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Abstract

Carbon dioxide (CO,) levels are rising dramatically as a result of increased anthropogenic
activity. One way of countering excessive CO, emissions is by restoring natural ecosystems that
have historically been found to be efficient carbon (C) sinks. To be economically viable, these
efforts must consider biomes with long-term sustained C sequestration capacities. Low
interannual variation in this sink capacity minimizes risk of sequestration reversal. The goal of
this study was to compare the interannual variability (IAV) of C at eight proximate Ameriflux
eddy covariance sites across northern Wisconsin, Michigan’s Upper Peninsula, Saskatchewan,
Alberta, and the Northwest Territories with up to two decades of observations per site. Two
wetlands (Allequash Creek (US-ALQ) and Lost Creek (US-Los)) and an unmanaged and
managed forest (Sylvania Wilderness Area (US-Syv) and Willow Creek (US-WCr), respectively)
were considered in the temperate region while boreal sites consisted of a bog (CA-SCB),
peatland (CA-WP1), evergreen needleleaf forest (CA-SCC), and deciduous broadleaf forest
(CA-Oas). To consider the fuller C budget, stream discharge data from the United States
Geological Survey was also incorporated for some sites. In most of the measured years, on
average, net ecosystem carbon dioxide exchange (NEE) in all ecosystems was negative,
indicating C uptake by the ecosystem. The standard deviation of the yearly NEE cumulative
sums for US-Los was 63 g C m™ yr' while for US-Syv and US-WCr it was 111 g C m? yr' and
154 ¢ C m? yr! respectively, implying greater variability for the deciduous forests than the
wetlands. A similar result was found for the boreal sites. Mutual information analysis was used
to determine influences of carbon components (gross primary productivity (GPP) and ecosystem
respiration (RECO)) and drivers (photosynthetic photon flux density, air temperature, latent heat,
and streamflow) on NEE. A larger influence on boreal NEE was found relative to temperate NEE
on seasonal and yearly scales. NEE was also more impacted by GPP on hourly and diel scales
and somewhat equally influenced by both GPP and RECO on mulitday, seasonal, and yearly
scales. Our results demonstrate that for these regions, wetlands are a more reliable biome for C
storage on decadal scales than forests.
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1. Introduction and Background

One of the most urgent problems facing humanity today is global climate change. Carbon
dioxide (CO,) levels are rising dramatically as a result of increased anthropogenic activity. In its
Fifth Assessment Report, the Intergovernmental Panel on Climate Change showed that
atmospheric CO, concentrations had risen from 280 ppm in 1950 to 400 ppm in 2000 (Were et
al.. 2019). Additionally, computer models from the U.S. Climate Change Science Project have
projected that in order to stabilize atmospheric CO, at 550 ppm (around two times the industrial
level), annual global emissions must be reduced by 75% in the next century (Sundquist et al.,
2008). If not combated, climate change will remain a major threat not only to the survival of
species and ecosystems, but also to civilization as we know it (Erwin, 2009). Flooding and
drought-induced damages have been estimated to cost billions of US dollars annually, with the
latter being responsible for the 2007 California wildfires which displaced nearly one million
people (Trenberth, 2005).

One way of countering excessive CO, emissions is by restoring natural ecosystems that

have historically been found to be efficient C sinks. In order to make informed decisions on
restoration measures, an analysis of C flux interannual variability (IAV) must be conducted. This
is a useful approach for determining the long-term C sequestration potential of biomes. In
addition, water and energy fluxes must also be considered since these drivers govern the
magnitude of variability over time. It is important to note, however, that these efforts, known as
natural climate solutions (NCS), must be complemented by drastic mitigation efforts in industry
and energy if we are to meet the Paris goal (Anderson et al.. 2019).

1.1 The Global Carbon Cycle

C is a vital element that helps maintain life on Earth. It is responsible for creating organic
molecules that are crucial for cellular reproduction and metabolism, provides a “heat blanket” in
the atmosphere that regulates global temperatures, and is dominantly used as a source of energy
via the burning of C-based fossil fuels. In the past few centuries, human-induced emissions due
to rapid economic development have caused anthropogenic radiative forcing to increase by 11%
from 1750 to 2017, resulting in unprecedented increases in global temperatures (Bruhwiler et al.,
2018). The effects of these changes may be seen in the form of more severe floods and droughts

(threatening global food production) and intense acidification of the world's oceans (threatening
marine life and biodiversity) (Bruhwiler et al., 2018).




C is stored in many different reservoirs across the Earth system (Table 1) and is
constantly being transferred mechanically, chemically, or biologically from one stock to another
(Figure 1). One of the relatively rapid exchanges occurs between the terrestrial biosphere and
atmosphere, where vegetation uptakes and emits CO, via photosynthesis and respiration
respectively. Anthropogenic disturbances (degradation and deforestation), biological
interruptions (insect outbreaks), and natural hazards (fires) may cause a rapid increase in
respiration, therefore increasing C emission rates and exacerbating global warming.

The direction of exchange between the ocean surface and atmosphere depends on 1) the
relative concentrations of C between each reservoir and 2) surface water temperature (Bruhwiler
et al., 2018). Due to spontaneous gas flow from higher to lower concentrations, regional surface
waters and atmospheres supersaturated with CO, will experience transfer towards the atmosphere
and surface water respectively. Additionally, regions with upwelling warm water are known to
experience C outgassing while those with sinking cold water are C absorbers (Bruhwiler et al.
2018).

Terrestrial C is a highly dependent variable, owing to natural or anthropogenic changes in
water availability (section 1.2) and energy (section 1.3). As a result, a thorough evaluation of
drivers will aid in better understanding C’s spatial and temporal variability across biomes.

Reservoir % of Earth System's Carbon
Ocean (Deep Water) 80%
Sail 5%
Permafrost 4%
Ocean Sediments 4%
Oil, Gas, Coal 3%
Ocean (Surface Water) 2%
Atmosphere 2%
Vegetation 1%

Table 1: C reservoirs along with percentage of total C residing in each. Table was created with
information provided by The Second State of the C Cycle Report (SOCCR2).
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Figure 1: The global C cycle. Boxed numbers and arrows showcase C reservoirs (Pg C) and
fluxes (Pg C yr) respectively. Black numbers and arrows represent pre-industrial stocks and
flows while red numbers with arrows denote average yearly anthropogenic fluxes from 2000 to
2009. Red numbers inside boxes show cumulative changes in anthropogenic C for the industrial

period (Figure taken from Bruhwiler et al.. 2018).

1.2 Carbon and Water

The water budget of a particular ecosystem depends on inflows via precipitation (P) and
outflows via evapotranspiration (ET) and discharge. Water storage is usually ignored due to its

negligible contribution on long temporal scales (Gedney et al., 2006).



Water has a significant influence on the local ecosystem C budget. An increase in
atmospheric CO, concentrations, for instance, has been shown to close stomatal apertures which
decreases transpiration rates and causes water outflow to be dominated by discharge (Gedney et
al., 2006).

C can also be physically transported through runoff. In fact, a study has shown that lateral
hydrologic C inflows and outflows through discharge have a significant impact on wetland C
budgets (Chu et al., 2014).

C in streams and rivers can take the forms of organic and inorganic. Organic C includes
methane (CH,) or is synthesized from photosynthetically-assimilated CO,. It can enter inland
waters directly as plant detritus (particulate organic C (POC)) or leached material (dissolved
organic C (DOC)). Inorganic C can take the form of dissolved CO,, carbonic acid, bicarbonate,
or carbonate and is the product of chemical and mechanical weathering or rock erosion. These

processes release particulate inorganic C (PIC) as calcium carbonate, calcite minerals, and C
alkalinity (Drake et al., 2017).

Due to the tightly bound relationships between C and water, it follows that water
availability plays a crucial role in determining an ecosystem’s C source/sink status. Wetlands
such as small lakes, floodplains, and marshes, contain a large portion of the world’s C despite
their small global land cover (~2-6%). Wetland C has been described as originating from five
main reservoirs: plant biomass, POC, DOC, microbial biomass, and gaseous CO, and CH,. The
latter four of which reside in the water or soil (Kayranli et al., 2009).

Another important link can be found between CH, and water table level. A study by
Harriss et al. (1982) on the Great Dismal Swamp in Virginia has revealed low water table levels
to correspond to a greater CH, sink. On the other hand, during high water table levels, the swamp
was observed to become a significant CH, source. This was later confirmed via CH, monitoring
at a German minerotrophic fen by Augustin et al.

Along with wetlands, another common ecosystem to consider is the deciduous forest.

Water cycling at these biomes mainly depends on daily P patterns and soil-water storage
capacity. Due to a variety of factors, the interplay between C and water can be very different than
that of a wetland.

Temperate forests are known to hold ~20% of the global plant biomass and ~10% of the
terrestrial C (Bonan, 2008). Due to deforestation, many of these forests have become C sources.
There have been efforts, however, that aim to restore these ecosystems and bring them back to C
sink status (Bonan. 2008). Temperate deciduous forests respond to high atmospheric CO,
concentrations through reducing stomatal conductance, leading to a decrease in transpiration
which ultimately augments discharge (Leuzinger and Korner, 2010).

1.3 Carbon and Energy

The interplay between C and energy can be described in terms of radiation absorption and
chemical reactions. One example is the role of latent heat (LE) in causing turbulent energy



exchange in the form of ET. As a result, larger LE contributes to a stronger linkage between heat
fluxes and water transport.

Solar energy and vegetation also play a crucial role in ecosystem C production via
photosynthesis. C uptake typically peaks during the warm season and when sunlight is available.
The dependence of C accumulation on sunlight can be quantified in terms of net ecosystem
exchange (NEE) and photosynthetic photon flux density (PPFD). One finding indicated that NEE
increases and then levels off at a positive value as PPFD increases. The same study also found
these trends to be similar for different ecosystems within the same category (rich and poor fens)
(Frolking et al.. 1998). Furthermore, daytime CO, uptake and PPFD were found to be positively
correlated for a mixed conifer forest, mixed short-grass prairie, and sagebrush shrubland (Kelly

et al., 2002).

1.4 Water and Energy

The interplay between water and energy has not been as well documented as those of
C/water and C/energy. However, one notable relationship between these two components is
encompassed in the LE term. In this context, by definition, LE represents the amount of heat
added to a substance to change its phase while keeping its temperature constant. In ecosystem
dynamics, LE is a mechanism that cools the surface through water evaporation. This form of
energy is mainly responsible for the vertical transfer of water vapor from the surface to the
atmosphere.

Due to the strict tie between LE and water, energy partitioning is also governed by water
availability. For example, a study conducted on two ecosystems in Florida, scrub oak and pine
flatwoods, found that the partitioning of net radiation into its sensible and latent heat flux
components was mainly driven by fluctuations in soil moisture and leaf area. Specifically, a
decrease in Bowen ratio was found with increasing soil moisture and leaf area (Bracho et al.,
2008). The rate of ET has also been shown to vary with the development of leaf area index,
generally increasing and decreasing as leaves develop and senesce respectively (Zhou and Zhou,
2009). Moreover, increases in canopy interception have been shown to increase ET. This reduces
discharge and eventually leads to a decline in water availability (Liu et al.. 2016).

