and a high pressure anomaly

to the east of the basin. The basins can be divided into three sea level pressure

anomaly regimes, strong dipole, weak dipole, and no significant dipole. These three

regimes were found from calculating the difference between the maximum sea level

pressure anomaly and the minimum sea level pressure anomaly from each basin.

The regimes were defined from natural clusters that could be found in the data.

This is demonstrated in 3.6, where the values of the SLP difference are plotted for

each basin and the vertical lines show the cut offs for each regime.

The strong dipole regime is defined as basins with a difference between high and

low pressure anomalies greater than 15 hPa. Eleven of twenty five basins exhibit

this strong dipole regime for extreme cases. An example of a strong dipole regime

basin is shown in Fig. 3.7. In addition to the sea level pressure anomalies shown in

the previous figure, this figure also contains wind vector anomalies and shading to

indicate regions of significance. In this example, the low pressure anomaly is present
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Figure 3.5: SLP anomalies coinciding with extreme cases. Basins circled in blue
experience the strong SLP dipole regime, basins in green experience the weak SLP
dipole regime, and basins in red do not experience a significant SLP dipole.

to the west of the basin and the high pressure anomaly is found to the east. The

shading shows that both of these regions are statistically significant. The surface

wind anomalies show northerly wind anomalies in between the high and low pressure

systems. These winds point from the ocean towards the basin shown, which would

be expected to bring warmer, moist air to the continent.

The weak dipole regime is defined as basins with a difference between high and

low pressure anomalies between 8 hPa and 15 hPa. Another eleven of twenty five

basins exhibit a weak dipole regime during extreme cases. An example of a weak
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Figure 3.6: Difference between maximum and minimum SLP anomalies for each
basin. Each basin’s SLP difference is represented by a mark on the number line in
order to demostrate the natural clusters in the data. The horizontal lines represent
the thresholds separating the three regimes, no dipole present (red), weak dipole
(green), and strong dipole (blue).

dipole regime basin is shown in Fig. 3.8. This figure shows sea level pressure

anomalies, surface wind anomalies, and has statistically significant regions shaded.

Like in the strong dipole regime, a low pressure anomaly is found to the west and a

high pressure anomaly is found to the east. However, the low and high pressures have

a lesser magnitude than in the strong dipole cases. The northerly wind anomalies

are still present, which would still be expected to bring warmer moist air to the

continent.

In the third and final regime, no significant dipole is observed. Only three basins

exhibit this regime. An example of a basin with no significant dipole is shown

in Fig. 3.9, with sea level pressure anomalies, surface wind direction anomalies,

and statistically significant regions again shown like the previous two figures. This

example shows very weak anomalies across the continent. The dipole pattern found

in the previous two regimes does not appear to be present. The regions that are

statistically significant support that this case does not have a dipole pattern. Lastly,

wind anomalies do not appear to show a northerly wind pattern near the basin
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Figure 3.7: SLP anomalies for strong dipole regime example. Shaded areas repre-
sents statistically significant areas. Vectors represent surface wind anomalies. The
yellow basin highlighted is the basin of interest.

highlighted as in the other regimes.

3.2.2 Water Vapor Analysis

Sea level pressure anomalies and wind anomaly patterns in the previous section

alluded to moisture transport to the continent during extreme events. In order to

further analyze moisture transport during extreme events, total precipitable water

vapor anomalies were plotted for each basin, again during extreme cases.

Total precipitable water vapor anomalies are plotted for all twenty-five basins in

Fig 3.10. Similar to Fig. 3.5, this figure shows positive anomalies in red and nega-

tive anomalies in blue with the basin of interest highlighted in yellow. Each subplot

contains a colored border corresponding to the three sea level pressure regimes previ-
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Figure 3.8: As in Fig. 3.7 but for weak regime

ously described. Nearly all basins experience positive total precipitable water vapor

anomalies concentrated near the basin and surrounding ocean region. The mag-

nitude and shape of the anomalies vary between basins. Some basins experience a

concentrated narrow band of water vapor anomalies, while others have a more broad

shape. These water vapor anomalies are found in between the high and low sea level

pressure anomalies seen in Fig. 3.5. Paired with the surface wind anomalies, these

vapor anomalies are transported towards the continent from the ocean. This en-

hanced water vapor transport found during extreme snowfall events is found across

most basins on the AIS. This is consistent with the results found in limited basins

in Rendfrey et al. (2024).

