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Abstract

A Deep Learning Model for Nowcasting Midlatitude Convective Storms

by Stephanie M. Bradshaw

Thunderstorms generate a variety of hazards, including lightning, flash flooding, dam-

aging winds, and large hail. Short-term forecasts (0-60 minutes) of thunderstorm for-

mation and intensity are critical for protecting life and property. In the 0-60 minute

“nowcasting” timeframe, operational forecasters rely heavily on observations to identify

developing convective hazards. While human expert analysis of environmental data is

valuable, automated tools are needed to take better advantage of the vast quantities of

environmental data now available. With the primary goal of nowcasting thunderstorm

formation, a deep learning model with a U-Net convolutional neural network architecture

was developed. The model utilizes geostationary satellite data from the next generation

Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager

(ABI) to identify active convection and predict where convection will initiate in the next

60 minutes, as defined by radar. The newly developed deep learning model, which is part

of the National Oceanic and Atmospheric Administration (NOAA) Probability of Severe

(ProbSevere) nowcasting model suite, provides a well calibrated probabilistic solution for

nowcasting convective storm formation. While the model was trained and tested for a

limited spatial domain in the southern United States, it has the potential to evolve into

a tool that enhances operational nowcasts.
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Chapter 1

Introduction

Buoyant vertical convection, thermally driven mass motion and the associated transfer of

energy in the atmosphere is a fundamental driver of convective storms (thunderstorms).

Once developed, these storms have many hazards associated with them including hail,

high winds, lightning, and flash floods, all of which can cause infrastructure damage and,

in extreme cases, loss of life. National Weather Service (NWS) forecasters issue advisories,

watches, and warnings to mitigate the costs of convective storms on society by providing

time for citizens, first responders, and utility workers to prepare.

Forecasters often utilize models to synthesize vast amounts of data into actionable in-

sights. Thus, a variety of models have been developed for prediction and tracking of

convective storms, hazard analysis, and prediction. Extrapolation based models with

an emphasis on radar observations include the Auto-Nowcaster (Mueller et al., 2003,
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1993, Roberts et al., 2012), TITAN (Thunderstorm Identification, Tracking, Analysis,

and Nowcasting; (Dixon and Wiener, 1993)), CARDS (Canadian Radar Detection Sys-

tem; (Joe et al., 2002)), WDSS-II (Warning Decision Support System-Integrated Informa-

tion; (Lakshmanan et al., 2007)), THESPA (Thunderstorm Strike Probability Nowcasting

Algorithm; (Dance et al., 2010)), and CASA (Collaborative Adaptive Sensing of the At-

mosphere; (Ruzanski et al., 2011)) Distributed Collaborative Adaptive Sensing Network

for storm evolution and tracking. Numerical weather prediction (NWP) models have also

been included in forecasting models such as GRAPES-SWIFT (Global/Regional Assimi-

lation and Prediction System-Severe Weather Forecast tool; (Feng et al., 2007, Hu et al.,

2007)). and CIWS (Corridor Integrated Weather System; (Wolfson and Clark, 2006)).

Besides radar and NWP models, geostationary satellite data have been instrumental

in improving analysis and prediction capabilities for convective weather. Many studies

have included the use of geostationary data in convective weather applications including

Cintineo et al. (2020a, 2018), Harris et al. (2010), Lensky and Rosenfeld (2006), Mecikalski

and Bedka (2006), Mecikalski et al. (2010a,b), Merk and Zinner (2013), Nisi et al. (2014),

Roberts and Rutledge (2003), Rosenfeld et al. (2008), Sieglaff et al. (2011), Walker et al.

(2012). All of these studies demonstrate the value of geostationary satellite data for

detecting and predicting convective storms and the associated hazards.

An additional method used in model development is machine learning. Machine learning

modeling methods are computerized methods for automatically finding transformations

which turn data into more-useful representations for a given task (Chollet, 2018). The
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work detailed in Mecikalski et al. (2015) and Cintineo et al. (2020a, 2014, 2018) are

examples of machine learning applications in atmospheric sciences. Cintineo et al. (2020a,

2014, 2018) details the development of ProbSevere, which uses a näıve Bayesian classifier

machine learning method to provide probabilistic forecasts of the severity of storms.

ProbSevere also includes the probability of hail, the probability of high winds, and the

probability of tornadoes (Cintineo et al., 2020a, 2014, 2018). Mecikalski et al. (2015)

used probabilistic forecasts of thunderstorm convective initiation generated with logistic

regression and random forest machine learning methods to produce fewer false alarm

rates than the Geostationary Operational Environmental Satellite (GOES)-R convective

initiation algorithm over the continental United States and nearshore locations by the

Gulf of Mexico. However, the areas under the receiver operating characteristic curves

recorded in Mecikalski et al. (2015) (with values between 0.69 and 0.83) indicate further

improvements may be possible.