1.5 Wetlands

Due to their high potential to sequester atmospheric CO,, wetlands are regarded as one of
the most important ecosystems when it comes to global warming mitigation (Were et al., 2019).
Atmospheric CO, is transferred, accumulated, and trapped into wetland soils as soil organic
matter. Other major inputs of C include organic matter from senesced vegetation and lateral
transport of dissolved C via inflowing waters. C may also exit the wetland through outflowing
water or, most commonly, be released directly as CO, and CH, through decomposition (Villa and

Bernal, 2018).




Other factors such as water table depth (WTD), temperature, and oxygen availability also
have an influence. WTD is the most significant driver of greenhouse gas fluxes in peatlands.
Agricultural activity has caused peatlands to be drained for cultivation, converting the land from
a net C sink to a net C source.

These ecosystems are also extremely sensitive to small changes in WTD (Evans et al.
2021). In addition, during dry and wet periods, the land has been found to become a net CH, sink
and source, respectively (Kayranli et al.. 2009).

Temperature is also an important controller of C sequestration due to its role in
accelerating organic matter decomposition. Higher temperatures have been associated with
higher CH, emissions but do not override the overall C sink capacity of most wetlands (Mitsch et
al., 2012; Olsson et al.. 2015;). Aerobic conditions only allow CO, formation during
decomposition while both CO, and CH, are formed in anaerobic conditions (Kayranli et al.,
2009).

Although these dynamics have been found to be generally true for the typical midlatitude
wetland, it is important to acknowledge that these findings may not hold for other regions.
Temperature and water table level in tropical wetlands and ultra-wet wetlands, for example, have
a weaker influence on C sequestration (Christensen et al., 1998; Sjogersten et al., 2014; Villa and
Bernal, 2018).

1.6 Terrestrial Forests

Terrestrial forests (hereon referred to as “forests”) have also been known to play a key
role in climate warming mitigation. Like wetlands, many variables play a role in determining
their net C sink/source status. Over the past few decades, deforestation and forest degradation
have been responsible for a fifth of global greenhouse gas emissions (Schrope, 2009), while
intact forests are important global C sinks (Pan et al., 2011). Specifically, these ecosystems store
40% of the belowground C and 80% of the aboveground C while also carrying 90% of the C
exchanges between the land and atmosphere (Wei et al.. 2014).

A majority of the C storage in forests takes place in soil and vegetation. Boreal forests
store a majority in soil while temperate forests sequester mostly in woody biomass. Furthermore,
influences on plant and soil C sequestration potential are driven by forest management and soil
moisture respectively (Ma et al., 2015).

The ability of a forest to efficiently sequester C is sensitive to factors such as
temperature, precipitation, topology, human activity, and natural disturbances (Ma et al.. 2015).
Soil organic C, for instance, is known for its high sequestration capacity but is believed to have
been reduced due to anthropogenic land cover change (Murty et al.. 2002). Climatic changes
over the past few decades are responsible for elongating the growing season and have a positive
impact on forest productivity (Boisvenue and Running, 2006). In some cases, this has even
resulted in higher growth rates (Cole et al., 2009).




1.7 Interannual Variability

Researchers have been studying the interactions between the land and atmosphere for
multiple decades. Throughout this endeavor, new technologies have been implemented to
facilitate the quantification of meteorological, hydrological, and gas flux variables. Eddy
Covariance (EC) (see section 2.4), which debuted in the early 1990s, has proved to be the most
ubiquitous method for obtaining flux measurements. The community's confidence in this
approach eventually led to the integration of international/continental flux networks across the
globe (Baldocchi et al.. 2017). Since these stations have been sustained for decades, it is now

possible to conduct analysis on C interannual variability (IAV) between sites on multi-decadal
scales.

Due to the climatic impacts on carbon components, NEE may experience significant
year-to-year fluctuations. For example, the spatial variability of ecosystem respiration (RECO)
and gross primary productivity (GPP) has been shown to be strongly linked to temperature and
precipitation while radiation availability only influences GPP (Yi et al., 2010).

Based on location and ecosystem type, C flux [AV can vary greatly. For datasets that
cover temperate deciduous forests, the standard deviation of interannual NEE is approximately +
100 g C m? yr ' (Baldocchi et al., 2017). Furthermore, a mixed forest in southern Ontario,

Canada was found to switch relatively quickly between being a C source or sink. Over the 17
years of the study, net ecosystem productivity increased by approximately 15.7 g C m? yr ' due
to decreases in RECO and increases in GPP. It was also found that PPFD and TA were the main
drivers of C fluxes at the site (Froelich et al., 2015). On a seasonal scale, earlier start to leaf
emergence caused by earlier spring TA has also been deemed responsible for these interannual
variations (Saigusa et al.. 2005).

Wetlands are also prone to NEE TAV. On average, these ecosystems mainly act as C sinks
and their dynamics are driven mostly by plant phenology and WTL. Lower WTL reduces CO,
uptake. Therefore, future drier conditions due to climate change may lead to NEE that is less
negative during the growing season (McVeigh et al.. 2014). In addition, warmer TAs during the
winter have been associated with increases in CO, uptake (Helfter et al.. 2015). It is important to
note, however, that one wetland has been found to change its C sink/source status in a period of
as little as two years, with its NEE variability being mostly attributed to the transition period
between vegetation growth and senescence (Serrano-Ortiz et al., 2020). Other drivers of [AV
include vapor pressure deficit, annual maximum leaf area index, and growing season mean
stomatal conductance.

A study by Zscheischler et al. has also found that AV is caused by the most active (high
percentile) fluxes at temperate forests on an hourly and daily scale. Therefore, it was concluded
that [AV is governed by only a small handful of short-term fluxes (less than 20% of the total
dataset).

Lastly, various models have been introduced to predict future trends in biome [AV. While
these have been shown to reproduce IAV magnitudes, they fail to agree with the timing of
observations made in mid-latitude forests across North America. GPP and RECO have been




found to be drastically underestimated in deciduous and evergreen forests respectively, indicating
model errors due to processes related to vegetation type (Keenan et al.. 2012).

1.8 Natural Climate Solutions

NCS involve cost-effective restoration and conservation practices that increase C
sequestration and consequently mitigate impacts of climate warming. Different biomes require
different strategies. For example, forests may see increased fire management and reforestation
while wetlands would need peat and coastal restoration.

NCS will play a major role in limiting increases in global temperatures to 2 °C due to its
high C sequestration potential in relatively short amounts of time. When taking into account the
constraints of food security, fiber security, and biodiversity conservation, it has been found that
the maximum potential for NCS is ~23.8 Pg CO, equivalent (CO,e) yr''. In addition, these
practices are expected to deliver ~37% of CO,e mitigation from now until 2030 and ~20% from
now until 2050. These estimates are more likely if fossil fuel emissions are held constant for ten
years, brought down to 7% of current levels by 2050, and completely abolished by 2095
(Griscom et al., 2017).

Forests are one of the most important biomes for C sequestration. In 2018, 11.6% of the
total annual greenhouse gas emissions were offset by forests in the contiguous United States
(EPA. 2020). The most effective mitigation practices have been found to be reforestation (307 Tg
CO,e yr'"), tree management (267 Tg CO,e yr'), and fire management (267 Tg CO,e yr')
(Fargione et al., 2018).

When stands reach the climax of mean annual increment, they are usually logged for
economic purposes. If the harvesting interval 1s increased (i.e. less harvests during the same
period of time), it would allow for potential increases in forest C stocks (Kaarakka et al., 2021).

Wetlands are also known to have great sequestration potential and are therefore a prime
candidate for NCS. Inland wetland restoration is known to have a net cooling effect on decadal
and century time-scales and therefore would not prove to be effective for rapid mitigation. These
biomes also require a major investment (~$4200-$49200 per ton C) rendering them economically
inferior compared to other restoration efforts (Taillardat et al., 2020). On the other hand,
conservation and restoration of coastal wetlands (such as mangroves) is more cost effective
(~$1800 per ton C). The downside, however, is that these ecosystems cover a small percentage of
the global land, making them appropriate for mitigation efforts on a national rather than global
scale (Taillardat et al., 2020).

Despite evidence of their effectiveness as a mitigation strategy, NCS will undoubtedly
face challenges in its implementation. Some potential roadblocks include complexities in
social-ecological systems and doubt regarding the costs of ecosystem services. Furthermore, its
ongoing uncertainty as a long-term C sink may lead to hesitation of action by policy makers
(Seddon et al., 2019).




In Wisconsin, NCS has not been explored as much as in other regions despite the
relatively high density of forests and wetlands in the area. Our work on the sites in northern
Wisconsin and Michigan’s Upper Peninsula (UP) will attempt to fill in these knowledge gaps and
paint a clearer picture regarding C sequestration potential in the upper Midwest.

1.9 This Study

To better understand how local biomes can contribute to global warming mitigation,
accurate descriptions of the C cycle must be made on the regional scale. Previous studies on C
dynamics in wetlands have considered lateral transport (Gao et al., 2018; Bogard et al., 2020),

storage (Kayranli et al.. 2009), and climatic/meteorological controls (Evans et al.. 2021). In the

meantime, prior studies on forests have covered C flux responses to meteorological/phenological
variability (Beamesderfer et al.. 2020), sequestration distributions between plants and soil (Ma et
al.. 2015), and the effects of restoration efforts (Wei et al., 2014). Intercomparisons between
different adjacent ecosystems, however, are limited.

Taking into account everything that is already known about the C sink capacity of forests
and wetlands, this study will aim to conduct a direct comparison between four proximate forests
and wetlands in northern Wisconsin and Michigan’s UP. The water and energy budgets of each
ecosystem will be analyzed with an attempt to determine their broader role in influencing
long-term C sink capacity. Comparisons will be carried out on multiple time scales (hourly, diel,
multi-day, seasonal) to determine C [AV and its drivers. These temperate sites will also be
compared to boreal forest and wetland sites to determine the influences of location on
carbon-driver dynamics. This study will aim to answer the following questions:

e How does the NEE IAV of the forest sites compare to that of the wetland sites? Is
this more a function of GPP or RECO?

e Are there any significant differences in C drivers between or within biome types
on multiple time scales?

e What do these findings imply for NCS?

Our hypotheses are the following:
e Stream C export will be more pronounced at the wetland sites, therefore leading
to lower IAV than the forest sites
e Both biome types will have PPFD serve as the dominant driver on short time
scales (hourly, diel) while water availability and temperature will be responsible
for variability on longer time scales (multi-day, seasonal) for the wetlands and
forests respectively.



2. Methods

2.2 Site Descriptions

2.2.1 Allequash Creek (US-ALQ)

This site is located in the Allequash Wetland near Allequash Creek (Latitude: 46.0308,
Longitude: -89.6067) (Figure 2). The wetland is dominated by peat and covers ~32 hectares of
the Trout Lake basin. It is one of the regions within the National Science Foundation’s North
Temperate Lakes Long-Term Ecological Research and is also included in the United States
Geological Survey’s (USGS) Trout Lake Water, Energy and Biogeochemical Budgets site
(WEBB). The basin is monitored with a network of 60 observation wells and 4 stream gaging
stations.

Since the soil consists of highly conductive outwash sand and gravel on top of crystalline
bedrock, groundwater discharge to Allequash Creek is highly promoted (Anderson and Lowry,
2007). The creek flows downstream through the wetland and drains into Allequash Lake. The
vegetation comprises a mix of broad-leaved evergreen/deciduous shrub/trees and narrow-leaved

persistent emergent and wet meadow (Turner et al.. 2019).

