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Abstract

Impact of tropical and boreal biomass burning on atmospheric composition

by Margaret Bruckner

Atmospheric trace gases and aerosols emitted from biomass burning significantly influ-

ence atmospheric composition globally and locally on short-term and climatological time

scales. Global chemical transport models (CTMs) can be used to predict the trans-

port and evolution of biomass burning emissions but have high uncertainties for reasons

including computational constraints on model complexity and uncertainties in biomass

burning emissions inventories. Chemical data assimilation systems can be used to reduce

the impacts of emissions uncertainty and model deficiencies in representing sub-grid scale

processes by constraining CTM analyses with satellite atmospheric composition observa-

tions. Chemical re-analyses produce best-estimates of the real atmospheric composition

through the application of chemical data assimilation. In this dissertation I evaluate

how tropical biomass burning emissions impact variability in tropical tropospheric ozone

concentrations and improve the representation of tropical and boreal biomass burning

emissions in global CTMs. I ask how variability in tropical tropospheric ozone is related

to biomass burning emissions, how well global models capture emissions from biomass

burning globally, and what the contribution of biomass burning emissions is to global

background air quality. First, I use a global chemical reanalysis from the Real-time Air

Quality Modeling System (RAQMS) to show that variability in tropical convection and
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Indonesian biomass burning emissions contribute to observed El Niño Southern Oscilla-

tion (ENSO) variability in tropical tropospheric ozone. Next, I show through compar-

isons with satellite, ground based, and airborne measurements that the biomass burning

emissions inventory used in the Unified Forecast System/Real-time Air Quality Model-

ing System (UFS-RAQMS) global model significantly underestimates CO emissions from

Siberian and Indonesian biomass burning in July-September 2019. I demonstrate that

assimilation of satellite carbon monoxide (CO) retrievals significantly reduces this bias. I

then present results from an iterative finite difference mass balance approach designed to

adjust the CO biomass burning emissions. Finally, I show that the adjusted CO biomass

burning emissions inventory improves agreement between UFS-RAQMS CO and obser-

vations and increases background tropospheric ozone concentrations. Due to projected

increases in biomass burning in a changing climate, improved predictions of biomass

burning emissions are necessary for providing accurate air quality forecasts.
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Chapter 1

Introduction

1.1 Global Impact of Wildfire on Air Quality

Wildfires, agricultural fires, and managed burns are collectively referred to as biomass

burning (Wiedinmyer et al., 2011). Biomass burning is a major source of trace gases and

aerosols to the atmosphere, releasing large quantities of particulate matter (PM), volatile

organic carbons (VOCs), and nitrogen oxides (NOx) (Akagi et al., 2011, Andreae, 2019,

Andreae and Merlet, 2001, Crutzen et al., 1979). Hereafter the mixture of trace gases and

aerosols emitted from biomass burning will be referred to as wildfire smoke or biomass

burning emissions. The contribution of wildfire smoke to tropospheric ozone concentra-

tions has been estimated to be nearly equal that of urban anthropogenic emissions in the

tropics and Northern Hemisphere and be 2-10 times the contribution of urban emissions

in the Southern Hemisphere (Bourgeois et al., 2021). Global biomass burning emissions
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peak in August-September due to the combined influence of temperate and boreal burning

seasons in the Northern Hemisphere and the burning seasons for Southern Hemisphere

Africa and South America (van der Werf et al., 2017, Wiedinmyer et al., 2023). Biomass

burning in tropical regions accounts for a significant percentage of both the global burned

area and biomass burning emissions (Liu and Ding, 2024, van der Werf et al., 2017). Bo-

real biomass burning accounts for less than 5% of the global burned area at present but

contributes ∼9% of the global biomass burning emissions (Liu and Ding, 2024, van der

Werf et al., 2017).

Biomass burning emissions influence air quality on local, regional, and global scales. El-

evated tropospheric ozone over the South Atlantic was first linked to African biomass

burning emissions through use of in-situ and satellite measurements (Fishman et al.,

1991, Watson et al., 1990). Aircraft observations from campaigns such as the Pacific Ex-

ploratory Missions in the Tropics (PEM-Tropics) further elucidated that biomass burning

emissions from fires in South Africa and South America are lofted into the troposphere

and then transported throughout the Southern Hemisphere (Singh et al., 2000). The

NASA Atmospheric Tomography Missions (ATom) campaign, consisting of 4 flight cam-

paigns between 2016 and 2018, found global chemical transport models underpredict the

contribution of wildfire smoke to background tropospheric ozone (Bourgeois et al., 2021).

The 2019 NASA/NOAA Fire Influence on Regional to Global Environments and Air

Quality (FIREX-AQ) (Warneke et al., 2023) and the 2018 Western wildfire Experiment

for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN 2018) (Lindaas et al.,

2021, Permar et al., 2021) campaigns produced improved emission factors for vegetation
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types in the US (Gkatzelis et al., 2024). Emissions from boreal biomass burning can be

injected into the upper troposphere, or even the lower stratosphere, as a result of con-

vection and pyro convection (e.g. Lewis et al., 2013, Parrington et al., 2013, Peterson

et al., 2015, Yu et al., 2019). Emissions from Siberian biomass burning have been found

to influence surface ozone and particulate matter concentrations in North America (e.g.

Cottle et al., 2014, Jaffe et al., 2004).

Atmospheric dynamics significantly influence the distribution of ozone and ozone precur-

sors. Large-scale dynamical transport patterns leave signatures in O3. El Niño-Southern

Oscillation (ENSO) is a major driver of interannual variability in both tropical and mid-

latitudes (e.g. McPhaden et al., 2006, Trenberth, 1997), and has been found to be a

dominant driver of interannual variability in the distribution of tropospheric ozone in

the tropical Pacific (e.g. Doherty et al., 2006, Oman et al., 2013, Peters et al., 2001,

Sekiya and Sudo, 2012, Ziemke et al., 2010). ENSO variability in tropical tropospheric

ozone columns has been reproduced in chemical transport models and climate models

(e.g. Chandra et al., 2002, Doherty et al., 2006, Peters et al., 2001, Sekiya and Sudo,

2014, Sudo and Takahashi, 2001). Biomass burning in the maritime continent is strongly

related to ENSO, with increased occurrence in El Niño due to enhanced drying of the

peatlands (van der Werf et al., 2008, 2017). van der Werf et al. (2008) found that biomass

burning emissions from Borneo were more than 30 times larger in El Niño years due to

the combined effect of drought on peatlands and deforestation. ENSO variability in

equatorial Pacific tropospheric ozone was initially thought to be equally due to shifts in

biomass burning emissions and meteorological conditions (Chandra et al., 2002, Sudo and
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Takahashi, 2001). More recent studies postulate that enhancement in biomass burning

during El Niño results in regional enhancement of ozone with little contribution to global

tropospheric ozone variability and that the response of tropospheric ozone to ENSO is

primarily due to dynamical processes (e.g. Doherty et al., 2006, Inness et al., 2015a). In

Chapter 3 I revisit the contributions of biomass burning and dynamics to ENSO variabil-

ity in tropical tropospheric ozone by using a global chemical reanalysis to evaluate the

roles of dynamics and biomass burning in tropical tropospheric ozone variability.

In recent years, summertime surface air quality in the continental United States has

been significantly degraded due to the influx of wildfire smoke. In 2020 extreme wildfire

activity in the Western US degraded air quality both near the fires in California, Oregon,

and Washington as well as far downwind along the east coast of the US (Eck et al., 2023,

Li et al., 2021, Makkaroon et al., 2023). In 2023, Canadian wildfires burned a record

18.4 million hectares, above the 10-year average of 2.7 million hectares and more than

doubling the previous record of 7.6 million hectares in 1989 (https://cwfis.cfs.nr

can.gc.ca/report). Transported smoke from the 2023 Canadian wildfires resulted in

hazardously degraded surface air quality in US cities at various points from May through

September. US wildfire emissions, and associated surface air pollution, are projected to

increase under climate change (Abatzoglou and Williams, 2016, Liu et al., 2021, Tian

et al., 2023, Xie et al., 2022, Yue et al., 2015).

Climate change projections show significant alterations to global biomass burning activity

and emissions (e.g. Chen et al., 2023, Senande-Rivera et al., 2022, Zheng et al., 2021).

https://cwfis.cfs.nrcan.gc.ca/report
https://cwfis.cfs.nrcan.gc.ca/report
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Spatiotemporal variability in biomass burning is strongly determined by climate factors

including precipitation, temperature, relative humidity, and wind (e.g. Abatzoglou and

Williams, 2016, Archibald et al., 2013, Jolly et al., 2015). Land management practices

also impact fire activity (e.g. Andela et al., 2017, Archibald et al., 2013, Deeter et al.,

2018, Miettinen et al., 2017). Global burned area has declined by 24% since 2000, though

this is primarily due to decreases in tropical biomass burning regions (Chen et al., 2023,

Jones et al., 2022). Burned area trends in temperate and boreal regions are slightly

increasing, though the trend is not significant. Metrics based on fire season length,

precipitation, temperature anomaly, and fire frequency have been used to explain the

observed changes in global burned area (e.g. Abatzoglou and Williams, 2016, Jolly et al.,

2015) and project future changes (e.g. Senande-Rivera et al., 2022). The number fire-

prone years per decade used by Senande-Rivera et al. (2022) aggregates climatic influences

on fire activity. A year is classified as fire-prone when at least one month per year has a

high likelihood of fire occurrence. The number of fire-prone years per decade is projected

to increase by >4 between 1996–2016 and 2070-2099 in boreal North America and Siberia

(Figure 1.1)(Senande-Rivera et al., 2022).

Associated with the climatic change in biomass burning activity, biomass burning emis-

sions are also changing. Global carbon monoxide column concentrations have declined

since the 2000s (Buchholz et al., 2021, Jiang et al., 2017, Zheng et al., 2019). While glob-

ally carbon monoxide and burned area are decreasing, trends in global biomass burning

emissions are not significant (van der Werf et al., 2017, Wiedinmyer et al., 2023, Zheng

et al., 2021). Regional trend analyses show that increased emissions from biomass burning
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Figure 1.1: Projected increase in number of fire-prone years per decade by 2070-2099.
From Senande-Rivera et al. (2022) Figure 4.

in forests and boreal areas compensate for decreased emissions from tropical regions (Liu

and Ding, 2024, Zheng et al., 2021). Biomass burning emissions inventories have high

uncertainties, as discussed in section 1.2.1, and present a significant challenge to modeling

tropospheric air quality (Archibald et al., 2020, and references therein). Inverse meth-

ods have been used to infer biomass burning emissions based on observed atmospheric

composition (e.g. Gaubert et al., 2023, Jiang et al., 2017).

1.2 Ozone production from biomass burning

The VOCs and NOx emitted from biomass burning produce tropospheric ozone as a sec-

ondary pollutant during photochemical reactions. A schematic including the generalized

framework for VOC-NOx-O3 chemistry is shown in Figure 1.2. In brief, tropospheric

ozone is produced in-situ through a complex series of cyclical reactions involving VOCs
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Figure 1.2: Schematic of chemical and physical processes controlling tropospheric
ozone concentrations. From Young et al. (2018).

and NOx. VOC oxidation products initiate chemical cycling of NOx, which produces

O3. In non-urban environments, the main sources of NOx are lightning and peroxyacetyl

nitrate (PAN) (Archibald et al., 2020). PAN is a temporary reservoir species for NOx

and produces ozone away from the source region when it thermally decomposes.

NOx emitted from biomass burning can be temporarily sequestered as PAN (Jaffe and

Wigder, 2012). For biomass burning emissions plumes containing large emissions of

VOCs, and smaller NOx/CO ratios, rapid sequestration of NOx as PAN occurs (Jaffe

and Wigder, 2012).

While not directly involved in the VOC-NOx-O3 chemistry, aerosol emissions from biomass

burning increase aerosol optical depth, thereby reducing transmission of solar radiation
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and limiting production of the OH radical (Jaffe and Wigder, 2012). Natarajan et al.

(2012) shows biomass burning aerosol emissions increase AOD and significantly impact

regional radiative forcing. Martin et al. (2003b) finds that aerosols decrease photolysis

frequencies.

1.2.1 Uncertainties in biomass burning emissions inventories

Estimates of biomass burning emissions provided through emissions inventories vary sig-

nificantly from one another (Pan et al., 2020, Stockwell et al., 2022, Wiedinmyer et al.,

2023). Following the pioneering work of Seiler and Crutzen (1980), biomass burning

emissions inventories are an accounting of chemical mass emitted from a species as func-

tion of the dry matter burned and an emission factor. Improvements in biomass burning

emissions inventories have been achieved through increasing incorporation of satellite ob-

servations (Chuvieco et al., 2019, Wooster et al., 2021). The use of satellite observations

has gradually increased the temporal resolution of biomass burning emissions inventories

from annual (e.g. Lobert et al., 1999) to monthly (e.g. Duncan et al., 2003) to daily (e.g.

Al-Saadi et al., 2008, Wiedinmyer et al., 2006, Zhang et al., 2019) or greater (e.g. van

der Werf et al., 2017, Wiggins et al., 2020). Modern emissions inventories utilize satellite

observations to calculate emissions using either a burned area-based approach (e.g. van

der Werf et al., 2017, Wiedinmyer et al., 2011, 2023) or a fire radiative power approach

(e.g. Darmenov and da Silva, 2015, Kaiser et al., 2012, Zhang et al., 2019).

Burned area-based approaches for calculating biomass burning emissions rely on estimates

of burned area, biomass density, and fuel consumption. These quantities are difficult to



9

measure on a global scale. Top down, fire radiative power (FRP)-based approaches like

the Blended Global Biomass Burning Emissions Product (GBBEPx) (Zhang et al., 2019),

the Quick Fire Emissions Dataset (QFED) (Darmenov and da Silva, 2015), and the Global

Fire Assimilation System (GFAS) (Kaiser et al., 2012) avoid this by calculating emissions

using FRP and combustion rate following from the linear relationship between the energy

and mass emitted by biomass burning (Wooster et al., 2003).

The incomplete knowledge of the spatiotemporal distribution of emissions sources and

limitations in capturing variation in fuel and fire behavior characteristics contribute to

differences between inventories (e.g. Hyer and Reid, 2009, Pan et al., 2020). Predic-

tions from chemical transport models (CTMs) will vary significantly depending on which

biomass burning emission inventory is used (e.g. Bian et al., 2007, Pan et al., 2020, Stock-

well et al., 2022).

1.3 Real-time Air Quality Modeling System (RAQMS)

In this dissertation I use two versions of the Real-time Air Quality Modeling System

(RAQMS) (Pierce et al., 2007). RAQMS is a global chemical transport model with full

stratospheric and tropospheric chemistry. Here I will briefly discuss the evolution of

RAQMS and key implementations. Additional detail regarding the versions of RAQMS

I use is presented in Chapter 2.

Development of RAQMS began in the early 2000s as a collaboration between scientists

at the NASA Langley Research Center and the University of Wisconsin. RAQMS was
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originally titled the Regional Air Quality Modeling System and was envisioned as a multi-

scale modeling system (Pierce et al., 2003). The global component of RAQMS combined

the chemistry module from the NASA Langley Research Center Interactive Modeling

Project for Atmospheric Chemistry and Transport (IMPACT) model (Eckman et al.,

1995, Pierce et al., 2000) with the UW hybrid model dynamical core (Schaack et al.,

2004). Biomass burning CO emissions were originally specified with a seasonally varying

climatology (Duncan et al., 2003).

Non-methane hydrocarbon (NMHC) chemistry and chemical data assimilation was later

added to RAQMS (Pierce et al., 2009, 2007), and the resulting configuration has been

run during various field campaigns since the late 2000s and continuously since the early

2010s. Pierce et al. (2007) incorporated the lumped-structure Carbon Bond Mechanism Z

(CBM-Z) (Zaveri and Peters, 1999) that was modified with an expanded isoprene oxida-

tion mechanism. Biomass burning emissions in RAQMS were updated from a climatology

to daily ecosystem and fire intensity based emissions estimates calculated using Moder-

ate Resolution Imaging Spectroradiometer (MODIS) fire detections (Soja et al., 2004).

RAQMS real-time chemical analyses assimilate satellite ozone and AOD observations

with the statistical digital filter (SDF) (Stobie, 2000) to constrain the model first-guess.

A RAQMS chemical reanalysis for the 2006-2016 period was conducted in the late 2010s

and constrains RAQMS chemical analyses with trace gas and aerosol retrievals from the

Terra, Aqua, and Aura satellites using 3d variational data assimilation (Bruckner et al.,

2024). During this same period, the RAQMS chemistry module has been incorporated
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into NOAA’s next generation forecast system (NGFS), replacing the UW-Hybrid dynam-

ical core with the NOAA Unified Forecasting System (UFS) and replacing the RAQMS

biomass burning emissions inventory with the Blended Global Biomass Burning Emissions

Product (GBBEPx) (Zhang et al., 2019).

1.3.1 Biomass burning emissions in RAQMS

Biomass burning emissions in RAQMS-Aura use Terra and Aqua MODIS fire detections

and are calculated using a bottom-up approach developed by Soja et al. (2004) and

compared to other approaches in Al-Saadi et al. (2008). The methodology used is an

expansion of the burned-area based approach of Seiler and Crutzen (1980). The approach

estimates total carbon emissions at MODIS fire detections and uses the US Forest Service

Haines Index (Haines, 1989) to determine fire severity and gridded, ecosystem-dependent

estimates of carbon consumption for low, medium, and high fire severity fires. Emission

ratios are then used to estimate emissions of CO, NOx, and hydrocarbons from the

calculated total carbon emissions. Al-Saadi et al. (2008) compared the RAQMS CO

emissions to three other inventories, finding similarity in the distribution of CO emissions

but large uncertainty in the area burned. Globally in 2006, RAQMS real-time predictions

underestimated CO columns relative to MOPITT in the northern hemisphere.

GBBEPx CO emissions are used in UFS-RAQMS in place of the burned area-based ap-

proach used by RAQMS real-time and the RAQMS-Aura chemical reanalysis. GBBEPx

calculates daily biomass burning emissions using FRP estimates from MODIS and the
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Visible Infrared Imaging Radiometer Suite (VIIRS). GBBEPx blends VIIRS-based emis-

sions with MODIS-based emissions provided by QFED.

1.4 Dissertation overview

Modeling uncertainties pertaining to biomass burning emissions include: 1) transport er-

rors, 2) injection height errors, and 3) errors and omissions in biomass burning emissions.

My dissertation addresses some of these uncertainties as I seek to further improve our

ability to model ozone production from biomass burning. The overarching questions of

my Ph.D. work are:

1) How is variability in tropical tropospheric ozone related to biomass burning emissions?

2) How well do global models capture emissions from biomass burning?

3) What is the contribution of biomass burning emissions to global background air qual-

ity?

Chapter 2 provides details about the CTMs, analysis techniques, and observational

datasets used in this dissertation. Chapter 3 addresses question 1 using the RAQMS

Aura Re-analysis, ENSO compositing, and Empirical Orthogonal Function analysis and

other statistical techniques to understand how variability in biomass burning and dy-

namics relate to tropical tropospheric ozone variability. Chapter 4 address question 2

by evaluating biomass burning emissions in UFS-RAQMS. Answering question 3 requires

accurate CO biomass burning emissions in UFS-RAQMS since VOC and NOx emissions

are obtained through applying emission factors to the CO emissions. Chapter 5 focuses

on obtaining accurate CO biomass burning emissions, which are then used in Chapter 6
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to evaluate the contribution of biomass burning to global background concentrations of

CO, O3, and other atmospheric constituents.
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Chapter 2

Data and Methodology

Within this dissertation I evaluate analyses from RAQMS-Aura and UFS-RAQMS with

in-situ and remote sensing atmospheric composition observations. This chapter describes

the RAQMS models used in this study, and the observational datasets used.

2.1 RAQMS

RAQMS is a global chemical transport model with full stratospheric and tropospheric

chemistry (Pierce et al., 2009, 2007). RAQMS utilizes a family approach to reduce the

number of species considered in the chemical mechanism, requiring solving of continu-

ity equations for 55 chemical families and constituents and determination of equilibrium

concentrations for 86 separate species (Pierce et al., 2007). Non-methane hydrocarbon

chemistry in RAQMS follows the lumped-structure Carbon Bond Mechanism Z (CB-Z)
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(Zaveri and Peters, 1999), which was modified in Pierce et al. (2007) to include an ex-

plicit isoprene oxidation scheme. Standard hydrogen oxide (HOx), chlorine oxide (ClOx),

bromine oxide (BrOx), and NOx ozone photochemistry (Eckman et al., 1995) is also

included.

Here I describe two versions of RAQMS used in this study. The first is a RAQMS

chemical reanalysis for the period 2006 through 2016. The second is a new generation

of RAQMS where the RAQMS chemistry modules have been incorporated into NOAA’s

Unified Forecasting System (UFS).

2.1.1 RAQMS-Aura Reanalysis

The RAQMS-Aura Reanalysis is a chemical re-analysis that constrains RAQMS chemical

predictions with satellite trace gas and aerosol retrievals from the NASA satellites (Terra,

Aqua, and Aura) covering 2006 through 2016. RAQMS-Aura provides 1°x1° global chem-

ical analyses, on 35 hybrid model levels from the surface to approximately 60 km above

ground level, at 3-hour time steps. The operational grid point statistical interpolation

(GSI) 3-dimensional variational analysis system (Wu et al., 2002) is used to assimilate re-

trievals from the following Aura instruments: Aura Ozone Monitoring Instrument (OMI)

cloud cleared total column ozone (McPeters et al., 2008), Microwave Limb Sounder (MLS)

(Froidevaux et al., 2008) stratospheric ozone profiles, and OMI tropospheric column NO2

(Boersma et al., 2007, Bucsela et al., 2013). NASA Terra and Aqua Moderate Resolu-

tion Imaging Spectrometer (MODIS) aerosol optical depth (AOD) (Remer et al., 2005)

and Atmospheric Infrared Sounder (AIRS) carbon monoxide profile (Maddy and Barnet,
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2008, McMillan et al., 2005, Yurganov et al., 2008) are also assimilated at three-hour in-

tervals. Analysis increments from the OMI tropospheric column NO2 retrievals are used

for off-line adjustment of apriori 2010 Hemispheric Transport of Air Pollution (HTAP,

2010) anthropogenic emission inventories following an offline mass balance approach sim-

ilar to East et al. (2022). RAQMS-Aura biomass burning emissions of CO, NOx, and

hydrocarbons are obtained through applying emissions ratios to total carbon emissions

calculated from Terra and Aqua MODIS fire detections and fire severity (Al-Saadi et al.,

2008, Soja et al., 2004).

The dynamical core of RAQMS is the UW hybrid model (Schaack et al., 2004). The UW

hybrid model utilizes physical parameterizations from the NCAR Community Climate

Model (CCM3) (Kiehl et al., 1998), including the moist convection scheme. The CCM3

moist convection scheme combines the Zhang and McFarlane (1995) deep convection

scheme with shallow and midlevel convection following Hack (1994). The deep convection

scheme treats convection as an ensemble of updrafts and downdrafts, and the shallow

convection scheme treats convection as separate plumes within 3 successive layers whereby

mass is detrained from one layer into the next (Kiehl et al., 1998, Zhang et al., 1998).