Recently, deep learning methods have been gaining traction in atmospheric sciences and

may offer a method for improving convective initiation models. Deep learning is a subfield

of machine learning because it involves searching for useful representations of input data

in a specified space of possibilities using a feedback signal (Chollet, 2018). As opposed

to other machine learning techniques which use only a couple of data representations,

deep learning emphasizes the use of successive layers (sometimes tens to hundreds of

layers) of increasingly meaningful data representations often arranged in neural networks

(Chollet, 2018). Deep learning has been successful in the detection of synoptic scale

fronts (Lagerquist et al., 2019), intense midlatitude convection (Cintineo et al., 2020b),
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lightning (Zhou et al., 2020), and tornadoes (Lagerquist et al., 2020). Also, Lagerquist

et al. (2021) demonstrates the capability of deep learning models to generate probabilistic

predictions of active convection through their application of U-Net deep learning models

to forecast convection with up to 120 minutes lead times using the Himawari-8 satellite

and an echo-classification algorithm applied to weather radars in Taiwan. However, deep

learning methodology has yet to be applied to the United States for short term (0-60

minutes) “nowcasting” of convective activity.

This study utilizes deep learning to identify active convection and predict which cumulus

fields are most likely to initiate in the next 60 minutes in the United States. This deep

learning model for nowcasting convective storms provides a well calibrated probabilistic

solution to aid forecasters in their decision making processes and in doing so lends insight

into the fundamental physical processes in convective storms.
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Chapter 2

Data and Methodology

2.1 Representation of Convective Initiation

To predict convective initiation and convection in storms, it is first necessary to discuss

how convective initiation has been represented from a historical standpoint as well as

how it will be defined for the model. Convection itself can refer to any vertically buoyant

mass motion and its associated transfer of energy. However, since forecasters value insight

on where thunderstorms are most likely to form, this study primarily focuses on the

early stages of the convective life cycle resulting from thunderstorm development. The

transition from shallow to deep convection is often referred to as convective initiation.

Historically, convective initiation has been defined quantitatively using a radar reflectivity

threshold, but the threshold values have been highly variable, ranging between about
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30 dBZ and 40 dBZ . The origin of these radar reflectivity thresholds is rooted in

radar based field studies characterizing storm development. For example, a field study

documented in Wilson and Schreiber (1986) evaluated the nature of storm development

east of the Colorado Rocky Mountains using radar. A storm was defined when a radar

reflectivity threshold of 30 dBZ at about 1 kilometer above ground level (AGL) was

met. Conversely, Roberts and Rutledge (2003) defined a 35 dBZ threshold to distinguish

between mildly precipitating and vigorous convective storms but the authors did not

cite a source in their definition, making it subjective. The 35 dBZ threshold was then

used in other studies like Mueller et al. (2003) and those citing a legacy based definition

of convective initiation (Mecikalski and Bedka, 2006, Mecikalski et al., 2010a,b, 2015,

Mueller et al., 2003). On the high end of the convective initiation radar threshold range,

40 dBZ at the -10◦C isotherm level in a storm was shown to be well correlated with

electrification (Gremillion and Orville, 1999, Sieglaff et al., 2011, Zipser and Lutz, 1994).

Based on the electrification mechanisms discussed in Saunders (1993), electrification most

likely occurs post convective initiation.

The vertical level where the radar reflectivity threshold is applied further complicates

which threshold would be appropriate for representing convective initiation for predic-

tion with deep learning methodology. Mecikalski and Bedka (2006), Mecikalski et al.

(2010b), Mecikalski et al. (2010a), Walker et al. (2012), and Mueller et al. (2003) used

base level reflectivity while Mecikalski et al. (2015) used reflectivity higher in the cloud

(-10◦C isotherm level). Using a reflectivity at the -10◦C isotherm level is supported by

Browning and Atlas (1965), which determined severe storms more often develop robust
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radar reflectivity cores at the -10◦C level than non-severe storms. For this reason, strati-

form cloud structures may be removed from the clouds of interest when using a threshold

at a higher radar elevation angle. However, Zipser and Lutz (1994) indicated radar reflec-

tivity gradually decreases with height above the freezing level, so reflectivity thresholds

need to be adjusted accordingly. A threshold applied higher vertically and below freezing

in a storm should decrease compared to lower vertical levels. Thus, this study defines

convective initiation as the first occurrence of a radar reflectivity echo of 30 dBZ at the

-10◦C isotherm level. This definition is also consistent with the field study documented

in Wilson and Schreiber (1986).

2.2 Deep Learning Model Structure

The goal of a deep learning model is to take a set of inputs and receive a set of out-

puts relevant to a particular task. In this study, the desired output is a probability map

capturing convection that has initiated or will initiate in the next 60 minutes. In order

to generate this desired output, deep learning models use successive layers to transform

data into meaningful representations which are characterized by a set of weights (Chol-

let, 2018). The weights determine the contribution from each layer needed to generate

output consistent with the input labels. To determine the optimal set of weights for the

layers, the model undergoes a training process, which involves measuring the difference

between the model output and the training targets (the desired values) with a loss (or

objective) function. An optimizer is used to update the weights in a manner resulting
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in the reduction of the loss value. The training process is depicted in Figure 2.1. In the

following sections, the individual aspects of the model in Figure 2.1 will be discussed.

Figure 2.1: A diagram of the training process for developing a deep learning model for
convective initiation and already initiated convection. The weight updating procedure

is repeated until the loss is minimized.