2.2.2 Lost Creek (US-Los)

This site is situated in a shrub wetland near Lost Creek (Latitude: 46.0827, Longitude:
-89.9792; Figure 2) at an elevation of ~480 m and was established in September 2000. Since the
creek and associated floodplain provide a consistent source of water, the wetland experiences a
large amount of peat accumulation. Vegetation near the flux tower mostly consists of alder,
willow, and sedges. Since it is located near a stream and has a long, narrow shape, this ecosystem
shares many of the characteristics of typical minerotrophic wetlands in the Great Lakes region
(Sulman and Desai et al., 2009). Its climate is characterized by warm, wet growing seasons and
cold, dry winters. The growing season in the region starts at around June and ends in August
(Pugh et al., 2017).

2.2.3 Sylvania Wilderness Area (US-Syv)

The Sylvania Wilderness Area site (hereafter referred to as Sylvania) (Latitude: 46.2420,
Longitude: -89.3477; Figure 2) is an old-growth forest that was established in late 2001. Tree
age ranges from 0 to 350 years old with the dominant vegetation consisting of sugar maple and
eastern hemlock. Other types of vegetation include yellow birch, basswood, and ironwood. The
climate can be considered northern continental (short growing seasons and cold winters) and the
average elevation is ~540 m. Most of Sylvania’s area is sheltered by hemlock-northern hardwood
forest (66%), along with lakes and forested wetlands/marshes covering 21% and 13% of the area

respectively (Desai et al., 2005).



2.2.4 Willow Creek (US-WCr)

Willow Creek is a deciduous broadleaf forest that is dominated by sugar maple,
basswood, and green ash. Beneath the canopy consists of sugar maple and ironwood saplings,
leatherwood maidenhair, bracken ferns, and blue cohosh. The elevation and flux footprint are
approximately 515 m and 0.6 km respectively. Willow Creek is located in the
Chequamegon-Nicolet National Forest in northern Wisconsin (Latitude: 45.8059, Longitude:
-90.0799; Figure 2), experiences significant precipitation in all seasons, and is around 60-80
years old. Soils at the site have been subject to mixing and are saturated between 50 and 100 cm
below the surface depending on the time of year (Cook et al., 2004). The site’s leaf area index is

5.3 and the average canopy height is 24 m (Desai et al., 2005).

Google Earth

CA-SCB ‘CA—SCC




Figure 2: Locations of sites. US-ALQ, US-Los, CA-SCB, and CA-WP1I are wetlands while
US-Syv, US-WCr, CA-SCC, and CA-Oas are forests. Images are taken from Wikipedia and
Google Earth Pro.

2.2.5 Scotty Creek Watershed

CA-SCC and CA-SCB are characterized as a boreal forest and wetland respectively.
These sites will be used to compare C dynamics and drivers with the four main temperate sites.
Both are located in Scotty Creek (Latitude: 61.3, Longitude: -121.29; Figure 2) which is a 152
km? watershed near Fort Simpson, NT in the southern Taiga plains in northwestern Canada. The
region experiences an average TA of -2.8 °C and mean total precipitation of 388 mm (149 mm of
which is snow). The wetlands in this landscape are composed of bryophytes, ericaceous shrubs,
and to a lesser extent black spruce and tamarack. The forests consist of a dense cover of black
spruce along with ericaceous shrubs, bryophytes, and lichens dominating the understory (Helbig
etal., 2017).

2.2.6 Alberta Western Peatland (CA-WP1)

CA-WPI (lat: 54.9538; long:-112.4670; Figure 2) is one of many ecosystems located in
the southern boreal forest of Canada. The regional climate has been characterized as having long,
cold winters and short, cool summers with a mean annual temperature of 2.1 °C. Average yearly
precipitation is composed of both rain (382 mm) and snow (122 mm). The terrain is relatively
flat and is composed of nearly homogenous vegetation. Dominant tree and shrub species include
Picea mariana, Larix laricina, and Betula pumila (Syed et al., 2000).

2.2.7 Saskatchewan - Western Boreal, Mature Aspen (CA-Oas)

CA-Oas is a mature deciduous forest site located on the southern end of Prince Albert
National Park in Saskatchewan, Canada (lat: 53.6289, long: -106.1978; Figure 2). Average
yearly precipitation and temperatures according to the nearby airport are reported to be 406 mm
and 0.5 °C respectively. The warmest spring temperatures occurred in 1998 and 2001 while the
coolest were in 1996 and 2003. A drought has also been recorded to have begun around 2001 and
persisted through 2003 (Barr et al., 2004).

2.3 USGS Streamflow Gages

USGS streamflow gages near US-ALQ, US-Los, and US-Syv were used to obtain
discharge data. The gage at Bear River, WI (Latitude: 46.04889, Longitude: -89.98444, Drainage



Area: 211 km?) and Cisco Lake Outlet, MI (Latitude: 46.25331, Longitude: -89.45247, Drainage
Area: 131 km?) were paired with US-Los and US-Syv respectively. US-ALQ has three gages in
proximity with one located in Sayner, WI (Latitude: 46.03084, Longitude: -89.59939, Drainage
Area: 11 km?) and two residing near Boulder Junction, WI (County Trunk Highway M —
Latitude: 46.02389 , Longitude: -89.65278, Drainage Area: 22 km? | Site No. 3 — Latitude:
46.03278, Longitude: -89.60778, Drainage Area: 10 km?). No data was available for US-WCr or
the boreal sites since no gages were found within a reasonable distance to be considered as a
proxy. The distance from the gage at Cisco Lake Outlet and US-Syv is 8 km and the distance
from the Bear River gage to US-Los is 4 km. The Allequash Creek gages are relatively closer to
US-ALQ being a distance of 3.7 km, 0.6 km, and 0.24 km away for County Trunk Highway M,
Sayner, and Site No. 3 respectively (Figure 3).

USGS Gage at Boulder Junction, WI (No. 3) :

ALQ
USGS Gage/ﬁt Sayner, WI ;

343710 Google Earth




‘USGS Gage at Bear River

6081 ft Google Earth

;USGS Gage at Cisco Lake Outlet

8277 ft Google Earth

Figure 3: Maps showing the relative locations of the Ameriflux sites and the USGS streamgages.
Images provided by Google Earth Pro.




2.4 The Eddy Covariance Method

The Eddy Covariance (EC) method has been used widely by researchers due to its
relatively few theoretical assumptions and its potential for measuring micro-meteorological
variables. Gas, energy, and momentum fluxes may be directly measured, giving direct
observations of land-atmosphere interactions within the flux tower footprint. EC has also
benefited from technological advances in the past two decades, making it one of the most
popular methods for data acquisition among the micro-meteorological community (Liang and
Wang, 2020).

Measurements of ecosystem variables are determined through the covariance between
vertical wind velocity and the quantity being measured. An anemometer is used to measure wind
speed and direction, an infrared gas analyzer measures gas concentrations in the air, and radiation
sensors measure solar radiation (section 2.5).

2.4.1 Theory

This overview will follow the discussion outlined in (Baldocchi, 2003). Vertical turbulent

motions in the atmosphere are responsible for transporting CO, and other constituents between
the atmosphere and biosphere. The EC technique involves keeping track of these turbulent
motions in order to determine net inflows and outflows of these constituents with respect to the
land and atmosphere. To achieve this, the Reynolds averaging method is applied on the following
flux equation:

Enst = WP ( 1)

where Finst is the instantaneous mass flux density, w is the vertical wind velocity, and Pe is the
CO, density. This will yield the following expression:

F=pswe  (2)

where F' represents the average flux density of the constituent over some specified period of
time (i.e. hourly, monthly, yearly, etc.), Pa is the air density, and ¢ is the ratio between Pc and
Pa (Pc | Pa). The overbars represent the time averages and primes indicate deviations from the
mean (i.e. C = C+ C’). Positive and negative values of covariance denote a loss and gain of
constituents by the ecosystem respectively.

Interpretations of EC measurements can be done through assumptions and manipulation
of the mass conservation equation:
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(3)

where ¢ is defined above, F' is the three dimensional flux vector, S' is the source/sink term, and
u, v, and w are the wind velocities in the =, Y, and z directions respectively. Term I represents
the change in CO, mixing ratio with time, II is the advection of CO, by the zonal, meridional,
and vertical winds, III is the flux divergence, and IV takes into account any biological sources or
sinks and is dependent on location.

With two key assumptions, equation 3 can be simplified such that only one term remains
on each side. The assumptions are the following: the average CO, mixing ratio is constant with
time and the terrain being measured is flat and horizontally homogeneous. This implies that term
I and the horizontal parts of terms II and III may be set equal to zero. As a result, only the
vertically-dependent source/sink term and the vertical flux divergence terms survive, yielding the
following:

Multiplying by 0z and then taking an integral from zero to an arbitrary height above the canopy
h gives an expression for the mean vertical CO, flux density at that location:

where £%(0) is the mean vertical CO, flux density at the surface (i.e. fluxes from the soil or

underlying vegetation). One of the main purposes for the EC method is to evaluate F.(h) in
equation 5 for numerous ecosystems around the globe.

2.4.2 u* Filtering

High quality data acquisition via the EC method requires high turbulence in the
measurement area. During stable conditions, CO, flux measurements have been found to be
underestimated using this technique (Goulden et al., 1996). Therefore, filtering methods must be
applied to discard data taken during periods of low turbulence.

Goulden et al. proposed that friction velocity (™) may be used as a means of

determining the validity of flux measurements. Once a threshold u* (u:fkh) is determined, any
fluxes below that threshold would be discarded. One shortcoming of this technique is that the
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same Uz, cannot be used universally for all sites due to its dependence on local topography,
surface roughness, and heterogeneity. Despite this, its effectiveness has made it the most-used
flux-filtering method.

To obtain a lower threshold, one must know the point at which NEE becomes insensitive
to changes in ™. Therefore, nighttime NEE is plotted as a function of several different "
classes. Afterwards, statistical comparisons are made to determine when the difference between
the averaged nighttime NEE of a u™ class is not statistically significant with the NEE at higher

values of ©*. The u* value where this occurs is deemed to be the Y. If it is found that u* is
co-varying with other drivers of respiration, the data is normalized to remove any covariation
between respiration and the variable in question. Due to the likeliness of u™ covariance with
temperature in temperate regions, an NEE-temperature function is typically used for
normalization (Aubinet et al., 1999; Aubinet et al., 2012).

2.4.3 NEE Uncertainties

This section builds upon section 2.4.2 by discussing the role of " in determining NEE
uncertainties. The FLUXNET 2015 dataset utilizes two main methods for calculating ™
thresholds, namely the change-point-detection (CP) (Barr et al., 2013) and
moving-point-transition (MP) methods (Papale et al.. 2006; Reichstein et al.. 2005). These
techniques involve dividing a year of data into four seasonal and seven temperature classes that
have an identical number of observations. Each of these groups are then further divided into
twenty u”* classes where the average NEE of each class is computed.

