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Abstract
Environmental Conditions Impacting Late-Summer Sea Ice Concentration

Predictability in the Northwest Passage

by Kyle Obremski

The Northwest Passage, located in the Canadian Archipelago, is a conglomerate of sea

routes that connect the eastern and western sides of the North American continent.

Historically, sea ice in the region has made it di�cult for ships not strengthened for

ice breaking to utilize the Northwest Passage. With rising temperatures, sea ice in the

Arctic has decreased and is likely to continue doing so. During some years in the late-

summer, the Northwest Passage has so little sea ice that it is essentially open to all

forms of maritime tra�c. In 2013 and 2016, the Northwest Passage had anomalously

high and low August sea ice concentration (SIC), respectively. Other years with high and

low average SICs are identified and various thermodynamic and dynamic environmental

conditions (Two-meter temperature, zonal and meridional winds, sea ice thickness, and

SIC anomalies prior to August) are composited (averaged over the high and low SIC years

for each month) to determine which are likely to have impacts on SIC. Composites show

di↵erences between these two samples of high and low August SIC, especially for sea ice

thickness, prior SIC, and temperature early on in the year. Correlating anomalies of these

variables accumulated over a number of months directly to the August SIC anomalies for

the years 1982 through 2020 shows where there are areas of strong, significant correlations.

Based on composite and correlation analyses it can be deduced that strongly anomalous

years of high and low SIC in the NWP in August do not di↵erentiate themselves until the

spring. A convolutional neural network is created to assist in predicting when and where

sea ice concentration anomalies will occur within the Northwest Passage. The model’s

accuracy is largely dependent on the predictors used, and the temporal range that these

predictors cover. When variables related to the radiative/heat flux at the surface are

included in the training data, models based on early-year data are able to increase their

average August SIC prediction accuracy in the Northwest Passage by about 5%.
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Chapter 1

Introduction

1.1 The Northwest Passage

The Northwest Passage (NWP) is a conglomerate of sea routes connecting Ba�n Bay

to the Beaufort Sea in the Canadian Archipelago (see Figure 1.2). Historically, sea ice

blocks the NWP year-round to transit by vessels without hull strengthening. These low

ice class vessels must request assistance from one of the few icebreakers in the region or

alter their route. Due to these limitations, only 352 NWP transits have been documented

as of December 2022 since the first in 1853 (Headland, 2022). However, the NWP has

exhibited lower late-summer sea ice concentration (SIC) in some recent years, allowing

transits by low ice class vessels (Headland 2022, Snider 2016). The year 2007 marked

the first year in which satellite observed SIC was low enough for a low ice class vessel to

make the transit without being severely impeded by sea ice or assisted by an icebreaker



2

(Headland 2022, Snider 2016). A passenger vessel, named the Crystal Serenity, made a

voyage through the NWP in the summer of 2016 with over 1,000 passengers, marking the

largest such feat to date (Snider, 2016).

Sea ice in the Arctic region has been decreasing at a rate of about 13% per decade

in the late summer from 1979 to 2017 (Wei et al., 2020). Figure 1.1 shows the average

SIC in August over the NWP region from 1982 through 2020 (the period of interest for

this study). Additionally, the Arctic melt season has expanded by about 5 days per

decade from 1979 to 2013 (Stroeve et al., 2014). Multi-year ice (MYI) has decreased

substantially in the region in 2007-2020 compared to the period of 1968-2006, making

it all but certain that Arctic sea ice decline in the Arctic will continue (Howell et al.,

2022). With these new norms in the Arctic, there is a need to reliably predict SIC in the

region for the safety of maritime transportation that will inevitably be using the NWP

(Somanathan et al. 2006, Wang et al. 2022). Unites States Navy ships operating in the

region will need access to both short-term and long-term sea ice forecasts of reasonable

accuracy to prevent damage to vessels. Should the NWP receive more maritime tra�c,

any rescue e↵orts conducted in the region will require sea ice concentration predictions

to safely reach any vessels in distress and leave the area safely. The Bering Strait would

likely see more tra�c due to increased trade as well, requiring Navy vessels to operate

in the region. The Northwest Passage itself provides shorter shipping times from Japan

to New York than the Panama Canal can o↵er, which will also help reduce fossil fuel

emissions released by shipping vessels (Somanathan et al., 2006).
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Figure 1.1: The average SIC from 1982 through 2020 in the Northwest Passage region

in August. The study area is a bounding box roughly defined by the coordinates

(latitude, longitude): (55N, 85W) in the southeast corner and (84N, 145W) in the

northwest corner.

In summary, then, with more open water and a lengthened shipping season in the

Arctic, understanding where sea ice will be and when it may form is a necessity. More

accurate SIC predictions in the NWP will help reduce damage to ships (both Navy and

private), prevent oil leaking into the Arctic environment due to damage from ice impacts,

help prevent loss of life, provide valuable forecasts when planning rescue operations, and

also reduce fossil fuel emissions.
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Figure 1.2: An illustration of the Northwest Passage’s routes, major waterways, and

landmasses. The Northern Route is in red, with other sub-routes in black. Base image

is from Google Maps.

The NWP was observed by satellite to have first “opened” during the summer of 2007

before opening again in 2008 (Levy, 2007). The NWP being open refers to there being

such a low amount of sea ice within the NWP that an open-water vessel (i.e. no ice

strengthening) could conceivably navigate through the NWP without having to make

large alterations to its course. The NWP in its “closed” state would signal that ice is

e↵ectively blockading the NWP to any vessels not properly strengthened for encountering

sea ice. Aside from checking sea ice extent and sea ice concentrations in the region, there

is yet to be an agreed upon standard for determining whether the NWP is open or closed.

Figure 1.3 shows an example of the NWP being closed during August of 2013 (top of

Figure 1.3) and open during August 2016 (bottom of Figure 1.3). The presence of ice in

the center of the NWP in August of 2013 closes o↵ many of the routes that are shown in

Figure 1.2, but in 2016 many of the southern routes (shown in black in Figure 1.2) were

open. Due to the significant cost of ice breaker use and construction and the presence of
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sea ice in the NWP, it has not been feasible to utilize the NWP as a significant shipping

lane (Klauz et al. 2021, Skripnuk et al. 2020). However, with Arctic warming and a decline

in sea ice, it is not unreasonable to assume that maritime tra�c is going to increase in the

near future. In fact, Earth System Models have found it possible that even the northern

routes of the NWP will be ice-free in the summer by the year 2050 (Wang et al., 2022).