2.2.1 Inputs, Outputs, and Targets

As indicated in Section 1, geostationary satellite imagery provides critical insights into the

evolution of convective clouds, including cloud top glaciation and other visual indicators

preceding or coinciding with convective initiation. Thus, geostationary satellite data are

well suited for use in a computer vision based machine learning model aimed at analyzing

and predicting convective weather. Since this model is designed to support National
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Weather Service operations, data from the next generation Geostationary Operational

Environmental Satellite (GOES-16), which scans the Continental United States (CONUS)

at least every 5 minutes, is used as input into the model. In particular, the Advanced

Baseline Imager (ABI) 0.64 µm, 1.6 µm, and 10.3 µm wavelength spectral bands (channels

2, 5, and 13) comprise the model inputs in the form of reflectance, reflectance, and

brightness temperature, respectively. An example false color red-green-blue (RGB) image

with these ABI bands is depicted in Figure 2.2.

Figure 2.2: A false color red-green-blue (RGB) image of ABI band wavelengths
0.64 µm (red), 1.6 µm (green), and 10.3 µm (blue) for June 26, 2019 at 18:26 UTC.
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The selected ABI spectral bands are collectively sensitive to pertinent features such as

overshooting tops, cloud top glaciation, and cloud top height (Elsenheimer and Gravelle,

2019, Pavolonis et al., 2005). The 0.64 µm band measures reflected sunlight from the red

portion of the visible spectrum at a spatial resolution of 0.5 km. At 0.5 km resolution

important textual patterns, which are correlated with updraft velocity, are resolved. The

1.6 µm band measures reflected sunlight in the near infrared (IR) part of the spectrum

at a spatial resolution of 1 km. This band is commonly referred to as the snow/ice band

because ice absorbs more radiation at this wavelength than liquid water (Elsenheimer and

Gravelle, 2019). Given the difference in absorption, the 1.6 µm band is useful for detecting

cloud top glaciation (Pavolonis et al., 2005). The 10.3 µm band provides infrared window

data at a spatial resolution of 2 km. The 10.3 µm band measurements are most often

utilized in brightness temperature units. Commonly known as the clean IR longwave

window band, the 10.3 µm band is sensitive to cloud temperature and surface properties

under clear conditions.

Through the National Oceanic and Atmospheric Administration (NOAA) Hazardous

Weather Testbed, operational forecasters have expressed a clear preference for probabilis-

tic guidance over deterministic guidance (Mecikalski et al., 2015, Siewert and Kuhlman,

2011, Terborg and Gravelle, 2012) since probabilistic guidance conveys uncertainty (Dance

et al., 2010, Mecikalski et al., 2015, Steiner et al., 2010). Therefore, the outputs of the

deep learning model for initiated and initiating convection are probabilistic maps, where

each pixel has an associated probability value. Furthermore, for comparison to the targets

and for binary statistical evaluation of the model (hits, misses, false alarms, etc.), the
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convection probabilities in the probability map outputs are used as thresholds for “yes”

or “no” convective initiation or initiated convection cases.

Since the definition of convective initiation is the first occurrence of a radar reflectivity

echo of 30 dBZ at the -10◦C isotherm level, any radar reflectivity greater than or equal

to 30 dBZ at the -10◦C isotherm level is taken to be initiated. Therefore, anything

below this threshold is considered a null case and everything greater than or equal to

this threshold is the target feature. The Multi-Radar Multi-Sensor (MRMS) product

suite from NOAA and the University of Oklahoma (Zhang et al., 2016) provides qual-

ity controlled reflectivity data at the -10◦C isotherm for the entire continental United

States (CONUS) at 1 km resolution, making it ideal for identifying initiated convection.

However, since a primary goal is to predict which cumulus fields will initiate with up

to 60 minutes of lead-time, a single timestamp of MRMS radar reflectivity would only

allow instantaneous identification of convection. In order to have prognostic value, the

maximum MRMS radar reflectivity, in the 60 minutes following the satellite observation

time, is used to generate the labeled data needed to train the machine learning model.

An example of the time composite MRMS reflectivity is shown in Figure 2.3.

In Figure 2.1, the inputs, targets, and predictions (outputs) of the model are labeled

to reflect the data and desired products as discussed in this section. The ABI data

inputs enter the convolutional neural network, where data transformations are stored

and characterized by weights. Then the outputs are compared to the labels. Based on
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Figure 2.3: The maximum MRMS radar reflectivity for 1 hour into the future at the
-10◦C isotherm for June 26, 2019 at 18:26 UTC

the distance/loss between the probability output and the target labels, the weights are

updated, and the process is repeated until the loss is minimized.

2.2.2 U-Net, a Convolutional Neural Network

There are many ways to represent the layers and associated data transformations from

Figure 2.1 to best complete the desired task. For this study, the layers are arranged in
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a U-Net, which is a type of convolutional neural network. U-Nets were developed by

Ronneberger et al. (2015) for biomedical image segmentation and have since been used

in a variety of applications. Here a U-Net is used to take ABI inputs and semantically

output a segmentation map with pixel by pixel probabilistic predictions. A diagram of

the U-Net set-up is included in Figure 2.4 and a description of the processes in the U-Net

is included below.

Figure 2.4: A depiction of the U-Net Convolutional Neural Network (data layers
and transformations) for the deep learning model for convective initiation and initiated
convection. Adapted for this application from the original U-Net paper by Ronneberger

et al. (2015).