RAQMS-Aura initializes its meteorological fields with archived analyses from the National

Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS)

(Kleist et al., 2009, Wang et al., 2013). These fields are impacted by updates to physics,

resolution, and data assimilation used in the GDAS system (https://www.emc.ncep.n

oaa.gov/gmb/STATS/html/model_changes.html, last access: 4 August 2024).

https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
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2.1.2 UFS-RAQMS

UFS-RAQMS is an updated version of RAQMS where the RAQMS stratosphere/troposphere

chemistry modules are coupled to NOAA’s Unified Forecast System (UFS) version 9.1 Fi-

nite Volume Cubed Sphere (FV3) dynamical core (Harris and Lin, 2013, Putman and Lin,

2007). The UFS-RAQMS configuration utilized in Chapters 4-6 of this dissertation is an

extension of the operational NOAA Global Ensemble Forecasting System with Aerosols

(GEFS-Aerosols) (Bhattacharjee et al., 2023, Zhang et al., 2022). GEFS-Aerosols includes

bulk aerosol modules from the Goddard Chemistry Aerosol Radiation and Transport

model (GOCART) (Chin et al., 2002).

The extension is accomplished by coupling RAQMS chemistry, photolysis, and wet and

dry deposition modules with the UFS dynamical core through the National Unified Oper-

ational Prediction Capability (NUOPC, https://earthsystemmodeling.org/nuopc/)

layer. The NUOPC layer defines conventions and generic components for building coupled

models using the Earth System Modeling Framework (ESMF, https://earthsystemm

odeling.org). This NUOPC based coupling allows the GOCART aerosol predictions to

impact the RAQMS Fast-J2 (Bian and Prather, 2002) photolysis scheme and also allows

the RAQMS OH and H2O2 predictions to impact the GOCART sulfate aerosol formation.

In this study I conduct UFS-RAQMS retrospective simulations during July 15, 2019

through September 30, 2019 at a Cubed Sphere resolution of 192 (C192, 192x192 grid-

points within each 6 cubes or approximately 0.5◦ x 0.5◦ horizontal resolution) with 64

https://earthsystemmodeling.org/nuopc/
https://earthsystemmodeling.org
https://earthsystemmodeling.org
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hybrid vertical levels from the surface to upper stratosphere (approximately 0.2hPa).

The UFS-RAQMS atmospheric composition experiments are conducted in “replay” mode,

with UFS-RAQMS meteorological fields initialized with GFS analyses at 6-hour intervals

followed by 6-hour UFS-RAQMS forecasts. UFS-RAQMS was initialized on July 15th,

2019 at 12Z with 1x1 degree analyses from the real-time RAQMS system, which includes

assimilation of NASA MODIS AOD on the Terra and Aqua satellites and the NASA

OMI cloud cleared total column ozone and MLS stratospheric ozone profiles. Global

anthropogenic emissions in UFS-RAQMS are obtained from the Community Emissions

Data System (CEDS) (McDuffie et al., 2020). Daily global biomass burning CO emissions

are specified from GBBEPx (Zhang et al., 2019) and expanded using species-specific

emissions factors from the RAQMS biomass burning scheme (Soja et al., 2004). FRP

is used to calculate GBBEPx plume rise. GBBEPx calculates daily biomass burning

emissions using observations of FRP from MODIS (Aqua and Terra satellites) and VIIRS

(Suomi NPP and NOAA-20 satellites). Additional details on GBBEPx will be discussed

in Chapter 4 and Chapter 5.

UFS-RAQMS forecasts with the standard GBBEPx emissions and without data assimila-

tion are used as the control experiment. UFS-RAQMS DA experiments in Chapter 4 and

Chapter 5 use GSI 3Dvar DA to assimilate CO column observations from the Tropospheric

Monitoring Instrument (TROPOMI).
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2.2 Analysis Tools

Anomaly composites are used in Chapter 3 to evaluate how well RAQMS-Aura repro-

duces observed ENSO variability. El Niño and La Niña periods are determined by use of

the Niño 3.4 index. ENSO events are defined as occurring when the index is at least 0.4°C

greater (El Niño) or less (La Niña) than average for 5 consecutive months (e.g Trenberth,

1997, Ziemke et al., 2015). Anomalies are defined as the deviation from the average an-

nual cycle during the RAQMS-Aura analysis period (2006-2016). Anomaly composites

for El Niño and La Niña periods are generated for precipitation, convective mass flux,

diabatic heating, ozone concentration, carbon monoxide, and net ozone production from

monthly mean RAQMS-Aura analyses. Anomaly composites are also generated for satel-

lite observations of tropospheric ozone column, total column carbon monoxide, and total

precipitation. To investigate the vertical structure of ENSO variability in RAQMS-Aura,

anomaly cross section composites are calculated between 7.5°S to 2.5°N for convective

mass flux, diabatic heating, ozone, carbon monoxide, and net ozone production.

Empirical Orthogonal Function (EOF) analysis is a statistical technique that has been

used for identifying dominant modes of temporal and spatial variability in atmospheric

data. EOF analysis may also be referred to as principal component (PC) analysis. Ap-

plication of EOF analysis identifies the dominant patterns of spatial variability within

a dataset (the EOF) and a timeseries of how the associated pattern varies in time (the

PC). Within Chapter 3 of this dissertation, I apply EOF analysis to detrended, deseason-

alized monthly means of tropical tropospheric column ozone (TTOC), carbon monoxide
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total columns, and total precipitation from RAQMS-Aura to study interannual variation

of tropical ozone. Following Doherty et al. (2006) the resulting EOF patterns for each

RAQMS-Aura variable are multiplied by the standard deviation of the associated prin-

cipal component (PC) to produce the physical magnitude of change associated with the

mode. The PCs are correlated against the Niño 3.4 index to assess whether the mode

captured by the EOF accounts for ENSO variability. A multiple linear regression is con-

structed using the precipitation and CO PCs to investigate how variability in convection

and biomass burning emissions drive the ozone ENSO signal.

2.3 Observational Datasets

Tropospheric ozone residual (TOR) methods derive tropospheric column ozone through

removal of stratospheric column ozone calculated from profiler measurements from total

column ozone (Fishman and Larsen, 1987, Fishman et al., 1990). The OMI-MLS TOR

is a satellite residual product where total ozone columns from the OMI instrument and

stratospheric columns from MLS instrument (both on-board the Aura satellite) are com-

bined to infer the tropospheric ozone column (Ziemke et al., 2006). The OMI-MLS TOR

dataset is used in Chapter 3 to validate RAQMS-Aura TTOC analyses.

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite precipitation Analysis

(TMPA) 3B43 product merges satellite IR and microwave precipitation estimates with

rain gauge data to produce a best estimate of monthly mean precipitation rate from 50◦S

to 50◦N at 0.25x0.25 degree resolution (Huffman et al., 2007). I average TRMM 3B43
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precipitation estimates onto the RAQMS 1x1 degree grid. TRMM 3B43 precipitation

estimates are used in Chapter 3 to evaluate RAQMS-Aura convective precipitation.

Measurements of Pollution in the Troposphere (MOPITT) CO (Emmons et al. 2004)

Level 3 gridded products are used throughout this study to evaluate model CO columns.

MOPITT is in orbit on-board the NASA Terra satellite and provides near-global coverage

every 3 days at approximately 22x22 km2 resolution. Level 3 gridded average CO has a

1x1 degree resolution, and is produced on daily and monthly averaging periods. Monthly

level 3 MOPITT is used in Chapter 3 to evaluate RAQMS-Aura The daily level 3 product

is used in Chapters 4 and 6 to evaluate UFS-RAQMS experiments.

The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) is a higher

resolution follow-on to NASA OMI currently in orbit on-board ESA’s polar-orbiting

Sentinel-5 precursor satellite that observes in the UV-near IR and shortwave IR. I use the

v2.4.0 CO total column retrieval with the striping correction applied (Borsdorff et al.,

2019). Following recommended quality assurance guidelines (https://sentinel.esa.i

nt/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product

-Readme-File.pdf, last access: 18 July 2024), the DA applications in Chapters 4 and

5 use observations with a quality assurance value 1 (best) over land and 0.7 (OK, but

mid-level clouds present) over ocean. This leads to assimilation of only cloudy data over

ocean, as the clear sky ocean retrieval signal intensity is too weak (Inness et al., 2022b).

Spatial resolution was upgraded to 5.5 x 3.5 km in August 2019 from its initial resolution

of 7 x 3.5km. TROPOMI CO observations are used for three purposes: 1) to evaluate

https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File.pdf
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File.pdf
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File.pdf
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UFS-RAQMS control forecasts; 2) to constrain UFS-RAQMS CO analyses; and 3) to

adjust GBBEPx CO emissions.

Ozonesondes from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network

(Sterling et al., 2018, Thompson et al., 2017, Witte et al., 2017, 2018) are used in Chapter 3

to evaluate RAQMS-Aura tropical O3 vertical profiles. I use the reprocessed v06 ozone

profiles (Thompson et al., 2021).

Chapters 4 and 6 evaluate UFS-RAQMS analyses with in-situ observations from two field

campaigns that occurred in the summer of 2019. The NASA Cloud, Aerosol and Monsoon

Processes Philippines Experiment (CAMP2Ex) field campaign sampled airmasses over

the Philippines 25 August–5 October 2019 with the NASA P-3 aircraft to investigate the

role of aerosols in the Southeast Asian southeast monsoon (Reid et al., 2023). In-situ

CO measurements were made by a commercial cavity ringdown spectrometer (G2401-m,

PICARRO, Inc.) modified with a custom gas sampling system (DiGangi et al., 2021).

UFS-RAQMS analyses are sampled along the P-3 flight track. The NOAA/NASA Fire

Influence on Regional to Global Environments and Air Quality (FIREXAQ) campaign

coordinated sampling of fires in the US with the NASA DC-8, NASA ER-2, NOAA Met

and Chem Twin Otter aircraft, as well as several ground sites, during two operational

phases (Warneke et al., 2023). During the first phase the DC-8 was based out of Boise,

ID and focused on western wildfires from July 24th through August 16th. The second

phase took place from August 19th through September 3rd and focused on small, primarily

agricultural fires in the Southeast. I use CO observations from the Differential Absorption
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Carbon Monoxide Measurement (DACOM) instrument (Sachse et al., 1991) which was

on the DC-8.

The Network for the Detection of Atmospheric Composition Change (NDACC) is a global

network consisting of 80 currently active stations providing high quality observations of

atmospheric trace gases and aerosols with ground-based techniques including ozonson-

des, Fourier-transform infrared (FTIR) spectrometers, lidar, and UV/visible spectroscopy

(De Mazière et al., 2018). I use FTIR CO profile observations in Chapter 4 and Chapter 6

to evaluate UFS-RAQMS experiments. NDACC FTIRs retrieve volume mixing ratio pro-

files from solar absorption spectra with optimal estimation using the SFIT4 or PROFITT

algorithms. Thule, Eureka, Jungfraujoch, and Rikubetsu have been considered as remote

as local anthropogenic pollution is small at these locations, while St. Petersburg and

Toronto are urban sites (Lutsch et al., 2020).
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Chapter 3

Examining ENSO related variability

in tropical tropospheric ozone in the

RAQMS-Aura chemical reanalysis

This chapter is a lightly modified version of Bruckner, M., Pierce, R. B., and Lenzen, A.:

Examining ENSO related variability in tropical tropospheric ozone in the RAQMS-Aura

chemical reanalysis, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1178,

2024.
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3.1 Introduction

The development of methods to calculate tropospheric ozone residuals (TOR) from satel-

lite total column observations (e.g. Fishman and Balok, 1999, Fishman and Larsen, 1987,

Fishman et al., 1990) provided the first global view of tropospheric ozone and showed a

systematic zonal wave one structure in the tropics. This zonal wave one structure is con-

sistent with the climatological average state of tropical atmosphere, which is dominated

by the Pacific Walker circulation, defined by ascending motion over warm SSTs near the

maritime continent and descending over cooler SSTs in the eastern Pacific, with easterlies

at surface and westerlies aloft. Climatologically, tropospheric ozone columns are lowest

over the Pacific and highest downwind of western Africa (Fishman et al., 1996, 1990,

2003). The enhancement downwind of western Africa is strongest during September-

October-November (SON) and is associated with photochemical production of ozone

from biomass burning emissions (Fishman et al., 2005, 1996, 2003). Tropospheric ozone

concentrations over Africa and South America are lowest in March-April-May (MAM)

(Fishman et al., 1990, 2003). The Fishman, Wozniak, and Creilson 2003 TOR seasonal

climatology also shows a variance of 5-10 DU over the maritime continent from December-

January-February (DJF) to June-July-August (JJA). The El Niño-Southern Oscillation

(ENSO) is a major driver of interannual variability in both tropical and mid-latitudes

(e.g. McPhaden et al., 2006, Trenberth, 1997), and has been found to have a strong im-

pact on the distribution of tropospheric ozone in the tropical Pacific (Doherty et al., 2006,

Peters et al., 2001, Sekiya and Sudo, 2012, Ziemke et al., 2010).
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ENSO phases of El Niño and La Niña are tracked using a variety of indexes including

the Niño 3.4 index (Bamston et al., 1997, Trenberth, 1997) and the Ozone ENSO In-

dex (Ziemke et al., 2010). El Niño events occur when a warm SST anomaly develops

in the eastern Pacific and reduces the east-west temperature gradient across the equa-

torial Pacific. In response to the SST anomaly, the trade winds weaken. Convection is

enhanced over the eastern Pacific, leading to increased precipitation in the region and an

eastward shift of the Walker Circulation. Correspondingly convection is suppressed over

the maritime continent and leads to drier than usual conditions During El Niño events,

tropospheric ozone is lower over the Pacific as the enhanced convection lofts low ozone

air masses from near the ocean surface higher into the column, and higher over the mar-

itime continent as high upper tropospheric ozone descends (e.g. Doherty et al., 2006, Hou

et al., 2016, Sudo and Takahashi, 2001). Variability in the location of the maximum SST

anomaly during the El Niño phase has led to a distinction between canonical (eastern

Pacific) El Niño events and El Niño Modoki (central Pacific) events (e.g. Kim and Yu,

2012, Larkin and Harrison, 2005, Santoso et al., 2017). In the canonical El Niño, the

maximum SST anomaly extends into the eastern tropical Pacific cold pool while during

El Niño Modoki the maximum SST anomaly is in the central Pacific. The ascending

branches of the Walker circulation are over the central Pacific during El Niño Modoki

(Ashok et al., 2007). Following from the differences in the Walker circulation, the pattern

of the ENSO response in tropical tropospheric ozone depends on the type of El Niño (Hou

et al., 2016).
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La Niña events occur when the eastern Pacific is cooler than average, and the atmo-

sphere responds in a generally opposite, though not symmetric, manner to El Niño as

enhanced vertical motion and convection occurs over the maritime continent, suppres-

sion of convection occurs over the east Pacific, and enhanced downwelling over the east

Pacific. Tropical tropospheric ozone columns reflect the impacts of higher concentration

upper tropospheric ozone descending over the Pacific and comparatively lower concen-

tration lower tropospheric ozone ascending near the maritime continent during La Niña

(e.g. Doherty et al., 2006, Ziemke and Chandra, 2003).

As discussed in Chapter 1, the influence of ENSO on tropospheric ozone has previously

been investigated in observational datasets, chemical transport models, and chemistry-

climate models. In this chapter I investigate the interannual variability of tropical tro-

pospheric ozone in the RAQMS-Aura chemical re-analysis extending from 2006 through

2016. A chemical re-analysis produces a long-term data record by cycling a model fore-

cast and data assimilation system to combine forecasts and observations in a statistically

consistent manner that accounts for forecast and observation error (Miyazaki et al., 2020,

Yumimoto et al., 2017). The data record obtained is a best-estimate of the true composi-

tion of the atmosphere, as analyses are constrained by observations of a limited number

of species and the evolution of those species by model physics (Miyazaki et al., 2020). A

comparison of several recent chemical reanalyses including the Copernicus Atmospheric

Monitoring Service (CAMS) reanalysis (Inness et al., 2019), and the Tropospheric Chem-

istry Reanalysis version 2 (TCR-2) (Miyazaki et al., 2020) found that these analyses are
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suitable for generating ozone climatologies and looking at trends, though individual re-

analyses will differ due to model configuration (Huijnen et al., 2020). While reanalysis

has been used to look at the ENSO signal in CO, O3, NOx, and smoke aerosols (In-

ness et al., 2015a), my analysis makes use of the chemical production and loss terms,

convective mass flux, and diabatic heating from the reanalysis to examine variability in

tropospheric ozone. The analysis also focuses on the 2006-2016 period, which includes

significant biomass burning events in the maritime continent during the 2015/2016 El

Niño event.

3.2 Validation of RAQMS-Aura Precipitation

Prior to investigating variability of the RAQMS-Aura chemical fields, I evaluate RAQMS-

Aura convection and precipitation processes through comparisons with satellite precip-

itation observations. In RAQMS-Aura, sub-grid-scale mass flux between model layers

occurs through shallow and deep convective schemes. Diabatic heating is generated by

the sub-grid-scale convective parameterizations and influences the grid-scale thermody-

namics. Convective mass flux and diabatic heating will be used in the composite analysis

to look at the impact of ENSO on vertical transport and tropical tropospheric ozone

concentrations.

Monthly mean total and convective precipitation from RAQMS-Aura is compared to

estimates of precipitation from the TRMM Multi-satellite precipitation Analysis (TMPA)

3B43 product (Huffman et al., 2007). My analysis focuses on meridional structure and
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seasonal maps to look at average regional biases, and time-series of the maritime continent

and Pacific Intertropical convergence zone (ITCZ) regions to look at longer-term trends.

3.2.1 Meridional Structure

Figure 3.1 displays the meridional averaged convective, large-scale, and total precipitation

for RAQMS-Aura and total precipitation from TRMM 3B43 for each season. The seasonal

average meridional precipitation maxima in RAQMS-Aura are broader than observed in

TRMM 3B43. During DJF and MAM, observed tropical precipitation peaks in both

the northern hemisphere (NH) and southern hemisphere (SH). During JJA and SON,

observed tropical precipitation peaks only in the NH.

In DJF the observed hemispheric peaks are of similar magnitude with the NH peaking

at 0.247 mm/hour and the SH peaking at 0.233 mm/hour. TRMM 3B43 MAM indicates

that the NH branch is more active during this season than the SH branch, as the NH

peak is 0.293 mm/hour, and the SH peak is 0.229 mm/hour. RAQMS-Aura reproduces

the observed double peaks for DJF and MAM, though the magnitude is overestimated

in RAQMS-Aura by 0.08-0.12 mm/hour, and the DJF SH peak is larger than the NH

peak and 5 degrees to the south of the observed peak. In JJA and SON, the reanalysis

reproduces the observed single maxima, though it is broader by more than 15 degrees

latitude, and the absolute maximum is displaced approximately 2.5 degrees to the north.

Between 40°N and 40°S the total precipitation in RAQMS-Aura is predominately convec-

tive precipitation, with ratios of convective precipitation to total precipitation exceeding
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Figure 3.1: Zonally and seasonally averaged precipitation from RAQMS-Aura and
TRMM 3B43 for a) DJF, b) MAM, c) JJA, and d) SON.

0.6 on average. It is common for tropical precipitation to be predominately convective

precipitation in global models, leading to a “drizzling bias”. This ”drizzling bias” is the

result of convective parameterizations producing convective precipitation that is too fre-

quent and long-lasting but not as intense as observed while the total precipitation amount

is realistic (Chen and Dai, 2019, Chen et al., 2021).
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3.2.2 Horizontal Structure

While RAQMS-Aura reasonably reproduces the seasonality of the observed meridional

structure, the distributions are broader than in observations. Seasonal maps of precipi-

tation allow me to examine the reasons for this in more detail. Figure 3.2 shows seasonal

maps of precipitation from the TRMM 3B43 observations and RAQMS-Aura. TRMM

3B43 and RAQMS-Aura are well correlated for all seasons, with DJF displaying a spa-

tial correlation of 0.86, MAM a spatial correlation of 0.75, JJA a spatial correlation of

0.71, and SON a spatial correlation of 0.77. These correlations show that the RAQMS-

Aura reanalysis broadly captures the seasonal changes in the spatial pattern of tropical

precipitation.

Precipitation over land in South America and Africa is consistently overestimated relative

to TRMM 3B43 by 0.2-0.3 mm/hour. This overestimation over land is a long-standing

bias of the dynamical component of RAQMS (Schaack et al., 2004). RAQMS-Aura over-

estimates precipitation in the Gulf of Mexico and Caribbean by >0.3 mm/hour during

JJA and SON. During DJF and MAM, the average bias over the Gulf of Mexico is less

than ± 0.1 mm/hour. RAQMS-Aura overestimates precipitation over the Caribbean by

∼0.14 mm/hour during DJF and by ∼0.16 during MAM. RAQMS-Aura overestimates

precipitation near India by >0.3 mm/hour during MAM and JJA. In the northwest Pa-

cific, RAQMS-Aura shows larger overestimates of precipitation in JJA and SON relative

to DJF and JJA, with overestimates relative to TRMM of 0.05 mm/hour in DJF, >0.3

mm/hour in JJA, 0.15 mm/hour in MAM, and >0.3 mm/hour in SON.
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Figure 3.2: Seasonal mean precipitation for TRMM 3B43 (a, c, e, g) and RAQMS-
Aura (b, d, f, h).

RAQMS-Aura does capture precipitation features like the ITCZ and western North At-

lantic storm track well, though there is bias in the precipitation amount. RAQMS-Aura

underestimates precipitation in the western North Atlantic off the east coast of the US

along the storm track region by 0.17 mm/hour in DJF, ∼0.15 mm/hour in JJA, ∼0.15

mm/hour in MAM, and ∼0.17 mm/hour in SON. During DJF, precipitation is overesti-

mated by 0.2-0.3 mm/hour in RAQMS-Aura in the Southern Hemisphere maximum over

the Pacific and off the northern coast of Australia. The strength of the SH maximum is

consistently overestimated by RAQMS-Aura, as it is higher than TRMM 3B43 by ∼0.1

mm/hour in JJA, 0.25-0.3 mm/hour in MAM, and ∼0.1 mm/hour in SON. RAQMS-Aura

tends to underestimate the strength of the ITCZ in all seasons, with a small underestimate

of ∼0.05mm/hour in MAM and ∼0.15 mm/hour in DJF. RAQMS-Aura underestimates
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Figure 3.3: Regions for timeseries overlaid on mean 2006-2016 TRMM precipitation.

the ITCZ over the east and central Pacific by a max of ∼0.25 mm/hour in SON and JJA.