We would expect for a stronger sea level pressure dipole to bring more water

vapor to the continent than a weaker dipole. To further explore this, we compared
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Figure 3.9: As in Fig. 3.7 but for no significant dipole

the maximum value of total precipitable water vapor anomalies for each basin and

compared the basins in the three dipole regimes. The strong dipole basins had

maximum TPWV anomalies of 2.25 kg/m2 or greater. Basins in the weak dipole

regime had maximum TPWV anomalies between 1 and 2.25 kg/m2. Finally, basins

with no significant dipole had maximum TPWV anomalies less than 1 kg/m2.

The difference in sea level pressure anomalies is plotted against the maximum to-

tal precipitable water vapor anomalies in Fig. 3.11. The linear regression line for the

two variables is also plotted, the colors correspond to the sea level pressure regimes.

The three regimes are apparent as clusters on the linear regression line. From the

linear regression line, the relationship between the sea level dipole strength and the

water vapor magnitude become clear. There is a positive correlation between sea

level pressure difference and maximum TPWV. The R2 value for this regression was
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Figure 3.10: As in Fig. 3.5 but for TPWV

calculated to be 0.87, indicating a strong linear relationship between the two vari-

ables. This high R2 value suggests that the variation in maximum total precipitable

water vapor anomalies can be largely explained by the variation in sea level pressure

anomalies, underscoring the significant role of sea level pressure dipoles in driving

moisture transport to the continent during extreme snowfall events.

The relationship between maximum total precipitable water vapor (TPWV)

anomalies and extreme snow rates is depicted in Fig. 3.12. In this plot, the max-

imum TPWV is on the x-axis and the extreme snow rates are on the y-axis. A

positive correlation between these two variables is observed, indicating that higher
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Figure 3.11: SLP difference vs Maximum TPWV. Basins with a strong dipole regime
are colored in blue, the weak dipole regime green, and no dipole present red.

TPWV generally leads to higher extreme snow rates. However, the R2 value for this

regression is 0.46, suggesting that TPWV anomalies alone do not fully explain the

variability in extreme snow rates. This lower R2 value implies that other factors also

significantly influence extreme snow rates. For instance, the presence of a dry layer

in the atmosphere can inhibit the amount of snow that reaches the surface, despite

high moisture availability aloft. Additionally, the efficiency of snow formation and

precipitation processes, such as the availability of ice nuclei and the dynamics of

cloud formation, can affect the conversion of water vapor to snowfall. These factors

highlight the complexity of snowfall processes and indicate that while TPWV is an

important driver, it is not the sole determinant of extreme snow rates.

3.2.3 Non-extreme Snow

To establish the extent to which these synoptic conditions are unique to extreme

snow events, we calculated sea level pressure anomalies and total precipitable water
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Figure 3.12: SLP difference vs Maximum TPWV. Basins with a strong dipole regime
are colored in blue, the weak dipole regime green, and no dipole present red.

vapor anomalies for times experiencing median snow in each basin. Median snowfall

is defined as snow rates between the 47.5th and 52.5th percentiles.

Although a sea level pressure dipole is still present in many basins during median

snowfall events, it is significantly weaker than during extreme events. Using the same

classification for dipole regimes as for extreme snow, only one basin (basin 23) barely

qualifies for the weak SLP dipole regime, with an SLP difference of 8.51 hPa. This

is demonstrated in 3.13, where all SLP differences are plotted for extreme and non-

extreme snow. As seen from the figure, the SLP differences are significantly lower

for non-extremes than extremes. Figure 3.14 displays SLP anomalies for median

snowfall across all basins, showing that SLP dipoles are generally weak or absent in

many basins.

Similarly, TPWV anomalies decrease substantially during median snowfall cases.

On average, the maximum TPWV anomalies decrease by 3.5 kg/m2 for each basin.

Figure 3.15 illustrates TPWV anomalies for median snowfall, indicating that while



43

Figure 3.13: As in Fig. 3.6 but for non-extreme cases

positive TPWV anomalies are still present around the basins, their values are much

lower compared to extreme snowfall cases.

Overall, the findings suggest that the synoptic patterns driving non-extreme

snowfall events are similar to those causing extreme snowfall, but with significantly

reduced intensity. Both sea level pressure dipoles and TPWV anomalies are much

weaker during median snowfall events, indicating that while the same mechanisms

are at play, their impact is less pronounced. This highlights the importance of

understanding the intensity and magnitude of synoptic conditions in determining

snowfall rates and accumulation in Antarctica.