The inputs described previously include three satellite bands, and they enter the U-Net as

three layers. These layers undergo a series of transformations represented by the arrows in
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Figure 2.4. The first transformation is a two-dimensional convolution (Conv2D function

in Tensorflow). During a convolution the data is split into overlapping windows where

local patterns can be isolated and learned (Chollet, 2018). The size of the windows for

this application are primarily three by three (except the last transformation is one by one)

with a stride of one and padding with zeros to ensure the output has the same dimensions

as the input. Originally the depth of the layer (also called the number of feature maps)

matches the number of bands input into the model. However, after going through a

transformation, these numbers no longer represent the number of inputs, instead they

represent the number of filters. According to Chollet (2018) the filters encode aspects

or features of the input data such as the presence of a cloud in this application. This

allows for patterns within the data to be learned by the machine. The convolutions

are accompanied by a specified activation function, which converts the output into a

form appropriate for use as the input to the next step in the U-Net and allows for non-

linearity. The majority of the convolutions in this U-Net use the rectified linear unit

(ReLU) activation function to set any negative values to zero.

After going through a couple of convolutions, max-pooling (red arrows in Figure 2.4 and

the MaxPooling2D function in Tensorflow) is used to aggressively downsample the data.

Since the spatial dimension is large to start with, the original three by three windows view

small patches of data and learn small scale patterns when going through the convolutions.

To learn large scale patterns, max-pooling outputs the maximum value of each channel

for a series of two by two windows (with a stride of two), which downsamples the features

maps by a factor of two. Thus, the feature map sizes are cut in half during this procedure,
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so, during a subsequent convolution, a window of the same size as before will view a larger

area. The process of going through a couple of convolutions followed by a max-pooling

transformation is repeated four times forming the encoding branch of the U-Net.

At the end of the encoding branch, the image has a low resolution. To get it back

to a high resolution image so the patterns can lead to a spatially applicable, pixel by

pixel result, a decoding branch with a pattern similar to the encoding branch but with

up-sampling instead of max-pooling is used. Up-sampling is performed with a three-

dimensional transposed convolution (Conv2DTranspose in Tensorflow) and is combined

with a skip connection (concatenation by the concatenate function in Tensorflow) to

retain details in the overall prediction and provide an alternate path for the gradient

in backpropagation, aiding in converging on a loss value during training (Ronneberger

et al., 2015). After reaching a resolution matching the original input resolution, a final

convolution is performed. This convolution uses a sigmoid activation function instead of

ReLU in order to constrain the outputs between zero and one, resulting in a probability

map.

2.2.3 Loss Function and Optimizer

During the training process, optimal weights for the model are found by iterating through

the process depicted in Figure 2.1. For each cycle through the training loop (one cycle

is called an epoch), the difference between the outputs/predictions and the targets is

measured with a loss function. This loss score or value is then fed into an optimizer

which updates the weights of the model to see if new weight values will result in an



16

improved loss score. In an ideal model, the loss function will converge after numerous

training epochs. The loss function for this model is binary cross-entropy since the targets

are divided up into two classes (below 30 dBZ at the -10◦C is considered a “no” case

and everything greater than or equal to this threshold is considered a “yes” case) and

the desired outputs are probabilities. This loss function is recommended for such an

application by Chollet (2018) and is represented mathematically in Equation 2.1 where

pi is the predicted probability of initiated convection, yi is the binary data label (1 if

there is initiated convection and 0 otherwise) for the ith example, N is the number of

examples, and ε is the binary cross-entropy in the range of [0,∞) (Cintineo et al., 2020b).

Additionally, the optimizer for this model is Adam due to its computational efficiency

and stability (Kingma and Ba, 2017).

ε = − 1

N

N∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (2.1)

2.3 Training Data

To enable more rapid experimentation with model features and hyperparameters, the

initial model domain was confined to a section of the CONUS encompassing Missouri,

Arkansas, and portions of surrounding states. This is the same spatial domain shown in

Figure 2.3. By limiting the spatial domain, the model will be optimized for convective

processes common to the domain. In addition, the initial focus is on warm season con-

vective development occuring during the daytime (solar zenith angle is less than 85◦).



17

Thus, the training, validation, and testing data sets were limited to May-August of 2018

and 2019. This eliminates variability due to seasonality and complications with band

availability (data for visible bands are not present at night). Future work, as discussed

later, will investigate elimination of the time/space constraints.

2.4 Model Validation Methodology

After training, the model is evaluated to investigate how it is performing on an indepen-

dent set of data. For training the model, as mentioned in Section 2.2.1, data from May

through August in 2018 and 2019 are given to the model as inputs. Within this time

frame, the last five days in each month are set aside for a validation data set and are

not used to train the model. Then, these dates are used within model validation, so the

model is introduced to an entirely new set of data for validation. Overall, 23887 training

samples and 5039 validation samples are used. The performance of the model is evaluated

during validation by (1) comparing the loss values in each epoch from training to the loss

during validation, (2) plotting the receiver operating characteristic (ROC) curve, a metric

of performance explained further in Section 3.1, and calculating the area under this curve

(AUC), (3) plotting the probability of detection, success ratio, and critical success index

(CSI in Equation 2.2) on a performance diagram, and (4) plotting the conditional event

frequency vs. forecast probability with a histogram counting the number of predictions

in each probability bin in an attributes diagram. The model performance is discussed in

detail in the next several sections.
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CSI =
Hits

Hits + False Alarms + Misses
(2.2)

2.5 Model Analysis and Interpretation Methods

Deep learning models are known for being a “black box” because they map a set of inputs

into a set of outputs with limited traceability. In other words, there is no direct indication

of what patterns have been learned. A series of strategies, detailed below, are employed

in this study to lend insight into what the model may have learned and to validate the

outputs make physical sense.