Next steps then depend on the method. For CP, two linear regressions are implemented
between NEE and u* (with one having zero slope). The point at which these lines cross is noted
as the “change point” and is used as a guide for estimating appropriate ©* thresholds. On the
other hand, the MP method compares the average NEE of the twenty u* classes with the average
NEE of the ten u™ classes with the greatest magnitude. A threshold is then determined if the «*
class contains a mean nighttime NEE greater than 99% of the mean NEE at the ten highest «*
classes. An improvement of this method has also been implemented that reduces the effects of
noise. More details may be found in Pastorello et al., 2020.

To determine NEE uncertainties for this study, the REddyProc Software was used from
the Max Planck Institute for Biogeochemistry. The software was utilized as a means to create
reasonable bounds for NEE. The percent error between the exact (measured) and approximate

(gap-filled) cumulative annual NEE was calculated to determine uncertainty. Most uncertainties
were within 10% of the measured values for all sites and years except for CA-Oas. This
discrepancy is believed to be due to the disparate flux processing methods used at the site.
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2.4.4 Gap Filling

Due to the great temporal resolution of EC flux measurements, gaps in data are not
uncommon. These may be due to various reasons (i.e. winter power failures, dusty solar panels,
etc.). Since one of the many purposes of EC is to compile averages of C fluxes over long time
scales, it is essential to have sophisticated techniques for filling in missing data. According to the
discussion in Papale, 2012, there are multiple methods for gap filling, including mean diurnal
variation (MDV), look-up tables (LUT), artificial neural networks (ANNSs), and nonlinear
regressions.

The MDYV approach fills gaps by taking the average of valid values on adjacent days
during the same period. It is recommended that the length of the averaging period doesn’t exceed
two weeks since after this time nonlinear dependencies may introduce significant uncertainties
and errors. The position of the averaging periods may be fixed or may vary depending on the
data. Preferably, the latter should be used since periods will be defined based on each gap,
resulting in more accurate results.

LUT looks at meteorological conditions for missing fluxes and then gap-fills with the
average of valid flux measurements during similar conditions. Several classes of meteorological
drivers (e.g. radiation, air or soil temperature, soil water content, vapor pressure deficit, etc.) are
considered depending on site characteristics. These are then tabulated and “looked-up” in order
to gap-fill fluxes accordingly. Linear interpolation is used if no flux data is available for a
specific combination of the drivers.

ANNSs consist of empirical nonlinear regression models that predict missing fluxes
through various algorithms. These operate in a set of nodes and are connected to weights that
represent different regression parameters. To utilize an ANN, it must first be “trained”. Training
involves feeding sets of data to the ANN (usually meteorological drivers) and receiving the
associated outputs. The dependency of the output on the meteorological drivers is mapped onto
the weights which ANN then uses to gap-fill the data. This method is used as a standard
technique for gap-filling fluxes in the FLUXNET global network (along with marginal
distribution sampling which is an extension of LUT; see Reichstein et al.).

Similar to the LUT method, the nonlinear regressions approach bases its gap-filling on
relationships between CO, fluxes and its associated drivers. Instead of tabulating data, however,
parameterized nonlinear equations are used to estimate missing data. Daytime gap-filling
typically takes PPFD to be the main driver and uses a rectangular hyperbola or exponential
function for estimation (Falge et al., 2001). Due to lack of PPFD during the nighttime, equations
where temperature is the main driver are used instead (Lloyd and Taylor, 1994; Falge et al.,
2001; Moffat et al., 2007). To obtain estimations for gap-filling, the inputs for these equations

must all be valid fluxes.

It’s important to note that while there are a variety of gap-filling techniques,
methodological comparison studies have shown most approaches to agree with synthetic data on
several timescales (Moffat et al., 2007; Desai et al., 2008). However, other factors, such as ease
of use, may lead researchers to employ one method over another.




2.4.5 Partitioning Fluxes

Due to technological limitations not allowing for direct measurements of GPP and
RECO, these dependent variables must be inferred from measured NEE via equation 6:

NEE = RECO —Ggpp (6)

To obtain an estimation of NEE, the following equation is used:

NEE = F5Y 4+ F5™© (7)

EC
where £C" is the estimated turbulent CO, flux via EC through the horizontal plane at an

arbitrary height above the canopy and F gTO is the change in CO, storage below the horizontal
plane (see sections 1.4.2 and 2.5 in Eddy Covariance (Foken et al.. 2012; Munger et al.. 2012)).
Many methods have been proposed on how to partition NEE into its constituent fluxes. One of
the most popular is the night-time data based method.

The night-time based approach exploits GPP’s heavy dependence on radiation. After data
has been quality filtered, all night-time data points for NEE are assumed to represent RECO (i.e.
GPP is zero). A simple model of RECO’s dependence on TA is then formulated. One of the most

common methods is using the @10 equation:

T-10°C

RECO = RECOye@,0"°° (8)

where REC Oy is the base respiration at 10°C, T’ is the TA, and (10 is the temperature
sensitivity parameter which represents the change in RECO for every 10 °C change in
temperature. After calculating RECO, equation 6 is used to calculate GPP.

Unfortunately, RECO is driven by a multitude of other variables (e.g. nutrient levels and
soil moisture) causing this method to introduce possible errors and biases. The lack of
measurements of these variables at FLUXNET sites is one of the main reasons why nutrient level
and soil moisture-dependent models are lacking (Reichstein et al., 2012).

Other models include using variants of the Arrhenius equation (Lloyd and Taylor, 1994)
or using soil temperature-dependent models such as the Eyring function (Sulman and Desai et
al., 2009). Although a myriad of flux partitioning methods are available, no single technique
produces more desirable results (Desai et al., 2008).

2.5 Flux Instrumentation

The instrumentation at all flux tower sites was virtually the same. Each was equipped
with a sonic anemometer (Campbell Scientific, Inc., Logan, UT, CSAT-3), open path infrared gas
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analyzer (LiCor, Inc., Lincoln, NE, LI-7500A), temperature and relative humidity sensor
(Campbell Scientific, Inc., Logan, UT, CS215), radiation sensor (Kipp & Zonen North America,
Sterling, USA, Kipp-Zonen CNR4), and quantum sensor (LiCor, Inc., Lincoln, NE, LI- 190).
These measured three-dimensional wind speed and sonic virtual temperature, CO, and water
vapor mixing ratios, solar radiation, and photon flux, respectively. At US-Syv, the closed path
infrared gas analyzer model was LI1-6262 instead. The height of the flux tower at Allequash
Creek and Lost Creek was 2.4 m and 10.2 m respectively (Turner et al.. 2019; Reed et al., 2018).
For the Sylvania site, CO, flux measurements were taken at ~36 m above the ground whereas
latent and sensible heat fluxes were taken at ~30 m above ground.

These instruments recorded data at high frequency (10 Hz) but were then averaged and
reported as half-hourly after processing. More detailed descriptions for the instrumentation at
US-ALQ and US-Los are outlined in Reed et al., 2018 and Turner et al., 2019. Further
information on instrumentation at US-Syv can be found in Desai et al., 2005.

Willow Creek had differing instrumentation than that of the other sites. Four sensors were
used to determine incoming and reflected solar and infrared radiation (net radiation was
calculated by summing measurements from the four sensors). Like the other sites, a quantum
sensor (Li-Cor, Lincoln, NE, model LI190SZ) was used to determine PPFD. Temperature probes
(R.M. Young, Traverse City, MI, model 41342; Campbell Scientific, Inc., Logan, UT, model
CS500) were placed throughout the height of the tower and directly above the soil surface to
measure TA. More detailed descriptions of instrumentation can be found in Cook et al., 2004.

Instrumentation at Scotty Creek, CA-WP1, and CA-Oas may be found in Helbig et al.,
Sved et al., and Blanken et al. respectively.

2.6 USGS Gage Instrumentation/Methods

All streamflow measurements made by the USGS follow a similar protocol. Streamgages
are unable to measure discharge directly. Instead, these instruments directly measure stream
velocity, stream depth, and stream width and then mathematically compute streamflow using the
following equation:

Where D is discharge and d, w, and v are stream depth, width, and velocity respectively. The
ft

units for discharge are typically given in s . While depth and width can be calculated relatively

easily across many sites, stream velocity measurements are less trivial. The most common

methods used include The Mechanical Current-Meter Method and The Acoustic Doppler Current

Profiler Method (ADCP). The former involves partitioning depth and width measurements in a

way that resembles the Riemann Sum approximation. The stream velocity is then measured by
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placing a wheel of metal cups in each segment. As water flows, the cups rotate around a
vertically oriented axis which then prompts an electric signal transmission. This signal counts the
number of revolutions per unit time which is then converted to linear water velocity. Each
partitioned width and height is multiplied by its respective water flow quantity and are then
summed together to determine the stream velocity.

The latter method improves measurement accuracy by taking advantage of the doppler
effect. ADCPs are hydroacoustic instruments that send pulses into the water and then measure
the amount of time it takes for signal retrieval. The relative change in frequency is then
translated into water velocity.

2.7 Data Acquisition and Analysis

The Ameriflux data repository was used to acquire all C, water, energy, and
micro-meteorological data for all sites. Therefore, all data measurement and processing methods
adhere to standard Ameriflux protocols (https:/ameriflux.lbl.gov/). All temperate sites are
located within a 50 km radius. CA-SCB/CA-SCC and CA-WP1/CA-Oas are within a 0.1 km and
230 km radius respectively.

Each site has a different time period of available data. US-ALQ’s data availability is from
2015-01-01 to 2021-04-25, US-Los from 2000-01-01 to 2020-12-31, US-Syv from 2001-01-01
to 2020-12-31, and US-WCr from 1998-01-01 to 2020-12-31. CA-SCB, CA-SCC, CA-WP1, and
CA-Oas have data available from 2014-01-01 to 2019-09-21, 2013-01-01 to 2016-08-30,
2003-01-01 to 2009-12-31, and 1996-01-01 to 2010-12-31 respectively. Gap-filling was carried
out using the nonlinear regression technique (see section 2.4.3) and a flux partitioning method
was used similar to Reichstein et al. (see section 2.4.4). Even after gap-filling, missing data was
still present.

For variables where three-index position qualifiers were used

(i.e.“VariableName HorizontalPosition VerticalPosition Replicate”), the position qualifier
“VariableName 1 1 1” was chosen. More information on positional qualifiers and their use in
data labeling can be found on the Ameriflux Website (https://ameriflux.lbl.gov/) — Data —
About Data — Data Variables.

The Streamflow data was obtained from proximate USGS gage locations at each site
(excluding US-WCr and boreal sites; see section 2.3; https://www.usgs.gov/). Relatively minimal
data gaps were present in the gage data.

Regression analysis between PPFD and NEE was plotted via numpy’s polyfit command
in Python. We then obtained numerical values for the Pearson correlation coefficient and p-value

using the “pearsonr” function in the Scipy Python library. Due to the non-linear relationship
between C components and TA (Fei et al., 2017), we utilized a quadratic fit for GPP and NEE
and an exponential fit for RECO (see section 3.2.4). The numpy polyfit function was then used
to implement fits across years. To determine the r* and p values for these fits, the “Real Statistics
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Data Analysis Tool” external Microsoft Excel package was utilized along with the scatter plot
function.