3.2.3 Time series

The comparison of TRMM 3B43 precipitation and RAQMS-Aura shows that RAQMS-

Aura captures the expected seasonality in the ITCZ and over landmasses though tends to

overestimate convective precipitation. Following this characterization of regional biases in

RAQMS-Aura, I look closer at how the RAQMS-Aura represents precipitation within the

tropics by evaluating the time series for 3 key regions, which are defined in Figure 3.3. The

region over the maritime continent is defined by broadscale ascent in the average Walker

Circulation. Time series for the maritime continent, NH ITCZ, and SH maximum regions

are displayed in Figure 3.4.

Over the maritime continent, RAQMS-Aura has a temporal correlation of 0.619 with

TRMM and a mean bias of 0.064 mm/hour (22.27%). The bias between TRMM and

RAQMS-Aura is initially higher, ∼0.2 mm/hour at a max, then decreases after 2010

within this region. There is also an increased bias in 2015 and late 2016 over the maritime
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continent. Across the ITCZ in the northern hemisphere RAQMS-Aura has a temporal

correlation of 0.715 and bias of -0.0115 mm/hour (-4.90%) with TRMM. Prior to 2010

RAQMS-Aura displays a small bias relative to TRMM 3B43. Post 2010 RAQMS-Aura

underestimates peak precipitation, though the temporal correlation of the measurements

with TRMM 3B43 slightly increases to 0.774 within this region. Within a section of the

SH precipitation maximum, RAQMS-Aura has a temporal correlation of 0.599 and bias

of 0.038 mm/hour (13.53%) with TRMM. The good correlation and bias of less than

25% for each region indicate that RAQMS-Aura has skill in reproducing the observed

precipitation in the regions of interest for this study. Shifts in bias observed between

2009 and 2011 appear to be associated with upgrades to the GDAS system. Changes to

GDAS implemented in 2009 included use of variational quality control in the assimilation

system and flow dependent reweighting of background error variance (https://www.em

c.ncep.noaa.gov/gmb/STATS/html/model_changes.html, last access: 4 August 2024).

https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
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Figure 3.4: Mean precipitation for TRMM 3B43 and RAQMS-Aura Precipitation
over the maritime continent (a), in the NH ITCZ region (b), and in the SH maximum
precipitation region (c). Over the maritime continent, RAQMS-Aura precipitation is
on average biased 0.064 mm/hour (22.27%) higher than TRMM 3B43. In the NH
ITCZ region RAQMS-Aura precipitation is on average biased 0.012 mm/hour (4.90%)
lower than TRMM 3B43. In the SH maximum precipitation region RAQMS-Aura
precipitation is on average biased 0.038 mm/hour (13.53%) higher than TRMM 3B43.
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3.3 Validations of RAQMS-Aura O3 and CO

To establish fidelity of the RAQMS-Aura chemical fields, I evaluate ozone profiles, tropo-

spheric ozone column, and CO column. The RAQMS-Aura monthly mean tropospheric

ozone column is compared to the OMI-MLS TOR (Ziemke et al., 2006). Monthly mean

CO column from RAQMS-Aura is compared to CO column retrievals from Measurements

of Pollution in the Troposphere (MOPITT) (Emmons et al., 2004). Both the OMI-MLS

TOR and the MOPITT CO data used are monthly mean Level 3 products. I evaluate

the RAQMS-Aura tropical O3 vertical profiles with observations from 12 sites in the

Southern Hemisphere Additional Ozonesondes (SHADOZ) network (Sterling et al., 2018,

Thompson et al., 2017, Witte et al., 2017, 2018).

3.3.1 Horizontal structure in CO and tropospheric O3 columns

Seasonal maps of CO column and tropospheric ozone column are evaluated for RAQMS-

Aura and satellite datasets. Figure 3.5 shows seasonal maps of CO columns from MO-

PITT and RAQMS-Aura. MOPITT and RAQMS-Aura are well correlated for all seasons,

as DJF has a spatial correlation of 0.945, MAM a spatial correlation of 0.955, JJA a spa-

tial correlation of 0.911, and SON a spatial correlation of 0.919. South American CO

columns are overestimated in RAQMS-Aura by 0.4-0.8 x 1018 mol/cm2 in SON and 0.4-

0.5 x 1018 mol/cm2 in JJA, and < 0.3 x 1018 mol/cm2 during DJF and MAM. Over the

maritime continent, bias is < ± 0.2 x 1018 mol/cm2 during DJF, MAM, and JJA and
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Figure 3.5: Seasonal mean CO column for MOPITT (a, c, e, g) and RAQMS-Aura
(b, d, f, h).

biased low during SON by ∼0.3 x 1018 mol/cm2. Over the Pacific, RAQMS-Aura has a

high bias of 0.15-0.3 x 1018 mol/cm2 (<25% difference).

Figure 3.6 shows seasonal maps of Tropospheric O3 columns from OMI-MLS and RAQMS-

Aura. OMI-MLS and RAQMS-Aura are well correlated for all seasons, as DJF has a

spatial correlation of 0.822, MAM a correlation of 0.995, JJA a correlation of 0.934, and

SON a correlation of 0.941. While the correlation is strong, RAQMS-Aura tropospheric

O3 is consistently biased high by >2DU in the tropics relative to OMI-MLS.



38

Figure 3.6: Seasonal mean tropospheric O3 column for OMI-MLS (a, c, e, g) and
RAQMS-Aura (b, d, f, h).

3.3.2 Time series of CO and tropospheric O3 columns over the

Maritime Continent

Following the characterization of seasonal mean regional biases in RAQMS-Aura CO col-

umn and tropospheric O3 column, I look at how well RAQMS-Aura represents variability

over the maritime continent (as defined in Figure 3.3). Timeseries of CO column and

tropospheric O3 over the maritime continent are displayed in Figure 3.7. Unlike in the

precipitation fields, the RAQMS-Aura CO columns and tropospheric O3 columns do not

exhibit a large shift in the bias over time.
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Figure 3.7: Time series of mean tropospheric O3 column (a) and CO column (b) over
the maritime continent for RAQMS-Aura, MOPITT CO, and OMI-MLS TOR.

RAQMS-Aura mean maritime continent tropospheric O3 column has a temporal corre-

lation of 0.937 with the OMI-MLS TOR and a mean high bias of 3.273 DU (14.435%).

RAQMS-Aura mean maritime continent CO column has a temporal correlation of 0.943

with MOPITT and a mean high bias of 0.0477 x 1018 mol/cm2 (2.93%). The very good

temporal correlation and bias of less than 25% for both CO column and tropospheric O3

column indicate that RAQMS-Aura has skill in reproducing the observed CO column and

tropospheric O3 column in a key region of interest for this study.
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3.3.3 Vertical structure of O3

RAQMS-Aura ozone profiles are compared to the reprocessed v06 SHADOZ ozone profiles

for the SHADOZ sites shown in Figure 3.8. Figure 3.8 also shows the 2006-2016 mean

tropospheric ozone column from RAQMS-Aura. RAQMS-Aura and SHADOZ ozone pro-

files are compared in 100m altitude bins from 0km to 30km. The vertical distribution of

mean bias in RAQMS-Aura O3 profiles for all SHADOZ sites is presented in Figure 3.9.

RAQMS-Aura O3 exhibits a high bias of >20% near the surface. Above 3km, the average

bias in RAQMS-Aura O3 is <10%.

Bias, correlation, and RMSE for each site are given in Table 3.1. These statistics are

evaluated for all observations within 4 altitude ranges: surface- 5km, 5-10 km, 10-15 km,

and 15-20km. The mean percent bias for the surface – 5km altitude range for all sites

is 9.17%. The surface – 5km bias is larger than the mean at the Hilo, American Samoa,

Costa Rica, San Cristobal, Nairobi, and Natal sites. This enhanced lower troposphere

bias is associated with very low (< 20 ppbv) surface O3 concentrations at American

Samoa, San Cristobal, and Hilo. RAQMS-Aura is moderately correlated (0.5-0.75) in

time and space with SHADOZ between the surface and 5km for most sites. At the

Kuala Lumpur site, RAQMS-Aura displays a small bias (6.909%) but a correlation of

0.458 with SHADOZ ozone profiles. RAQMS-Aura strongly overestimates the surface O3

concentration by >40% at Kuala Lumpur, though above the surface the average bias in

this region is < 10% and the RAQMS-Aura O3 analysis is moderately (0.5-0.8) correlated

with SHADOZ. Between 5-10km, the mean percent bias is < ± 10% for all sites except
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Figure 3.8: SHADOZ ozonesonde sites (stars) and mean RAQMS-Aura tropospheric
ozone column (contours).

Java where it is 20.22%. However, RAQMS-Aura has a correlation of 0.6585 with Java

between 5 and 10km.

Overall, RAQMS-Aura does capture a substantial portion of the observed variability in

tropical ozone profiles as indicated by the moderate to strong correlations with SHADOZ

ozone profiles, though it does significantly overestimate near-surface ozone concentrations.
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Figure 3.9: Comparison of RAQMS-Aura O3 mixing ratio to tropical SHADOZ
ozonesondes. Panel a shows the percent bias in RAQMS-Aura relative to the ozoneson-

des. Panel b is percentiles for SHADOZ (blue) and RAQMS-Aura (orange).
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Table 3.1: Correlation, bias, and RMSE between SHADOZ ozonesondes and coinci-
dent RAQMS-Aura Ozone mixing ratio.



44

Table 3.1 – continued from previous page

3.4 ENSO Composites

Based on comparison of RAQMS-Aura total precipitation with TRMM 3B43 I conclude

that RAQMS-Aura reasonably reproduces convection over the Pacific Ocean, particularly

within the ITCZ. RAQMS-Aura captures the observed variability in tropospheric ozone

but has a ∼2DU high bias relative to the OMI-MLS TOR. RAQMS-Aura captures the

observed CO columns in the tropics very well. Based on comparison of RAQMS-Aura
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ozone profiles with SHADOZ profiles, I conclude that RAQMS-Aura reasonably captures

observed variability in tropical ozone profiles but overestimates the near-surface concen-

trations. To characterize the anomaly associated with ENSO, composites for El Niño and

La Niña periods are generated for precipitation, convective mass flux, diabatic heating,

ozone concentration, carbon monoxide, and net ozone production from monthly mean

RAQMS-Aura analyses.

3.4.1 Precipitation

Composites of the de-seasonalized anomaly in precipitation for TRMM and RAQMS-

Aura for positive ENSO and negative ENSO are presented in Figure 3.10. The TRMM

and RAQMS-Aura composites are well correlated, with a spatial correlation of 0.77 for

El Niño composites and 0.739 for the La Niña composites. The dominant feature of

the El Niño phase in the TRMM data and RAQMS-Aura reanalysis is an enhancement

of precipitation in the tropics east from 150°E to the western coast of Central Amer-

ica and suppressed precipitation over the maritime continent. RAQMS-Aura however

diverges from observations by displaying suppression of precipitation in regions around

7.5°S-39°S, 150°W-120°W and 7.5°N-20°N, 150°E-180°E where precipitation is enhanced

in TRMM. During the La Niña phase, precipitation is suppressed over the central Pacific

and enhanced over the maritime continent. For both TRMM and RAQMS-Aura the El

Niño and La Niña composites are near mirrors of one another, with the location of the

maximum change shifted west during the negative phase from the positive phase.
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Figure 3.10: Composited precipitation anomalies for El Niño in RAQMS-Aura (a)
and TRMM 3B43 (b) and La Niña in RAQMS-Aura (c) and TRMM 3B43 (d). Shaded
regions indicate where the composite is significant at the 95% confidence level from a t

test.

3.4.2 Response of Tropospheric Total Column Ozone and Car-

bon Monoxide column to ENSO

ENSO composites for OMI-MLS TOR (Ziemke et al., 2006) and Measurements of Pollu-

tion in the Troposphere (MOPITT) CO (Emmons et al., 2004) are used to confirm the

representativeness of RAQMS-Aura ENSO chemical signals.

Tropical tropospheric ozone column (TTOC) anomalies in RAQMS-Aura and the OMI-

MLS TOR for the positive and negative phases of ENSO are shown in Figure 3.11. TTOC

anomalies are 1-2 DU larger during the positive phase of ENSO than in the negative phase.

Within both the RAQMS-Aura TTOC and OMI-MLS TOR, El Niño is associated with an

increase over the maritime continent and a decrease over the central and eastern Pacific
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Figure 3.11: Composited TTOC anomalies associated with El Niño in RAQMS-Aura
(a) and OMI-MLS TOR (c) and La Niña in RAQMS-Aura(b) and OMI-MLS TOR(d).
Shaded regions indicate where the composite is significant at the 95% confidence level

from a t test.

Ocean. The decrease over the Pacific Ocean is flanked by increased concentrations to

the north and south. Outside of the Pacific region, the tropospheric column anomaly

associated with the ENSO phase is less than 1 DU. During La Niña, a small decrease in

tropospheric ozone occurs over the maritime continent while an increase occurs over the

central-eastern Pacific. The location of the peak decrease in TTOC in the eastern Pacific

depicted in the El Niño composite is comparable to that found by Olsen et al. (2016),

Oman et al. (2011). Earlier studies of Doherty et al. (2006), Peters et al. (2001), Ziemke

and Chandra (2003) show this peak decrease in TTOC is more towards the southeast.

As my analysis is consistent with observations, the differences from earlier analyses are

likely due to variability in ENSO and the influence of the large 2015 El Niño event during

the 2006-2016 period under consideration in this study.

CO column anomalies for RAQMS-Aura and MOPITT are presented in Figure 3.12.

MOPITT CO anomalies appear nosier due to the sparse spatial sampling of the MOPITT



48

Figure 3.12: Composited CO column anomalies associated with El Niño in RAQMS-
Aura (a) and MOPITT (c) and La Niña in RAQMS-Aura(b) and MOPITT(d). Shaded
regions indicate where the composite is significant at the 95% confidence level from a t

test.

instrument. RAQMS-Aura reproduces ENSO-related variability in CO as observed by

MOPITT with both El Niño and La Niña composites having a spatial correlation of 0.850.

RAQMS-Aura CO column is on average increased across the tropics during El Niño,

with stronger enhancements of 0.4 x 1018 mol/cm2 observed over the maritime continent.

Enhanced CO over the maritime continent is tied to enhanced biomass burning during

El Niño as precipitation is suppressed, increasing fuel aridity, and thereby increasing

susceptibility to fire (Reid et al., 2013, van der Werf et al., 2017, Yin et al., 2016).

RAQMS-Aura CO column decreases over the maritime continent during La Niña and is

enhanced over South America. During La Niña, rainfall is enhanced over the maritime

continent, resulting in CO decreases as fires are suppressed.
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3.4.3 Vertical structure of tropospheric response to ENSO

As this study utilizes reanalysis data, I provide further context to the patterns in TTOC

and CO columns. In particular, I explore how the vertical structure of convective mass

flux, large-scale diabatic heating, and ozone production/loss terms respond to ENSO.

Meridionally averaged vertical profile cross sections are calculated between 7.5°S and

2.5°N. This latitude band was selected as it cuts across the maximum and minimum

precipitation anomalies associated with ENSO (Figure 3.10) and for consistency with the

cross-sections analyzed by Doherty et al. (2006).

Convective mass flux anomalies between 7.5°S and 2.5°N for the positive and negative

phases of ENSO are presented in Figure 3.13. The strongest convective mass flux anomaly

is over the Pacific Ocean during both the positive and negative phase of ENSO. This

strong convective mass flux anomaly is also where the absolute maximum precipitation

anomaly occurs, which is expected given the dominance in convective precipitation in this

region. Diabatic heating anomalies presented in Figure 3.14 are qualitatively similar to

the convective mass flux ENSO anomalies. This is because the majority of the diabatic

heating in this region is associated with the large-scale response to sub-grid-scale convec-

tive precipitation. The convective mass flux and diabatic heating anomalies during El

Niño indicate decreased upward vertical transport over the maritime continent where pre-

cipitation is suppressed and increased upward vertical transport over the central Pacific

where precipitation is enhanced. Conversely, the convective mass flux and diabatic heat-

ing anomalies during La Niña both indicate enhanced vertical transport over the maritime
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Figure 3.13: RAQMS-Aura convective mass flux (CMFLX) anomalies for a) positive
and b) negative ENSO phases. Shaded regions indicate where the composite is signifi-

cant at the 95% confidence level from a t test.

continent and increased downward vertical transport over the central Pacific. In Doherty

et al. (2006), Sudo and Takahashi (2001) the positive and negative mass flux anomalies

are of similar magnitudes while here the negative flux anomaly over Micronesia is 1
2
− 1

3

the strength of the anomaly over the central-eastern Pacific. This may be a consequence

of the high bias in precipitation over Micronesia in the RAQMS-Aura reanalysis, as the

precipitation anomaly El Niño composite indicates that precipitation is not suppressed

as much as in observations over the region. However, these differences in the strength

of the vertical motion anomalies are consistent with the ENSO precipitation anomaly

over the central Pacific being larger than that of the anomaly over the maritime conti-

nent in TRMM observations and RAQMS-Aura analyses. The precipitation and mass

flux anomaly patterns display suppressed (enhanced) vertical motion over the Pacific and

enhanced (suppressed) vertical motion over the maritime continent during the negative

(positive) phase.
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Figure 3.14: RAQMS-Aura diabatic heating anomalies (colors) and theta (contours)
for a) positive and b) negative ENSO phases.

Ozone anomaly cross-sections associated with ENSO are presented in Figure 3.15. Dur-

ing El Niño the tropospheric ozone anomaly extends across the depth of the troposphere

over the maritime continent, with two distinct stronger (>3 ppbv) enhancements above

550 hPa and below 700 hPa. Over the central Pacific (from 160°E to 140°W) where the

convective mass flux is enhanced in the El Niño composite through the depth of the tropo-

sphere, a decrease in the ozone concentration of 3-5 ppbv occurs. The lower troposphere

enhancement over the maritime continent is accompanied by a positive anomaly in net O3

production (Figure 3.17a), indicating that some of the enhancement in TTOC over the

maritime continent during El Niño is due to enhancement in chemical production and not

solely due to shifts in the circulation pattern. The El Niño ozone anomaly cross-section

is <1 ppbv throughout the majority of the troposphere off the South American Coast,

indicating that the TTOC decrease is due to the decreased (>9 ppbv) concentrations

near the tropopause, above 200 hPa. The La Niña ozone anomaly cross-section section

shows enhancement in ozone over the central Pacific and decrease over the maritime con-

tinent. Over the maritime continent a distinct stronger (>2 ppbv) decrease is seen below



52

Figure 3.15: Anomalies in RAQMS-Aura ozone profiles below the tropopause associ-
ated with a) El Niño and b) La Niña. Shaded regions indicate where the composite is

significant at the 95% confidence level from a t test.

700 hPa and above 350 hPa. Tropical upper troposphere ozone is also impacted by the

quasi-biennial oscillation (QBO) (Oman et al., 2013), so I evaluated the QBO signatures

for both zonal mean zonal wind and ozone. I find RAQMS-Aura does a reasonable job

of capturing the stratospheric QBO signal. However, I find the influence of the QBO

on RAQMS-Aura ozone in the tropical upper troposphere is smaller than the of ENSO

influence during the 2006-2016 period considered in this study (Appendix A).

CO anomaly cross-sections for each ENSO phase are presented in Figure 3.16. Tropical

CO is anomalously high during El Niño and anomalously low during La Niña. Tropical

CO is enhanced over the maritime continent during El Niño throughout the tropical tro-

posphere, with the strongest enhancement near the surface indicative of a strong increase

in biomass burning emissions. The near-surface enhancements in CO over South Amer-

ica and Africa during El Niño are also likely tied to CO emissions from biomass burning,

though these enhancements are not spread through the depth of the troposphere as oc-

curs over the maritime continent. The negative CO anomalies associated with La Niña
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Figure 3.16: Anomalies in RAQMS-Aura CO profiles below the tropopause associated
with a) El Niño and b) La Niña. Shaded regions indicate where the composite is

significant at the 95% confidence level from a t test.

are largest over the maritime continent and are present through the depth of the tropo-

sphere. The enhancement in CO Column over South America associated with La Niña

is not present in the La Niña vertical cross-section as it is to the south of the latitudes

used to generate the cross-section composite.

Net ozone production (production - loss terms) anomalies are presented in Figure 3.17.

RAQMS has standard hydrogen oxide (HOx), chlorine oxide (ClOx), bromine oxide

(BrOx), and NOx ozone photochemistry (Eckman et al., 1995) with Carbon Bond-Z (CB-

Z) (Zaveri and Peters, 1999) treatment of non-methane hydrocarbon chemistry. Chemical

production and loss are calculated explicitly for the Ox family, which in RAQMS includes

O(1D), O(3P), O3, NO2, HNO3, NO3, N2O5, HNO4, peroxynitrates (PAN), and methacry-

loyl peroxynitrate (MPAN). Since the shifts in precipitation within the tropics are largely

associated with shifts in convective clouds (Figure 3.1) and the photolysis rates in RAQMS

respond only to changes in atmospheric transmittance due to large-scale resolved clouds,

changes in net ozone production associated with changes in convective cloud distributions
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are not accounted for in this study. The largest net ozone production anomalies are clos-

est to the surface and below 700 hPa. The change in net ozone production is smaller in La

Niña than El Niño. Enhanced production of 2-3 ppbv/day is found over central Africa,

Indonesia, and the Amazon rainforest in Brazil. These regions show reductions of ∼ 1.3

ppbv/day in ozone production in the La Niña composite. El Niño is known to increase fire

emissions in Indonesia as a consequence of the decreased rainfall over the region (Field

et al., 2016, Park et al., 2021), and so the increased production of ozone during El Niño

captured by RAQMS-Aura is likely to be partially due to enhanced chemical production

of ozone in biomass burning plumes. Enhanced production during El Niño occurs over all

3 biomass burning regions but only the maritime continent shows a significant (>4 ppbv)

enhancement in O3 below 700 hPa. In contrast, the enhanced production over South

America and Africa is associated with weak (<2 ppbv) ozone enhancement. The average

winds below 800hPa during El Niño over South America (not shown) are northeasterly,

resulting in transport of the ozone associated with biomass burning to the south and out

of the latitudes included in the cross-section (7.5°S to 2.5°N). Over the maritime conti-

nent, the average winds below 750 hPa are southerly and decline in strength through the

cross-section. Based on these wind patterns, ozone associated with biomass burning over

the maritime continent experiences less meridional transport and has stronger influences

on the ozone profile within this meridional cross-section.
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Figure 3.17: Anomalies in RAQMS-Aura net O3 production associated with a) El
Niño and b) La Niña. Shaded regions indicate where the composite is significant at the

95% confidence level from a t test.