2.5.1 Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) is a technique designed to evaluate which pixels

in a scene influence the prediction at a selected pixel using a decomposition of non-linear

classifiers (Bach et al., 2015). The pixel-wise decomposition involves building a local

redistribution rule for each neuron in a deep network and applying the rule through a

backward pass through the model (Samek et al., 2016). Neurons are located within deep

learning layers such as the layers shown in the U-Net for this study (Figure 2.4). They

receive inputs from previous layers, are multiplied by a particular weight (learned during

training), and are summed to produce an output. Thus, layer-wise relevance propagation

essentially uses the weights and activations from the forward pass (trained model) and

propagates backwards through the network to determine the relevance (R) of each pixel

to a particular prediction (Bach et al., 2015).
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Mathematically, this process is represented using Equation 2.3 detailed in Samek et al.

(2016), which is known as the alpha-beta rule. Within this equation, (xi)i are the neuron

activations at layer l, (Rj)j are the relevance scores associated with the neurons at the

layer l + 1, wij is the weight connecting neuron i to neuron j, ()− denotes the negative

contribution, and ()+ denotes the positive contribution. α and β are conservative con-

stants upholding layer-wise conservation of relevance such that α− β = 1. For example,

if only positive relevance contributions are of interest, then α = 1 and β = 0. Since both

α and β are of interest in this study, α = 2 and β = 1 in accordance with Samek et al.

(2016).

Ri =
∑
j

(α
(xiwij)

+∑
i(xiwij)+

− β (xiwij)
−∑

i(xiwij)−
)Rj (2.3)

Within the python open source community, a python package called iNNvestigate pro-

vides functions to perform layer-wise relevance propagation methods (Alber et al., 2018).

The alpha-beta rule function ”LRPAlpha2Beta1” in the iNNvestigate package is used to

perform layer-wise relevance propagation for this study.

2.5.2 Spectral Band Contributions

As mentioned previously, there is a clear physical rationale for each ABI band used by

the model (Elsenheimer and Gravelle, 2019). To evaluate the relative importance of each

band to the overall model performance, three versions of the model utilizing a subset

of the three spectral bands were created and compared to the original model. Each
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version eliminates a band from the input channel set. For example, one version is created

with 1.6 µm and 10.3 µm (channels 5 and 13) wavelength ABI bands, which eliminates

0.64 µm (channel 2) from the inputs. The ROC curves and area under them (Section 2.4)

are compared to determine which band(s) is (are) most influential (largest area under the

ROC curves being most influential).

2.5.3 Comparison to LightningCast

Cintineo et al. (in prep) used a U-Net (similar to the one used in this study) to pro-

duce probabilistic lightning nowcasts from ABI data in a model known as LightningCast.

By comparing the radar defined convective initiation nowcasts to LightningCast, which

was trained against Geostationary Lightning Mapper (GLM) observations, the time lag

between convective initiation indicators and lightning indicators in ABI imagery can be

investigated.
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Chapter 3

Results

3.1 Model Validation

As discussed in Section 2.2.3, the loss function is minimized through the training process

(Figure 2.1) and ideally converges after many epochs. Figure 3.1 shows the loss values

through the training epochs with the blue line. The loss values do decrease as the number

of epochs increase and eventually converge to a value of 0.046 by epoch 6. This indicates

the model has learned a set of weights leading to a minimized loss function. When the

model configuration is introduced to a new set of data during validation, the model loss

is relatively constant, as indicated by the orange line in Figure 3.1. Thus, overfitting does

not appear to be an issue.
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Figure 3.1: A graph depicting the model loss during training (blue line) and the
model loss during validation (orange line).

Besides the loss, a variety of statistical methods can be used to interpret how well the

model is performing on the validation dataset. As mentioned in Section 2.4, these methods

include using a ROC curve, a performance diagram, and an attributes diagram. The ROC

curve plots a comparison of the probability of detection and probability of false detection

of each probability (model output) of convective events (e.g. 10%, 11%, etc.), defined as

convection that has initiated or will initiate in the next 60 minutes (hereafter referred to

as convective initiation). In a perfect model, the model would not make any incorrect

predictions, so the probability of false detection would always be zero. This would lead

to a straight vertical line on zero and an area under the ROC curve (AUC) of 1.0. Thus,
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the closer to 1.0 the AUC is, the better. As shown in Figure 3.2, the AUC is 0.9776,

indicating the model is performing well from an ROC analysis standpoint.

Figure 3.2: A graphical representation of the Receiver Operating Characteristic Curve
for the convective initiation model. The probability of detection and probability of false
detection values are plotted and shown in the red line. The area under this curve is

0.9776.

The performance diagram (Figure 3.3) shows a curve in red with red circles of convective

initiation probabilities for the validation dataset. Low probability values are most often

predicted but have the lowest success ratio, which is the number of false alarms per the to-

tal number of initiated convection predictions subtracted from one (1− false alarm ratio).

The highest probabilities have the highest success ratios but are not predicted as often
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(low probability of detection). Thus, when a high probability is generated by the model

it is highly successful. The blue shading represents the critical success index (CSI), a ver-

ification measure of categorical forecast performance as represented by Equation 2.2 with

variables computed by binarizing each probability threshold such that forecasts greater

than or equal to the probability threshold, p, are equal to one (“yes” initiated convection)

and the forecasts less than or equal to p are zero (“no” initiated convection). The highest

CSI value of 0.38 occurs at a probability of 0.28. An ideal CSI is 1.0 because a perfect

model would not have any false alarms or misses. For reference, the CSI of the convective

initiation model is similar to the CSI associated with operational severe weather warnings

(Cintineo et al., 2020a).