1.2 Analyzing Environmental Conditions and Pre-

diction

It is essential to understand why the NWP still sees years with higher and lower SICs

as this will assist in improving predictive capabilities with respect to sea ice. By taking a

closer look at the thermodynamic and dynamic environmental conditions that led up to

the Augusts of 2013 and 2016, it becomes clear that conditions di↵er significantly when

the NWP is open versus closed.

1.3 Analyzing Environmental Conditions and Pre-

diction

In order to better understand the environmental processes that are most important to

predicting SIC, composite analysis and correlation analysis are used to establish what

certain environment variables’ patterns are during years with low and high August sea

ice. Kapsch et al. (2014) discusses the importance of spring atmospheric thermodynamic

processes in initiating sea ice melt, while Yu et al. (2021) discusses how navigability of the
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Northeast Passage (Russian side of the Arctic), similarly to the NWP, is greatly impacted

by not just the air temperature but also the low-level winds. Though sea ice motion is

often faster in the springtime when the ice is thinner, the winter sea ice motion (which is

largely driven by low-level winds) has been shown to be related to summer sea ice cover as

well (Kimura et al. 2013, Wang et al. 2021, Yu et al. 2021). Taking various environmental

conditions into account and understanding when and where they change and begin to act

on sea ice will be an important prelude to building a model with the best data utilizing

machine learning methods.

SIC prediction will be done using machine learning, specifically, a convolutional neural

network (CNN) will be utilized. The advantage of a CNN is its ability to take in large

amounts of multidimensional geospatial data and break down the underlying patterns in

order to apply what it learns to new data and make predictions (Andersson et al. 2021,

Ho↵man et al. 2023). In fact, Andersson et al. (2021) has shown CNNs to be an e↵ective

tool in the prediction of SIC in the Arctic. One potential obstacle in the prediction of

SICs is the Spring Barrier, as it is referred to in Bonan et al. (2019). This term refers to

the di�culty in predicting SICs in the Arctic past the spring season from earlier points

in the year (before June versus after June is the cuto↵). Some previous works (Zeng

et al., 2023) have aimed to reduce this spring barrier in predictive models and found that

including surface heat flux, cloud, or water vapor variables have the ability to improve

the predictive skill of models through the spring barrier.

In this analysis, a CNN is created to predict SICs within the Northwest Passage
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in August using thermodynamic and dynamic environmental data. August is chosen

as the main focus for predictions because this is often when the NWP sees its lowest

SICs of the year, making it likely that usage of the NWP by maritime vessels will be

at its peak during the month of August. Composites of Two-meter temperature, 10-

meter winds, SIC, and sea ice thickness in years with anomalous SIC in August (both

positive and negative anomalies) are created to show the di↵erent environments that are

conducive to SIC anomalies and how they di↵er in the lead-up to August. These same

variables at di↵erent points in the year are then correlated directly to mean August SICs

to show the strength, significance, and spatial distribution of the connections between

these environmental variables and SIC. The results of this correlation analysis provide

insights into the usefulness of these environmental variables as predictors in a model.

CNN predictions are shown, and the accuracy of the model’s predictions in the NWP are

evaluated for August.

1.4 Goals and Guiding Questions

The goal of this study is to find which thermodynamic and dynamic environmental condi-

tions have patterns that are unique to years with high average August SIC and years with

low average August SIC (composite analysis), how strongly and how early anomalies of

these environmental conditions are correlated to August SIC (correlation analysis), and

finally, to use the information gathered about these environmental conditions/predictors

to create a CNN that will predict August SICs from di↵erent points in the year. The

thermodynamic and dynamic di↵erences between 2013 and 2016 help to explain why the
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NWP was open in 2016 and closed in 2013. These di↵erences are explored in the be-

ginning of Chapter 3 in order to set a basis for which variables to use in the composite,

correlation, and CNN prediction analyses.

Using these di↵erent methods of analysis, this study will find characteristic environ-

ments with respect to Two-meter temperature, 10-meter zonal and meridional winds, sea

ice thickness, and SIC prior to August. Correlations between these variables and August

SIC will show how early and how strongly these variables may act as predictors for SIC.

Finally, CNN predictions of SIC are tested for accuracy using these variables, and with

additional variables related to the radiative/heat flux at the surface in order to overcome

the spring barrier. The fundamental questions that this thesis addresses are:

1. Are there characteristic thermodynamic and dynamic environments that di↵erenti-

ate high August sea ice concentration years and low August sea ice concentration

years? When do these environments begin to appear?

2. How strongly and how early do certain environmental variables act as predictors of

August sea ice concentration in the Northwest Passage region?

3. Will a simple convolutional neural network have the ability to learn the spatial

patterns that characterize where/when sea ice concentration anomalies will occur

based on early season anomalies, and how will the “spring barrier” impact these

predictions? Does the addition of variables relating to the radiative/heat flux help

to improve these predictions?
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Figure 1.3: Image of the Northwest Passage from 2013 (top, MODIS), and 2016

(bottom, VIIRS) via the NASA Earth Observatory.
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Chapter 2

Data and Methods

2.1 Geospatial Data

All geospatial data is linearly interpolated to fit the 12.5 kilometer resolution of the

NOAA-CDR passive microwave SIC (version 5) product used in this analysis (see section

2.1.1). All data is detrended linearly at each grid point. The main features of the

geospatial products (variables used, spatial resolution, and temporal resolution) are given

in Table 2.1.

2.1.1 NOAA/NSIDC Climate Data Record (CDR) of Passive

Microwave 12.5 km Sea Ice Concentration, Version 5

The region that the NWP covers is vast, making satellite remote sensing a necessary

tool in observing real-time and past changes to the SIC in the region. To identify these
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changes, daily SIC is measured from 1978 through 2020 (though only 1982 through 2020 is

used for this analysis) using the Passive Microwave 12.5 km Sea Ice Concentration version

5 data product from the National Snow and Ice Data Center (Meier et al., 2024). With

a spatial resolution of 12.5 km and daily temporal resolution over the satellite era, this

data will be pivotal in observing SIC anomalies in the Canadian Archipelago. It should

be noted that this version of the NOAA-CDR SIC product (version 5), is currently a beta

release. Inaccuracies and discontinuities may be present in the data, particularly in the

older portion. These issues have arisen due to regridding the older data to fit the 12.5

km resolution of the newer data. Upon inspection, the region of interest for this analysis

was still seemingly accurate, and any values that showed severe inaccuracies were filtered

out from this analysis. Any SIC values that are missing (or “NaN”), below 0.0, or above

1.0 are disregarded in this analysis. The main reason for using version 5 over version 4

is the region of interest itself. Version 5 has a resolution of 12.5 km whereas version 4

still uses a 25.0 km resolution. The Northwest Passage has many thin waterways that

are likely to be better represented using the 12.5 km resolution of the version 5 product.