3.5 EOF and Multiple Linear Regression Analysis

In addition to composite analysis, I apply Empirical Orthogonal Function (EOF) analysis

to investigate the role played by ENSO in TTOC variability. The first EOF of TTOC

has been previously found to be associated with ENSO, while TTOC EOFs 2 and 3 are

uncorrelated with ENSO (Doherty et al., 2006, Sekiya and Sudo, 2012). ENSO positive

and negative phases are near opposites of each other, and so it is reasonable to expect that

much of the variability associated with ENSO can be captured with a single EOF. The

EOF spatial patterns are displayed for TTOC, precipitation, and CO column in Figures

3.18-3.20. PC time series are presented in Figure 3.21, alongside the Niño 3.4 index for

reference.
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3.5.1 EOFs of RAQMS-Aura total precipitation, tropical tro-

pospheric ozone column, and Carbon monoxide column

EOF patterns for TTOC are displayed in Figure 3.18. The TTOC PC1 has a correlation

of 0.747 with the Niño 3.4. The associated EOF indicates a 2-2.5 DU enhancement over

the maritime continent and a 1.6-2 DU decrease over the Pacific (Figure 3.18a). EOF1

captures similar features to those in the El Niño TTOC composite, though the enhance-

ment in TTOC near Vietnam is weaker relative to the enhancement near Indonesia in the

EOF compared to the composite. TTOC PC2 and PC3 are weakly correlated with the

Niño 3.4 index, with correlations of -0.144 and -0.209 respectively. TTOC EOF2 explains

around half as much variance as TTOC EOF1 and shows a wave 1 like pattern with a

peak in the northeast Pacific. TTOC EOF3 accounts for changes of less than 1 DU on

average, and a maximum near 3 DU. At the most, this is 10% of the mean TTOC and

less than 1% on average. TTOC EOF3 captures an increase across the equatorial Pacific

and decreases elsewhere.

EOF patterns for total precipitation are displayed in Figure 3.19. The precipitation PC1 is

strongly correlated with the Niño 3.4 index, with a temporal correlation of 0.870, as well as

a strong temporal correlation with the TTOC PC1 (0.818). The associated EOF pattern

is similar to the El Niño precipitation composite in Figure 3.10a, though the magnitude

of the decreased precipitation in the western Pacific relative to the enhancement in the

central Pacific is smaller than in the composite. Precipitation EOFs 2 and 3 combined

capture a similar amount of variability in precipitation as EOF1 alone. Their PCs are not
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Figure 3.18: Patterns for RAQMS-Aura TTOC EOFs 1-3, scaled by 1 standard
deviation of the associated PC. EOF1 explains 17.20% of the non-seasonal variance in

TTOC, EOF2 explains 8.70% and EOF3 explains 6.00%.
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correlated with the Niño 3.4 index, with a PC2 temporal correlation of -0.02, and a PC3

temporal correlation of -0.093. The EOF2 pattern depicts a small, localized enhancement

in the central southern Pacific Ocean, slightly stronger enhancements of ∼0.06 mm/hour

in the Caribbean and NW equatorial Pacific, and decreased precipitation in the remainder

of the northern hemisphere Pacific. The EOF3 pattern accounts for changes of <0.03

mm/hour on average. The largest of these small changes are a decrease in precipitation

in the central Pacific to the east of where the maximum precipitation anomaly associated

with ENSO is located. Precipitation PC3 has a temporal correlation of 0.695 with TTOC

PC2, indicating there is some co-variability between the two that I will not examine in

depth in this work as it is not related to ENSO.

EOF patterns for CO column are displayed in Figure 3.20. Interannual variability in

tropical CO has been shown to be predominately influenced by biomass burning emis-

sions (Rowlinson et al., 2019). All 3 CO column EOF patterns appear to be heavily

influenced by extreme biomass burning events, as the strongest changes are over the mar-

itime continent and South America and the peaks in the PCs correspond with years with

enhanced biomass burning in the regions highlighted by the largest values in the EOF

(van der Werf et al., 2017, eg). CO PC amplitude peaks are larger than 2 for PC1 in late

2015; PC2 in 2006, 2007, 2010, and 2015; and PC3 in 2006, 2015, and 2016 (Figure 3.21).

EOF1 explains 46.96% of the non-seasonal variance in CO, while EOF2 explains 9.46%

and EOF3 explains 6.48%.

Most variability in CO columns from 2006-2016 is explained by EOF1. The physical
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Figure 3.19: Patterns for RAQMS-Aura total precipitation EOFs 1-3, scaled by 1
standard deviation of the associated PC. EOF1 explains 8.33% of the non-seasonal

variance in total precipitation, EOF2 explains 4.73% and EOF3 explains 4.46%.
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Figure 3.20: Patterns for RAQMS-Aura total precipitation EOFs 1-3, scaled by 1
standard deviation of the associated PC. EOF1 explains 8.33% of the non-seasonal

variance in total precipitation, EOF2 explains 4.73% and EOF3 explains 4.46%.
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Figure 3.21: Timeseries of PC1 (a), PC2 (b), and PC3 (c) for TTOC, total precipi-
tation, and CO Column. Niño 3.4 Index time series included for reference.

pattern is indicative of a tropics-wide decrease (increase) in CO, with the peak change

of ∼0.3 x 1018 mol/cm2 centered over the maritime continent. CO PC1 has a temporal

correlation of -0.399 with the Niño 3.4 index, which indicates an ENSO influence on

CO variability. Additionally, CO PC1 is temporally correlated with precipitation PC1

(-0.435), suggesting that ENSO related changes in precipitation contribute to the ENSO

driven CO variability. This is consistent with precipitation influences on biomass burning.

The CO EOF2 pattern shows CO column enhancements over Brazil and decreases over
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the maritime continent. CO PC2 has a temporal correlation of -0.297 with the Niño

3.4 index, and a temporal correlation of -0.435 with TTOC PC1, suggesting that ENSO

related changes in CO contribute to ENSO driven TTOC variability. EOF3 pattern again

highlights the maritime continent and Brazil varying together, with an opposing change

in CO across the Pacific. CO PC3 displays a correlation of -0.145 with the Niño 3.4 index.

3.5.2 Multiple linear regression reconstruction of TTOC PC1

In the composite analyses I show that ENSO related shifts in precipitation correspond

with changes in vertical motion, CO concentration, net ozone production, and tropo-

spheric ozone concentrations. The composite analysis also indicates that some of the

enhancement in TTOC over the maritime continent during El Niño is due to enhanced

production of ozone from biomass burning emissions. The EOF analysis further links

variation in biomass burning to the TTOC variation as CO PCs 1 and 2 are mildly tem-

porally anti-correlated with TTOC PC1 and precipitation PC1. This negative correlation

is due to the suppression of biomass burning during precipitation. To quantify the relative

importance of dynamical and biomass burning variability on ENSO related variability in

TTOC, I construct a multiple linear regression analysis using the principal components.

The regression equation is shown in equation 3.1.

PC1TTOC = w1PC1CO + w2PC2CO + w3PC3CO + w4PC1precip + e (3.1)
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Figure 3.22: a) TTOC PC1 from EOF analysis and reconstructed from multiple
linear regression. b) Contribution to regression of Precipitation PC1 and combined

contribution of CO PCs 1-3.

The principal components are from the EOF analysis; w1, w2, w3, w4, and e are regression

coefficients as determined using a least squares fit. The resulting regression model is

shown in equation 3.2.

PC1TTOC = 0.11∗PC1CO–0.2∗PC2CO+0.004∗PC3CO+0.8∗PC1precip–3.3x10
−10 (3.2)

This multiple PC regression reproduces the TTOC PC1 very well, with the regression-

based estimate correlating with the original TTOC PC1 at 0.85 (Figure 3.22a).
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The strongest weighted PC in the regression is the precipitation PC1, which is expected

given its strong correlation with TTOC PC1. This supports the result from Doherty et al.

(2006) and Inness et al. (2015a) that ENSO variability in TTOC is primarily driven by

convective transport. The weights for CO PC1 and PC2 are also significant, indicating

that CO, as a proxy for biomass burning, also contributes to TTOC variability.

A timeseries showing the contributions of precipitation PC1 and the combined CO PCs

to the TTOC PC1 predicted by the regression is shown in Figure 3.22b. The precipitation

PC1 regression contribution is positive during El Niño periods and negative during La

Niña periods. The combined regression contribution of the CO PCs shows that variability

in CO contributes to ENSO variability in TTOC episodically. As the CO column anomaly

is linked to anomalous biomass burning emissions and net ozone production near the

surface, it can be concluded that a portion of the ENSO variability in TTOC is due to

biomass burning though it is a smaller portion than that linked to the dynamical effects

of ENSO.

Additionally, each component of the regression can be removed independently in order to

evaluate the impact of co-variability between the CO PCs and precipitation PC1 on the

overall fit. RMSE and R2 for the standard fit and the alternate fits are given in Table 3.2.

R2 is maximized and RMSE minimized for the case where all CO PCs are considered.

The poorest fit is obtained when precipitation PC1 is removed. The linear regression that

relates ENSO TTOC variability to only ENSO precipitation variability performs similarly

to the regression with CO PC2 removed, highlighting that the redistribution of O3 and
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Table 3.2: RMSE and R2 for TTOC PC1 multiple linear regression models.

Regression equation R2 RMSE
PC1TTOC = 0.11 ∗ PC1CO–0.2 ∗ PC2CO + 0.004 ∗
PC3CO +0.8 ∗ PC1precip–3.3x10

−10

0.724 0.5258

PC1TTOC = −0.2177∗PC2CO−0.0526∗PC3CO+0.7440∗
PC1precip − 2.072x10−10

0.714 0.5347

PC1TTOC = 0.1433∗PC1CO−0.0262∗PC3CO+0.8752∗
PC1precip − 4.507x10−10

0.687 0.5591

PC1TTOC = 0.1151∗PC1CO−0.1984∗PC2CO+0.8102∗
PCprecip − 5.293x10−10

0.722 0.5273

PC1TTOC = −0.2373∗PC1CO−0.4351∗PC2CO−0.2023∗
PC3CO + 9.887x10−10

0.287 0.8446

PC1TTOC = 0.812 ∗ PC1precip − 4.777x10−10 0.669 0.5750

O3 precursors by convection is the most significant contributor to ENSO variability in

TTOC. The best regression fits (R2 >0.7) include CO PC2 and precipitation PC1. This

confirms that while variability in CO is not independent of variability in precipitation, it

does meaningfully contribute to ENSO variability in TTOC.

As inferred from the regression, El Niño increases in TTOC over the maritime continent

are associated with CO PC1 enhancements in CO over the maritime continent while CO

PC2 is associated with enhancements in CO over South America and Africa and decreases

over Indonesia. Timeseries of the CO column and TTOC anomalies (not shown) have

a correlation of 0.668 over the maritime continent and 0.566 over South America. The

TTOC and CO anomalies over the maritime continent are positive during El Niño events

and negative during La Niña events. Over South America, the sign of the TTOC and

CO anomalies are less consistent with ENSO phase.
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3.6 2015/2016 extreme El Niño

Through the satellite era, extreme El Niño events in 1982/1983, 1997/1998, and 2015/2016

have been observed alongside weak and moderate events. These extreme events have a

larger impact on the distribution of TTOC and have a larger contribution from biomass

burning emissions than weaker El Niño events (Doherty et al., 2006, Inness et al., 2015a).

The 2015/2016 extreme El Niño was the strongest El Niño since the 1997/1998 event

(Santoso et al., 2017). 2015 and 1997 are also among the most extreme maritime con-

tinent biomass burning events, with 1997 ranking first followed by 2015 in an analysis

of surface visibility at airports in Sumatra and Kalimantan from 1990-2015 (Field et al.,

2016). Here I investigate how the inclusion of the 2015 extreme El Niño influences our

interpretation of the importance of biomass burning on TTOC ENSO variability. As in

prior analyses (Chandra et al., 2009, 1998, Sudo and Takahashi, 2001), I focus on October

as biomass burning in the maritime continent peaks around October and would have its

greatest impact on TTOC around the same time (Field et al., 2016). In RAQMS-Aura,

the CO PC amplitudes have the largest variability in October and the largest contribu-

tions of the CO PCs to the TTOC PC1 regression occur in October.

The RAQMS-Aura 2015 October TTOC anomaly is shown in Figure 3.23a. This pattern

is similar to the October 1997 anomaly in TTOC modeled by Sudo and Takahashi (2001)

with an increase over the maritime continent that is 2-3 times stronger than the decrease

over the eastern Pacific. However, the peak decrease over the eastern Pacific is more

towards the central Pacific during 2015 than in 1997. The maximum increase over the
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maritime continent is 10-15 DU in October 2015, less than the maximum 20-24 DU

increase in October 1997. RAQMS-Aura TTOC increases over South America in October

2015 by 1-4 DU, while the Sudo and Takahashi simulated October 1997 changes by less

than 2 DU over South America. These differences over Africa and South America in

2015 versus 1997 are consistent with the differences in patterns of convective mass flux.

In 2015 mass flux is decreased aloft over Brazil and Africa (Figure 3.23b), while in 1997

changes in mass flux over Brazil and Africa are weaker and are slightly positive (Sudo and

Takahashi, 2001). The core of the upward mass flux anomaly over the Pacific is ∼30-40

degrees closer to the dateline in 2015.

Over the maritime continent, the ozone concentration anomaly below 650 hPa is stronger

than in the 2006-2016 El Niño average. The 2006-2016 October El Niño average anomalies

are shown in Figure A.4 (Appendix A). This is linked to stronger ozone production in

October 2015. This enhancement in O3 production in 2015 is likely due to increased

fire activity, as CO column is increased throughout the tropics in 2015 (Figure 3.23e)

and the CO anomaly over the maritime continent is more widespread and stronger by

∼0.2x1018 mol/cm2 than the 2006-2016 El Niño average. There is also an enhancement

in CO, ozone, and net ozone production over South America in October 2015 relative

to the 2006-2016 El Niño composite. This shows that the biomass burning activity in

2015 was anomalous compared to the other El Niño years included in the RAQMS-Aura

reanalysis, with significant burning occurring over both South America and the maritime

continent.
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Figure 3.23: RAQMS-Aura October 2015 a) TTOC anomaly, b) convective mass flux
anomaly, and c) tropospheric ozone profile anomaly, d) P-L, e) CO.
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3.7 Conclusions

The RAQMS-Aura reanalysis captures observed ENSO variability in TTOC, CO, and

precipitation. ENSO composites of tropospheric ozone, carbon monoxide, convective

mass flux, diabatic heating, and ozone net chemical production show that the observed

ENSO signatures in TTOC result from a combination of convective redistribution and

variability in production of ozone from biomass burning emissions, which are modulated

by ENSO variability in precipitation. The location of the peak decrease in TTOC resulting

from increased vertical motion in the eastern Pacific depicted in the El Niño composite

found by this study is comparable to other studies of TTOC variability in the 2000s and

2010s (Olsen et al., 2016, Oman et al., 2011). The location of the peak decrease in TTOC

contrasts with that found by analyses of 1970s-2000 where it is more towards the southeast

and near the South American coast (Doherty et al., 2006, Peters et al., 2001, Ziemke and

Chandra, 2003). The RAQMS-Aura El Niño TTOC composite is in agreement with

the El Niño composite OMI-MLS TOR observations, and the analysis of convective flux

indicates that the ozone decreases over the central Pacific are due to enhanced vertical

motion. Therefore, I believe the difference in position of the peak decrease in TTOC is

due to characteristics of El Niño during the 2006-2016 analysis period. El Niño events

from 2006-2016 were predominately El Niño Modoki events, while El Niño events between

1979 and 2002 display greater variability in type of El Niño and includes more canonical

ENSO events (Hou et al., 2016, Lee and McPhaden, 2010, Santoso et al., 2017). The

ascending branches of Walker circulation cell is over the central Pacific during El Niño



70

Modoki (Ashok et al., 2007), while during canonical El Niño the ascending branch is over

the eastern Pacific. Since TTOC is decreased where vertical motion is enhanced during

ENSO and increased where vertical motion is suppressed, it is expected that under El

Niño Modoki conditions the largest decrease in TTOC will be in the central Pacific with

TTOC increases in the western and eastern Pacific. This response of TTOC to El Niño

Modoki is shown by Hou et al. 2016 and is in-line with the El Niño RAQMS-Aura TTOC

anomaly composite calculated by this study (Figure 3.11).

The strongest ENSO variability in tropospheric ozone is shown to occur near the tropopause.

Enhancement in ozone below 700 hPa during El Niño over the maritime continent is coin-

cident with enhanced net ozone production and dependent on the strength of the biomass

burning emissions. The EOF analyses and multiple linear regression further indicate that

ENSO variability in TTOC is driven by shifts in the location of the ascending and de-

scending branches of the Walker circulation. The EOF and multiple linear regression

analyses also indicate that variability in biomass burning, as inferred from CO anomalies,

contributes to ENSO variability in TTOC. During the 2015/2016 strong El Niño event

TTOC, CO, and convective mass flux anomalies were stronger than in the weaker ENSO

events captured by the RAQMS-Aura reanalysis. The 2015 CO concentrations align with

the mode captured by CO EOF1 while the other El Niño years included in my analysis

align with the mode in CO EOF2. Biomass burning enhanced TTOC and CO anomalies

occurred over both South America and the maritime continent in October 2015 in con-

trast to the other El Niño years between 2006 and 2016 where biomass burning enhanced

TTOC and CO was only found over the maritime continent.
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Chapter 4

Evaluating Biomass Burning CO

Emissions in UFS-RAQMS Through

Application of TROPOMI CO

Column Data Assimilation

4.1 Introduction

In Chapter 3 I showed that variability in CO emissions from biomass burning in the

maritime continent contributes to climatic variability in the tropical tropospheric ozone

distribution. Extreme biomass burning emissions from the maritime continent in 2015

amplified production of tropospheric ozone over the maritime continent more than during
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the average El Niño years. In the remainder of this dissertation I further evaluate the

impact of biomass burning emissions from tropical biomass burning, and contrast it with

the impact of boreal biomass burning emissions, utilizing UFS-RAQMS experiments of

July-August-September (JAS) 2019.

Global biomass burning emissions typically peak around August-September (van der Werf

et al., 2017). Siberian wildfire emissions peaked during July and August 2019, and by

September global biomass burning emissions were predominantly due to burning in the

tropics (Figure 4.1). In September 2019 smoke from drought-enhanced biomass burning in

the maritime continent contributed to the 3rd highest AOD in the MODIS record, behind

significant enhancements in 2006 and 2015 (Reid et al., 2023). South America and central

Africa burned throughout JAS 2019. Smoke from the Siberian wildfires was transported

over North America, where it impacted tropospheric composition and surface air quality

(Johnson et al., 2021). During JAS the 2019 NASA/NOAA Fire Influence on Regional to

Global Environments and Air Quality (FIREX-AQ) field campaign (Warneke et al., 2023)

sampled smoke plumes over North America. The NASA Cloud, Aerosol and Monsoon

Processes Philippines Experiment (CAMP2Ex) field campaign (Reid et al., 2023) occurred

25 August - 5 October 2019 and sampled airmasses over the maritime continent. Fire

activity in the continental US in 2019 was significantly below average, thought to be the

result of higher fuel moisture content (Warneke et al., 2023).

CO is an important atmospheric trace gas due to both its influence on OH and O3 chem-

istry and its use as a pollution transport tracer. The major loss pathway for CO is its
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Figure 4.1: Standard GBBEPx CO emissions during 15 July - 30 September 2019.
Panel (a) displays time series of over selected regions. Panel (b) mean spatial distribu-

tion of GBBEPx emissions.

reaction with OH (Logan et al., 1981), and this reaction significantly impacts the oxidizing

capacity of the atmosphere. CO sources include production during VOC oxidation and

direct emission from biomass burning and fossil fuel combustion. CTMs frequently un-

derestimate CO (e.g. Holloway et al., 2000, Naik et al., 2013, Shindell et al., 2006, Strode

et al., 2015). Potential reasons for this include underestimation of anthropogenic and/or

biomass burning emissions, overestimation of OH, and underestimation of secondary CO

production from VOCs.

Biomass burning emissions inventories have a high uncertainty due to factors including

the incomplete knowledge of the spatiotemporal distribution of sources and limitations

in capturing variation in fuel and fire behavior characteristics (e.g. Hyer and Reid, 2009,

Pan et al., 2020). CTM forecasts vary significantly depending on which biomass burning

emission inventory is used (e.g. Bian et al., 2007, Pan et al., 2020, Stockwell et al.,

2022). Additionally, biomass burning emissions schemes use emission ratios relative to CO
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for determining the release of VOCs and other non-CO emissions further compounding

the effect of poor biomass burning emissions on CTM forecast skill for VOC-NOx-O3

chemistry.

A strong relationship between black carbon aerosols and CO has been observed in air-

masses dominated by biomass burning emissions (e.g. Arellano Jr. et al., 2010, Spackman

et al., 2008) due to their co-emission during combustion. Similarly, satellite AOD and

CO column observations are strongly correlated over regions where biomass burning is

the dominant contributor to fine mode AOD (e.g. Bian et al., 2010, Edwards et al., 2006,

2004). The correlation in space and time between AOD and CO is stronger in the south-

ern hemisphere, while in the NH peak AOD and CO loadings are offset due to the higher

anthropogenic pollutant loading (Bian et al., 2010, Buchholz et al., 2021, Edwards et al.,

2004). Due to the shorter lifetime of biomass burning aerosols, enhancements in AOD

are a strong indicator of biomass burning emissions sources while CO is a good tracer of

down-wind impacts of those emissions due to its longer lifetime (e.g. Bian et al., 2010,

Buchholz et al., 2021, Edwards et al., 2006). Edwards et al. (2006) also finds that the

correlation between CO and AOD is strongest during the first few days of a biomass

burning event and declines as the local CO concentration becomes less representative of

daily emissions.

Chemical data assimilation (DA) systems can be used to reduce the impacts of emis-

sions uncertainty and model deficiencies in representing sub-grid scale processes by using
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atmospheric composition measurements to constrain CTM fields. Chemical DA capa-

bilities have been developed by modifying meteorological DA systems to use chemical

concentration measurements. DA methods implemented for chemical DA include opti-

mal interpolation-based methods (e.g. Lamarque and Gille, 2003, Lamarque et al., 1999,

Pierce et al., 2009), 3D variational methods (Pagowski et al., 2010), and 4D variational

methods (Inness et al., 2022a, 2015b). Chemical DA improves the CTM analysis through

minimizing the difference between observations and model analyses. Observation datasets

with a higher spatial coverage during the assimilation window provide more information

about the true atmospheric composition. DA systems have been used to assimilate re-

mote sensing observations of CO from Measurement of Air Pollution from Space (MAPS),

Interferometric Monitor for Greenhouse Gases (IMG), MOPITT, Infrared Atmospheric

Sounding Interferometer (IASI), and TROPOMI (e.g. Barré et al., 2015, Clerbaux et al.,

2001, Inness et al., 2022a, 2015b, Lamarque et al., 1999). In this chapter I evaluate

the GBBEPx CO emissions during JAS 2019 through applying TROPOMI CO DA to

UFS-RAQMS.