In the attributes diagram (Figure 3.4) the model would ideally follow the dotted grey line,

a one-to-one relationship between forecast probability and conditional event frequency.

Since the red line (convective initiation model on the validation set) curves below the one-

to-one grey line, this indicates the model is slightly over-forecasting for events greater than

about 40% probability.

Overall, the model performs well on the validation dataset. The loss values are consistent

and the model AUC score is close to 1.0. The model most often outputs low probability

values with lower success, but when it predicts a high probability of convective initiation

it is highly successful. The model does over-forecast probability values greater than 40%,

but this is only a slight over-forecasting. Thus, the model is consistent, reliable, and

performing well.
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Figure 3.3: A representation of the model performance on a validation dataset with
probability of detection on the y-axis and success ratio (1− false alarm ratio) on the
x-axis. The red line represents the predicted probabilities of convective initiation with
these probabilities labeled in white within the red circles on this line. The shades of

blue represent the critical success index (Equation 2.2).

3.2 Model Case Studies

After validation, the model was applied to data from 2020, which is completely indepen-

dent of the training and validation dataset, to visually assess how the model is performing.

Presented here are two case studies: June 5, 2020 (case study one) and June 3, 2020 (case

study two). Case study one was chosen because, on this particular day, a blend of mature
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Figure 3.4: A depiction of how often an event is forecasted (forecast event frequency)
compared to how often for a given probability bin the event occurs (conditional event
frequency) for the convective initiation model on the validation dataset (in red). The

inset image is a histogram of how many forecasts occur in each probability bin.

and developing convection was present in the model domain. Case study two was cho-

sen because of the abundance of cumulus clouds, some of which developed into mature

convection.

Case study one is shown in Figure 3.5. A mature convective system in middle to east-

ern Missouri propagates southeast towards the northeastern corner of Arkansas. The

highest probability contours tend to follow the leading edge of the convective system as
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Figure 3.5: Case Study 1: 2020-06-05. The ABI channel 2 (0.64 µm) reflectances
are displayed in black and white, the MRMS radar reflectivity at -10◦C are shown in
greens and yellows (second color bar from the left), and the probabilities of convective
initiation are shown with colored contours. Each panel shows the same domain in hour

increments.

it propagates, with some additional areas of enhanced convective initiation probability

developing to the south and ahead of the mature convection (see Figure 3.5), consistent

with subsequent radar data.

Case study two, shown in Figure 3.6 contains more isolated cells than case study one

with the highest probabilities associated with convective precipitation cores. The time

period covered by this case study is much less than the first case study because the storms
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Figure 3.6: Case Study 2: 2020-06-03. The ABI channel 2 (0.64 µm) reflectances
are displayed in black and white, the MRMS radar reflectivity at -10◦C are shown in
greens and yellows (second color bar from the left), and the probabilities of convective
initiation are shown with colored contours. Each panel shows Arkansas in 5 minute

increments (15:51:13 UTC to 16:41:13 UTC).

develop quickly and are relatively short lived. In the northwest corner of the domain, a

band of storm cells develops with the first contour appearing at 15:51:13 UTC. Figure 3.7

provides a more detailed view of this developing region of convection. The first contour

(10%) appears 15 minutes prior to any radar reflectivity development (with the first

reflectivity values appearing at 16:06:13 UTC), and the radar signature at this time is

below the convective initiation threshold. Radar reflectivity values within the convective
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Figure 3.7: Case Study 2: 2020-06-03 zoomed with the center pixel at 35.99 and -93.18
degrees latitude and longitude, respectively. The ABI channel 2 (0.64 µm) reflectances
are displayed in black and white, the MRMS radar reflectivity at -10◦C are shown in
greens and yellows (second color bar from the left), and the probabilities of convective

initiation are shown with colored contours.

initiation threshold (yellows in radar color scale) start appearing in the following frame

(16:11:13 UTC). Thus, the convective initiation model gives 15-20 minutes lead time on

the radar reflectivity based confirmation of convective initiation.
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3.3 Layer-wise Relevance Propagation

To obtain insight into what the model learned, especially in regards to identifying cumulus

fields that subsequently initiate, the layer-wise relevance propagation (LRP) method,

introduced in Section 2.5.1, is used. LRP determines the relevance of the pixels in an

image to the prediction at a given pixel. The pixel selected for LRP from case study two,

corresponds to the black star shown in Figure 3.8. Through the time frames displayed in

Figure 3.7 this prediction develops from less than 20% to greater than 80% probability

of convective initiation.

The results of LRP for the pixel at 35.99 degrees latitude and -93.18 degrees longitude

are shown in Figure 3.9. When the storm cell starts to develop (row containing the

probability of 16%), the relevant pixels are congregated around the selected pixel. In

the columns for the relevance of ABI channel 2 (0.64 µm) and ABI channel 5 (1.6 µm)

the pixels with the highest relevance remain on the edges of the cloud structure while

the relevance for ABI channel 13 (10.3 µm) stays near the center of the storm structure,

surrounding the pixel of interest. The location of the relevant pixels indicate gradients

in reflectance and brightness temperature, as well as multispectral signatures, play a role

in what patterns the model learns during training and uses to make predictions. This

analysis demonstrates that at least some of the patterns learned by the model, such as

cumulus agitation and cloud top glaciation, are consistent with patterns used by human

experts when analyzing satellite imagery.
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Figure 3.8: This image is the same as the last time frame (16:16:13 UTC) shown in
Figure 3.7 with a black star to show which pixel is used for LRP. This pixel is located

at 35.99 degrees latitude and -93.18 degrees longitude.