Another possible source of error arises when using passive microwave data during the

summer months as the surface emissivity changes due to the presence of liquid water

(Andersen et al., 2007). Kern et al. (2022) examines several data products and finds that

SIC error may reach 20% in some cases. This error tends to lead to a negative bias in SIC

retrievals during high melt conditions. However, this NOAA-CDR product utilizes two

algorithms to alleviate this negative bias. The Bootstrap and NASA Team algorithms

are slightly di↵erent in their usage of brightness temperature to calculate SIC, which may
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lead to di↵erent values depending on the surface conditions. Due to the negative bias,

SIC is calculated at each pixel by both the Bootstrap and NASA Team algorithm, but

the value that makes it into the NOAA-CDR product will be the larger of the two values.

There are di↵erences, advantages, and disadvantages between various SIC products, but

the main advantage of using the NOAA-CDR product is that it is one of very few daily

SIC products that is updated daily throughout the entire year since November of 1978.

2.1.2 Daily-Averaged Fifth generation ECMWF atmospheric

reanalysis of the global climate (ERA5)

The spatial resolution of ERA5 is 0.25� horizontal, with a daily temporal resolution

covering the years from 1982 through 2020 (Hersbach and Coauthors, 2020). Two-meter

temperature, 10-meter zonal winds, and 10-meter meridional winds at a daily temporal

resolution were downloaded using a script created by the European Center for Medium-

Range Weather Forecasts’ (ECMWF) ERA5 download page. ERA5 data was linearly

interpolated to fit the 12.5 km resolution of the SIC product.

2.1.3 Extended Advanced Very High Resolution Radiometer

Polar Pathfinder

Daily measurements of sea ice thickness as well as all radiation fluxes used in part 3 of the

analysis were gathered from the Extended Advanced Very High Resolution Radiometer

(AVHRR) Polar Pathfinder (APP-x) at a 25 km horizontal resolution for the years 1982

through 2020 (Key et al., 2016). APP-x data was obtained from the NOAA Centers for
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Environmental Information (NCEI). APP-x data was linearly interpolated to fit the 12.5

km resolution of the SIC product.

Dataset Variable(s) Spatial Resolution Temporal Resolution

ERA-5
2-m Temperature

10-m U and V winds 0.25� (⇠25 km) Daily
NOAA-CDR Sea Ice Concentration 12.5 km Daily

APP-x
Sea Ice Thickness
Radiative Fluxes 25 km Daily

Table 2.1: All dataset names, variables, spatial resolution, and temporal resolution.

2.2 Methods of Analysis

This analysis of the Northwest Passage will be split into three parts: composite analysis

to understand the environmental anomalies in the lead-up to the summer for years with

high sea ice anomalies and low sea ice anomalies, correlation analysis in order to establish

connections between environmental conditions and late-summer sea ice concentrations,

and sea ice concentration prediction to test whether a simple convolutional neural network

(CNN) is able to accurately describe the locations and strength of sea ice anomalies in

the Northwest Passage region based on early-season environmental information.

Throughout this analysis, accumulated (or net) anomalies will be utilized. These

accumulated anomalies will be the sum of the daily anomalies over a period of time to

show the overall impact an environmental variable is having on an area. For instance,

an accumulated anomaly for temperature of +100 Kelvin over a period of time would

signify that there is a heating surplus in that area. An accumulated anomaly for wind

speed of +100 m
s in the zonal direction would indicate that the wind has a net eastward
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direction of influence. All accumulated anomalies are calculated from the first day of

the earliest month for each period until the last day of the last month. For example, a

February through April accumulated anomaly is calculated using daily anomalies starting

February 1st all the way through April 30th and summing these daily values.

2.2.1 Composite Analysis

Using accumulated anomalies for Two-meter temperature, U and V winds, SIC, and

sea ice thickness over various three month periods, the accumulated anomaly over each

three month period is averaged between two samples and compared. These variables were

chosen as they represent the basic thermodynamic and dynamic environmental conditions

that are likely to have the greatest direct impact on SICs within the NWP. The two

samples represented are years with at least 1 standard deviation (1-�) of average SIC

higher than normal and 1-� below normal, with both being calculated over the NWP

region. Compositing these variables from these two samples will show the net e↵ect

these variables will have on the environment in the lead-up to an anomalous August with

respect to SIC. Characteristic environments emerge, and are then tested for significance.

P-values (calculated using a standard t-test) are calculated at each pixel to show where

the samples are significantly statistically di↵erent.
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2.2.2 Correlation Analysis

For each year in this analysis (1982 through 2020), the accumulated anomaly of each

variable of interest over various 3-month periods is calculated and correlated to the av-

erage August SIC anomaly. The Pearson correlation coe�cient and P-values (using a

standard t-test) are both calculated at each pixel to show the strength and significance

of the correlations between each environmental variable and August SIC. The intention

is to show which variables influence the August SIC and how early their influence is felt.

2.2.3 Sea Ice Concentration Prediction

Two convolutional neural networks are created to predict SIC from accumulated anoma-

lies (the predictors) of Two-meter temperature, U and V winds, past SIC, and sea ice

thickness. One model will cover the period from January through March and the other

May through July. These models are created using TensorFlow (Abadi et al., 2016), and

take the variables mentioned as predictors along with a target, the average SIC for each

August, as inputs to their training. In all, there are 39 years (1982-2020) in the dataset,

with each year having corresponding predictors and targets. The training data encom-

passes about 80% of the total data with the remainder used as test data, resulting in only

39 total samples with roughly 31 used for training. Although this number of samples

only allows for the creation of basic neural networks, it lays the groundwork for a more

advanced model to be created that incorporates more data samples in the future. Train-

ing separate models will allow each individual model to learn the important patterns and

spatial anomalies from each period of interest in order to predict the resulting SIC fields.
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The model architecture remains the same for both the January-March and May-July

models, and the results are compared. The model architecture involves several blocks with

multiple convolutional layers (for pattern recognition), pooling layers (summarizes small

areas of data to help with processing and pattern recognition), and batch normalization

layers (normalizes the inputs of each layer to assist the model performance). Rectified

Linear Unit (ReLU) activation functions are used which remove negative values from

the data, which forces the model to focus on positive values (i.e. the most important

details). This model architecture also employs a combined loss function to minimize

error while also making predictions look as similar to validation as possible to preserve

detail (Chollet, 2021).