4.2 GBBEPx CO Emissions

The GBBEPx CO emissions were briefly described in Chapter 1, Section 1.3.1. Here I

further describe the approach as laid out in the algorithm theoretical basis document

(Zhang et al., 2019). The GBBEPx product blends emissions estimated from Visible In-

frared Imaging Radiometer Suite (VIIRS) observations with QFED emissions estimates.
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QFED calculates emissions from MODIS observations, with the scaling factors for relat-

ing FRP to emissions tuned based on MODIS AOD and AOD analyses from the NASA

Goddard Earth Observing System Model (GEOS-5). The scaling factor for VIIRS emis-

sions were derived under the assumption that VIIRS fire emissions will be the same as

the QFED emissions using data from April 2016 - March 2017.

4.3 TROPOMI CO DA

I use the GSI 3DVAR DA system (Kleist et al., 2009, Wu et al., 2002) to assimilate

TROPOMI CO columns. Within this implementation, the UFS-RAQMS 3D CO volume

mixing ratio is used as the analysis variable in the minimization procedure. The back-

ground error covariance (BEC) statistics for CO are obtained using the NMC method

(Descombes et al., 2015, Parrish and Derber, 1992). The NMC method typically uses

differences between 24-hour forecasts and 48-hour forecasts to estimate BEC statistics.

Here, in addition to the standard BEC implementation, I apply the NMC method to a

pair of forecasts that have different biomass burning emissions to account for uncertain-

ties in CO emissions. The biomass burning emission BEC statistics are computed from

the differences between 100% GBBEPx CO emissions and 85% GBBEPx CO emissions

UFS-RAQMS CO forecasts. The biomass burning and forecast BEC statistics are then

combined together in a piecewise-linear fashion to create “blended” BEC statistics. I set

the blended BEC statistics equal to the standard, forecast-sensitive BEC statistics above

model level 25 (approximately 480hPa). Below model level 15 (approximately 780hPa),
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the blended BEC statistics are equal to the biomass burning BEC statistics with an in-

flation factor of 5 applied to the standard deviation. Between model levels 15 and 25, the

two BEC estimates are linearly blended.

The level 2 TROPOMI CO column product has a spatial resolution of 5.5 x 3.5 km (7

x 3.5km prior to August 6, 2019), which is higher than UFS-RAQMS resolution. Owing

to this difference in resolution, multiple TROPOMI observations may fall within a model

grid box during the assimilation window. Unlike other studies that utilize satellite CO

“super-observations” (e.g. Gaubert et al., 2020, Inness et al., 2022a, Sekiya et al., 2021),

I assimilate observations individually since using super-observations smooths the spatial

variability in analysis increments (Sekiya et al., 2021). Super-observation smoothing could

lead to underestimates in localized CO column enhancements associated with biomass

burning.

Figure 4.2a shows the mean TROPOMI CO columns over the continental US during

the FIREX-AQ field campaign and the NASA DC-8 flight tracks. CO columns over the

central and eastern US are ∼2x higher than over the western US largely due to higher

topography in the western US and thus thinner atmospheric columns. Figure 4.2b shows

the mean TROPOMI CO columns over SE Asia during the CAMP2Ex field campaign

and the NASA P-3 flight tracks. During CAMP2Ex high CO columns (>4x1018 mol/cm2)

over the islands of Borneo and Sumatra are due to the sustained burning of peatlands

(Reid et al., 2023).
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Figure 4.2: Mean TROPOMI CO columns over the US (a) and SE Asia (b). FIREX-
AQ DC-8 flight tracks (pink) and CAMP2Ex P-3 (black) flight tracks are shown over

the respective campaign domains.

4.4 Impact of TROPOMI CO Assimilation on UFS-

RAQMS CO

The UFS-RAQMS control CO columns are lower than the TROPOMI CO column obser-

vations in the NH and higher in the SH (Figure 4.3). Figure 4.3 also shows the FIREX-AQ

and CAMP2Ex field campaign domains and the locations of NDACC FTIR spectrometers

used to validate UFS-RAQMS CO profiles. The NDACC FTIR CO, in-situ CO observa-

tions from FIREX-AQ and CAMP2Ex, and MOPITT CO column retrievals are used to

validate the UFS-RAQMS TROPOMI CO DA experiment.

The UFS-RAQMS control experiment significantly underpredicts CO columns over cen-

tral Africa, the maritime continent, and Siberian Russia. Figure 4.1 shows that each of

these regions are associated with significant biomass burning during this period.
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Figure 4.3: 15 July- 30 September 2019 average CO column concentrations for (a)
TROPOMI and (b) UFS-RAQMS control. Boxes indicate domains for CAMP2Ex (pur-
ple) and FIREX-AQ (yellow) campaigns. NDACC FTIR locations utilized in this study

are denoted by red stars.

4.4.1 Differences in CO between control and DA experiments

To quantify the impact of assimilating TROPOMI CO columns on UFS-RAQMS anal-

yses, I calculate the average percent change in zonal mean CO and CO total column

between the control and DA experiments. Figure 4.4a shows that the assimilation in-

creases tropospheric zonal mean CO north of 20◦S and decreases zonal mean CO above

the tropopause. Above the tropopause the largest impact of the TROPOMI CO DA on

zonal mean CO is a decrease of 32-52% in the southern hemisphere (SH) between 40◦S

and 60◦S and 11-13 km. The stratospheric regions with the largest decreases are in the

midlatitudes and characterized by a strong vertical gradient in CO that sharpens as a

result of the TROPOMI CO DA. These stratospheric percentage changes are associated

with low CO concentrations. These large stratospheric differences are not a direct con-

sequence of the TROPOMI CO column assimilation, as zonal mean cross sections of the
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analysis increments (not shown) illustrate that the TROPOMI CO DA primarily adjusts

CO in the troposphere. Stratospheric CO analysis increments are concentrated near the

tropopause and largest in the polar NH. Consequently, these large SH stratospheric CO

percentage changes most likely arise from reductions in CO in the tropical upper tro-

posphere through TROPOMI CO DA and then cross tropopause transport of reduced

tropospheric CO into the stratosphere.

The largest increases in zonal mean CO are between 45◦ N and 80◦N below 5km and

in excess of 60%. Figure 4.4b shows that the assimilation tends to increase CO total

column north of 30◦S and decrease CO total column south of 30◦S. The largest increases

in CO total column are in excess of 60% and in Siberia and the maritime continent, which

during this time period experienced significant biomass burning activity.
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Figure 4.4: Percent difference in zonal mean CO profile (a) and total column CO (b)
between UFS-RAQMS TROPOMI CO DA and control experiments.
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4.4.2 Validation of UFS-RAQMS CO with independent datasets

UFS-RAQMS CO analyses for both the control and TROPOMI CO DA are evaluated

with MOPITT, NDACC FTIR, and in-situ aircraft observations to determine how well

the true CO distribution is captured by the model. The control and TROPOMI CO

DA experiments are spatially and temporally interpolated to the observation, creating

coincident model and observation pairs. For the MOPITT and NDACC comparisons, I

apply the observation averaging kernels to the UFS-RAQMS coincident profiles.

4.4.2.1 MOPITT

I compare daily mean UFS-RAQMS total column CO analyses with the MOPITT version

9 Level 3 daily mean CO column product (Deeter et al., 2022). Due to an event upset

affecting instrument operation MOPITT data is unavailable for a large portion of the

study period (26 July - 24 August 2019) (https://www2.acom.ucar.edu/mopitt/stat

us). The MOPITT level 3 data is 1x1 degree, a coarser resolution than UFS-RAQMS,

and so daily average UFS-RAQMS CO is binned onto the MOPITT level 3 grid. Next, the

binned daily average UFS-RAQMS CO profiles are linearly interpolated to the MOPITT

vertical levels. The MOPITT averaging kernels (a), apriori profile (xapriori), and apriori

column (Capriori) are then used to calculate the model column following equation 4.1,

where the CO profiles xufs−raqms and xapriori are expressed as log10(VMR) (https://www2

.acom.ucar.edu/sites/default/files/documents/v9_users_guide_20220203.pdf,

last access: 22 July 2024).

https://www2.acom.ucar.edu/mopitt/status
https://www2.acom.ucar.edu/mopitt/status
https://www2.acom.ucar.edu/sites/default/files/documents/v9_users_guide_20220203.pdf
https://www2.acom.ucar.edu/sites/default/files/documents/v9_users_guide_20220203.pdf
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Cufs−raqms = Capriori + a(xufs−raqms − xapriori) (4.1)

The average daily MOPITT CO column for 15 July - 30 September 2019 is shown in

Figure 4.5a. A root mean square error (RMSE) skill score (equation 4.2) is used to quan-

tify the improvement in the DA experiment. The RMSE for UFS-RAQMS control and

UFS-RAQMS TROPOMI CO DA experiments are calculated relative to the MOPITT

observations. Negative skill scores indicate that the assimilation degraded the forecast

while positive skill indicates the assimilation increased the accuracy of the forecast. A skill

score of 1 indicates that the TROPOMI CO DA experiment captures the CO columns as

depicted by MOPITT. A skill score of 0 indicates that the assimilation did not improve

the agreement between MOPITT and UFS-RAQMS or that the model has no skill in

capturing CO in that region.

SSRMSE,(i,j) = 1−
RMSEDA(i,j)

RMSEctrl(i,j)

(4.2)

For most grid cells the UFS-RAQMS TROPOMI CO DA experiment exhibits improved

skill (Figure 4.5c). The largest improvements in skill are over Russia, Europe, Alaska, and

Canada. Due to the MOPITT data outage, the large Siberian biomass burning events

are not captured within the MOPITT observations except for in the first 10 days of the

experiment. Therefore, while I am unable to directly verify the increased UFS-RAQMS

CO columns within the Siberian smoke plume during August 2019, I do show that assim-

ilating TROPOMI CO column throughout the period significantly improved background
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Figure 4.5: Comparison of MOPITT CO column with UFS-RAQMS control and
TROPOMI CO DA CO columns. 15 July- 30 September 2016 mean CO column for
MOPITT (a), UFS-RAQMS control (b), and UFS-RAQMS TROPOMI CO DA (d),
with 26 July - 24 August 2019 excluded due to MOPITT data outage. RMSE Skill
Score (c) shows improved agreement with MOPITT in UFS-RAQMS TROPOMI CO

DA over UFS-RAQMS control.

CO columns in the NH middle and high latitudes. UFS-RAQMS TROPOMI CO DA CO

columns are moderately improved relative to the control over Borneo, Sumatra, and por-

tions of Africa where there was widespread biomass burning during the analysis period.

TROPOMI CO DA results in weak improvements over the Pacific Ocean and negative

skill in the eastern Tropical Pacific near the coast of Mexico.
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In addition to the RMSE skill score, I compare the daily mean UFS-RAQMS CO column

analyses with MOPITT CO columns over the FIREX-AQ and CAMP2Ex field campaign

domains in Figure 4.6. Correlation and bias are calculated between all observations made

15 July-30 September 2019 over 30°N - 49.5°N 82°W - 123°W (Figure 4.6 a,b) and 6°N -

23°N 116°E - 129°W (Figure 4.6 c,d). Over the FIREX-AQ spatial domain, TROPOMI

CO DA increases correlation of UFS-RAQMS with MOPITT from 0.661 to 0.8317 and

decreases the bias from -0.2507 x1018 mol/cm2 to -0.0354 x1018 mol/cm2. Over the

CAMP2Ex spatial domain, TROPOMI CO DA increases correlation of UFS-RAQMS

with MOPITT from 0.495 to 0.9446 and decreases the bias from -0.3114 x 1018 mol/cm2

to 0.1437 x 1018 mol/cm2.
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Figure 4.6: Comparisons of MOPITT and UFS-RAQMS CO columns over FIREX-
AQ (a,b) and CAMP2Ex (c,d) domains. TROPOMI CO DA increases correlation and

decreases bias between UFS-RAQMS and MOPITT.

4.4.3 FIREX-AQ In-situ CO Measurements

The Differential Absorption Carbon Monoxide Measurement (DACOM) instrument (Sachse

et al., 1991) made measurements over the continental US from July-September 2019 on-

board the NASA DC-8 aircraft as part of the FIREX-AQ field campaign (see Figure 4.2).
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FIREX-AQ sampling of smoke plumes with the DC-8 consisted of multiple perpendic-

ular transects through the plume, with each perpendicular leg sampling smoke emitted

around the same time, and the legs starting in the freshest smoke (Warneke et al., 2023).

The resulting FIREX-AQ highly detailed measurements capture fine-scale changes in

composition in both the cross-plume direction and as the emissions age. In-plume mea-

surements are excluded from the analysis as the horizontal resolution of the UFS-RAQMS

simulations is not fine enough to capture the observed in-plume enhancements that were

measured by the DC-8 close to the western US wildfires and SE US agricultural fires

targeted during FIREX-AQ.

Figure 4.7 shows the comparison between UFS-RAQMS and the DC8 DACOM CO ob-

servations for non-smoke plume observations during all flights during FIREX-AQ. UFS-

RAQMS CO is strongly correlated with the observed CO for both the control (0.7956)

and the DA experiment (0.8129). TROPOMI CO DA improves the average bias from

-9.6635 ppbv to 6.2821 ppbv.

Figure 4.8 shows a comparison of the vertical profiles for the FIREX-AQ DACOM CO

non-smoke observations and coincident UFS-RAQMS analyses. Following the interpo-

lation of the UFS-RAQMS analyses along the DC8 flight track and filtering out smoke

observations, the modeled and measured values were binned into 200m altitude bins.

The median (vertical profile), 25th and 75th (shaded) percentiles of the modeled and

observed distributions within each 200m altitude bin are shown. Below 2 km the control

and TROPOMI CO DA experiment profiles are both within the spread for the observed
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Figure 4.7: Comparison of DC8 DACOM CO and (a) UFS-RAQMS Control experi-
ment and (b) UFS-RAQMS TROPOMI CO DA experiment.

profile. Above 2.5 km the control experiment profile is consistently biased low relative

to the observed profile. The TROPOMI CO DA experiment profile is higher than in the

control experiment and shows improved agreement with the DC-8 observations.
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Figure 4.8: Vertical profiles of non-smoke CO during FIREX-AQ for DC8 DACOM
CO (black), UFS-RAQMS Control experiment (red), and UFS-RAQMS TROPOMI CO

DA experiment (blue).
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4.4.4 CAMP2Ex In-situ CO measurements

The NASA CAMP2Ex field campaign sampled airmasses over the Philippines 25 August -

5 October 2019 with the NASA P-3 aircraft to investigate the role of aerosols in the South-

east Asian southeast monsoon (Reid et al., 2023). During the campaign, the region was

impacted by biomass burning emissions from Borneo and Sumatra. In-situ CO measure-

ments were made by a commercial cavity ringdown spectrometer (G2401-m, PICARRO,

Inc.) modified with a custom gas sampling system (DiGangi et al., 2021). UFS-RAQMS

analyses are sampled along the P-3 flight track. Figure 4.9 shows the comparison between

UFS-RAQMS and the CAMP2Ex P-3 CO measurements. The UFS-RAQMS Control ex-

periment has a low bias of -34.553 ppbv relative to the observations but is well correlated

(0.7332). Assimilating TROPOMI CO decreases the bias in the analysis significantly to

-1.8373 ppbv and improves the correlation (0.8202).

Figure 4.9: Comparison of CAMP2Ex P3-B CO and (a) UFS-RAQMS Control ex-
periment and (b) UFS-RAQMS TROPOMI CO DA experiment.
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Figure 4.10 shows a comparison of the vertical profiles for the CAMP2Ex CO observations

and coincident UFS-RAQMS analyses. Following the interpolation of the UFS-RAQMS

analyses along the P-3 flight track, the modeled and measured values were binned into 200

m altitude bins. The median (vertical profile), 25th and 75th (shaded) percentiles of the

modeled and observed distributions within each 200m altitude bin are shown. Below 7km,

the UFS-RAQMS control experiment profile is biased low by ≥ 20 ppbv (≥ 20%) relative

to the observed profile. This low bias is largest in the lowest 1.5km where it exceeds

-40%. The UFS-RAQMS TROPOMI CO DA experiment profile is generally within the

25th-75th percentiles of the CAMP2Ex observations, though between ∼3.5km and 5km

the UFS-RAQMS TROPOMI CO DA CO profile is biased high and may indicate a slight

overcorrection. The lowest 1km of the profile is still biased low, though it is now only

10-20%.

The comparisons of UFS-RAQMS to the in-situ FIREX-AQ and CAMP2Ex observa-

tions show that TROPOMI CO DA improves the correlation and bias statistics for UFS-

RAQMS CO mixing ratios, consistent with the MOPITT statistics over the campaign

domains. However, the improvement in the statistics is better for UFS-RAQMS CO

columns than for the UFS-RAQMS CO profile. This is a result of using a total column

satellite measurement to constrain a profile. UFS-RAQMS control CO is well correlated

with the in-situ observations, indicating along with the profiles that the vertical struc-

ture and temporal variation in CO concentration is reasonably captured in UFS-RAQMS

for these regions. The DA system distributes the analysis increment vertically based on
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Figure 4.10: Vertical profiles of CO during CAMP2Ex for P-3 CO observations
(black), UFS-RAQMS Control experiment (red), and UFS-RAQMS TROPOMI CO

DA experiment (blue).
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model blended BEC statistics and knowledge of observation errors and vertical sensitivi-

ties. Over the CAMP2Ex domain this leads to an overestimation of CO at 3-6km. Over

the FIREX-AQ domain this leads to an overestimate of CO below 6km and underesti-

mates above 10km. In the UFS-RAQMS TROPOMI CO DA experiment CO column, the

effects of the vertical distribution compensate for each other.

4.4.5 NDACC FTIR CO profiles

UFS-RAQMS CO profiles are also evaluated with FTIR CO profile observations from 6

NDACC sites (Table 4.1). The selected NDACC FTIR spectrometers retrieve volume

mixing ratio profiles from solar absorption spectra with optimal estimation using the

SFIT4 algorithms (https://wiki.ucar.edu/display/sfit4/, last access: 19 July

2024).

Figure 4.11 shows a comparison of NDACC FTIR CO profiles with UFS-RAQMS. The

influence of TROPOMI CO DA on the CO profile is small above 15km, with both the con-

trol and the TROPOMI CO DA experiment generally overestimating CO concentrations

in this region. The most significant differences between the control and TROPOMI CO

Table 4.1: Location of NDACC FTIR sites used in this study. Number of profiles
taken 15 July- 30 September 2019 included.

NDACC Site Name Number of Profiles Location (Latitude/Longitude)
Boulder, CO, USA 288 39.99ºN, 105.26ºW
La Reunion, Maido, France 531 21.1ºS, 55.4ºE
Mauna Loa, HI, USA 54 19.54ºN, 155.58ºW
St. Petersburg, Russian Federation 76 59.9ºN, 29.8ºE
Thule, Greenland 655 76.53ºN, 68.74ºW
Wollongong, Australia 263 34.41ºS, 150.88ºE

https://wiki.ucar.edu/display/sfit4/
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Figure 4.11: Comparison of CO profiles from NDACC FTIR (black), UFS-RAQMS
control (red), and UFS-RAQMS TROPOMI CO DA (blue). Solid lines indicate the

median, shading 25th-75th percentile.

DA experiment occur below 10km except for at Wollongong where the most significant

difference is at 11-12km (Figure 4.11f). The Wollongong site is at 34.41ºS, 150.88ºE,

where the mean impact of the DA is a 20-30% decrease in CO (Figure 4.4). At Wollon-

gong, the TROPOMI CO DA reduces the average high bias by 5-15 ppbv from 1-5km

and ∼10 ppbv from 5-10km but creates a low bias of ∼15-20 ppbv from 10-12km.

Consistent with the percent change in CO between the control and TROPOMI CO DA

experiments at high latitudes in Figure 4.4, the Thule profile shows a significant increase

in the profile due to TROPOMI CO DA and results in very good agreement with the

observed NDACC profile from 2-13km. At Thule the near-surface CO concentration is

biased high in the TROPOMI CO DA experiment while it is biased low in the control.
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This behavior is not apparent at the other sites and may be a consequence of the use

of static BEC at these latitudes. Recall, the BEC statistics obtained by this study are

a function of latitude and altitude, and in the lower troposphere reflect the sensitivity

of UFS-RAQMS to biomass burning emissions. Profiles of the analysis increments at

NDACC locations on the days that measurements were made (not shown) indicate that

the near-surface analysis increment is comparatively large (>∼15ppbv) at Boulder, St.

Petersburg, and Thule. For Boulder and St. Petersburg, it appears the TROPOMI CO

DA is able to correct CO for biases in anthropogenic emissions since these sites were not

significantly impacted by wildfires.

At the tropical NDACC sites of Mauna Loa and La Reunion TROPOMI CO DA results

in small changes relative to the control in the UFS-RAQMS CO profile. TROPOMI CO

DA slightly decreases UFS-RAQMS CO at La Reunion and increases it below 15km at

Mauna Loa.

4.5 Consistency in biomass burning aerosol and CO

signatures

As previously noted, a strong correlation is expected between AOD and CO column

recently emitted from wildfires. It has been suggested that this relationship can be

exploited to evaluate biomass burning emissions inventories (Edwards et al., 2006). Here,

I evaluate the relationship between AOD and CO column over two biomass burning

events. VIIRS AOD and TROPOMI CO columns are used to evaluate how realistic the



96

UFS-RAQMS AOD/CO relationship is. I selected scenes over Siberia and over Indonesia

during their respective peaks in biomass burning during the July-September 2019 analysis

period.

UFS-RAQMS CO column and AOD analyses are interpolated in latitude, longitude, and

time to TROPOMI and VIIRS L2 observations respectively. TROPOMI averaging ker-

nels are applied to UFS-RAQMS CO profiles. UFS-RAQMS speciated aerosol extinction

profiles at 532nm are integrated to obtain AOD. The coincident model and observation

data is then binned onto a 0.1x0.1 degree grid over each domain. The anticipated lin-

ear relationship between AOD and CO is evaluated for the observations, UFS-RAQMS

control, and UFS-RAQMS DA.

4.5.1 Case Study: 22 July 2019 Siberian Smoke

During July and August 2019 significant wildfire activity occurred in Siberian Russia,

with a major cluster in Eastern Siberia and a major cluster in Central Siberia (Johnson

et al., 2021). Wildfire activity peaked in both regions of Siberia between 18 July and 26

July. I evaluate binned AOD and CO column on 22 July 2019 for the region 90◦E -150◦E,

50◦N - 70◦N.

The spatial distributions of AOD and CO over Siberia on 22 July 2019 are shown in

Figure 4.12 for VIIRS, TROPOMI, the UFS-RAQMS control, and the UFS-RAQMS

TROPOMI CO DA experiment. The UFS-RAQMS AOD field is unchanged between

the control and DA experiments and thus is only shown once. UFS-RAQMS does a
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Figure 4.12: 22 July 2019 AOD and CO columns over Siberia. VIIRS AOD (a),
UFS-RAQMS AOD (b), TROPOMI CO column (c), and UFS-RAQMS control (d) and
TROPOMI CO DA (e) CO column. Black box in panel a defines region (90◦E -150◦E,

50◦N - 70◦N) for AOD/CO column relationship analysis.

very good job of capturing the observed synoptic scale features but does not capture

fine-scale structure seen in the AOD or CO observations. UFS-RAQMS AOD is slightly

overestimated outside of the plume (AOD ≥ 1) and in the plume feature around 60◦N -

70◦N, 120◦E - 130◦E. CO column is significantly underestimated in UFS-RAQMS control.