3.4 Spectral Band Contributions

To further delineate how the ABI bands contribute to how the model learns and the

resulting output, multiple models are created with inputs eliminating bands. These band

combinations for each model are shown in the first column of Table 3.1. The ROC scores

shown in this table indicate all the model band combinations yield high ROC AUC values.
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Figure 3.9: The layer-wise relevance propagation for 35.99 and -93.18 degrees latitude
and longitude respectively are shown. Each row indicates a new time step (15:56 UTC,
16:06 UTC, and 16:16 UTC on June 3, 2020). The first column on the left hand side
is an RGB image similar to the one shown in Figure 2.2 with the probability of the
selected pixel shown in the black box in the bottom right corner. Moving to the right
from this column, the next columns depict the relevance of each input ABI band for the
convective initiation model. Positive relevance is depicted in red and negative relevance

is depicted in blue.

Relatively, the best ROC AUC value (closest to 1.0) is the original model with all three

band inputs (0.64 µm, 1.6 µm, and 10.3 µm) then the combination eliminating channel

5 (1.6 µm). The smallest ROC AUC value occurred in the combination of channels
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eliminating channel 2 (0.64 µm). This could indicate the high resolution of channel 2 may

lend valuable insight into the overall prediction. Tentatively, the relative importance of

the bands could be said to be as follows from most important to least: ABI bands

0.64 µm, 10.3 µm, and 1.6 µm. However, the values presented in Table 3.1 are all close

to one another and more statistical testing is needed in the future to evaluate if this is

significant.

ABI Band Wavelengths ROC AUC

0.64 µm, 1.6 µm, 10.3 µm 0.97764
0.64 µm, 1.6 µm 0.97691
1.6 µm, 10.3 µm 0.97125
0.64 µm, 10.3 µm 0.97704

Table 3.1: This table shows the ROC AUC values for models built with various band
combinations as model inputs.

Visually, the models with different band combinations can be assessed by comparing

the predictions for the same date and time. This is presented in Figure 3.10. Without

channel 2, the contours are broadened with less localized predictions. Since channel 2 has

a fine resolution, this could indicate the fine resolution impacts the details available in the

final prediction. The predictions appear similar between the other three cases. However,

without channel 13, some low probability contours are omitted. For example, the farthest

west probability contour in the original model result (with all three bands) is missing from

the model version that lacks channel 13. Thus, cloud temperature information is likely

important.
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3.5 Comparison to LightningCast

In order to investigate the time lag between convective initiation indicators and lightning

indicators in ABI imagery, the convective initiation predictions are compared to the

LightningCast model. Both models generate predictions from ABI imagery using similar

spectral channels (LightningCast utilizes one additional infrared channel). Figure 3.11

shows the first occurrence of the 10% (and 25%) LightningCast probability contour for

the storm cell of interest, and discussed in depth previously, in the upper left (northwest)

corner of Arkansas. This initial LightningCast signal appears at 16:01 UTC, which is

10 minutes after the convective initiation model started to generate probabilities greater

than 10%, as shown in Figure 3.6. Additionally, the contours in Figure 3.11 are broader

than the contours in 3.6. GLM data has a resolution of approximately 10 km which

is an order of magnitude larger than the resolution of the MRMS radar reflectivity at

-10◦C. Similar to the relative band contributions in the previous section (Section 3.4), the

contours are affected by the resolution of the data involved in training. With the current

resolution of satellite lightning products, satellite based lightning models may not be able

to achieve as localized of predictions as a convective initiation model can. The radar

based definition of convection may also allow for longer lead times relative to a lightning

based definition of convection since lightning initiation is dependent on a deep mixed

phase region, which generally develops after the radar definition of convective initiation

is satisfied as discussed earlier in 2.1.
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Figure 3.10: A comparison of model predictions for various band input combinations
for June 3, 2020 at 16:36:13 UTC, with the band combinations indicated above each
panel where the ABI band wavelengths are indicated by their respective channel name.
C02 is ABI band of wavelength 0.64 µm, C05 is 1.6 µm, and C13 is 10.3 µm. C02
reflectances are displayed in black and white for all channel combinations with C02
included. C05 reflectances are displayed in black and white for the channel combination
of C05 and C13 (lower left). The MRMS radar reflectivity at −10◦C are shown in greens
and yellows (second color bar from the left), and the probabilities of convective initiation

are shown with colored contours.