The two models discussed will only have five predictors as inputs, but one more model

will be created with 10 predictors. This model with 10 predictors will include variables

impacting the surface heat flux such as the longwave and shortwave flux oriented both

up and down, and the longwave and shortwave cloud radiative e↵ects. This model is

trained on January, February, and March accumulated anomalies and will be compared

to the model trained on the same time period with just five predictors. It is expected

that including these additional predictors will allow the model to overcome the spring

barrier that is often observed when attempting to predict SIC, and lead to an increase in

SIC prediction accuracy than the model with less predictors.
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Chapter 3

Results

3.1 An Open versus Closed Northwest Passage

Figure 3.1 shows the di↵erence in Freezing Degree Days (FDD) between 2013 and 2016

for June, July, and August. FDD is calculated the same as it is in Assel (1980) by

taking the freezing temperature of sea water (⇠ -1.8�C) and subtracting the average

daily temperature and summing the resulting values over the entire period of interest (in

this case 1 month periods, beginning on the first day of each month and ending after the

last). High FDD values signify an environment more conducive to sea ice growth, while

lower values signify an environment in which there would be more melting and/or liquid

seawater.
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Figure 3.1 shows that 2013 and 2016 had opposite thermodynamic environments with

respect to FDD values in the Canadian Archipelago (the boxed region in Figure 3.1).

2013 saw higher FDD values and 2016 saw lower values. This indicates that the 2013

summer months were colder in the NWP than the 2016 summer months, which is likely

a cause for why there is more sea ice seen in 2013 in Figure 1.3 versus the bottom image,

which takes place in 2016.

Figure 3.1: Graphic showing the di↵erence between June, July, and August FDD

values for 2013 (top row) and 2016 (bottom row). Boxed region is the location of the

Northwest Passage (Canadian Archipelago).

Figure 3.2 shows the dynamic di↵erences between June, July, and August of 2013

and 2016. Sea ice is transported by low-level winds, which means that the direction

of the wind can be used as a proxy for the general direction of sea ice motion in most
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instances (Yu et al., 2021). The 1000 hPa full wind anomaly is shown in Figure 3.2, and

an interesting pattern emerges for both 2013 and 2016. 2013 sees the mean wind direction

oriented towards the east (see the large blue arrow) on the western side of the Canadian

Archipelago over the Beaufort Sea. This would act to transport sea ice from the Beaufort

Sea region to the east, and into the NWP, raising the SICs. The opposite pattern emerges

in 2016, with winds blowing north and slightly to the west, which would act to evacuate

sea ice from the NWP and keep ice from entering the Canadian Archipelago.

Figure 3.2: Graphic showing the di↵erence between the anomalous 1000 hPa winds

in June, July, and August for 2013 (top row) and 2016 (bottom row). Larger arrows

indicate mean wind direction in that general location.
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3.2 Part 1: Composite Analysis

3.2.1 Years with High and Low Sea Ice Concentration

In order to di↵erentiate years in which the Northwest Passage contained more ice and less

ice than normal, a cuto↵ of 1-� average August SIC in the NWP region (approximately

the boxed area in Figure 3.1) was used. Figure 3.3 shows the cuto↵s used in dashed black

lines. It also shows a timeseries from January through December of the average SIC for

each month, where each individual line represents a di↵erent year from 1982 through

2020. The green lines represent the years in which the August SIC was at least 1-� below

normal, and the red lines are the years with at least 1-� of SIC above normal across the

NWP region. The grey lines are all of the other years. The green lines, the low SIC years,

and the red lines, the high SIC years, represent the two samples that will be compared in

this composite analysis. The specific years contained in each of these samples are listed

in Table 3.1. Figure 3.3 seems to suggest that the years with very low and very high

August SIC begin to di↵erentiate themselves in the spring, given the divergence between

the red lines and the green lines that seems to first appear April/May.

Low SIC Years 1998, 2007, 2008, 2011, 2012, 2016
High SIC Years 1992, 2001, 2013, 2014, 2018, 2020

Table 3.1: The two samples of being composited: years with high average August

SIC, and those with low average August SIC in the Northwest Passage region.
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Figure 3.3: Detrended monthly-averaged SIC values over NWP region for each year

from 1982 through 2020. The horizontal dashed lines represent the +/- 1-↵ of mean

August SIC. Green lines are the timeseries for years with -1-↵ or less mean August SIC,

and the red lines are the timeseries for years with +1-↵ or greater mean August SIC.

Grey lines are years without significantly anomalous August SIC.

3.2.2 Temperature, Winds, MSLP, SIC, and Ice Thickness

Figure 3.4 shows the accumulated anomaly of Two-meter Temperature averaged over two

samples, the Low SIC Years and High SIC Years (see Table 3.1), over six di↵erent 3

month periods. The temperature anomaly is summed up over these three months for

each year before being averaged over all years present in the sample. Stippling represents

areas where there is a significant di↵erence between the two samples and where the P-

values are calculated as being 0.05 or less (95% significance level). Red areas signify a
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temperature surplus, and blue areas a temperature deficit.

In the earliest time period within Figure 3.4, January through March, starts to show

a slight temperature di↵erence between the years with low August SIC and high August

SIC, but significant area is largely not present. In February through April, this pattern

of higher temperatures in the low SIC years and lower temperatures in high SIC years

starts to become clearer, but without large significant areas. March through May is where

significant areas begin to appear in larger areas, specifically over the Greenland landmass

and over the Beaufort Sea. April through June sees magnitudes of temperature surpluses

and deficits increase and a further expansion of significant area into the southwestern

waters where the Beaufort Sea and the Amundsen Gulf meet and over the Canadian

continent. From this point, the two samples are almost completely opposite. May through

July shows a stark di↵erence between the low August SIC years and the high SIC years.

Significant areas cover almost the entire Greenland landmass and each landmass within

the Canadian Archipelago. Interestingly, the significant areas and highest magnitudes of

temperature di↵erence occur over land in May through July before showing significant

di↵erences over water within the Canadian Archipelago in June through August. Land

heats faster than water and conducts heat into the water, which seems to be the reason

for this lag between when land first shows significant di↵erences in temperature versus

water between the two samples. Although the SIC di↵erences occur in August over water,

the warm/cold landmasses within the Canadian Archipelago earlier in the year will likely

impact water temperature and SIC in the summer as well. Overall, di↵erences in the

heat budget of high and low August SIC years in Figure 3.4 hint to an environmental
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di↵erence early in the year, but the statistically significant di↵erences seem to take shape

in late spring and strengthen in the summer months.