Agreement with the TROPOMI observations is significantly improved in UFS-RAQMS

DA.

Scatterplots illustrating the relationship between AOD and CO column in Siberian wild-

fire smoke are shown in Figure 4.13 for the observations (grey), UFS-RAQMS control

(red), and UFS-RAQMS TROPOMI CO DA (blue). The linear regressions are summa-

rized in Table 4.2. VIIRS AOD and TROPOMI CO column exhibit a compact linear
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Figure 4.13: Linear relationship between AOD and CO column in Siberian wildfire
smoke (90◦E -150◦E, 50◦N - 70◦N) on 22 July 2019. UFS-RAQMS control (a, red) and
UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships are compared to

observed VIIRS AOD/TROPOMI CO (grey).

relationship with a slope near 1 and correlation of 0.8043. UFS-RAQMS control CO

column and AOD are moderately correlated (0.5648), and the slope of the linear rela-

tionship is 0.2407 as UFS-RAQMS control underestimates of CO column for high AOD.

TROPOMI CO DA improves the correlation between AOD and CO column as well as

increases the slope of the linear relationship. The UFS-RAQMS TROPOMI CO DA

AOD/CO column slope is 0.7749 and the correlation is 0.7106. This improved represen-

tation of the observed linear relationship and correlation in the UFS-RAQMS TROPOMI

CO DA experiment is due to the increased CO column within the Siberian wildfire plume.
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Table 4.2: Linear relationship between AOD and CO column in Siberian wildfire

smoke (90◦E -150◦E, 50◦N - 70◦N) on 22 July 2019.

slope intercept r
VIIRS AOD/TROPOMI CO column 1.0092 1.629 0.8043
UFS-RAQMS Control AOD/CO column 0.2407 1.7948 0.5648
UFS-RAQMS TROPOMI CO DA AOD/CO column 0.7749 2.0724 0.7106

4.5.2 Case Study: 16 September 2019 Indonesian Smoke

During September 2019 wildfire activity over Indonesia contributed to an extreme AOD

enhancement in the region. I evaluate binned AOD and CO column on 16 September

2019 for the region 100◦E -130◦E, 15◦S - 15◦N.

The spatial distributions of AOD and CO column over Indonesia on 16 September 2019

are shown in Figure 4.14 for VIIRS, TROPOMI, the UFS-RAQMS control, and the

UFS-RAQMS TROPOMI CO DA experiment. UFS-RAQMS significantly underesti-

mates AOD enhancements in this region, as evident in the Borneo smoke plume and

over China. As a result, I also show the UFS-RAQMS AOD scaled by a factor of 3. The

CO column is significantly underestimated over the maritime continent in UFS-RAQMS

control. Agreement with the TROPOMI observations is significantly improved in the

UFS-RAQMS TROPOMI CO DA experiment.

Scatterplots illustrating the relationship between AOD and CO column in Indonesian

wildfire smoke are shown in Figure 4.15 for the observations (grey), UFS-RAQMS control

(red), and UFS-RAQMS TROPOMI CO DA (blue). The linear regressions are summa-

rized in Table 4.3. VIIRS AOD and TROPOMI CO column exhibit a compact linear
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Figure 4.14: 16 September 2019 AOD and CO columns over SE Asia. VIIRS AOD (a),
UFS-RAQMS AOD (b), UFS-RAQMS AOD scaled by 3 (c), TROPOMI CO column
(d), and UFS-RAQMS control (e) and TROPOMI CO DA (f) CO column. Black box
in panel a defines region (100◦E -130◦E, 15◦S - 15◦N) for AOD/CO column relationship

analysis.

relationship with a slope near 1 and correlation of 0.782. UFS-RAQMS control CO

column and AOD are moderately correlated (0.4886), and the slope of the linear relation-

ship is 0.7638, however neither the AOD or CO columns capture the observed high values.

TROPOMI CO DA improves the correlation between AOD and CO column to 0.7085 but

due to the low bias in UFS-RAQMS AOD over the region, the UFS-RAQMS TROPOMI

CO DA experiment significantly overestimates the slope of the relationship. To approx-

imate the modeled AOD/CO relationship without the low AOD bias, I apply a scaling

factor of 3 to the UFS-RAQMS AOD. Applying this scaling inflates UFS-RAQMS AOD
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Table 4.3: Linear relationship between AOD and CO column in Indonesian wildfire

smoke (100◦E -130◦E, 15◦S - 15◦N) on 16 September 2019.

slope intercept r
VIIRS AOD/TROPOMI CO column 0.962 1.7872 0.782
UFS-RAQMS Control AOD/CO column 0.7638 1.4755 0.4886
UFS-RAQMS TROPOMI CO DA AOD/CO column 3.8251 1.3404 0.7085
UFS-RAQMS Control AODx3/CO column 0.2546 1.4755 0.4886
UFS-RAQMS TROPOMI CO DA AODx3/CO column 1.275 1.3404 0.7085

enhancements over Borneo to be closer to observed values (Figure 4.14c, Figure 4.15c,d).

By accounting for the low AOD bias in this way, I obtain a slope for UFS-RAQMS control

CO column and scaled AOD of 0.2546 and for UFS-RAQMS TROPOMI CO DA a slope

of 1.275. This points to the need to also assimilate AOD data along with CO column

data to improve the agreement with observations in this region.
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Figure 4.15: Linear relationship between AOD and CO column in Indonesian wildfire
smoke (100◦E -130◦E, 15◦S - 15◦N) on 16 September 2019. UFS-RAQMS control (a,
red) and UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships are com-
pared to observed VIIRS AOD/TROPOMI CO (grey). UFS-RAQMS control (c, red)
and UFS-RAQMS TROPOMI CO DA (d, blue) AODx3/CO relationships are com-

pared to observed VIIRS AOD/TROPOMI CO (grey).
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4.6 Conclusions

Assimilating TROPOMI CO within UFS-RAQMS using the GSI 3D-var and blended BEC

generally resulted in improved UFS-RAQMS CO analyses. Application of the TROPOMI

CO DA decreases the average RMSE in CO column relative to MOPITT and improves

correlation between UFS-RAQMS and MOPITT within the FIREX-AQ and CAMP2EX

domains. TROPOMI CO DA results in an improved agreement of CO profiles relative

to NDACC FTIR measurements in the free troposphere at most NDACC sites but does

increase surface CO biases at high latitude locations and adds complexity in the vertical

structure at many sites. This is a consequence of using a total column measurement

to constrain a modeled profile. The DA setup minimizes the difference between the

TROPOMI observations and the UFS-RAQMS first guess. While the CO column is well

constrained, as indicated by the good agreement between UFS-RAQMS TROPOMI CO

DA CO and MOPITT CO, the DA system distributes the analysis increment vertically

based on model blended BEC statistics and knowledge of the TROPOMI CO column

observation errors and vertical sensitivities. My evaluations with NDACC FTIR CO

observations and with field campaign observations show that this can lead to an over-

adjustment near the surface and only small adjustments at high altitudes.

TROPOMI CO DA has the largest impacts on CO in the lower troposphere over Siberia

and Indonesia. My case studies of the relationship between AOD and CO column over

these regions show that in UFS-RAQMS biomass burning signatures in CO column are

not consistent with those in AOD near the biomass burning source regions. Assimilating
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TROPOMI CO improves the representation of the biomass burning AOD/CO relation-

ship. I believe this is an indication that the GBBEPx biomass burning CO emissions

in UFS-RAQMS are too low. GBBEPx adds biomass burning emissions from VIIRS to

QFED biomass burning emissions estimates from MODIS, and has not been included in

recent biomass burning emissions inventory intercomparisons (Hua et al., 2024, Wiedin-

myer et al., 2023). Wiedinmyer et al. (2023) shows that adding VIIRS observations to

existing inventories increased biomass burning CO emissions due to improved capture of

small fires. Wiedinmyer et al. (2023) shows QFED aerosol and CO emissions do not have

the relative consistency present in other inventories like the fire inventory from NCAR

(FINN) and the global fire emissions database (GFED) as QFED aerosol emissions are

the highest and CO emissions among the lowest. Since the GBBEPx emission inventory

is based on QFED, I expect that similar inconsistencies may be present in GBBEPx.

While assimilating CO does compensate for uncertainties in the biomass burning emis-

sions, it does not adjust the biomass burning CO emissions themselves. Since UFS-

RAQMS uses emission factors for co-emitted NOx and VOC species that are applied to

the GBBEPx biomass burning CO emissions, I anticipate similar uncertainties in these

co-emitted species, likely leading to errors in ozone production within the biomass burning

plumes. Chapter 5 focuses on developing capabilities to use TROPOMI CO column mea-

surements to adjust the GBBEPx CO biomass burning emissions within UFS-RAQMS.

Similar capabilities have been developed using TROPOMI NO2 retrievals to adjust an-

thropogenic NOx emissions using off-line iterative mass balance approaches (East et al.,
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2022) and local ensemble transform Kalman filter (LETKF) techniques (Sekiya et al.,

2022).
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Chapter 5

Adjustment of GBBEPx CO

Emissions

In Chapter 4 I showed that constraining UFS-RAQMS with TROPOMI CO observations

with GSI 3Dvar DA improves the agreement between UFS-RAQMS CO analyses and

observations. Case studies over significant biomass burning events in Siberia and the

maritime continent indicate that the UFS-RAQMS low bias in CO is associated with un-

derestimates of biomass burning CO emissions. The underestimation of biomass burning

CO emissions also impacts NOx and VOC emissions since these are included in CTMs

by applying species-specific emissions factors (EFs) or emissions ratios (ERs) (e.g. Akagi

et al., 2011, Andreae, 2019, Andreae and Merlet, 2001) to biomass burning CO emissions.

The TROPOMI CO DA application in Chapter 4 constrains UFS-RAQMS CO fields and



107

not the CO emissions. In this chapter I apply an inverse approach for adjusting GBBEPx

CO biomass burning emissions.

Inversion techniques optimize pollutant emissions in order to minimize bias between con-

centration observations and CTM simulations. Techniques include mass balance (e.g.

East et al., 2022, Lamsal et al., 2011, Martin et al., 2003a), ensemble Kalman filters (e.g.

Gaubert et al., 2020, Miyazaki et al., 2012), and adjoint models (e.g. Cooper et al., 2017,

Parrington et al., 2012). Applications of the ensemble Kalman filter and adjoint tech-

niques have included biomass burning CO emissions as part of the model state vector in

the chemical DA cost function, constraining emissions concurrently with the model ini-

tial state. Finite-difference mass-balance (FDMB) methods are computationally simpler,

using CTMs to derive a linear relationship between a change in emissions and a change in

observed concentration. There are significant drawbacks to each approach. Ensemble and

adjoint approaches require significant computational resources. The adjoint approach also

requires development and maintenance of an adjoint model. FDMB assumes both linear-

ity and that the emissions are the main contributor to the model bias. It is also of some

importance to consider that the resulting adjusted emissions are subject to transport and

chemistry uncertainties in the specific CTM used. Iterative FDMB approaches address

the non-linearity between the emissions and the column by cycling the adjustment until

the analysis increments are sufficiently small.

In this chapter, I apply an iterative FDMB approach for optimizing GBBEPx CO emis-

sions using CO column observations from TROPOMI. This approach alters existing
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FDMB approaches for updating anthropogenic NOx inventories in order to account for:

1) the high spatiotemporal variability in biomass burning sources and 2) sensitivity of

UFS-RAQMS to biomass burning.

5.1 Iterative FDMB for Biomass Burning CO Emis-

sions

The adjustment technique applied here builds on the FDMB approach used for adjusting

anthropogenic NOx inventories in East et al. (2022), Lamsal et al. (2011). FDMB relates

changes in emissions to changes in column concentrations as expressed in equation 5.1

for each model grid point.

∆E

E
= β

∆X

X
(5.1)

∆E is the emissions adjustment, E the prior emissions, and ∆X a change in CO column

associated with the change in emissions. Here ∆X is the CO analysis increment from

UFS-RAQMS TROPOMI CO DA experiments. This is different than previous FDMB

implementations which have defined ∆X as the difference between model and satellite

column observations (Lamsal et al., 2011) or the difference between a simulation with

data assimilation and one without (East et al., 2022).

β is a scaling parameter describing the sensitivity of UFS-RAQMS CO columns to per-

turbations in biomass burning CO emissions. Due to the high spatiotemporal variability

in biomass burning emissions, I calculate β over 5 day intervals instead of the monthly
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interval used by Lamsal et al. (2011) and East et al. (2022) and only for grid points emit-

ting CO from biomass burning. β is estimated here using the same 85% GBBEPx CO

emissions perturbation experiment used in Chapter 4 to generate the BEC, and calcu-

lated as: β = (∆E
E
)/( ∆X

X100
), where ∆E

E
is the average normalized change in emissions, ∆X

is the 5-day average difference in CO column between the control (X100) and perturbation

(X85) experiments, and X is the 5-day average CO column of the control experiment. ∆E
E

is fixed at 0.15.

The adjustment process is summarized in Figure 5.1, incorporating iteration of the ad-

justment as in East et al. (2022) and Cooper et al. (2017). The adjustment is calculated

as: ∆E = E ∗ β ∗ ∆X
X

, where E is the prior GBBEPx emissions, ∆X is the TROPOMI

CO analysis increment, and X is the UFS-RAQMS CO column. An emissions adjustment

is only calculated when β ≤ 8 as β is very large where UFS-RAQMS CO sensitivity to

biomass burning emissions is weak. To control for cases where the adjustment results in 0

or negative emissions, a cutoff of -90% is applied. This limit primarily affects points where

the CO column is more sensitive to transported emissions than local emissions. The CO

emissions adjustment is iterated over multiple cycles of UFS-RAQMS TROPOMI CO DA,

with the adjusted emissions from the previous DA cycle serving as the prior emissions for

the next cycle.
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Figure 5.1: Schematic of the iterative FDMB framework.

5.2 Results

5.2.1 Convergence of the emissions updates

Convergence of the GBBEPx emissions update is evaluated for the biomass burning re-

gions defined in Figure 5.2 using the DA analysis increments and the normalized change

in emissions. For each iteration of the GBBEPx CO emissions update the change in emis-

sions is calculated relative to the prior iteration. Box plots of the analysis increments

and emissions change for each iteration and region are presented in Figure 5.3. Anal-

ysis increments are only evaluated for the grid cells where the emissions were updated

in order to isolate the immediate impact of the emissions update. Analysis increments

farther away from the adjusted biomass burning emissions do not decrease as much as

those in the near field as they also account for model deficiencies in transport, chemistry,

and other emissions sources. The analysis increments and percent change in emissions
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Figure 5.2: Percent change in biomass burning CO emissions for the first iteration
of FDMB. Panel b zooms in on SE Asia. Convergence of iterated FDMB is evaluated
for the boxed regions: Africa (20◦S-3◦S, 25◦E-39◦E) (blue), South America (29◦S-5◦S,
49◦W-70◦W) (orange), Sumatra (4◦S-4◦N, 99.5◦E-107◦E) (green), Borneo (4◦S-3◦N,

109◦E-118◦E) (red), and Siberia (54◦N-72◦N, 95◦E-142◦E) (purple).

Figure 5.3: TROPOMI CO DA analysis increments (a) and percent change in
GBBEPx CO emissions (b) for six iterations of FDMB.

is largest for the first iteration of the GBBEPx update. The analysis increments and

emissions adjustments are smaller for Africa and South America. For all regions, the

analysis increments get smaller with each iteration and the emissions adjustment in each

region approaches 0%. After 6 iterations, the mean adjustment in each region is ∼ 0%

and the 25th to 75th percentiles are within ± 30%.
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Time series of the analysis increments and updated GBBEPx emissions are used to eval-

uate the temporal behavior of the FDMB emissions updates. GBBEPx emissions time

series for the globe and the major biomass burning regions are shown in Figure 5.4. The

global average unadjusted biomass burning emissions (GBBEPx0) vary little with time,

while the adjusted emissions significantly amplify biomass burning emissions to result in

3 distinct periods of elevated global emissions. Siberian biomass burning emissions peak

in July and early August in all iterations of GBBEPx, and the peak is increased from ∼6

µg s−1m−2 in GBBEPx0 to ∼14 µgs−1m−2 in GBBEPx6. Biomass burning emissions in

Sumatra and Borneo peak in September and in GBBEPx0 average ∼ 1 µg s−1m−2 during

September. September emissions from Sumatra and Borneo are significantly increased,

and GBBEPx6 emissions peak around 26-30 µg s−1m−2. African biomass burning emis-

sions vary by < 1 µg s−1m−2 in GBBEPx0. The iterative FDMB emissions update results

in an increasing trend in emissions from Africa between 15 July 2019 and 30 September

2019. South American biomass burning emissions increases are also smaller than in the

Siberian and Maritime regions, with a maximum increase of ∼ 3 µg s−1m−2 between

GBBEPx0 and GBBEPx6.
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Figure 5.4: GBBEPx CO emission timeseries for FDMB iterations 0-6. Global (a), Siberia (54◦N-72◦N, 95◦E-142◦E) (b),
South America (29◦S-5◦S, 49◦W-70◦W) (c), Sumatra (4◦S-4◦N, 99.5◦E-107◦E) (d), Borneo (4◦S-3◦N, 109◦E-118◦E) (e), and

Africa (20◦S-3◦S, 25◦E-39◦E) (f).



114

Analysis increment time series for the major biomass burning emissions regions are shown

in Figures 5.5 - 5.9 and are consistent with Figure 5.3. Analysis increments are only in-

cluded in this analysis where the emissions are adjusted. In each region, the CO analysis

increment gradually decreases with each iteration and GBBEPx emissions are incremen-

tally increased. The changes in GBBEPx emissions are small when the analysis incre-

ments are small. The mean analysis increment in each region approaches zero with each

subsequent iteration. Analysis increments in the Siberia, Sumatra, and Borneo regions

decrease over the first 1-3 iterations and then do not vary by much for the last few iter-

ations. Analysis increments in the South America and Africa regions gradually decrease

over all iterations. A potential reason for this difference in behavior is the magnitude of

the assimilation increment. When the TROPOMI CO DA analysis increment is greater

than ∼1 x 1018 mol/cm2, the emissions adjustment procedure is most effective. For anal-

ysis increments <0.5 x 1018 mol/cm2, such as those for the Africa and South America

regions and for the later iterations for Siberia, the emissions adjustment procedure more

gradually decreases the difference between the UFS-RAQMS CO analysis and TROPOMI

CO.
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Figure 5.5: Time series of the TROPOMI CO DA analysis increments for Siberia for
UFS-RAQMS DA cycles 1-6. Only analysis increments for grid points where there are

GBBEPx CO emissions and β is ≤8 are included in the average.
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Figure 5.6: Time series of the TROPOMI CO DA analysis increments for the South
American region for UFS-RAQMS DA cycles 1-6.Only analysis increments for grid
points where there are GBBEPx CO emissions and β is ≤8 are included in the average.
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Figure 5.7: Time series of the TROPOMI CO DA analysis increments for Sumatra
for UFS-RAQMS DA cycles 1-6. Only analysis increments for grid points where there

are GBBEPx CO emissions and β is ≤8 are included in the average.
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Figure 5.8: Time series of the TROPOMI CO DA analysis increments for Borneo for
UFS-RAQMS DA cycles 1-6. Only analysis increments for grid points where there are

GBBEPx CO emissions and β is ≤8 are included in the average.
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Figure 5.9: Time series of the TROPOMI CO DA analysis increments for the African
region for UFS-RAQMS DA cycles 1-6. Only analysis increments for grid points where

there are GBBEPx CO emissions and β is ≤8 are included in the average.



120

5.2.2 Adjusted GBBEPx Emissions

The iterated FDMB GBBEPx emissions update substantially increased CO biomass burn-

ing emissions from Siberia and the maritime continent, and sufficiently converged within

6 iterations. The 6th iteration of the emissions adjustment, GBBEPx6, will hereafter be

referred to as the adjusted GBBEPx emissions.

Figure 5.10 shows the average percent change in CO biomass burning emissions between

GBBEPx6 and GBBEPx0. Over the maritime continent JAS GBBEPx emissions are

increased by > a factor of 10 (1000%), primarily over peatlands, forests, and agricultural

lands (see land cover maps in Chapter B). GBBEPx6 emissions are generally increased

from GBBEPx0, though there is considerable spatial variability in the magnitude of the

change. GBBEPx0 CO emissions from eastern central Africa are increased by ∼200-300%.

GBBEPx0 emissions from western central Africa are decreased by 10-20%. GBBEPx6

emissions from Alaska, Canada, and the western US are increased relative to GBBEPx0

for some locations and decreased at others.

Figure 5.10: Percent change in biomass burning CO emissions between GBBEPx6.
Panel b zooms in on SE Asia.
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5.2.3 Scale Factors for GBBEPx CO emissions

The iterated FDMB GBBEPx CO emissions update scheme significantly increases CO

emissions in the Siberian and Maritime Continent regions during JAS 2019. In QFED,

and thereby inherent in the GBBEPx product, biomass burning emissions are calibrated

to AOD observations using biome-representative scale factors (Darmenov and da Silva,

2015, Zhang et al., 2019). The QFED AOD scale factors are determined from a regression

of the form: τ ∼ wBBτBB + wANτAN + τN , where the biomass burning AOD (τBB),

anthropogenic AOD (τAN), and AOD from natural sources (τN) were determined from

NASA Goddard Earth Observing SystemModel (GEOS) simulations. QFED scale factors

were fit for 46 regions and then reduced to representative scaling factors for tropical

forests, extratropical forests, savanna, and grasslands. Readers are referred to tables 5-7

and figure 6 in Darmenov and da Silva (2015) for the QFED scaling factors. Following

from the scaling to QFED used in GBBEPx for VIIRS-derived emissions, I define a

GBBEPx CO emissions scaling factor using the relationship 5.2, and calculate the average

scaling factor for UFS-RAQMS grid points and for the biomass burning regions defined

in Figure 5.2. My biomass burning regions are different than those used for the scaling of

QFED aerosol emissions in Darmenov and da Silva (2015) and were selected to align with

significant biomass burning regions in JAS 2019. The average GBBEPx CO scale factor

for each grid point is shown in Figure 5.11 as well as regional average scale factors that

have been colored according to the scale factor. The regional average GBBEPx CO scale

factors are reported in table 5.1. For each region the standard deviation of the GBBEPx
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Figure 5.11: Average GBBEPx CO biomass burning scale factors for JAS 2019. Boxes
are colored according to the regional average scale factor.

Table 5.1: Regional scale factors for GBBEPx CO emissions. Standard deviation of
FDMB iteration 0 GBBEPx CO emissions (GBBEPx0) and FDMB iteration 6 GBBEPx

CO emissions (GBBEPx6).