2.8 Wavelet-Based Time Scale Decomposition

The maximal overlap discrete wavelet transform (MODWT) was used to decompose the
time scales of variability for NEE, GPP, RECO, and various C drivers. These half-hourly fluxes
(hourly for discharge) were reconstructed for scales 1 (2' measurements equal to 1 hour) to 14
(2'* measurements equal to 341 days). Scales 1-2, 3-6, 7-10, and 11-14 represent hourly (small
perturbations such as clouds passing overhead), diel (day-night cycles of radiation and
temperature), multiday (variabilities in water table and synoptic weather), and seasonal
(vegetation phenology, solar cycle, and hydrologic cycle) scales respectively (Sturtevant et al..
2016). The Wavelet Methods for Time Series Analysis (WMTSA) as part of the MATLAB
wavelet toolkit was utilized to wavelet decompose data into these scales (Cornish et al., 2003).
Due to this toolkit’s incompatibility with data gaps, all gaps were dropped during analysis.

2.9 Mutual Information

In information theory (Shannon 1948), mutual information describes the mutual
dependence between two random variables. Its purpose is to measure how much information
may be received from one variable through observation of the other variable. In other words, it is
defining the mean tendency for a single paired state of two variables to co-exist (Fraser &
Swinney. 1986). Since this method calculates the statistical dependence of Y on X, it lends itself
to be an appropriate approach for resolving C flux-driver relationships (Knox et al., 2021).

In this study, we input one of the variables to be NEE and the other to either be GPP (no
half-hourly data for CA-Oas), RECO, PPFD (incoming shortwave radiation was used for
CA-SCB), TA, LE, or discharge (streamgage data only available for US-ALQ, US-Los, and
US-Syv; no yearly scale analysis was conducted due to limited resolution). A mutual information
score (MIS) was then calculated between NEE and the other variable to determine the extent of
dependence. High and low magnitudes of MIS indicate stronger and weaker links between NEE
and the other chosen variable, respectively.

One weakness with utilizing this method is the MIS’s high dependency on the number of
sampled data points. To account for this, we used a histogram approach. A set number of bins
were determined depending on each site’s number of data points n via the equation

n/5 (10)
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On average, equation 10 provides five points for each cell on the histogram for two
uniformly distributed random variables. This technique mirrors the adaptive partitioning
approach discussed in Cellucci et al. Since all MISs are now characterized based on 7, direct
comparisons between sites is now possible.

3. Results

3.1 Interannual Variation of NEE

Among the temperate sites, the deciduous broadleaf forests had the largest range of
annual cumulative NEE relative to the wetland sites. US-ALQ (2 years of data) and US-Los (15
years of data) had ranges of 17 and 193 g C m™ yr respectively. For US-Syv (12 years of data)
this was 362 g C m? yr! and for US-WCr (16 years of data) it was 551 g C m™ yr'. Similar
results were found for the boreal sites. CA-SCB (3 years of data), CA-WP1 (6 years of data), and
CA-Oas (10 years of data) had ranges of 85, 265, and 382 g C m™ yr' respectively. CA-SCC (2
years of data), however, saw a range of only 10 g C m™ yr''. This site is composed of mostly
evergreen needleleaf forest and therefore has different carbon dynamics than that of a deciduous
broadleaf. An alternative and more likely explanation for this discrepancy is a lack of sufficient
data.
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Figure 3: GPP (top), RECO (middle), and NEE (bottom) over each measured year and across
each site. Sites in green, blue, and turquoise represent deciduous broadleaf forest, permanent
wetland, and evergreen needleleaf forest ecosystems respectively. Bolded names indicate boreal

sites while non-bolded names show temperate sites.

1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020



All sites transitioned from C source to sink in a similar window period (between DOY
~150-200). For the temperate region, yearly NEE variability was found to be substantially
smaller at the wetland site (US-Los) than at the forest sites (US-Syv and US-WCr). On the last
DOY, NEE at US-Los varied between -209 and -9 g C m™ yr'! across years, while at US-Syv and
US-WCr, it was between -280 and 97 & -575 and -4 g C m™ yr”! respectively (Figure 3).

Annual sums of GPP at the temperate sites were greater at the deciduous broadleaf/mixed
forest sites relative to the wetland sites. On the other hand, RECO was similar in magnitude
across the sites with the exception of US-Syv. None of the sites were dominators in terms of
NEE annual sums across all years. From 2002 to 2006, US-WCr was the greatest sink whereas
US-Los and US-Syv had comparable NEE annual sums. From 2014 to 2020, NEE was still
comparable between US-Los and US-Syv but US-WCr experienced dramatic fluctuations. From
2011-2013 and 2017-2020, US-WCr was a stronger sink than US-Los and US-Syv but from
2014-2016, US-WCr’s NEE became more positive than that of the other sites.

Boreal sites were also found to be carbon sinks across all years and were comparable to
their temperate counterparts (Figure 4). The deciduous broadleaf forest site (CA-Oas) was
recorded to have a larger carbon sink potential relative to the wetland site (CA-WP1). CA-SCC
and CA-SCB had limited data but the former saw higher rates of GPP and RECO relative to the
latter for adjacent years (2014-2016). Due to the near equal partitioning of NEE, both biomes
became either carbon neutral or modest carbon sinks during the measured years (Figure 4).
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3.2 NEE Zero-Crossing Day

Both types of temperate ecosystems had an NEE zero-crossing day (ZCD) within the
range of the 150th (May 30th) and 210th (July 29th) day of the year (DOY). US-Los saw an
earlier NEE sign change for each year from 2001-2020, while US-Syv and US-WCr were more
variable (Figure 5). From 2002-2005, the minimum and maximum DOY when US-Syv became
a net C sink was 138 (May 18th) and 189 (July 8th) respectively. The site then saw a steady
earlier NEE sign change from 2014-2018 and became a C sink relatively later in 2020.
US-WCr’s DOY sign change was also very variable with no specific trend throughout the
measured years (not shown).

For the boreal sites, CA-Oas experienced moderate variability with its average ZCD
being around day 170 (June 19th). On the other hand, CA-WP1 became a net C sink during later
parts of the year after 2005. We also found a steady earlier ZCD for CA-SCB and CA-SCC, but
more data is needed to determine long-term trends (not shown).
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Figure 5: Violin plot showcasing day of year when cumulative NEE flipped sign (from positive to
negative) indicating when sites transitioned from being a net C source to a net C sink during the
growing season (roughly defined from April 1st to October 31st).



3.3 Component Fluxes

GPP annual sums were also found to be larger than most of the RECO annual sums at the
sites. In general, US-WCr and CA-Oas experienced higher GPP values than US-ALQ, US-Los,
and CA-WP1 (Figure 6). US-Syv had approximately the same yearly sum of GPP and RECO
over the studied years. Cumulative GPP showed a similar trend across all sites and all studied
years. Each site initiated GPP at ~150th DOY. There was year to year variability, however, for
GPP annual sums, with US-Syv showing more AV on average than US-WCr and US-Los. In
comparison, average year-to-year variability for RECO annual sums were almost identical across
all sites. RECO began earlier at US-WCr for most years (between DOY 50 and 100) and had a
smoother curve. US-Los and US-Syv, on the other hand, initiated RECO at around DOY 150 and
saw steeper slopes as they entered summer months (Figure 4).
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Figure 6: Yearly sums of RECO plotted as a function of yearly sums of GPP for all sites. Squares
represent forest sites and triangles represent wetland sites. The dotted line indicates a one-to-one

relationship between the two variables.



3.4 Drivers of |IAV

3.4.1 Radiation

One of the main drivers of C accumulation across all sites was PPFD. As PPFD
increased, NEE decreased most significantly during the months of June through September for
the measured years. GPP’s sensitivity to solar radiation caused a dramatic increase in production
during these months, causing the second term on the right side of equation 6 to dominate. This is
also reflected in (Figure A.3) and (Table A.3), with the relationship between the two variables
exhibiting a steeper positive slope (increased r-value) in the summer months for both wetlands
and forests. Ultimately, this led to a general decrease in NEE during the summer months across
all sites and years (Figure A.2; Table A.2).

Even though PPFD was found to be a driver for C accumulation on a multi-year scale, the
correlation coefficient experienced substantial interannual variation. For the forest sites, the
correlation between NEE and PPFD was somewhat constant over the years, with the strongest
dependency occurring in August (not shown). The wetland site experienced the most variability
across years, with a general increase in PPFD reliance for C accumulation over the two decade
period. On average, Pearson correlation coefficients for NEE vs PPFD and GPP vs PPFD were
-0.799 and 0.804 respectively from 2001-2010.

Of the three summer months, US-Syv and US-WCr had consistent periods of higher
correlation during July and August throughout the two decades. US-Los, however, was more
variable in this regard, showing increases and decreases in radiation dependence across all
months and years (not shown).



RECO (umol CO2 m~2 s71)

3.4.2 Precipitation

Average cumulative precipitation across all years was greatest at US-WCr (mean +
standard error: 685 + 38 mm) followed by US-Los (677 + 69 mm) and US-Syv (378 + 83 mm).
The wettest recorded years for US-Los were 2002, 2007, and 2008, for US-Syv 2002, 2005, and
2016, and for US-WCr 2002, 2016, and 2017.
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Figure 7: RECO as a function of precipitation at half-hourly scale across sites during daytime
(9:00:00 - 17:00:00) and nighttime (17:30:00 - 24.:00:00, 00:30:00 - 8:30:00). All r-values had
p-values less than 0.05. US-ALQ did not have precipitation data at the time of the study.
Statistically insignificant and weaker correlations were found for GPP and NEE (not shown).



P and carbon component data were divided into daytime and nighttime segments to
determine relationships with and without solar radiation. Daytime and nighttime were defined as
hours from 9:00:00 to 17:00:00 and from 17:30:00 to 24:00:00/00:30:00 to 8:30:00 respectively.
CA-SCC, CA-SCB, and CA-WP1 utilized rainfall data instead of precipitation data. All P at 0
mm was dropped. GPP did not have any significant relationship with P during the daytime or
nighttime across sites (not shown). RECO was generally positively correlated with increases in P.
Daytime correlation with RECO was higher among the boreal sites while during the nighttime,
RECO showed higher correlation among the temperate sites. The RECO-P relationship was not
significantly affected by the type of ecosystem (Figure 7).

3.4.3 Air Temperature

Monthly averaged TA was found to be nearly identical across all sites, with temperatures
generally residing between -16 and 22 °C. Yearly averaged TA, however, was more variable
between sites. US-WCr was the warmest amongst the sites from 2001 through 2008. From 2015
through 2020, US-WCer starts out warmer but is then surpassed by US-Los beginning in 2017.
US-ALQ had an abnormally warm year during 2015, but this is likely due to relatively high gaps
in TA data during that year (Table A.5). Excluding 2015, US-ALQ was cooler relative to US-Los
and US-WCr during 2016, 2019, and 2020. Due to high amounts of data gaps during 2017 and
2018 for US-ALQ, TA was not considered during those periods (Table A.5).