Figure 3.5 shows the accumulated anomaly of the 10-meter zonal wind over 3 month

periods averaged over the low August SIC years (left column) and high August SIC years

(right column). In this case, positive (red) values would indicate a net eastward e↵ect of

the zonal wind and negative (blue) values a net westward e↵ect. Winds act to transport

sea ice, therefore directly impacting the SIC (Kimura et al. 2013, Wang et al. 2021, Yu

et al. 2021). Similarly to Figure 3.4, Figure 3.5 begins to a show a pattern of di↵erence

between the two samples that strengthens as the summer months get closer. In January

through March, February through April, and March through May the pattern of a net

westward wind over the southwestern Canadian Archipelago, near the Amundsen Gulf

and Beaufort Sea, begins to increase in magnitude and become a clear feature in the low

August SIC sample with a net Eastward e↵ect of the winds in the high August SIC side.

Although this area of di↵erence between the two samples begins to form earlier in the

year, significant di↵erences between the samples do not seem to appear until the April

through June period. However, during this period the di↵erences are stark, with the two

samples becoming opposite in terms of the zonal wind direction. June through August

shows a similar pattern to May through July. The e↵ect of these opposite wind impacts

is that in the low August SIC years there is a net westward impact by the zonal winds

which would likely act to push sea ice out of the NWP region, lowering SICs. The high

August SIC years display a net eastward impact of the zonal winds which would likely

lead to sea ice entering the NWP region from the west, raising the SICs in the area.
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Figure 3.4: Composite of 2-m Temperature for low mean August SIC years (left

column) and high mean August SIC years (right column) for various 3-month periods.

Stippling is where p-values  0.05.
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Figure 3.5: Composite of 10-m Zonal Winds for low mean August SIC years (left

column) and high mean August SIC years (right column) for various 3-month periods.

Stippling is where p-values  0.05.
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Figure 3.6 shows the accumulated anomaly of the 10-meter meridional wind over 3

month periods averaged over the low August SIC years and high August SIC years.

Positive (red) values mean that the meridional wind has a net northward impact, and

negative (blue) values show a net southward impact. Unlike the zonal wind in Figure 3.5,

the meridional wind does not show a clear pattern of di↵erence between the two samples.

In April through June, an area of positive values begins to develop over the Beaufort Sea

in the Northwest, but this area is present in both samples and continues over the next

couple of periods as well. Significant areas of di↵erence are very few and very small in

area when they do show up, suggesting that there is not much variability between the

two samples with respect to the meridional winds. Overall, Figure 3.6 suggests that the

meridional winds are not a variable that will di↵erentiate the low August SIC years from

the high August SIC years.

Figure 3.7 shows the accumulated anomaly of Mean Sea-Level Pressure (MSLP) over

various 3 month periods that are averaged over the two samples. Positive (red) values

indicate a higher anomaly of MSLP and lower (blue) values indicate a lower anomaly.

Although MSLP is not used further in this analysis, it is an interesting variable to look at

due to its impact on the winds. A di↵erence in MSLP between the two samples does not

seem to appear until the April through June period. However, the April through June

period shows a large portion of significant area and opposite MSLP values between the

two samples. This larger area covers a large portion of the northern half of the NWP

and extends west over a large area of the Beaufort Sea. Over the next two periods, this

large area of anomalous MSLP shifts to the east until it is centered over the Greenland
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Figure 3.6: Composite of 10-m Meridional Winds for low mean August SIC years (left

column) and high mean August SIC years (right column) for various 3-month periods.

Stippling is where p-values  0.05.
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Figure 3.7: Composite of MSLP for low mean August SIC years (left column) and

high mean August SIC years (right column) for various 3-month periods. Stippling is

where p-values  0.05.
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landmass. This large pressure anomaly directly influences the orientation of the winds

that are observed in Figure 3.5 and Figure 3.6. The positive anomalues in MSLP observed

in the low August SIC years would lead to an anti-cyclonic (clockwise) wind pattern that

would cause winds to blow to the west from the NWP, moving sea ice out of the area. The

opposite is true for the high August SIC years as there is a cyclonic (counterclockwise)

wind pattern that would be present. This would lead to sea ice being transported into the

NWP from the west. Figure 3.7 gives insight into why the wind patterns in the zonal and

meridional components of the 10-meter winds look the way that they do between these

samples and suggests that anti-cyclonic pressure patterns over the NWP would lead to

lower SICs whereas cyclonic pressure patterns in the region would lead to higher SICs.

Figure 3.8 shows the accumulated anomaly of SIC averaged for each of the two samples.

Positive (red) values would indicate a surplus of SIC over the 3-month period and negative

(blue) values would mean a SIC deficit. The first two periods, January through March

and February through April, do not show a large di↵erence in accumulated anomaly

of SIC, likely because this early in the year the SICs are at, or close to, 100% and

are relatively constant. Once spring is included in the March through May period, a

significant di↵erence between the two samples in the southwestern Canadian Archipelago

begins to present itself. There is an SIC deficit in the low SIC sample and a surplus in the

high SIC sample. This area grows in significance, magnitude, and area as time passes.

April through June, May through July, and June through August show the evolution of

these di↵erences. April through June shows these anomalies encompassing more area to

the north in the Beaufort Sea. In May through July, di↵erences within most routes of
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the NWP begin to show, and by June through August it is apparent that SIC varies by

a substantial amount from the low August SIC years to the high August SIC years. It

is interesting that significant SIC di↵erences begin to show up slightly earlier than the

significant areas of both the winds and temperature.

Figure 3.9 shows the accumulated anomaly of sea ice thickness averaged over the two

samples for various 3 month periods. Positive (red) values indicate increased thickness and

negative (blue) values indicate decreased thickness. Unlike all of the other variables, there

seems to be an apparent pattern showing in the earliest period, January through March.

Just o↵ of the southwestern edge of the Canadian Archipelago (west of Banks Island),

significant area is present, although the di↵erences in magnitude between the decreased

and increased thicknesses are only slight. The decreased thickness in the low SIC years

and the increased thickness in the high SIC years is not very large in February through

April either, but statistically significant area remains. March through May shows the

significant area grows slightly and the magnitudes of the thickness anomalies become more

apparent. April through June and May through July shows that these anomalies get even

greater in magnitude, and by the June through August period that entire southwestern

edge opposite between the samples with some more area showing higher magnitudes of

anomalies to the east, specifically within the Northern Route of the NWP. Even compared

to the accumulated anomaly of SIC in Figure 3.8, the accumulated anomaly of sea ice

thickness seems to present itself early. Sea ice thickness is the variable that shows the

greatest di↵erence between low August SIC years and high August SIC years at the

earliest point in the year.
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Figure 3.8: Composite of SIC for low mean August SIC years (left column) and high

mean August SIC years (right column) for various 3-month periods. Stippling is where

p-values  0.05.
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Figure 3.9: Composite of Sea Ice Thickness for low mean August SIC years (left

column) and high mean August SIC years (right column) for various 3-month periods.