3.2.4 AWS Analysis

To investigate extreme snow patterns at a local level and to provide independent

confirmation of the satellite and reanalysis results, we performed AWS analysis using

data from two AWS stations: Mizuho and Linda. Mizuho AWS is located in basin

7, while Linda AWS is situated in basin 17. Figure 3.16 shows the location of basin

7 and Mizuho AWS along with sea level pressure anomalies during extreme snowfall
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Figure 3.14: As in Fig. 3.5 but for non-extreme cases

events on the left. Similarly, the right panel illustrates the location of basin 17 and

Linda AWS with corresponding sea level pressure anomalies.

These stations were chosen due to their contrasting conditions. Basin 7 exhibits

a strong dipole regime during extreme events, while basin 17 shows no significant

dipole. Unlike the strong dipole and weak dipole regimes explored in the previous

section, basin 17 does not exhibit a low pressure system and a high pressure system

near the basin. Instead, a low pressure system is seen near the basin, close to Linda

AWS.

Additionally, Mizuho AWS is at an elevation of 2260 meters and further inland,
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Figure 3.15: As in Fig. 3.10 but for non-extreme cases

whereas Linda AWS is only 46 meters above sea level and near the coast. By com-

paring these diverse conditions, we aim to understand how they influence extreme

snowfall patterns in each region.

For Mizuho AWS, both extreme and non-extreme cases had a northerly compo-

nent in the anomalous wind direction, which was consistent across nearly all cases

analyzed. Temperature anomalies (top) and wind speed anomalies (bottom) for

Mizuho AWS are shown in Figure 3.17. Histograms for extreme cases (pink) and

non-extreme cases (green) demonstrate that temperatures during extreme snowfall

events were significantly higher than those during non-extreme events at the 95%
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Figure 3.16: Locations of Mizuho AWS (left) and Linda AWS (right) shown in red
with corresponding basins (yellow) and SLP anomalies as in Fig. 3.7.

confidence level. Similarly, wind speed anomalies were greater during extreme cases,

also significant at the 95% confidence level.

At Linda AWS, a similar pattern emerged with both extreme and non-extreme

cases exhibiting a northerly wind anomaly. Figure 3.18 presents temperature anoma-

lies (top) and wind speed anomalies (bottom) for Linda AWS. Again, histograms for

extreme cases (pink) and non-extreme cases (green) indicate that temperatures and

wind speeds during extreme snowfall events were significantly higher than during

non-extreme events, both statistically significant at the 95% confidence level.

Despite the differences in regimes driving extreme events at Mizuho and Linda

AWS, both stations show evidence of warm, moist air being transported to the

station during extreme events. This transport of warm, moist air is a key driver

of extreme snowfall in both regions, highlighting the significance of atmospheric

moisture and wind patterns in influencing snowfall rates across diverse climatological

conditions.
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Figure 3.17: Histogram of temperature (Top) and wind speed (bottom) at Mizuho
AWS. Extreme snow is shown in pink and non-extreme snow is shown in green.

Figure 3.18: As in Fig. 3.17 but for Linda AWS.
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Chapter 4

Summary

4.1 Conclusion

The new Combined CloudSat CALIPSO Snow (C3S) product was used to identify

extreme snowfall and evaluate their contributions to the ice mass of the Antarctic ice

sheet (AIS). Additionally, MERRA-2 reanalysis and AWS observations were used to

examine the atmospheric conditions cause extreme snow and how this differs across

the continent.

Extreme snowfall is found to exert a significant contribution to the AIS ice mass.

The 95th percentile snow rate for the entire continent is 0.57 mm/hr, with lower rates

in interior basins and higher rates in coastal regions. Extreme snowfall accounts for

approximately 40% of the total accumulation across Antarctica. When examined by

basin, extreme snowfall predominantly occurs near the coasts in the East Antarctic

Ice Sheet (EAIS), while in the West Antarctic Ice Sheet (WAIS), extreme events

are more dispersed. The fraction of accumulation from extreme snowfall is higher in

the EAIS than in the WAIS, reflecting the differing distributions of snowfall events.

However, the snow rate threshold for extreme snowfall does not exhibit the same
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spatial pattern, with basins at lower elevations and closer to the coast experiencing

higher snow rates, as depicted in Fig. 3.1. This indicates that extreme events are

more frequent in lower elevation regions.

Similar to the findings for the 95th percentile snow rates, the snow rates that ac-

count for half of the accumulation are also higher in basins located in coastal regions

with lower average elevations. However, the specific percentiles that contribute to

half of the total accumulation do not follow the same consistent spatial pattern as

the 95th percentile snow rates. This discrepancy indicates that the behavior of snow-

fall accumulation varies significantly between different percentiles across the basins,

highlighting distinct accumulation dynamics between the 95th percentile and lower

percentiles.