To quantify the responses of GPP, RECO, and NEE to TA, quadratic (equation 10) and
exponential (equation 11) regression models were used based on Fei et al., 2017:

f(x) =azx®+bx+c (10)
RECO =dxef T (11)

where a, b, ¢, d, and [ are fitted parameters, RECO is ecosystem respiration, and T'A is air
temperature. The quadratic model was applied for GPP/NEE versus TA and the exponential
model was utilized to evaluate the relationship between RECO and TA.
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Figure 8: Each C component plotted as a function of TA across all sites and years. GPP, NEE,
and RECO are illustrated as red, orange, and yellow icons respectively. Black lines show
regression fit, where dashed represents TA vs GPP, solid indicates TA vs NEE, and dotted shows
TA vs RECO. Fits are based on equations utilized by Fei et al., 2017. Some years were not
included due to gaps in both TA and C flux data.

Overall, the regression models between the C components and TA agreed well across all
sites and years (Figure 8). RECO was observed to increase exponentially with TA, while a
quadratic relationship was found between NEE/GPP and TA. The regression equations were also
variable from year to year. For equations representing RECO vs TA, the y-intercept term showed
small variation (0.55 - 1.75 across all sites and years).

Due to its limited impact on the steepness of the regression curve, only the exponential
growth constant was considered when determining TA’s influence on RECO. When considering
sites that had the least amount of data gaps (US-Los and US-WCr with n=13 and n=18
respectively), we observed the greatest impact of TA on RECO at US-Los relative to US-WCr
(mean value for exponential growth constant was .09 and .06 for US-Los and US-WCr
respectively). Furthermore, the variability of impact across years proved to be higher at US-WCr
(SD =.012) than at US-Los (SD = .006).



To determine the extent of TA’s impact on NEE/GPP, the year to year variabilities in the
quadratic coefficient (QC) were considered. The average QC for GPP was .006, .008, .009, and
.01 for US-ALQ, US-Los, US-Syv, and US-WCr respectively. The variability in QC (standard
deviation) was similar across all sites. For NEE, all QC was found to be negative. The average
QC was largest at US-WCr (-.006), followed by US-Los (-.003), US-Syv (-.0026), and US-ALQ
(-.0018). The greatest variabilities in QC occurred at the forest sites (US-Syv: 0.001; US-WCr:
0.004) relative to the wetland sites (US-ALQ and US-Los: .0005).

3.4.4 Evapotranspiration

GPP was more impacted by increases in LE than RECO across all sites and years. RECO
experienced a positive correlation with LE, with US-WCr having the lowest correlation relative
to other sites (Figure A.S). In particular, increases in LE promoted GPP. Most Pearson
correlation coefficients were calculated to be greater than 0.65 across all years and sites (Table
A.6). Consequently, this resulted in an anti-correlation between NEE and LE across sites and
years with most coefficients being less than -0.6. Some years experienced changes in RECO
when LE was at 0 W m™, suggesting a more complex relationship between water balance and
RECO at the sites.

3.5 Determining Dependency via Mutual Information
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Figure 9: Barcode plots showing mutual information scores between NEE and environmental
variables on multiple timescales. Black dots indicate no data availability. Blue, turquoise, and
green text indicate wetland, evergreen forest, and deciduous forest respectively. Text in bold
represent boreal sites while standard text are temperate sites.

On hourly (1-2 hours) and diel (4 hours to 1.3 days) scales, GPP was the dominant
predictor of NEE regardless of region or ecosystem type. On multiday (2.7-21.3 days), seasonal
(42.7-341 days), and yearly scales, however, each variable showed indistinguishable magnitudes
of predictability for NEE. The boreal sites saw more NEE predictability by biophysical variables
relative to the temperate sites on long timescales (seasonal and yearly). Discharge did not have a
drastically different NEE impact between sites and timescales (Figure 9).

4. Discussion

4.1 Interannual Variability and Ecosystem Type

One of the objectives of this study was to determine differences in C flux AV between
biome types in temperate and boreal regions. When partitioning NEE fluxes into its components,
GPP was greater than RECO for both ecosystem types, resulting in negative NEE (Figure 6).
GPP was more of an NEE predictor than RECO on short timescales (hourly and diel) for both the
temperate and boreal wetland and forest sites (Figure 9).



Overall, the forest sites were found to have higher GPP. This is likely due to larger
photosynthetic capacity and greater leaf area index, promoting high photosynthetic uptake
relative to the wetland sites. These results agree with a comprehensive study that found
deciduous forests to be one of the largest C sinks across the conterminous United States (Xiao et
al., 2011).

In addition to higher uptake, the deciduous broadleaf forest sites experienced larger GPP
variability with respect to the wetland sites. Due to productivity’s high reliance on
meteorological variables, year-to-year fluctuations in local weather patterns play a vital role in
GPP IAV. This finding suggests an ecosystem type dependence as opposed to a regional
dependence for year-to-year carbon uptake potential.

Ecosystem respiration was also found to have high IAV across sites, with similar
variabilities at US-ALQ, US-Los, and US-WCr and the highest occurring at US-Syv (Figure 3).
The boreal sites experienced similar RECO [AV with respect to one another.

A study observing a temperate mixed forest in northeastern China concluded that only
leaf respiration increased among other modes of respiration (i.e. stem and soil) when TA
increased (Guan et al.. 2006). Even though RECO is not dominant when partitioning NEE fluxes,
leaf respiration’s high temperature sensitivity has the potential to influence IAV and must be
taken into account. Research on 15 European forests from 1996 to 1998 has shown variabilities
in RECO to be the main determiner of NEE, indicating its important role in influencing AV
magnitudes (Valentini et al., 2000).

The C sink/source status of an ecosystem depends on the relative magnitudes of GPP and
RECO, with the biome becoming a source or sink if RECO or GPP dominates respectively. In
general, cumulative annual NEE was more variable from year-to-year at the forest sites than at
the wetland sites regardless of region. GPP and RECO were also subject to variabilities (to a
lesser extent) based on ecosystem characteristics. This result agrees with the finding that NEE
IAV is larger than that of GPP and RECO (Xie et al., 2014).

Due to higher GPP potential at the forest sites relative to the wetland sites, US-Syv and
US-WCr were found to have more years where the magnitude of negative NEE was greater at the
end of the year than that of US-Los. The cumulative NEE at the forest sites also did not follow a
specific temporal trend on decadal scales. At US-Los, however, C uptake generally increased as
years passed, with the greatest C uptake occurring during 2018 and 2019 and the least during
2000 and 2005 (Figure 3). Similar results were found for the boreal sites.

An increase in cumulative yearly NEE at the wetland site may be indicative of the
fertilization effect as a result of increased atmospheric CO, concentrations. More years of C
fluxes need to be measured, however, to be certain.

In addition to uptake on yearly scales, the forest sites generally had greater C uptake on
seasonal scales. During the growing season, US-Syv and US-WCr had negative NEE that was
~1.5 and ~1.7 times more than US-Los on average. Year-to-year variabilities in growing season
NEE were also larger at the forests versus the wetlands.



While NEE magnitude is helpful in determining the extent of C uptake, temporal
variations in C fluxes must also be accounted for. One such measure is determining when NEE
shifts from source to sink, indicating the first time when production rates surpass respiration
rates. Due to significant increases in global temperatures in the past century, some ecosystems
have been shown to respond with earlier leaf-out times and later senescence, therefore extending
the growing season (Helfter et al., 2015). Only US-Los saw an overall earlier date of NEE sign
change as years progressed. US-Syv and US-WCr were more variable in this regard. This was
consistent with the boreal wetland and deciduous forest sites as well. CA-SCC (boreal evergreen
needleleaf site), however, experienced similar yearly variabilities to that of the boreal wetland
sites (CA-WP1 and CA-SCB).

Lengthier growing seasons have implications for higher rates of productivity. Therefore,

consistently experiencing longer growing seasons as years progress may cause the wetland sites
to reach GPP levels that are comparable to that of the deciduous forests. On the other hand, high
IAV in NEE zero crossing day may prove inefficient for sustained C uptake on long timescales.

4.2 Drivers of Interannual Variability and Implications

Ecosystems owe their year-to-year C variability to external factors such as PPFD, TA,
and water availability. Our results agree well with the notion that increases in PPFD and TA
promote higher ecosystem productivity in both wetlands and forests (Froelich et al., 2015;
Helfter et al., 2015). Therefore, longer periods of warmer temperatures and larger areas of
foliage are amongst the most ideal conditions for enhanced GPP. It is important to note that
linear regression has obvious shortcomings as an analysis tool, in that it is blind to non-linear
relationships. Therefore, a lack of linear correlation with water parameters (i.e. precipitation and
discharge) indicates a more sophisticated relationship between water availability and NEE (i.e.
through changes in soil moisture (Xu et al., 2004)).

Precipitation’s influence on C fluxes at US-Los, US-Syv, and US-WCr were observed to
be modest when compared to those of other variables. When partitioned into daytime and
nighttime sections, precipitation had more explanatory power for changes in NEE across all
temperate sites, while GPP was not affected (Figure 7). RECO at US-Los was found to have a
higher reliance on precipitation relative to US-Syv and US-WCr during the daytime, while
nighttime influence on respiration was similar across all sites. This suggests that daytime C
accumulated via photosynthesis (GPP) is being offset by enhanced RECO in the presence of
precipitation. Alternatively, nighttime precipitation was observed to lead to more positive NEE
values whereas no correlation was found during the daytime. Out of the temperate sites, NEE at

US-Los was influenced most by this variable.

One study concluded that variability in net C balance depends more on PPFD than
precipitation (Xie et al., 2014), indicating how different biomes respond differently to these
drivers. As a result, for the sites considered, increased precipitation can be regarded as a way of
advancing these biomes towards becoming a net source of C.




Due to precipitation’s small influence on GPP, this leads NEE to be strongly
characterized through precipitation (affecting RECO) and monthly PPFD (affecting GPP).
Therefore, we would expect wet periods to lead to higher RECO and gradually lead these sites to
becoming net sources of C. On the other hand, more sunlight exposure would promote higher
rates of GPP and lead to a higher likelihood of the sites becoming a net C sink. These results
were found at sites where zero precipitation was recorded 80%, 50%, and 94% out of all
recorded days at US-Los, US-Syv, and US-WCr respectively at halt-hourly scale. Hence, more
studies need to be conducted at sites where precipitation rates are higher to determine the
significance of this relationship across biomes. The boreal sites also saw increases in respiration
rates during higher precipitation events (except for CA-Oas during the daytime). This may
indicate that the RECO-P relationship is not regionally dependent, therefore pointing to a
similarity between the temperate and boreal biomes considered in this study.

It is important to note that linear regressions have limitations when determining these
relationships. A study has found that nonlinear fits may better capture year-to-year variabilities,
although this was with regards to precipitation and aboveground net primary production (Knapp
etal., 2016).

LE also had a significant impact on C fluxes. Increasing GPP with LE suggests higher
rates of photosynthetic production with higher evapotranspiration magnitudes. Relating to what
was found with precipitation, this creates a “tug-of-war” between drivers. Precipitation enhances
RECO while LE promotes GPP. GPP was found to be less correlated with LE at US-ALQ
whereas most other sites experienced correlation coefficients within 0.6 and 0.9. A relatively low
correlation of LE with RECO across all temperate sites and years led NEE to decrease
dramatically with increases in LE, with NEE at US-ALQ having the smallest correlation
coefficient. This suggests a high dependence of C IAV on the water balance of each ecosystem.
When the ecosystems lose water to the atmosphere, they are more prone to become net C sinks.
Precipitation, however, promotes these biomes to become a net C source. No significant
differences were found in evapotranspiration as a driver for C IAV when comparing temperate
forests and wetlands. A similar relationship was found for the boreal sites regardless of
ecosystem type. Furthermore, a study in China comparing C and water fluxes also found similar
results, indicating that the C and water cycles are tightly coupled (Xiao et al., 2013).