Region Scale Factor GBBEPx0 Standard Deviation GBBEPx6 Standard Deviation
Siberia 11.7389 5.9092 18.5136
South America 3.6991 2.211 6.423
Sumatra 14.5011 2.5983 20.2505
Borneo 9.634 3.8585 18.3789
Africa 3.5253 1.0556 2.6684

CO emissions is increased in GBBEPx6 relative to GBBEPx0.

EGBBEPx6 = wEGBBEPx0 (5.2)
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The regional average GBBEPx CO emissions scaling factors obtained here are larger

than the QFED AOD scaling factors for similar regions. There are several significant

potential reasons for this, and further investigation would be necessary before applying

the GBBEPx CO scale factors obtained in this study to GBBEPx CO emissions more

broadly. First, the GBBEPx CO scale factors are calculated using a 2.5 month simula-

tion while the QFED AOD scale factors are calculated from multi-year simulations. The

GBBEPx CO scale factors obtained by this study are sensitive to the biomass burning

during JAS 2019 and are not representative of a long-term average. Second, as shown in

Figure 5.11 there is considerable spatial variability in the scale factor that is disregarded

by aggregating over large geographic regions. Recent intercomparisons of major global

fire emissions inventories find that land type classification is a significant driver of the

difference in CO emissions between different inventories (Hua et al., 2024, Wiedinmyer

et al., 2023). Inventories that account for Indonesian peatlands separately from savan-

nas and grasslands have significantly higher CO and particulate matter emissions for the

region due to differences in burning characteristics (Hua et al., 2024, Kiely et al., 2019).

Aggregating the biomass burning CO scale factors derived here to the 4 land types con-

sidered in GBBEPx and QFED would disregard key biome-driven differences in emissions

strength.

5.3 Conclusions

Adjustment of the mean GBBEPx CO biomass burning emissions in Africa, Siberia,

South America, Sumatra, and Borneo where there was significant biomass burning in
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JAS 2019 with iterative FDMB converged within 6 iterations. GBBEPx CO emissions are

significantly increased from the maritime continent and Siberia, and the TROPOMI CO

DA increment is smaller at iteration 6 over these regions than in the prior iterations. This

indicates that the increase in biomass burning CO emissions are increasing the CO column

directly over the source. Chapter 6 will evaluate the impact of the adjusted GBBEPx

CO emissions on UFS-RAQMS chemical analyses and compare to the TROPOMI CO

DA experiment results from Chapter 4.

Scale factors between GBBEPx0 and GBBEPx6 show strong spatial variability, which is

consistent with the average percent change between FDMB GBBEPx emissions update

cycles. At this stage, application of iterative FDMB for optimizing CO emissions can

be said to reduce the bias in UFS-RAQMS CO columns at emission sources. Future

work should focus on applying this approach to longer CTM simulations to evaluate the

representativeness of the GBBEPx CO scale factors obtained here to a broader time

period.
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Chapter 6

Impacts of wildfire emissions on

global background CO and O3

during FIREX-AQ and CAMP2Ex

6.1 Introduction

The iterative FDMB biomass burning CO emissions adjustment procedure applied in

Chapter 5 increased JAS 2019 GBBEPx CO emissions globally. In this chapter I evalu-

ate the impact these adjusted emissions have on UFS-RAQMS chemical forecasts. First,

I validate the UFS-RAQMS adjusted emissions experiment CO forecast through com-

parisons with independent analyses. Then, I compare the UFS-RAQMS TROPOMI CO

DA experiment with the adjusted emissions experiment to determine how changes in the
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VOC and NOx emissions that result from the CO emissions adjustment influence ozone

production within biomass burning plumes. NO, CH3CN, ethane (C2H6), paraffin car-

bon (butane, propene, pentane), ethene, and terminal olefin carbons are emitted from

biomass burning in UFS-RAQMS by application of emission ratios to GBBEPx CO emis-

sions. From this point, unless explicitly stated, adjusted emissions collectively refers to

the adjusted CO biomass burning emissions and the affected NOx and VOC emissions.

6.2 Validation of UFS-RAQMS CO

TROPOMI CO columns, MOPITT CO columns, NDACC FTIR profiles, and field cam-

paign data are used to validate the UFS-RAQMS adjusted emissions experiment. Vali-

dation is the practice of comparing CTM output with observations in order to quantify

the skill of the CTM in capturing the observed quantity.

6.2.1 TROPOMI and MOPITT Total Column CO

UFS-RAQMS CO columns are evaluated here with TROPOMI CO level 2 observations

and MOPITT daily level 3. UFS-RAQMS control and adjusted emissions experiments

are sampled following a bilinear interpolation to the higher-resolution TROPOMI. After

applying the TROPOMI averaging kernels to UFS-RAQMS CO, the TROPOMI and

UFS-RAQMS coincidences are averaged onto a 0.25x0.25 global grid. The UFS-RAQMS

CO columns are compared with MOPITT as in Chapter 4.

Statistics comparing the UFS-RAQMS experiments with TROPOMI CO observations
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Figure 6.1: Global bias and correlation for UFS-RAQMS experiments with
TROPOMI CO observations between 16 July-28 September 2019.

globally are summarized in Figure 6.1 with a Taylor diagram. The standard deviation

of CO column is higher the UFS-RAQMS adjusted emissions experiment than in the

UFS-RAQMS control and is closer to the standard deviation of the TROPOMI CO col-

umn observations. UFS-RAQMS adjusted emissions CO columns are strongly correlated

(>0.7) with TROPOMI CO and is improved relative to the UFS-RAQMS control exper-

iment, where the UFS-RAQMS CO columns are moderately correlated with TROPOMI

CO column observations.

Figure 6.2 shows the average bias in the CO column relative to MOPITT for the UFS-

RAQMS control, TROPOMI CO DA, and adjusted emissions experiments. The adjusted

emissions decrease the low bias in the NH but increase the bias in the SH over the oceans,

central Africa, and western South America. Directly over biomass burning in Siberia

and Indonesia the UFS-RAQMS adjusted emissions experiment CO columns are bias
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Figure 6.2: Mean bias (1018 mol/cm2) in UFS-RAQMS control, TROPOMI CO DA,
and adjusted emissions experiments relative to MOPITT CO Columns.

high relative to MOPITT, indicating that the adjustment was too large. Contrasting

the evaluation statistics from the UFS-RAQMS TROPOMI CO DA experiment from

Chapter 5 with those for the UFS-RAQMS adjusted emissions experiment, MOPITT

comparisons support a conclusion that underestimates of biomass burning CO emissions

are responsible for a large portion of the bias in UFS-RAQMS NH CO concentration.
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6.2.2 FIREX-AQ and CAMP2Ex In-situ CO Observations

Figure 6.3 shows a comparison of the vertical profiles for the field campaign CO obser-

vations and coincident UFS-RAQMS analyses. Following the interpolation of the UFS-

RAQMS analyses along the flight tracks, the modeled and measured values were binned

into 200 m altitude bins. The median (vertical profile), 25th and 75th (shaded) percentiles

of the modeled and observed distributions within each 200m altitude bin are shown. Be-

tween 1km and 5km, the UFS-RAQMS adjusted emissions mean CO profile agrees closely

with the observed FIREX-AQ background profile. Above 5km the UFS-RAQMS adjusted

emissions CO profiles do not diverge much from the control experiment. UFS-RAQMS

adjusted emissions CO profiles agree better with CAMP2Ex profiles at all altitudes than

UFS-RAQMS control but still underestimate CO below 2km by >25 ppbv.
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Figure 6.3: Vertical profiles of CO for field campaign observations (black), UFS-
RAQMS Control experiment (red), UFS-RAQMS TROPOMI CO DA experiment (dark

blue), and UFS-RAQMS adjusted emissions experiment (cyan).

6.2.3 NDACC FTIR CO

UFS-RAQMS adjusted emissions CO profiles are evaluated with the same NDACC FTIR

sites used in Chapter 4 to evaluate UFS-RAQMS DA. The adjusted biomass burning

emissions increase the bias in UFS-RAQMS CO profile at SH sites and reduce the bias at

the NH sites, which is consistent with the CO column analyses. At Boulder and Mauna

Loa, tropospheric CO mixing ratios are increased by <10 ppbv. The largest changes in

UFS-RAQMS CO profile occur at the high latitude Thule site, where below 10km the

profile is increased by 15-20 ppbv in the UFS-RAQMS adjusted emissions experiment
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Figure 6.4: Comparison of CO profiles from NDACC FTIR sites (black), UFS-
RAQMS Control experiment (red), UFS-RAQMS TROPOMI CO DA experiment (dark

blue), and UFS-RAQMS adjusted emissions experiment (cyan).

relative to the control.

6.3 Impact of adjusting GBBEPx biomass burning

CO emissions on atmospheric composition in UFS-

RAQMS

Validation with satellite, ground based, and airborne observations show the adjusted

GBBEPx CO emissions improve UFS-RAQMS CO forecasts in the NH. Both TROPOMI

CO DA and the adjusted GBBEPx CO emissions result in an increase in CO over central

Africa and enhance an overestimate in CO column over the Atlantic. Contrasting the

validations of the UFS-RAQMS adjusted emissions and TROPOMI CO DA experiments,
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I showed underestimation of biomass burning CO emissions in GBBEPx contributes sig-

nificantly to the low bias in UFS-RAQMS CO that TROPOMI CO DA corrects for but

does not fully explain the bias, which points to underestimates in anthropogenic CO emis-

sions. I now look at the impact of increased GBBEPx CO emissions on ozone production

in UFS-RAQMS by comparing CO, NO2, ethane (C2H6), and O3 from the UFS-RAQMS

control and adjusted emissions experiments.

6.3.1 CO

Figure 6.5 shows the average percent change in zonal mean CO and CO total column

between the UFS-RAQMS control and adjusted emissions experiments. Consistent with

the validation of the UFS-RAQMS adjusted emissions experiment in Section 6.2, the CO

column and zonal mean CO profile are increased globally due to the adjusted GBBEPx

CO emissions. Over the Siberian and Indonesian regions where the adjusted emissions

were ≥10x greater than the control emissions, the CO column is ∼70-100% higher in

the UFS-RAQMS adjusted emissions experiment than in the control. The change in the

zonal mean CO is largest in the lowest 5km and in the northern high latitudes, where

the UFS-RAQMS CO is increased by >28%. The zonal mean CO in the SH tropics is

increased by 20-30%.
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Figure 6.5: Percent difference in zonal mean CO profile (a) and total column CO (b)
between UFS-RAQMS adjusted emissions and control experiments.
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6.3.2 NO2

UFS-RAQMS emits NOx from biomass burning as NO, which then reacts with oxidized

VOCs or HO2 to form NO2 and O3. Figure 6.6 shows the average percent change in zonal

mean NO2 and tropospheric column NO2 between the UFS-RAQMS control and adjusted

emissions experiments. Unlike the CO column enhancements, the NO2 tropospheric col-

umn enhancement due to the adjusted GBBEPx CO emissions remains near-source and

the change in tropospheric NO2 outside of the biomass burning-affected regions is <20%.

The change in the zonal mean NO2 between the UFS-RAQMS control and adjusted emis-

sions experiment is <10% outside of the lowest 3-4km at the tropical and high latitudes

where biomass burning occurred during JAS 2019.
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Figure 6.6: Percent difference in zonal mean NO2 profile (a) and tropospheric column
NO2 (b) between UFS-RAQMS adjusted emissions and control experiments.
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6.3.3 Ethane

Figure 6.7 shows the average percent change in zonal mean ethane and total column

ethane between the UFS-RAQMS control and adjusted emissions experiments. Ethane

is among the highest emitted compounds from biomass burning (e.g. Andreae, 2019,

Gkatzelis et al., 2024), and as already noted is one of the VOCs emitted from biomass

burning in UFS-RAQMS. The zonal mean and total column percent changes in UFS-

RAQMS ethane forecasts due to the adjusted GBBEPx CO emissions are very similar to

the change in CO and are about 60% as large.
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Figure 6.7: Percent difference in zonal mean ethane profile (a) and total column
ethane (b) between UFS-RAQMS adjusted emissions and control experiments.
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6.3.4 Tropospheric Ozone

The adjusted biomass burning emissions result in tropospheric ozone enhancements >4%

(Figure 6.8). The strongest tropospheric O3 enhancements due to increased biomass

burning emissions occur in the tropics over the maritime continent. Boreal biomass

burning O3 production is much lower. This contrasts tropospheric CO enhancements

due to biomass burning, where boreal biomass burning induces a stronger response than

tropical burning. The differences in O3 production from boreal and tropical biomass

buring emissions is due to the higher photolysis rates in the tropics (Natarajan et al.,

2012).

Figure 6.9 shows the change in surface O3 between the UFS-RAQMS control and adjusted

emissions experiment. In central Africa and Brazil, the adjusted emissions increased the

surface O3 concentration by 7-10 ppbv. In Borneo and Sumatra, the adjusted emissions

increased surface O3 by 10-15 ppbv. Surface O3 concentrations in Siberia are increased by

2-6ppbv. These increases are not inconsequential and can result in exceeding air quality

standards for regions that are near the standard (70 ppbv in the US).

The changes in modeled tropospheric ozone presented in Figures 6.8 and 6.9 are linked to

the uncertainty in biomass burning CO emissions. A complete assessment of the impact

of biomass burning emissions on tropospheric ozone concentrations would compare a

simulation with all emissions sources to a simulation without biomass burning emissions

(e.g. Galanter et al., 2000, Natarajan et al., 2012, Ziemke et al., 2009). Ziemke et al.
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(2009) evaluates the ozone response to biomass burning only in the tropics; Natarajan

et al. (2012) evaluates the ozone response to biomass burning in Asia; and Galanter et al.

(2000) evaluates the global ozone response to biomass burning. The larger response of

tropospheric ozone to biomass burning in the tropics than in boreal regions found here

is consistent with Galanter et al. (2000) and Natarajan et al. (2012). The magnitude of

the tropical response over the maritime continent found in this study is highly similar to

the September 2006 analysis in Ziemke et al. (2009). Extreme biomass burning events

occured in the region during 2006 and 2019 during moderate El Niño conditions (Field

et al., 2016, Reid et al., 2023).
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Figure 6.8: Percent difference in zonal mean O3 profile (a) and tropospheric column
O3 (b) between UFS-RAQMS adjusted GBBEP6 and control experiments.
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Figure 6.9: Difference (ppbv) in surface O3 between UFS-RAQMS adjusted emissions
and control experiments.

6.4 Conclusions

UFS-RAQMS chemical forecasts using the adjusted GBBEPx CO emissions calculated

in Chapter 5 differ from those using the unadjusted GBBEPx CO emissions. The global

bias in CO column relative to TROPOMI CO is reduced in the UFS-RAQMS adjusted

emissions experiment and the correlation with TROPOMI CO is improved. Comparison

with MOPITT observations shows that CO columns in the NH are improved in the

adjusted emissions experiment relative to the control while the CO column bias in the SH

increases. The increased SH CO bias in the UFS-RAQMS adjusted emissions experiment
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in the SH is likely related to the small adjustments in biomass burning emissions from

east central Africa, though further analysis is necessary to examine why this occurred.

Evaluation of UFS-RAQMS adjusted emissions CO profiles with NDACC, FIREX-AQ,

and CAMP2Ex observations are consistent with the column validation results and show

that the reduction in the CO bias in the NH is due to increased CO in the troposphere.

CO, ethane, NO2, tropospheric O3, and surface O3 forecasts from the UFS-RAQMS

adjusted emissions and control experiment were compared. Changes in ethane and NO2 at

the emission source are proportional to the change in CO. This is due to biomass burning

emissions for NO, CH3CN, ethane (C2H6), paraffin carbon (butane, propene, pentane),

ethene, and terminal olefin carbons in UFS-RAQMS being obtained by applying species-

specific emissions factors to the GBBEPx emissions. The adjusted emissions increase

tropospheric ozone concentrations more in the tropics than in the boreal region. While

the change in biomass burning CO emissions from the South America and Africa regions

was small relative to that from the Siberian region, the change in O3 is approximately

twice as large due to the stronger photolysis rates in the tropics.
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Chapter 7

Conclusions and Future Work

Global biomass burning activity and emissions are projected to change significantly due

to climate change (e.g. Chen et al., 2023, Senande-Rivera et al., 2022, Zheng et al., 2021).

Global burned area has declined since 2000 due to decreases in tropical biomass burning

regions while burned area in temperate and boreal biomass burning regions has increased

(Chen et al., 2023, Jones et al., 2022). Regional trend analyses of biomass burning emis-

sions show that increased emissions from biomass burning in forests and boreal areas

compensate for decreased emissions from tropical regions (Liu and Ding, 2024, Zheng

et al., 2021). The biomass burning emissions inventories used in CTMs have high uncer-

tainties and present a significant challenge to modeling tropospheric air quality (Archibald

et al., 2020, and references therein). Due to projected increases in biomass burning in

a changing climate, improved predictions of biomass burning emissions are necessary for

providing accurate air quality forecasts. This dissertation sought to improve our ability
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to model the impacts of biomass burning on atmospheric composition by evaluating how

tropical biomass burning emissions impact variability in tropical tropospheric ozone con-

centrations and how well tropical and boreal biomass burning emissions are represented

in global CTMs. In this chapter I summarize my results and discuss future directions for

study.

7.1 Summary of Results

1) How is variability in tropical tropospheric ozone related to biomass burning emissions?

ENSO has previously been found to be a dominant influence on tropical tropospheric

ozone interannual variability (e.g. Doherty et al., 2006, Oman et al., 2013, 2011, Ziemke

et al., 2010). ENSO signatures in tropical tropspheric ozone columns are predominantly

due to the shifts in the location of the ascending and descending branches of the Walker

circulation, though it has been indicated that biomass burning emissions contribute to

the response (Doherty et al., 2006, Inness et al., 2015a, Peters et al., 2001, Sekiya and

Sudo, 2012, e.g.). Chemical transport models that include the tropical tropospheric

ozone column response to ENSO can be used to investigate the vertical sturcture of the

response and the drivers of the response (e.g. Doherty et al., 2006, Hou et al., 2016,

Inness et al., 2015a, Rowlinson et al., 2019) In Chapter 3 the RAQMS-Aura chemical

reanalysis is used to investigate the influence of biomass burning and convective precip-

itation on ENSO variability in tropical tropospheric ozone. Validation of RAQMS-Aura

with TRMM precipitation estimates, SHADOZ ozonesondes, MOPITT CO columns, and
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OMI-MLS TOR showed that the RAQMS-Aura reasonably captures the observed vari-

ability in CO, tropospheric O3, and convective precipitation during 2006-2016. Over the

maritime continent ozone production in the lower troposphere is increased during El Niño

and decreased during La Niña. Consistent with previous studies, in the RAQMS-Aura

reanalysis a portion of the ENSO variability in TTOC is due to biomass burning though

most of the ENSO variability in TTOC is driven by shifts in the location of the ascending

and descending branches of the Walker circulation.

2) How well do global models capture emissions from biomass burning?

Biomass burning emissions inventories vary significantly due to uncertainty in burned

area, consideration of vegetation type, inclusion of small fires, and other factors (e.g.

Hyer and Reid, 2009, Pan et al., 2020, Stockwell et al., 2022, Wiedinmyer et al., 2023).

CTM forecasts vary significantly depending on which inventory is used (e.g. Bian et al.,

2007, Hua et al., 2024, Pan et al., 2020). CO observations have been used extensively

to evaluate CTMs using biomass burning emissions. GBBEPx CO emissions are used

in NOAA’s operational global atmospheric composition models (Bhattacharjee et al.,

2023, Tang et al., 2022, Zhang et al., 2022). In Chapter 4 I showed that the GBBEPx

emissions inventory used in UFS-RAQMS underestimates biomass burning CO emissions.

UFS-RAQMS control and TROPOMI CO DA experiments were validated with satellite,

ground-based, and airborne observations of CO in JAS 2019. The UFS-RAQMS control

run using standard GBBEPx CO emissions underestimates the CO column in biomass
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burning regions and in the NH. UFS-RAQMS control tropospheric CO profiles are also

biased low, especially at northern high latitudes and in the maritime continent which were

impacted by biomass burning plumes during JAS 2019. TROPOMI CO DA improved

UFS-RAQMS CO column analyses but improvement in the UFS-RAQMS CO vertical

structure was mixed. Consistency between biomass burning aersol and CO emissions in

UFS-RAQMS was evaluated for two case studies using the relationship between AOD

and CO columns. In the 22 July 2019 Siberia case study, the AOD/CO relationship in

the biomass burning smoke plume was underestimated in UFS-RAQMS control due to a

low bias in CO column. In the 16 September 2019 Indonesia case study, the AOD/CO

relationship in the biomass burning in the UFS-RAQMS control appears realistic due low

biases in both AOD and CO columns in the biomass burning smoke plume. Assimilating

TROPOMI CO improves the representation of the biomass burning AOD/CO relationship

but does not address the underlying cause of the inconsistency between AOD and CO in

biomass burning plumes.

Inversion techniques including mass balance (e.g. East et al., 2022, Lamsal et al., 2011,

Martin et al., 2003a), ensemble Kalman filters (e.g. Gaubert et al., 2020, Miyazaki et al.,

2012), and adjoint models (e.g. Cooper et al., 2017, Parrington et al., 2012) optimize

pollutant emissions in order to minimize bias between concentration observations and

CTM simulations. Cooper et al. (2017) showed that the iterative FDMB approach and

the adjoint approach result in similar posterior emissions inventories. Iterative FDMB

does not require development of an adjoint and is less computationally expensive to run

than other approaches. In Chapter 5 application of an iterative FDMB approach for
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adjusting the GBBEPx CO emissions using the analysis increments from TROPOMI CO

DA significantly increases biomass burning CO emissions from Siberia and the maritime

continent in JAS 2019. Convergence of the emissions update method was determined

based on mean analysis increments and change in emissions for regions of Siberia, Borneo,

Sumatra, South America, and Africa approaching zero. The mean adjustment in biomass

burning CO emissions for these regions converged within 6 iterations of FDMB. Biomass

burning CO emissions from Siberia and the maritime continent regions were increased by

a factor of 10 or more. Biomass burning emissions from the South America and African

regions were increased by a factor of ∼3.

3) What is the contribution of biomass burning emissions to global background air qual-

ity?