0.64 µm
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Figure 3.11: Case Study 2: 2020-06-03. The probability of lightning in the next 60
minutes from LightningCast (Cintineo et al., in prep) are shown in contours of varied
colors. Additionally, on top of an RGB image, GLM flash density is shown in colors

corresponding to the color bar on the bottom left.
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Chapter 4

Discussion and Conclusion

4.1 Discussion

As shown in Section 3.1, the deep learning model performed well with a converging loss

value in training, a consistent loss value during validation, an area under the receiver

operating characteristic curve (ROC AUC) of 0.9776, and only slight over-forecasting of

probabilities greater than about 40%. For comparison, the classical machine learning

models developed by Mecikalski et al. (2015) for nowcasting convective initiation yielded

ROC AUC values between 0.69 and 0.83 . Though the convection model presented in

this paper is not directly comparable the Mecikalski et al. (2015) models because the

convection model was restricted to daytime only cases in Missouri, Arkansas, and sur-

rounding states while including mature convection instead of only newly initiating cases,
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the much larger ROC AUC score illustrates the promise of deep learning for this appli-

cation. However, further work is needed to scale the model to the full continental United

States and additional methodology will be necessary to ensure distributed sampling of

various terrains, seasons, and climate zones.

Case study two (June 3, 2020), as presented in Section 3.2, illustrates how the model is

able to identify which cumulus clouds in a larger field of cumulus will initiate about 15-20

minutes prior to the formation of a radar echo. With further development, the lead time

relative to radar may enhance operational and personal decision-making (e.g. help people

seek shelter before the onset of lightning and other hazards). However, lead times could

depend on the labels presented to the model during training. As described in Section

2.2.1, the maximum MRMS radar reflectivity at the -10◦C isotherm in the 60 minutes

following the satellite observation time was used as targets or data labels during the model

training process. If the maximum was taken over a different time window (perhaps 30,

90, or 120 minutes), the lead time may be further enhanced. Further experimentation

is needed to ensure the maximum amount of lead time is provided without sacrificing

accuracy. Anecdotally, the lead time from the deep learning based convective initiation

model provided increased lead time for convective weather compared to a model developed

for predicting lightning onset. The first indication of a prediction for convective weather

appeared 10 minutes earlier in the deep learning model for convective initiation than the

deep learning model for lightning (shown in Figure 3.11). However, this is one example.

Further investigation is needed to quantify the lead time differences between lightning

models and convective models as well as their spatial and temporal differences.
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An explainable artificial intelligence technique, known as layer wise relevance propagation

(LRP), was used to gain insight into the most influential spatial patterns in each spectral

band for the predictions. A data denial experiment provided additional information on the

relative importance of the three spectral bands. The location of the high relevance pixels,

identified by LRP, as shown in Figure 3.9, indicated the model learned information about

gradients in reflectances and brightness temperatures as well as multispectral signatures to

predict convective initiation. In the spectral band omission analysis, the 0.5 km 0.64 µm

band was important for maximizing the accuracy and spatial precision of the predictions.

As expected, the spatial resolution of the data is important, just as it is to a human

expert manually analyzing satellite imagery. Additionally, the spectral band contribution

analysis suggested the importance of the spectral band inputs in descending order could

be ABI wavelengths 0.64 µm, 10.3 µm, and 1.6 µm. However, more statistical testing

needs to be implemented in the future to quantify this relationship fully.

Though the convective initiation model provides a well calibrated probabilistic solution

to aid forecasters in their decision making process, it may be further improved by elimi-

nating predictions associated with long lasting, mature storms. In case study one (June

5, 2020), high probability predictions appeared to lead a mature, slow moving, storm

structure as it traveled from Missouri to Arkansas with some additional areas of en-

hanced convective initiation predictions developing ahead of the mature storm. Since the

convective initiation predictions (Figure 3.5) associated with the mature storm remain

close to a known storm structure for an extended period of time, removing them from

the information provided to forecasters may allow for a more concise, informative model.
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Thus, future work could isolate convective initiation without highlighting mature cases

through manipulation of data labeling or post-processing.

4.2 Conclusion

Determining which cumulus clouds will develop into thunderstorms is a long-standing

“nowcasting” challenge. While the evolution of cumulus cloud fields in geostationary

satellite imagery provides forecasters with visual clues, a skillful objective analysis tool has

remained elusive. To address this capability gap, a subset of machine learning, known as

deep learning, was applied to Geostationary Operational Environmental Satellite (GOES-

R) Advanced Baseline Imager (ABI) imagery. More specifically a custom U-Net, a type

of convolutional neural network commonly applied to computer vision problems, was de-

veloped to identify active convection and to predict which cumulus fields are most likely

to initiate in the next 60 minutes. The model was trained with Multi-Radar Multi-Sensor

quality controlled radar reflectivity data at the -10◦C isotherm using a binary threshold

of 30 dBZ with anything greater than the threshold indicating the presence of convective

initiation. Model validation procedures reveal it performs well with a converging loss

value in training, a consistent loss value during validation, an area under the receiver

operating characteristic curve of 0.9776, and only slight over-forecasting of probabilities

greater than about 40%. The application of the model to two test cases indicated the

predicted probability of convection agreed well with regions of radar reflectivity at the

-10◦C isotherm and provided between 15 to 20 minutes of lead time prior to the first

radar signatures. Additional analysis revealed the model utilizes gradients in brightness
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temperature, gradients in reflectance, and multispectral patterns to make predictions.

Though the model was trained and tested for a limited spatial domain in the southern

United States during the daytime only, future work aims to eliminate these limitations

while isolating early convective initiation. With these enhancements, this deep learning

model for prediction of convective initiation has the potential to evolve into a robust

tool for use in operational forecasting and provide physical insight into convective initia-

tion through further analysis of influential predictors, spatial and seasonal patterns, and

comparison to lightning occurrences.
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