In general, TA acted as a way of driving up rates of ecosystem production and respiration.
Therefore, magnitudes of NEE remained largely unchanged with increasing temperature.
RECO’s exponential increase and GPP’s quadratic correlation with increasing TA was found not
to have significant IAV (Figure 8). This indicates that to maximize productivity, these biomes
must be exposed to large amounts of solar radiation and also reside in warm climates. On the
other hand, a warm climate also promotes respiration, and is maximized when combined with
high amounts of precipitation. A study on multiple ecosystem types in China also found an
exponential increase in respiration with increases in TA (Yu et al.. 2012). Furthermore, a study
found GPP at multiple deciduous forests to be negatively correlated with annual water balance
(Law et al.. 2002). Lastly, a synthesis report including 49 sites concluded NEE to be correlated
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linearly with mean annual temperature and had a logarithmic correlation with precipitation. It
also determined PPFD and temperature to be the most significant predictors of annual NEE
which is in agreement with our results (Kato and Tang, 2008).

Precipitation data was sporadic during the course of the study period and therefore we
would expect each biome, on average, to be dominant in GPP versus RECO due to the greater
abundance of sunlight relative to precipitation on yearly scales. During most of the years, on
average, NEE was indeed found to be negative for all sites, giving each biome a net C sink
status. Our findings agree with a study measuring terrestrial ecosystem respiration sensitivity to
TA across 60 diverse FLUXNET sites, where no difference was found among biomes (Mahecha
etal., 2010).

4.3 Study Limitations

As mentioned previously, most sites did not have stream gages located directly at the
tower locations. Therefore, remote discharge data was used as a proxy for on-site discharge,
which may introduce uncertainties when compared to NEE responses. The largest uncertainties
may come from the Bear River (US-Los), Cisco Lake Outlet (US-Syv), and County Trunk
Highway M (US-ALQ) stream gages since all were positioned 3 km or more from their
respective Ameriflux towers.

Data inavailability was also a limitation in this study. For precipitation, US-Syv had the
highest data gaps (2008-2013; 2019-2020) (Table A.5). Furthermore, most sites lacked
continuous PPFD data (US-ALQ: 2015-2018; US-Los: 2009-2013; US-Syv: 2009-2012 and
2019) (Table A.5) while US-Syv was most affected by gaps in TA (2009-2020) (Table A.5). C
flux data gaps (i.e. NEE, GPP, and RECO) were very sporadic across sites and years (Table A.5).
As a result, when comparing C flux and micro-meteorological variables, this data gap problem
was exacerbated. In some cases, this has inevitably caused an inability to conduct analysis on a
continuous set of data on a yearly scale, resulting in some years not being considered entirely.
This was also the case at the boreal sites. We believe this to be one of the main sources of
uncertainty in this study.

4.4 Implications for Natural Climate Solutions

As mentioned in section 1.8, NCS is one of the most cost effective ways to increase C
sequestration to limit global temperature increases due to greenhouse gas emissions. To fully
take advantage of NCS’s mitigation potential, ecosystem conservation and restoration practices
must be implemented such that C uptake is maximized on decadal scales. To achieve this, each
practice must be tailored with both ecosystem type and its corresponding C drivers in mind.



Increasing C storage requires increases in GPP while also reducing RECO. According to
this study, the most effective way to promote increases in GPP across ecosystem types is through
an increase of PPFD. Therefore, NCS efforts must implement afforestation and reforestation to
increase leaf radiation interception such that PPFD-use is maximized. However, it is important to
note that photosynthetic uptake has temporal limitations, peaking only during the summer
months. On the other hand, reports of a lengthening growing season due to warmer temperatures
may allow for significant C uptake as soon as early spring that lasts as late as mid-fall (Helfter et
al., 2015).

To maximize C uptake and reduce risks of sequestration reversal, restoration efforts must
also limit ecosystem RECO. This study shows RECO to be somewhat modulated by
precipitation. NEE also became more positive with increased precipitation, indicating these
biomes to likely become net C sources during high precipitation events. The dependency of the
hydrologic cycle on RECO agrees well with a previous study on these sites (Sulman et al., 2009).

This correlation also goes beyond forests and wetlands. For instance, a mixed grass
prairie in Wyoming was found to experience lower and higher respiration rates during decreases
and increases in summer precipitation respectively (Chimner and Welker, 2005). This renders

precipitation to potentially be a universal driver of RECO regardless of ecosystem type.
However, other studies have shown that the magnitude of precipitation is also relevant, even
causing net C uptake at a shortgrass steppe when total precipitation is above a certain threshold
(Parton et al., 2012). This opens the possibility of the wetlands and forests to experience net
uptake during periods of high rainfall (>10 mm day™), but this cannot be determined with
certainty due to limited precipitation data at the study sites.

To effectively implement restoration strategies to minimize RECO, one must understand
the underlying mechanisms behind the RECO-precipitation relationship. High amounts of soil
water has been found to promote microbial decomposition of organic matter and consequently,
the release of CO,. Furthermore, high soil water content may also facilitate plant root/shoot
growth which is associated with higher respiration rates (Chimner and Welker, 2005). It has also
been documented that heterotrophic respiration is enhanced during small precipitation events
(<10 mm day™) (Parton et al., 2012).

Therefore, restoration and conservation efforts as part of NCS must prioritize controlled
drainage after minor precipitation events to reduce RECO. This reduction will cause higher GPP,
resulting in more negative NEE. Methods such as tile drainage may be used to reduce soil water
content. We believe these efforts will create optimal conditions for C sequestration at these sites.

5. Conclusion

Here we have observed that two wetland and forest ecosystems spread across northern
Wisconsin and Michigan’s UP differ drastically in terms of C IAV. Results show higher C AV
magnitude in the forests relative to the wetlands which has implications for ecosystem



restoration and conservation prioritization for NCS. A mix of boreal wetland and forest sites
showed similar results, revealing small dependency of these processes on latitudinal location.

GPP and RECO were found to have a quadratic and positive exponential relationship
with increases in TA, respectively across all sites. In addition, PPFD was found to be highly
correlated with productivity (mostly during the summer months) with little to no correlation with
RECO. On the other hand, respiration rates increased during relatively high precipitation events
with little to no correlation with GPP. This indicates both PPFD and precipitation to be major
contributors to C IAV. Year-to-year variability in GPP was also found to contribute more to NEE
IAV than yearly variabilities in RECO.

Mutual information analysis revealed NEE at the boreal sites to have more dependency
on biophysical variables relative to the temperate sites on seasonal and yearly scales. This
suggests that the extent of influence on C fluxes may be more regionally-dependent on long time
scales. Moreover, NEE was more dependent on GPP on short timescales (hourly and diel) and
dependent on GPP and RECO somewhat equally on multiday, seasonal, and yearly scales.

Due to large NEE IAV at the forest sites, we believe wetlands to be the most reliant
biome for long-term C sequestration. Although the potential for large uptake is higher at the
forest sites, the high variability is a cause for high uncertainty. On the other hand, while the
wetlands were characterized by lower C uptake, their tendency for more constrained C flux
magnitudes from year to year leads to a more reliable C sink in the long-term.

Due to the spatially limited nature of this study, more work needs to be conducted at
other biomes, especially those in the tropics, to determine whether similar results hold in other
regions.



6. Appendix

Percentage of Gap-filled Data (NEE)

Temperate Boreal
Year US-ALQ | US-Los | US-Syv | US-WCr | CA-SCB CA-WP1 | CA-Oas
1996 - - - - - - - 44.35
1997 - - - - - - - 70.27
1998 - - - 0 - - - 67.35
1999 - - - 100 - - - 77.5
2000 - 30.05 - 100 - - - 70.18
2001 - 100 32.88 100 - - - 72
2002 - 100 100 100 - - - 72.72
2003 - 100 100 100 - - 41.92 75.59
2004 - 100 100 100 - - 100 73.72
2005 - 100 100 100 - - 100 75.21
2006 - 100 100 100 - - 100 70
2007 - 6 11.23 0 - - 100 72.6
2008 - 100 0 0 - - 100 69.41
2009 - 0 0 0 - - 74.11 71.34
2010 - 100 0 44,11 - - - 64.59
2011 - 0 0 100 - - - -
2012 - 0 66.67 100 - - - -
2013 - 0 100 100 - 64.19 - -
2014 - 100 100 100 65.1 100 - -
2015 28.45 100 100 100 63.8 100 - -
2016 94.14 100 100 99.73 100 100 - -
2017 18.48 100 100 100 76.17 - - -
2018 30.68 100 100 100 73.84 - - -
2019 100 100 45.48 100 74.64 - - -
2020 100 93.72 100 99.73 - - - -

Table A.1: Percentage of available half-hourly NEE data across years and sites. A dash

indicates a lack of data for that year.
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Figure A.1: Daily NEE cycles for each measured year at each site. This showcases half hourly
NEE that was averaged over the growing season. Years with blank plots indicate no data for that
time period. The red dotted line represents an NEE of zero throughout the day. Abnormal daily
cycles of NEE are the result of missing data (see Table 2). Figures 8, 9, 10, 11 from top to bottom
display US-ALQ, US-Los, US-Syv, and US-WCr respectively.
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WCR (Daily Averaged Months for 1998-01-01 to 2020-12-31)
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Figure A.2: NEFE plotted as a function of PPFD for each month across all of the sites. Note that
all sites have a different time period of measurement (listed in the title of each figure). The red
lines represent the line of best fit for each month. Specific values of the Pearson Correlation
Coefficient can be found in Table 3.
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Figure A.3: Similar to Figures 14-17 but with GPP plotted as a function of PPFD.
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Figure A.4: Similar to Figures 14-17 but with RECO plotted as a function of PPFD.
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Table A.2: Pearson Correlation Coelfficients (r-values) and p-values for all sites based on the
results in Figures 14-17 (NEE vs PPFD). Cells containing “o” indicate a p-value > 0.05 (not

statistically significant).
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Table A.3: Pearson Correlation Coefficients (r-values) and p-values for all sites based on the
results in Figures 18-21 (GPP vs PPFD). Cells containing “o” indicate a p-value > 0.05 (not

statistically significant).
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Table A.4: Pearson Correlation Coefficients (r-values) and p-values for all sites based on the
results in Figures 22-25 (RECO vs PPFD). Cells containing “o” indicate a p-value > 0.05 (not

statistically significant).