Stippling is where p-values  0.05.
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3.3 Part 2: Correlation Analysis

Establishing di↵erences between years with low August SIC and high August SIC was

crucial in determining whether accurate prediction of SIC is possible. The Composite

Analysis showed that most of the variables of interest show opposite e↵ects on each

sample. These environmental conditions are now tested for their correlation directly to

the August SIC anomalies. This will give insight into which of these variables may best

be used as predictors, and which would make the most sense to include in a model aimed

at predicting SICs.

Figure 3.10 shows a correlation of the accumulated anomaly of the Two-meter tem-

perature to the mean August SIC anomalies for the years 1982 through 2020 over various

3-month periods from January through August. In this case, positive (red) values mean

a positive correlation and the negative (blue) values signal a negative correlation. Stip-

pling represents the locations where the P-values are 0.05 or less, or where there is 95%

confidence that the correlation is significant. In the case of the Two-meter temperature,

there are widespread negative correlations, which makes perfect sense because as tem-

peratures rise, SIC would fall, and as temperatures fall, SIC would rise. The January

through March period already shows widespread significant area to go along with the

negative correlations, including withing the NWP’s routes. As the time periods progress

further into the year, these negative correlations grow in magnitude, and the significant

area continues to expand. In the final period, June through August, the entirety of the
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maritime regions within the Canadian Archipelago are covered in significant area, with

correlations ranging from -0.50 to -0.95 in most of the area.

Figure 3.11 and Figure 3.12 show the August SIC anomalies correlated with the accu-

mulated anomalies of the zonal and meridional components of the 10-meter wind, respec-

tively. Starting with the meridional wind, it becomes apparent that, at leadt for most of

the year, there are no widespread patterns to speak of. However, a some significant posi-

tive correlations o↵ of the southwestern edge of the Canadian Archipelago (west of Banks

Island) begin to take shape in May through July and are still present in June through

August. This would signify that SIC in this area would fall with the negative direction of

the wind (southward blowing) and rise with the positive direction (northward blowing).

The meridional wind does not seem to be a great predictor of sea ice on its own, but its

inclusion in a machine learning model may be necessary as it provides information to the

model about the overall wind pattern.

Looking at the zonal wind in Figure 3.11, it is apparent that the zonal wind has

widespread positive correlations with August SIC. Early on, in January through March,

February through April, and March through May, a smaller region of positive correlations

begins to form to the southwest of the Canadian Archipelago similarly to the meridional

wind. However, this area shows up much earlier than the meridional wind’s positive

correlation and it continues to grow over the next few periods. The zone of significant

positive correlations grows and strengthens with time as the area moves along the western

axis of the Canadian Archipelago and starts to show up within areas of the NWP as
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Figure 3.10: 2-m Temperature correlated with mean August SIC anomalies from 1982

through 2020 for various 3-month periods. Stippling is where p-values  0.05.

Figure 3.11: 10-m Zonal Winds correlated with mean August SIC anomalies from

1982 through 2020 for various 3-month periods. Stippling is where p-values  0.05.
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well. By June through August correlations reach upwards of 0.75, with the significant

area reaching through most of the NWP routes. The zonal wind likely becomes more

significant, and better correlated with the August SIC later in the year because the sea

ice concentration is close to 100% as a consolidated ice pack in the winter months and the

early spring. This would mean that the wind would need to transport large swathes of ice

that would move much slower, leading to minimal change in SIC. By mid to late-spring,

the sea ice is thinner, and is more easily broken apart. These smaller pieces are able

to be transported easier, and SICs are raised within the NWP when the winds blow to

the east, transporting sea ice into the NWP, leading to positive correlations. When the

wind blows to the west (negative direction), the sea ice is transported out of the NWP,

lowering SICs. This tracks well with what was observed in Figure 3.5. The zonal wind is

a good predictor of SIC once the sea ice begins to break apart.

Figure 3.13 shows the correlation between the August SIC anomalies and the accumu-

lated anomaly of SIC during various 3 month periods from 1982 through 2020. One of

the most important aspects of predicting SIC is knowing the previous values of SIC in a

given location. Using these accumulated anomalies of SIC, it can be deduced where SIC

is already experiencing a surplus or deficit, and using this correlation strategy, it can be

determined when/if a surplus/deficit of SIC becomes a good predictor of the SIC in Au-

gust. Looking at Figure 3.13, specifically in the earlier periods, January through March,

February through April, and March through May, it may be surprising to see that the

correlations are weak and the significant area is sparse. However, just like with the winds,

it is important to note that the SICs this early in the year are close to 100% and are not
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shifting all that much. March through May sees significant area start to fill in o↵ the

southwestern edge of the Canadian Archipelago, but once the late-spring is included in

April through June, positive correlations begin to grow in magnitude and the significant

area begins to cover the area. By May through July, some of these positive correlations

are reaching 0.9 and the significant area essentially covers the entire region. June through

August is obviously showing the highest correlations with the most significant area as the

accumulated anomaly of SIC is almost concurrent with the August SIC anomalies. The

accumulated anomaly of SIC is a great predictor of SIC once the warmest months are

included, but it is likely useful even in the March through May period.

3.4 Composite and Correlation Analysis Summary

Figure 3.14 shows the accumulated anomaly of sea ice thickness correlated with the

August SIC anomalies. It is largely apparent right away that the thickness is a great

predictor of August SIC even as early as January through March. The thickness grows in

significant area and the correlations strengthen with time. The concentration of the area

with the highest positive correlations seems to be over the Beaufort Sea, suggesting that

thick ice in this region will lead to higher SICs in those areas in the summer. This may

be obvious, but it is important to confirm the ability of thickness to act as a predictor of

August SIC. The thickness of the sea ice is likely the best predictor out of the variables

analyzed, and will be a necessary component of any machine learning model used for

predicting SIC.
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Figure 3.12: 10-m Meridional Winds correlated with mean August SIC anomalies

from 1982 through 2020 for various 3-month periods. Stippling is where p-values  0.05.