Previous studies, such as Wang et al. (2023), have shown that extreme events

are crucial to surface mass balance, this analysis further highlights the significance

of extreme snowfall in contributing to snowfall accumulation in each basin. Extreme

snowfall from all basins collectively contributes 476 gigatons per year to the AIS,

representing about 36% of the total ice mass contributions from snow, which is

nearly four times higher than the estimated annual ice loss of 120 gigatons. These

findings underscore the importance of studying extreme snowfall and its variability,

given the substantial impact on the ice sheet’s mass balance.

We found that for extreme events, most basins exhibit a sea level pressure (SLP)

dipole pattern, characterized by a low-pressure anomaly to the west and a high-

pressure anomaly to the east of the basin. This dipole pattern can be classified into

three regimes: strong dipole (11 basins), weak dipole (11 basins), and no significant

dipole (3 basins). The SLP dipole, combined with wind speed and direction data,

indicates enhanced water vapor transport towards the continent, facilitating extreme

precipitation events.
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Furthermore, nearly all basins experience positive total precipitable water vapor

(TPWV) anomalies during extreme snowfall events, concentrated near the respective

basins. A positive correlation between maximum TPWV anomalies and the SLP

dipole index was observed, suggesting that as the difference between SLP extremes

increases, TPWV anomalies also increase. Additionally, a positive correlation was

found between TPWV anomalies and the extreme snow rates. This correlation

supports the notion that the SLP dipole effectively channels moisture towards the

continent, enhancing precipitation.

AWS data further confirms that at a local level, moisture is transported to the

continent which is reflected in temperature, wind speed, and wind direction.

Extreme snowfall can mitigate the effects of melting ice sheets on sea level rise,

contributing about 40% of the accumulation on the Antarctic ice sheet. In agreement

with previous studies, extreme snow is caused by a sea level pressure dipole which

funnels moisture towards the continent. Unlike other studies, this analysis shows

that this pattern is found across most basins in Antarctica as opposed to a few select

regions that focus on water vapor transport.

4.2 Future Work

The C3S product, like other satellite products, only gives us a snapshot of the precip-

itation on the continent. This analysis focused on the atmospheric features during

corresponding snapshots from the C3S product. However, atmospheric processes

are dynamic and studying the temporal evolution of these features is imperative for

truly understanding them.

Additionally, this work is limited in the synoptic analysis done for extreme snow-

fall cases. In order to further diagnose these events, further analysis should be per-
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formed to look at varying levels of the atmosphere, not just the surface. This will

give us further insight into how moisture is transported to the Antarctic Ice Sheet

(AIS). Analyzing moisture levels at different atmospheric layers is crucial from a

cloud physics perspective, as it helps determine where clouds and precipitation may

form, how they will develop, and how they will precipitate. Understanding these

dynamics is essential for predicting weather patterns and assessing the impact of at-

mospheric moisture on precipitation processes in Antarctica. Furthermore, studying

the levels of moisture in the atmosphere is important for understanding ice crystal

formation and growth. These growth processes are highly dependent on the available

moisture and temperature conditions. This knowledge can enhance our predictions

of snowfall rates and patterns, which are critical for understanding and modeling

the Antarctic climate system.

While the C3S product has shown to be a useful tool in measuring snowfall across

the AIS, where in situ measurements are difficult and rare, the time constraint

of just four years is limiting. Additionally, while it is important to study past

observations in order to study change in the future, these A-train measurements are

15 years old. However with the launch of the European Space Agency’s EarthCare

Satellite in May 2024, a new opportunity arises. Similar to CloudSat and CALIPSO,

EarthCare is equipped with a Cloud Profiling Radar and Lidar with the potential

to measure precipitation over the poles. This provides the opportunity to compare

C3S observations with measurements from the new instrument. This comparison of

a 15 year difference, may give us insight into how snowfall has changed over the AIS

over the past 15 years and how it may evolve in the near future.

Lastly, it may be of interest to evaluate our results in climate models. This work

would compliment the work of Palerme et al. (2017), which evaluated current and

projected snow on the AIS and Pendergrass and Knutti (2018), which evaluated the
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results of extreme rainfall in model projections. It would first be important to com-

pare if models capture the same 95th percentile snowfall intensities and contributions

to total accumulation during the same time period as this study. Furthermore, we

could then look into how the SLP and TPWV results differ from this study. Finally,

we could look at future projections to evaluate how much the 95th percentile snow

is changing.
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