Percentage of Available Data (TA)

SITE - | YEAR {,| ALQ LOS SYv WCR
1998 - - - 100
1999 - - - 100
2000 - 100 - 100
2001 - 100 100 100
2002 - 100 100 100
2003 - 100 100 100
2004 - 100 100 100
2005 - 100 100 100
2006 - 100 100 100
2007 - 100 100 100
2008 - 100 100 100
2009 - 100 0 100
2010 - 100 0 100
2011 - 0 0 100
2012 - 0 0 100
2013 - 0 0 100
2014 - 100 0 100
2015 72.3288 | 99.726 0 100
2016 100 100 0 99.9203
2017 31.2272 100 0 100
2018 30.411 100 0 100
2019 100 100 0 100
2020 100 | 93.7158 0 100




Percentage of Available Data (Precipitation)

SITE - | YEAR 4 |ALQ LOS sYv WCR
1998 - - 100
1999 - - 100
2000 - 100 - 100
2001 - 100 34.08 100
2002 - 100 100 100
2003 - 100 99.93 100
2004 - 100 99.95 100
2005 - 100 100 100
2006 - 100 99.93 100
2007 - 100 95.98 100
2008 - 99.91 0 99.91
2009 - 99.99 0 99.97
2010 - 99.73 0 99.73
2011 - 0 0 99.99
2012 - 0 0 100
2013 - 0 0 100
2014 - 100 50.57 100
2015 - 99.95 93.15 99.5
2016 - 99.93 99.19 99.6
2017 - 99.99 97.95 99.99
2018 - 99.09 91.27 98.42
2019 - 99.93 0 97.47
2020 - 93.92 0 99.9




Percentage of Available Data (PPFD)

SITE - | YEAR 4/ |ALQ LOS SYV WCR
1998 - - - 100
1999 - - - 100
2000 - 100 - 100
2001 - 100 100 100
2002 - 100 100 100
2003 - 100 100 100
2004 - 100 100 100
2005 - 100 100 100
2006 - 100 100 100
2007 - 100 100 100
2008 - 100 100 100
2009 - 0 0 100
2010 - 62.04 0 100
2011 - 0 0 100
2012 - 0 66.4 100
2013 - 0 100 100
2014 - 99.93 100 100
2015 0 99.73 100 100
2016 0 99.93 100 100
2017 0 99.93 100 100
2018 30.41 99.93 100 100
2019 99.93 99.93 45.48 100
2020 99.93 93.72 100 100




Percentage of Available Data (GPP)

SITE - | YEAR J,| ALQ LOS SYV WCR
1998 - - - 0
1999 - - - 100
2000 - 30.0546 - 100
2001 - 100 | 32.6027 100
2002 - 100 100 100
2003 - 100 100 100
2004 - 100 100 100
2005 - 100 100 100
2006 - 100 100 100
2007 - 35.8904 | 11.2329 0
2008 - 35.7923 0 0
2009 - 0 0 0
2010 - 35.8904 0 44,1096
2011 - 0 0 100
2012 - 0 66.6667 100
2013 - 0 100 100
2014 - 100 100 100
2015 72.6027 100 100 100
2016 100 100 100 |99.7268
2017 31.2272 100 100 100
2018 30.6849 100 100 100
2019 100 100 | 45.4795 100
2020 100 | 93.9891 100 | 99.7268




Percentage of Available Data (RECO)

SITE = | YEAR J,| ALQ LOS SYV WCR
1998 - - - 0
1999 - - - 100
2000 - 30.0546 - 100
2001 - 100 |32.6027| 100
2002 - 100 100 100
2003 - 100 100 100
2004 - 100 100 100
2005 - 100 100 100
2006 - 100 100 100
2007 - 35.8904 | 11.2329 0
2008 - 35.7923 0 0
2009 - 0 0 0
2010 - 35.8904 0 44.1096
2011 - 0 0 100
2012 - 0 66.6667 100
2013 - 0 100 100
2014 - 100 100 100
2015 0.72603 100 100 100
2016 100 100 100 |99.7268
2017 0.31227| 100 100 100
2018 0.30685 100 100 100
2019 100 100 |45.4795| 100
2020 100 |[93.9891| 100 |99.7268

Tables A.5: Percentage of available half-hourly precipitation, PPFD, GPP, and RECO data
across years and sites. A dash indicates a lack of data for that year.
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Figures A.5: C components plotted as a function of latent heat across all sites and years. The
red lines indicate the best fit line with corresponding r and p-values listed in Table A.6.



GPP and LE

ALQ LOS SYV WCR
YEAR r-value p-value YEAR r-value p-value YEAR r-value p-value YEAR r-value p-value
1998 - - 1998 - - 1998 - - 1998 - -
1999 - - 1999 - - 1999 - - 1999 0.74930628 0
2000 - - 2000 0.47945842 | 3.03E-147 2000 - - 2000 0.81692664 0
2001 - - 2001 0.72087347 0 2001 0.57674509 | 1.25E-251 2001 0.77300001 0
2002 - - 2002 0.74493024 0 2002 0.8370781 0 2002 0.81147025 0
2003 - - 2003 0.66885978 0 2003 0.76245939 0 2003 0.71564177 0
2004 - - 2004 0.78112315 0 2004 0.76983087 0 2004 0.74826837 0
2005 - - 2005 0.73218637 0 2005 0.83064366 0 2005 0.81424157 0
2006 - = 2006 0.76358951 0 2006 0.82480237 0 2006 0.81335017 0
2007 - - 2007 0.78313572 0 2007 0.7456031 | 2.90E-310 2007 - -
2008 - - 2008 0.75279653 0 2008 - - 2008 - -
2009 - - 2009 - - 2009 - - 2009 - -
2010 - - 2010 0.73778679 0 2010 - - 2010 -0.3476407 | 5.44E-27
2011 - = 2011 N - 2011 - - 2011 0.71746885 0
2012 - - 2012 - - 2012 0.85874793 0 2012 0.72649253 0
2013 - - 2013 - 2013 0.8753496 0 2013 0.80634369 0
2014 - - 2014 0.83160534 0 2014 0.87878678 0 2014 0.76976406 0
2015 0.6722496 0 2015 0.83590819 0 2015 0.86704103 0 2015 0.75006983 0
2016 0.73510185 0 2016 0.86799958 0 2016 0.86353692 0 2016 0.76301985 0
2017 0.37350896 | 1.06E-107 2017 0.83724361 0 2017 0.8701187 0 2017 0.84943841 0
2018 0.31324263 | 2.35E-121 2018 0.8419282 0 2018 0.86852889 0 2018 0.85925847 0
2019 0.8701102 0 2019 0.8144782 0 2019 0.86610034 0 2019 0.8803186 0
2020 0.86844214 0 2020 0.83505202 0 2020 0.86666306 0 2020 0.84617679 0
RECO and LE
ALQ LOS SYV WCR
YEAR r-value p-value YEAR r-value p-value YEAR r-value p-value YEAR r-value p-value
1998 - - 1998 - - 1998 - - 1998 - -
1999 - - 1999 - - 1999 - - 1999 0.33667322 | 4.72E-195
2000 - - 2000 0.17690847 | 1.95E-19 2000 - - 2000 0.27057481 | 3.81E-204
2001 - - 2001 0.27779293 | 1.04E-264 2001 0.30210418 4.94E-61 2001 0.3026585 | 2.49E-206
2002 - - 2002 0.31758249 0 2002 0.40982851 0 2002 0.25747572 | 9.73E-171
2003 - - 2003 0.19566022 | 1.43E-116 2003 0.33714867 0 2003 0.21778323 | 7.02E-99
2004 - - 2004 0.2960323 | 9.63E-260 2004 0.36492115 0 2004 0.21360251 | 2.16E-81
2005 - - 2005 0.35405559 0 2005 0.37687269| 1.28E-282 2005 0.16072604 | 9.01E-76
2006 - - 2006 0.47820878 0 2006 0.43870525 0 2006 0.27624196 | 1.24E-193
2007 - - 2007 -0.0128438 | 0.31374152 2007 -0.0769185| 0.00128511 2007 - -
2008 - - 2008 -0.0462039 | 0.00043517 2008 - - 2008 - -
2009 - - 2009 - - 2009 - - 2009 - -
2010 - - 2010 -0.0640462 | 3.07E-06 2010 - - 2010 0.43515747 | 6.34E-43
2011 - - 2011 - 2011 - - 2011 0.21468417 | 6.71E-126
2012 - - 2012 - - 2012 0.45318705|  1.06E-289 2012 0.24109744 | 1.74E-147
2013 - - 2013 - - 2013 0.42740485| 2.53E-253 2013 0.19161628 | 5.10E-92
2014 - - 2014 0.53700361 0 2014 0.49512481 0 2014 0.21703819 | 1.04E-97
2015 0.16284939 | 5.69E-31 2015 0.4824288 0 2015 0.41781281 0 2015 0.20639138 | 1.98E-137
2016 0.3788355 0 2016 0.58401746 0 2016 0.5075771 0 2016 0.12789395 | 1.39E-36
2017 0.16980878 | 2.29E-22 2017 0.4894312 0 2017 0.40463372 0 2017 0.2334035 | 6.05E-169
2018 0.4514053 | 2.81E-265 2018 0.47895269 0 2018 0.45653133 0 2018 0.27469333 | 4.72E-208
2019 0.51631657 0 2019 0.43136926 0 2019 0.40494909| 1.28E-161 2019 0.21308488 | 1.64E-137
2020 0.52379741 0 2020 0.47147016 2020 0.50995432 0 2020 0.31274828 | 2.98E-265




NEE and LE

ALQ

YEAR

r-value

p-value

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

-0.5262475

0

2016

-0.5507811

0

2017

-0.1931527

1.41E-28

2018

-0.4085796

4.66E-213

2019

-0.6727527

0

2020

-0.6599982

0

LOS

YEAR r-value p-value
1998

1999 - -
2000 -0.3566817 | 1.23E-77
2001 -0.6601022 0
2002 -0.6852991 0
2003 -0.6267372 0
2004 -0.7354311 0
2005 -0.6669535 0
2006 -0.6695137 0
2007 -0.7388747 0
2008 -0.713269 0
2009 -0.6957857 0
2010 -0.754227 0
2011 N -
2012

2013 - -
2014 -0.754227 0
2015 -0.7596754 0
2016 -0.7897987 0
2017 -0.749387 0
2018 -0.7548908 0
2019 -0.7289326 0
2020 -0.7380043 0

SYV WCR

YEAR r-value p-value YEAR r-value p-value
1998 1998 - -
1999 1999 -0.6706558 0
2000 - - 2000 -0.7635532 0
2001 -0.3782897 | 2.45E-97 2001 -0.6924021 0
2002 -0.717447 0 2002 -0.7603535 0
2003 -0.6865631 0 2003 -0.687413 0
2004 -0.6592964 0 2004 -0.7048459 0
2005 -0.7501264 0 2005 -0.7641197 0
2006 -0.6937146 0 2006 -0.7635728 0
2007 -0.7095986 | 6.19E-268 2007 - -
2008 - - 2008

2009 2009 - -
2010 2010 0.53960243 | 3.24E-69
2011 - - 2011 -0.6149731 0
2012 -0.7614097 0 2012 -0.6536565 0
2013 -0.7819201 0 2013 -0.7539807 0
2014 -0.7793174 0 2014 -0.726334 0
2015 -0.7701378 0 2015 -0.7015196 0
2016 -0.752052 0 2016 -0.718155 0
2017 -0.7721812 0 2017 -0.7982281 0
2018 -0.7796231 0 2018 -0.8120689 0
2019 -0.8156078 0 2019 -0.8342012 0
2020 -0.7968752 0 2020 -0.8176194 0

Table A.6: Pearson correlation coefficients and p-values for C components (GPP, RECO, NEE)
as a function of latent heat (used here as a proxy for evapotranspiration) across all sites and

sites and years.
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