Figure 3.13: SIC correlated with mean August SIC anomalies from 1982 through

2020 for various 3-month periods. Stippling is where p-values  0.05.
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Figure 3.14: Sea Ice Thickness correlated with mean August SIC anomalies from

1982 through 2020 for various 3-month periods. Stippling is where p-values  0.05.

The composite analysis showed that di↵erences between years with at least one standard

deviation higher and lower than the mean August SIC exist in terms of their environmen-

tal conditions. The most apparent di↵erences between the low August SIC years and the

high August SIC years seems to take form in the spring, with sea ice thickness already

showing slight di↵erences in the winter. SIC, thickness, and Two-meter temperature

are the strongest and most widespread predictors of August SIC at the earliest points

in the year according to the correlation analysis. All three of these predictors seem to

have significant correlations in the winter months, with thickness seemingly the strongest

predictor of August SIC.

Interestingly, although certain variables may be good predictors of August SIC early

in the season, the composite analysis tells us that the strongly +/- August SIC anomaly
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years do not begin to di↵erentiate themselves until the Spring in most cases (except for sea

ice thickness). Most significant di↵erences in the samples appear in the March through

May and the April through June periods, but the correlations seem to show some degree

of predictability even earlier in the year for SIC, thickness, Two-meter temperature, and

arguably the zonal wind. This is not to say that there is no predictive capability for any

variable except for sea ice thickness before the spring, but rather that the spring seems

to be a tipping point that can lead to August SICs going towards one extreme or another

(at least +/- 1-� mean August SIC).

3.5 Part 3: Sea Ice Concentration Prediction

Using the variables analyzed in the previous two parts, the predictability of August SIC

can be analyzed using CNNs. Two models were trained on environmental accumulated

anomalies from various 3-month periods. The first model is trained on January, February,

and March (JFM) accumulated anomalies and the second is trained on May, June, and

July (MJJ) accumulated anomalies. The way in which these accumulated anomalies are

used to train these models is that the variables’ (past SIC, sea ice thickness, zonal and

meridional winds, and Two-meter temperature) accumulated anomalies are calculated for

each month, but instead of summing the full 3-month period each month is used as a

di↵erent predictor as input to the model. Simply put, the JFM model is trained/tested

on the full dataset from 1982 through 2020, but instead of there being one input for

each variable, there are 3, with 15 total predictors (5 for each month). The reason for

choosing to separate the 3-month periods into individual months (thereby tripling the
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input variables/predictors) is because this will give the model some information as to

how the environment may be changing over this 3-month period with respect to each

variable. Each model will also have a 1-� Gaussian smoothing filter applied to reduce

prediction noise and remove pixels that may be abnormal after the model prediction

process.

Figure 3.15 shows the correlation between the predictions and the validation of SIC

at each point in the NWP region from the years 1982 through 2020. The focus should be

on the bottom half of the figure, which is the correlation after a 1-� Gaussian smoothing

filter was applied to the predictions. Overall, the January, February, and March CNN

does not have highly correlated and significant areas of accurate predictions. The area

where this model seems to perform the best is within the waterways of the southern

routes of the NWP. Flattening the array of predictions and validation, and calculating

the root-mean-square error (RMSE) gives a value of 0.198 for the smoothed correlation.

This means that on average, there is a deviation of about 20% between the predictions

and the validation. Interestingly, when the entire Arctic is included in the prediction,

the RMSE goes down to 0.128, or about 13%. This discrepancy is likely due to the fact

that the NWP’s landmasses and bathymetry di↵er from most of the other Arctic waters,

complicating predictions in the area.

Figure 3.16 shows the correlation between the predictions and the validation of SIC,

but this model was trained on May, June, and July anomalies. What becomes apparent

right away is this model performs much better than the JFM model. This, of course,
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Figure 3.15: CNN (trained on JFM accumulated anomalies) predictions and valida-

tion are correlated to show where predictions are most accurate. Positive correlations

(red) mean the model predictions are positively correlated with validation (this is de-

sired), while negative correlations (blue) mean model predictions are not resolving with

validation. The top part of the figure is the correlation in its raw form, but the bottom

is the correlation after a 1-� Gaussian smoothing filter was applied to the CNN predic-

tions. Stippling is where p-values  0.05.
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Figure 3.16: CNN (trained on MJJ accumulated anomalies) predictions and valida-

tion are correlated to show where predictions are most accurate. Positive correlations

(red) mean the model predictions are positively correlated with validation (this is de-

sired), while negative correlations (blue) mean model predictions are not resolving with

validation. The top part of the figure is the correlation in its raw form, but the bottom

is the correlation after a 1-� Gaussian smoothing filter was applied to the CNN predic-

tions. Stippling is where p-values  0.05.
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is expected due to the proximity of MJJ to August. It is important to note that the

model’s best performance is within the NWP and over the Beaufort Sea, which are the

regions where maritime vessels would be most likely to traverse. The correlations reach

well above 75% in some areas, and almost the entirety of the NWP has significant area.

The RMSE of the predictions for the NWP region compared to validation is 0.144, or

just under 14.5%. When accounting for the whole Arctic, the RMSE drops to 0.0876, or

just under 9%. These errors are still high, but can be improved upon in the future as

more predictors and higher resolution data becomes available.

As discussed in Zeng et al. (2023), the Spring Barrier is often associated with lower

predictability of SIC before June, but these predictions can be improved by including

more variables relating to the surface heat flux. To test whether this is the case, additions

will be made to both the JFM and MJJ CNNs. These new models, which include the

downwelling shortwave flux at the surface, the upwelling and downwelling longwave flux

at the surface, the shortwave cloud radiative forcing at the surface, and the longwave

cloud radiative forcing at the surface will be compared to Figure 3.15 and Figure 3.16 to

test whether improvements occur in either (or both) of these models.

Figure 3.17 shows some improvement to SIC predictions when compared to Figure 3.15.

Though this improvement is not widespread, it is apparent that positive correlations and

significant area are far more widespread in the Beaufort Sea region. The RMSE in the

NWP region when fluxes are included drops to 0.150 from 0.198 for JFM, an almost 5%
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Figure 3.17: CNN (trained on JFM accumulated anomalies and including additional

flux variables) predictions and validation are correlated to show where predictions are

most accurate. Positive correlations (red) mean the model predictions are positively

correlated with validation (this is desired), while negative correlations (blue) mean

model predictions are not resolving with validation. The top figure is the correlation

in its raw form, but the bottom is the correlation after a 1-� Gaussian smoothing filter

was applied to the CNN predictions. Stippling is where p-values  0.05.
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improvement. For the whole Arctic the RMSE drops to 0.120 from 0.128. It seems that

the addition of the heat flux information has contributed to this model improvement.