The analysis of the ENSO signature in tropical tropospheric O3 in Chapter 3 showed that

ENSO variability in tropical tropospheric ozone is primarily driven by variability in con-

vective mass flux but that some of the response is due to variability in ozone production

from biomass burning emissions. In Chapter 6 it was shown that the adjusted GBBEPx

CO emissions from Chapter 5 impacted UFS-RAQMS CO, NO2, ethane, and tropospheric

O3 forecasts. The influence of biomass burning emissions was the strongest below 5km

and close to the source. For JAS 2019 the majority of the UFS-RAQMS NH low bias in

CO column was due to an underestimate of biomass burning CO emissions. The impact

of emissions increases from biomass burning on CO, NO2, and ethane is proportional to

the magnitude of the change in emissions, as UFS-RAQMS forecasts of these constituents

increased by a larger percent in the Siberia and maritime continent regions than the other
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regions. Increased biomass burning emissions increased tropospheric ozone columns by

>4% in the smoke plume. Boreal biomass burning produced less O3 enhancement than

tropical biomass burning, likely due to the decreased photolysis in the high latitudes

relative to the tropics and faster photochemistry in the tropics (e.g. Natarajan et al.,

2012). Surface O3 enhancements due to the adjusted biomass burning emissions in the

tropics were >5 ppbv and ∼4 ppbv in Siberia. The results of the UFS-RAQMS adjusted

emissions experiment contribute to the consensus that uncertainties in biomass burning

emissions has a significant impact on CTM forecasts.

7.2 Future Work

In this dissertation the RAQMS-Aura chemical reanalysis and UFS-RAQMS model were

used to show that biomass burning emissions have significant impacts on global atmo-

spheric composition. Composite analysis, EOF analysis, and linear regression were ap-

plied to the RAQMS-Aura chemical reanalysis to show that variability in tropical convec-

tion and Indonesian biomass burning emissions contribute to observed El Niño Southern

Oscillation (ENSO) variability in tropical tropospheric ozone. Experiments using the

UFS-RAQMS model and GBBEPx CO emissions showed that high uncertainty in both

tropical and boreal biomass burning emissions can result in a ∼5-10% uncertainty in

tropospheric ozone forecasts. The UFS-RAQMS experiments also showed that the low

bias in CO in global models is predominantly due to underestimation of biomass burning

emissions. In a changing climate where boreal biomass burning becomes more frequent,
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improved predictions of biomass burning emissions are necessary for providing accurate

air quality forecasts.

Additional analysis of the UFS-RAQMS adjusted emissions experiment will be done, in-

vestigating the impact of the adjusted emissions on the smoke plumes in greater detail

than done in this work. This work analyzed the GBBEPx emissions during a year where

there was not significant biomass burning in North America. Future studies should eval-

uate the performance of global models using GBBEPx CO emissions during years with

high fire activity in North America such as 2020 or 2023 in order to obtain a better sense

of the uncertainty in GBBEPx CO emissions from North American biomass burning, as

well as estimates of the impact on tropospheric ozone concentrations in North America.
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Appendix A

Supplemental Material for Chapter 3

A.1 Influence of the QBO on RAQMS-Aura upper

tropospheric ozone

It has been suggested by prior studies (Chandra et al., 2002, Lee et al., 2010, Oman et al.,

2013, Ziemke and Chandra, 2012, eg) that tropical upper troposphere ozone is impacted

by the QBO. Here I 1) confirm the presence of a QBO in RAQMS-Aura, 2) evaluate the

response of the tropical ozone profile to the QBO, and 3) compare the magnitude of the

tropospheric ozone QBO response to the tropospheric ozone ENSO response.

Due to the re-initialization of RAQMS-Aura meteorology with archived NCEP GDAS

analyses at 6-hour intervals, a QBO signature is present in the analysis (Figure A.1) in

spite of the relatively coarse vertical resolution in the stratosphere. A similar ozone QBO
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Figure A.1: Deseasonalized RAQMS-Aura monthly zonal wind over Singapore.

feature is present in RAQMS-Aura due to the assimilation of Microwave Limb Sounder

(MLS) stratospheric ozone profiles. I calculate QBO EOFs from the monthly mean zonal

winds over Singapore (1◦N, 104◦E) from 70 to 10hPa (Wallace et al., 1993). The RAQMS-

Aura QBO PCs are compared to QBO coefficients available from the NASA Atmospheric

Chemistry and Dynamics Laboratory QBO website (https://acd-ext.gsfc.nasa.gov

/Data_services/met/qbo/qbo.html) (Figure A.2). The RAQMS-Aura QBO PCs and

NASA QBO coefficients agree well, signifying that RAQMS-Aura has a realistic QBO

zonal mean zonal wind signature.

Following Oman et al. (2013) I fit the multiple linear regression ∆O3(t) =
∑

wxj
∆Xj(t)+

ε(t) for the 2006-2016 period. Xj are the Nino 3.4 index, QBO PC1, and QBO PC2; ∆O3

is the deseasonalized RAQMS-Aura ozone mixing ratio at 100 hPa over the equator

averaged over 180◦W - 110◦W; wxj
and ε are the regression coefficients. The regression

https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
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Figure A.2: Time series of the first (black) and second (red) QBO EOFs from 2006-
2016 from RAQMS-Aura (solid) and NASA Atmospheric Chemistry and Dynamics
Laboratory QBO website (https://acd-ext.gsfc.nasa.gov/Data_services/met/q

bo/qbo.html) (dashed).

fit is shown in Figure A.3a and should be compared to Figure 2 in Oman et al. (2013).

The individual contributions to the regression are shown in Figure A.3b. The obtained

fit is not directly comparable to that obtained from MLS data by Oman et al. (2013)

as my regression is fit over a different time period. Despite these differences, I find the

magnitude of the QBO contributions to the regression fit to be relatively small compared

to the ENSO contribution, which is consistent with Oman et al. (2013). From this, I

conclude that the QBO has a slight impact on interannual variability in the tropical

upper troposphere but this impact is generally small relative to the ENSO impact on the

region.

https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
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Figure A.3: a) Deseasonalized RAQMS-Aura ozone anomaly at 100 hPa over the
equator averaged over 180◦W - 110◦Wand reconstructed from multiple linear regression.
b) Contribution to the regression of the Nino 3.4 index, RAQMS-Aura QBO PC1, and

RAQMS-Aura QBO PC2.
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A.2 October ENSO Anomaly composites

Figure A.4: RAQMS-Aura October ENSO a) TTOC anomaly, b) convective mass
flux anomaly, and c) tropospheric ozone profile anomaly, d) P-L, e) CO.
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Appendix B

Supplementary figure for Chaper 5

Reproduced here is a land cover map for Indonesia from Xin et al. (2021).

Figure B.1: Land cover maps of Indonesia from Xin et al. (2021).
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que, G. Pétron, F. J. Dentener, K. Ellingsen, M. G. Schultz, O. Wild, M. Amann,

C. S. Atherton, D. J. Bergmann, I. Bey, T. Butler, J. Cofala, W. J. Collins, R. G.

Derwent, R. M. Doherty, J. Drevet, H. J. Eskes, A. M. Fiore, M. Gauss, D. A. Hauglus-

taine, L. W. Horowitz, I. S. A. Isaksen, M. G. Lawrence, V. Montanaro, J.-F. Müller,

G. Pitari, M. J. Prather, J. A. Pyle, S. Rast, J. M. Rodriguez, M. G. Sanderson, N. H.

Savage, S. E. Strahan, K. Sudo, S. Szopa, N. Unger, T. P. C. van Noije, and G. Zeng,

2006: Multimodel simulations of carbon monoxide: Comparison with observations and

projected near-future changes. Journal of Geophysical Research: Atmospheres , 111,

doi:10.1029/2006JD007100.

Singh, H. B., W. Viezee, Y. Chen, J. Bradshaw, S. Sandholm, D. Blake, N. Blake,

B. Heikes, J. Snow, R. Talbot, E. Browell, G. Gregory, G. Sachse, and S. Vay, 2000:

Biomass burning influences on the composition of the remote South Pacific troposphere:

Analysis based on observations from PEM-Tropics-A. Atmospheric Environment , 34,

635–644, doi:10.1016/S1352-2310(99)00380-5.

Soja, A. J., W. R. Cofer, H. H. Shugart, A. I. Sukhinin, P. W. Stackhouse Jr.,

D. J. McRae, and S. G. Conard, 2004: Estimating fire emissions and disparities



187

in boreal Siberia (1998–2002). Journal of Geophysical Research: Atmospheres , 109,

doi:10.1029/2004JD004570.

Spackman, J. R., J. P. Schwarz, R. S. Gao, L. A. Watts, D. S. Thomson, D. W. Fahey,

J. S. Holloway, J. A. de Gouw, M. Trainer, and T. B. Ryerson, 2008: Empirical cor-

relations between black carbon aerosol and carbon monoxide in the lower and middle

troposphere. Geophysical Research Letters , 35, doi:10.1029/2008GL035237.

Sterling, C. W., B. J. Johnson, S. J. Oltmans, H. G. J. Smit, A. F. Jordan, P. D. Cullis,

E. G. Hall, A. M. Thompson, and J. C. Witte, 2018: Homogenizing and estimating

the uncertainty in NOAA’s long-term vertical ozone profile records measured with the

electrochemical concentration cell ozonesonde. Atmospheric Measurement Techniques ,

11, 3661–3687, doi:10.5194/amt-11-3661-2018.

Stobie, JM., 2000: Algorithm theoretical basis document for statistical digital filter (SDF)

analysis system (stretch-grid version). Data Assimilation Office, NASA Goddard Space

Flight Center, Greenbelt, MD , 20771.

Stockwell, C. E., M. M. Bela, M. M. Coggon, G. I. Gkatzelis, E. Wiggins, E. M. Gargulin-

ski, T. Shingler, M. Fenn, D. Griffin, C. D. Holmes, X. Ye, P. E. Saide, I. Bourgeois,

J. Peischl, C. C. Womack, R. A. Washenfelder, P. R. Veres, J. A. Neuman, J. B.

Gilman, A. Lamplugh, R. H. Schwantes, S. A. McKeen, A. Wisthaler, F. Piel, H. Guo,

P. Campuzano-Jost, J. L. Jimenez, A. Fried, T. F. Hanisco, L. G. Huey, A. Perring,

J. M. Katich, G. S. Diskin, J. B. Nowak, T. P. Bui, H. S. Halliday, J. P. DiGangi,

G. Pereira, E. P. James, R. Ahmadov, C. A. McLinden, A. J. Soja, R. H. Moore, J. W.



188

Hair, and C. Warneke, 2022: Airborne Emission Rate Measurements Validate Remote

Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmen-

tal Science & Technology , 56, 7564–7577, doi:10.1021/acs.est.1c07121.

Strode, S. A., B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke, and A. R.

Douglass, 2015: Implications of carbon monoxide bias for methane lifetime and atmo-

spheric composition in chemistry climate models. Atmospheric Chemistry and Physics ,

15, 11789–11805, doi:10.5194/acp-15-11789-2015.

Sudo, K. and M. Takahashi, 2001: Simulation of tropospheric ozone changes during

1997–1998 El Niño: Meteorological impact on tropospheric photochemistry. Geophysi-

cal Research Letters , 28, 4091–4094, doi:10.1029/2001GL013335.

Tang, Y., P. C. Campbell, P. Lee, R. Saylor, F. Yang, B. Baker, D. Tong, A. Stein,

J. Huang, H.-C. Huang, L. Pan, J. McQueen, I. Stajner, J. Tirado-Delgado, Y. Jung,

M. Yang, I. Bourgeois, J. Peischl, T. Ryerson, D. Blake, J. Schwarz, J.-L. Jimenez,

J. Crawford, G. Diskin, R. Moore, J. Hair, G. Huey, A. Rollins, J. Dibb, and X. Zhang,

2022: Evaluation of the NAQFC driven by the NOAA Global Forecast System (ver-

sion 16): Comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ

campaign. Geoscientific Model Development , 15, 7977–7999, doi:10.5194/gmd-15-7977-

2022.

Thompson, A. M., R. M. Stauffer, K. Wargan, J. C. Witte, D. E. Kollonige, and J. R.

Ziemke, 2021: Regional and Seasonal Trends in Tropical Ozone From SHADOZ Pro-

files: Reference for Models and Satellite Products. Journal of Geophysical Research:



189

Atmospheres , 126, e2021JD034691, doi:10.1029/2021JD034691.

Thompson, A. M., J. C. Witte, C. Sterling, A. Jordan, B. J. Johnson, S. J. Oltmans,

M. Fujiwara, H. Vömel, M. Allaart, A. Piters, G. J. R. Coetzee, F. Posny, E. Corrales,

J. A. Diaz, C. Félix, N. Komala, N. Lai, H. T. Ahn Nguyen, M. Maata, F. Mani,

Z. Zainal, S.-y. Ogino, F. Paredes, T. L. B. Penha, F. R. da Silva, S. Sallons-Mitro,
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R. Séférian, 2022: Tripling of western US particulate pollution from wildfires in a

warming climate. Proceedings of the National Academy of Sciences , 119, e2111372119,

doi:10.1073/pnas.2111372119.

Xin, Y., L. Sun, and M. C. Hansen, 2021: Biophysical and socioeconomic drivers

of oil palm expansion in Indonesia. Environmental Research Letters , 16, 034048,

doi:10.1088/1748-9326/abce83.



194

Yin, Y., P. Ciais, F. Chevallier, G. R. van der Werf, T. Fanin, G. Broquet, H. Boesch,

A. Cozic, D. Hauglustaine, S. Szopa, and Y. Wang, 2016: Variability of fire carbon

emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophysical Re-

search Letters , 43, 10,472–10,479, doi:10.1002/2016GL070971.

Young, P. J., V. Naik, A. M. Fiore, A. Gaudel, J. Guo, M. Y. Lin, J. L. Neu, D. D.

Parrish, H. E. Rieder, J. L. Schnell, S. Tilmes, O. Wild, L. Zhang, J. Ziemke, J. Brandt,

A. Delcloo, R. M. Doherty, C. Geels, M. I. Hegglin, L. Hu, U. Im, R. Kumar, A. Luhar,

L. Murray, D. Plummer, J. Rodriguez, A. Saiz-Lopez, M. G. Schultz, M. T. Woodhouse,

and G. Zeng, 2018: Tropospheric Ozone Assessment Report: Assessment of global-scale

model performance for global and regional ozone distributions, variability, and trends.

Elementa: Science of the Anthropocene, 6, 10, doi:10.1525/elementa.265.

Yu, P., O. B. Toon, C. G. Bardeen, Y. Zhu, K. H. Rosenlof, R. W. Portmann, T. D. Thorn-

berry, R.-S. Gao, S. M. Davis, E. T. Wolf, J. de Gouw, D. A. Peterson, M. D. Fromm,

and A. Robock, 2019: Black carbon lofts wildfire smoke high into the stratosphere to

form a persistent plume. Science, 365, 587–590, doi:10.1126/science.aax1748.

Yue, X., L. J. Mickley, J. A. Logan, R. C. Hudman, M. V. Martin, and R. M. Yan-

tosca, 2015: Impact of 2050 climate change on North American wildfire: Conse-

quences for ozone air quality. Atmospheric Chemistry and Physics , 15, 10033–10055,

doi:10.5194/acp-15-10033-2015.

Yumimoto, K., T. Y. Tanaka, N. Oshima, and T. Maki, 2017: JRAero: The

Japanese Reanalysis for Aerosol v1.0. Geoscientific Model Development , 10, 3225–3253,



195

doi:10.5194/gmd-10-3225-2017.

Yurganov, L. N., W.W. McMillan, A. V. Dzhola, E. I. Grechko, N. B. Jones, and G. R. van

der Werf, 2008: Global AIRS and MOPITT CO measurements: Validation, compari-

son, and links to biomass burning variations and carbon cycle. Journal of Geophysical

Research: Atmospheres , 113, doi:10.1029/2007JD009229.

Zaveri, R. A. and L. K. Peters, 1999: A new lumped structure photochemical mecha-

nism for large-scale applications. Journal of Geophysical Research: Atmospheres , 104,

30387–30415, doi:10.1029/1999JD900876.

Zhang, G. and N. A. McFarlane, 1995: Sensitivity of climate simulations to the param-

eterization of cumulus convection in the Canadian climate centre general circulation

model. Atmosphere-Ocean, 33, 407–446, doi:10.1080/07055900.1995.9649539.

Zhang, G. J., J. T. Kiehl, and P. J. Rasch, 1998: Response of Climate Simulation to a New

Convective Parameterization in the National Center for Atmospheric Research Com-

munity Climate Model (CCM3). Journal of Climate, 11, 2097–2115, doi:10.1175/1520-

0442(1998)011¡2097:ROCSTA¿2.0.CO;2.

Zhang, L., R. Montuoro, S. A. McKeen, B. Baker, P. S. Bhattacharjee, G. A. Grell,

J. Henderson, L. Pan, G. J. Frost, J. McQueen, R. Saylor, H. Li, R. Ahmadov, J. Wang,

I. Stajner, S. Kondragunta, X. Zhang, and F. Li, 2022: Development and evaluation

of the Aerosol Forecast Member in the National Center for Environment Prediction

(NCEP)’s Global Ensemble Forecast System (GEFS-Aerosols v1). Geoscientific Model

Development , 15, 5337–5369, doi:10.5194/gmd-15-5337-2022.



196

Zhang, X., S. Kondragunta, A. Da Silva, S. Lu, H. Ding, F. Li, and Y. Zhu, 2019:

The Blended Global Biomass Burning Emissions Product from MODIS, VIIRS, and

Geostaionary Satellites (GBBEPx) Version 3.1.

Zheng, B., F. Chevallier, Y. Yin, P. Ciais, A. Fortems-Cheiney, M. N. Deeter, R. J.

Parker, Y. Wang, H. M. Worden, and Y. Zhao, 2019: Global atmospheric carbon

monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth

System Science Data, 11, 1411–1436, doi:10.5194/essd-11-1411-2019.

Zheng, B., P. Ciais, F. Chevallier, E. Chuvieco, Y. Chen, and H. Yang, 2021: Increasing

forest fire emissions despite the decline in global burned area. Science Advances , 7,

eabh2646, doi:10.1126/sciadv.abh2646.

Ziemke, J. R. and S. Chandra, 2003: La Nina and El Nino—induced variabilities of ozone

in the tropical lower atmosphere during 1970–2001. Geophysical Research Letters , 30,

doi:10.1029/2002GL016387.

— 2012: Development of a climate record of tropospheric and stratospheric column

ozone from satellite remote sensing: Evidence of an early recovery of global strato-

spheric ozone. Atmos. Chem. Phys. Atmospheric Chemistry and Physics , 12, 5737–

5753, doi:10.5194/acp-12-5737-2012.

Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Lev-

elt, and J. W. Waters, 2006: Tropospheric ozone determined from Aura OMI and



197

MLS: Evaluation of measurements and comparison with the Global Modeling Initia-

tive’s Chemical Transport Model. Journal of Geophysical Research: Atmospheres , 111,

doi:10.1029/2006JD007089.

Ziemke, J. R., S. Chandra, B. N. Duncan, M. R. Schoeberl, O. Torres, M. R. Damon,

and P. K. Bhartia, 2009: Recent biomass burning in the tropics and related changes in

tropospheric ozone. Geophysical Research Letters , 36, doi:10.1029/2009GL039303.

Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia, 2010: A new ENSO in-

dex derived from satellite measurements of column ozone. Atmospheric Chemistry and

Physics , 10, 3711–3721, doi:10.5194/acp-10-3711-2010.

Ziemke, J. R., A. R. Douglass, L. D. Oman, S. E. Strahan, and B. N. Duncan, 2015: Tro-

pospheric ozone variability in the tropics from ENSO to MJO and shorter timescales.

Atmospheric Chemistry and Physics , 15, 8037–8049, doi:10.5194/acp-15-8037-2015.


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Global Impact of Wildfire on Air Quality
	1.2 Ozone production from biomass burning
	1.2.1 Uncertainties in biomass burning emissions inventories

	1.3 Real-time Air Quality Modeling System (RAQMS)
	1.3.1 Biomass burning emissions in RAQMS

	1.4 Dissertation overview

	2 Data and Methodology
	2.1 RAQMS
	2.1.1 RAQMS-Aura Reanalysis
	2.1.2 UFS-RAQMS

	2.2 Analysis Tools
	2.3 Observational Datasets

	3 Examining ENSO related variability in tropical tropospheric ozone in the RAQMS-Aura chemical reanalysis 
	3.1 Introduction
	3.2 Validation of RAQMS-Aura Precipitation
	3.2.1 Meridional Structure
	3.2.2 Horizontal Structure
	3.2.3 Time series

	3.3 Validations of RAQMS-Aura O3 and CO
	3.3.1 Horizontal structure in CO and tropospheric O3 columns
	3.3.2 Time series of CO and tropospheric O3 columns over the Maritime Continent
	3.3.3 Vertical structure of O3

	3.4 ENSO Composites
	3.4.1 Precipitation
	3.4.2 Response of Tropospheric Total Column Ozone and Carbon Monoxide column to ENSO
	3.4.3 Vertical structure of tropospheric response to ENSO

	3.5 EOF and Multiple Linear Regression Analysis
	3.5.1 EOFs of RAQMS-Aura total precipitation, tropical tropospheric ozone column, and Carbon monoxide column
	3.5.2 Multiple linear regression reconstruction of TTOC PC1

	3.6 2015/2016 extreme El Niño 
	3.7 Conclusions

	4 Evaluating Biomass Burning CO Emissions in UFS-RAQMS Through Application of TROPOMI CO Column Data Assimilation
	4.1 Introduction
	4.2 GBBEPx CO Emissions
	4.3 TROPOMI CO DA
	4.4 Impact of TROPOMI CO Assimilation on UFS-RAQMS CO
	4.4.1 Differences in CO between control and DA experiments
	4.4.2 Validation of UFS-RAQMS CO with independent datasets
	4.4.2.1 MOPITT

	4.4.3 FIREX-AQ In-situ CO Measurements
	4.4.4 CAMP2Ex In-situ CO measurements
	4.4.5 NDACC FTIR CO profiles

	4.5 Consistency in biomass burning aerosol and CO signatures
	4.5.1 Case Study: 22 July 2019 Siberian Smoke
	4.5.2 Case Study: 16 September 2019 Indonesian Smoke

	4.6 Conclusions

	5 Adjustment of GBBEPx CO Emissions
	5.1 Iterative FDMB for Biomass Burning CO Emissions
	5.2 Results
	5.2.1 Convergence of the emissions updates
	5.2.2 Adjusted GBBEPx Emissions
	5.2.3 Scale Factors for GBBEPx CO emissions

	5.3 Conclusions

	6 Impacts of wildfire emissions on global background CO and O3 during FIREX-AQ and CAMP2Ex
	6.1 Introduction
	6.2 Validation of UFS-RAQMS CO
	6.2.1 TROPOMI and MOPITT Total Column CO
	6.2.2 FIREX-AQ and CAMP2Ex In-situ CO Observations
	6.2.3 NDACC FTIR CO

	6.3 Impact of adjusting GBBEPx biomass burning CO emissions on atmospheric composition in UFS-RAQMS
	6.3.1 CO
	6.3.2 NO2
	6.3.3 Ethane
	6.3.4 Tropospheric Ozone

	6.4 Conclusions

	7 Conclusions and Future Work
	7.1 Summary of Results
	7.2 Future Work

	A Supplemental Material for Chapter 3
	A.1 Influence of the QBO on RAQMS-Aura upper tropospheric ozone
	A.2 October ENSO Anomaly composites

	B Supplementary figure for Chaper 5
	Bibliography