Figure 3.18 shows the MJJ model’s correlation, this time with fluxes included. Com-

paring to Figure 3.16, there is not a significant di↵erence between the two figures. In fact,

the RMSE in the NWP region went to 0.149 from 0.144 when including fluxes. For the

whole Arctic the RMSE is now 0.0986 where it was 0.0876 without the fluxes. It seems

that the Spring Barrier can be reduced when using variables related to the heat flux

before June, but including them after May does not make much of a di↵erence. In fact, it

may add to the error. Of course, all models in this analysis had the same architecture and

number of training epochs, so it is likely that the accuracy could be maintained for the

MJJ model when using heat flux information by increasing the training time and giving

the model more time to learn the connections between the additional variables and SIC.

This may be explored in a future analysis.
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Figure 3.18: CNN (trained on MJJ accumulated anomalies and including additional

flux variables) predictions and validation are correlated to show where predictions are

most accurate. Positive correlations (red) mean the model predictions are positively

correlated with validation (this is desired), while negative correlations (blue) mean

model predictions are not resolving with validation. The top figure is the correlation

in its raw form, but the bottom is the correlation after a 1-� Gaussian smoothing filter

was applied to the CNN predictions. Stippling is where p-values  0.05.
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Chapter 4

Summary and Conclusions

The Arctic is likely going to experience an increase in maritime activity as the region

continues to warm and sea ice amounts decrease, especially in the late-summer. It is for

this reason that interest in predicting sea ice concentrations in the Arctic, specifically in

the Northwest Passage, has began to increase. SIC prediction will allow for increased

maritime safety in the region, and help reduce the chances of a disastrous situation like

an oil spill that would have severe environmental consequences, loss of property, and loss

of human life.

Di↵erences between the SIC in the NWP during the summers of 2013 and 2016 were

apparent from visible satellite imagery (Figure 1.3), but also when comparing the thermo-

dynamic and dynamic environmental conditions. Temperature di↵erences (shown in the

form of freezing degree days, Figure 3.1) showed an increased temperature in 2016 and a
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colder temperature in 2013. Not only was the temperature contributing to a di↵erence

between these two summers, but the winds in the region showed almost opposite patterns

(Figure 3.2). 2013 had a cyclonic wind pattern that push sea ice into the NWP region,

raising SICs. 2016 saw an anticyclonic pattern that would lower the SIC by transporting

sea ice out of the NWP. It was the di↵erences between 2013 and 2016 that encouraged a

search for other years that had at least one standard deviation higher or lower of average

August SIC anomalies. The result was two samples of six years each that served as the

two samples for the composite analysis.

Compositing the accumulated anomalies of the variables of interest (Two-meter tem-

perature, 10-meter zonal and meridional winds, sea ice thickness, and past sea ice concen-

trations from earlier in the year) showed clear di↵erences between the two samples. These

di↵erences became apparent the earliest when looking at the sea ice thickness, but the

Two-meter temperature and SIC anomalies all showed significant di↵erences becoming

largely apparent in the spring. The zonal wind was shown to be opposite between the

two samples as well, with a net eastward e↵ect of the wind during the high sea ice years,

and a westward e↵ect during the low sea ice years. The meridional wind’s pattern was

less clear.

The correlation analysis is where the direct relationships between the environmental

variables and the average August SIC anomalies were analyzed by calculating the Pearson

correlation coe�cient at each grid point between the August SIC anomalies and each

variable of interest separately. The results showed that the sea ice thickness, SIC, and the
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Two-meter temperature were the strongest predictors of August SIC anomalies because

they began to show correlations in the early spring and even in the winter for sea ice

thickness and Two-meter temperature. The closer to August the thinner the ice is, and

in the late spring this is when the zonal wind became most correlated with August SIC

anomalies, particularly along the western axis of the Canadian Archipelago.

Based on the composite and correlation analyses, it becomes apparent that certain

variables may be good predictors of average August SIC anomalies earlier in the year,

but the strongly +/- August SIC anomaly years do not begin to di↵erentiate themselves

until the spring in most cases (except for sea ice thickness). Most significant di↵erences

between the low and high SIC years begin to appear in March through May in the

composite analysis, but the correlations show significant correlations even earlier than

this period. Predictability of August SIC likely exists in more of these variables than just

the sea ice thickness earlier in the year, but the extreme years with at least one standard

deviation greater/lower average August SIC do not present themselves until the spring,

which is the time of the year that acts as a tipping point for extreme anomalies with

respect to SIC in the NWP region.

From here, CNNs were constructed to predict August SICs from the variables of in-

terest. Obviously, the closer to August the environmental conditions are that are used

to predict August SIC, the more accurate the model will be. This becomes increas-

ingly apparent when comparing Figure 3.15 and Figure 3.16. However, predictions from

earlier in the year need to overcome the “Spring Barrier” as it is referred to in Bonan
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et al. (2019). This barrier often decreases SIC predictability before June, but it is said

including environmental information about the heat flux in the training process can in-

crease the accuracy of early season predictions (Zeng et al., 2023). To test this, five

additional variables were included to try and improve predictions early in the year from

the JFM model. These additional variables are the downwelling shortwave flux at the

surface, the upwelling and downwelling longwave flux at the surface, the shortwave cloud

radiative forcing at the surface, and the longwave cloud radiative forcing at the surface.

It was found that the accuracy of predictions increased for the early-year JFM model

when these additional variables are included, but interestingly, the accuracy was reduced

slightly when including these variables in the MJJ model.

The main conclusions are:

1. Characteristic thermodynamic and dynamic environments exist when comparing

low and high August SIC years. Particularly, the sea ice thickness, the Two-meter

temperature, and the prior SIC anomalies all show di↵erences in the early spring,

or even in the winter in the case of the sea ice thickness (to the southwest of Banks

Island).

2. The best, and earliest, predictor of August SIC is the sea ice thickness. The Two-

meter temperature also shows strong predictive capability early in the year. The

prior SIC anomalies and zonal wind become better predictors once the late-spring

is included.
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3. Although there is predictability of August SIC before the spring for certain variables,

the strongly +/- August SIC anomaly years do not present themselves until the

spring.

4. Simple convolutional neural networks are able to predict average August SICs at

varying degrees of accuracy depending on the time of the year of the predictors. The

closer to August the predictors are, the more accurate the August SIC predictions

will be. However, early season models will increase in accuracy when including

variables related to the radiative/heat flux at the surface. This was apparent when

comparing the JFM model without these fluxes (Figure 3.15) to the model that

included them (Figure 3.17).
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