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Abstract

Comparing Infrared Cloud Detection Algorithms to Improve the Current

National Weather Prediction Infrared Cloud Detection Algorithm

by Brianne R Andersen

The current National Center for Environmental Prediction (NCEP) high resolution in-

frared (IR) cloud detection algorithm was originally designed for the High-resolution IR

Sounder (HIRS). HIRS has since been outdated by the Cross-track IR Sounder (CrIS),

which has significantly higher spectral resolution and smaller channel bandwidth. How-

ever, the current algorithm has yet to fully modernize, and does not utilize the full

capabilities CrIS o↵ers. The purpose of this project was to bring the NCEP’s algorithm

into the modern age by comparing the NCEP algorithm with CO2 Slicing, Dual Re-

gression (DR), and European Centre for Medium-Range Weather Forecasts Cloud and

Aerosol Detection Algorithm (ECMWF), all of which take advantage of CrIS and its high

spectral resolution potential. After a thorough investigation, CO2 Slicing was considered

the principal algorithm to improve NCEP.

Spatial points where CO2 Slicing di↵ered from NCEP were examined to determine which

algorithm was valid, utilizing collocated Visible Infrared Imaging Radiometer Suite (VI-

IRS) as observed data/truth, comparison plots, and statistical analysis. Suggested imple-

mentable changes to the current were proposed from the analysis of spatial points where
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NCEP incorrectly classified the point but CO2 Slicing correctly classified the point. Ad-

ditionally, suggestions of CrIS channels to add to NCEP clear sky scheme were proposed

to help in removing cloud contaminations.
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Research Objective

The objective of the research described in this paper is to improve the current National

Center for Environmental Prediction (NCEP) infrared (IR) cloud detection algorithm

(henceforth called NCEP Algorithm). By way of better detecting clouds, this research

also serves to improve the clear sky detection. This paper proposes techniques which

could o↵er improvements to the NCEP Algorithm by

I. identifying and removing cloud contaminated points, and

II. increasing the number of clear sky points to be assimilated.

The objectives correctly imply that the NCEP Algorithm may be significantly misclas-

sifying measurements as cloudy or clear. This results in incorrect or unnecessary bias

corrections, poorly executed assimilations, and smaller datasets used in the assimilation

system. One application of the NCEP Algorithm is providing cloud information (e.g.,

cloud top pressure (CTP) and cloud e↵ective emissivity (N")). Accurate CTP and N"

calculations are vital information for modeling temperature and humidity atmospheric

profiles (Lim et al., 1989, Wang et al., 2017). This, in turn, is used to forecast weather

systems on multiple meteorological scales, such as mesoscale for precipitation systems
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or synoptic scale for hurricanes. This lends credence to the importance of an accurate

NCEP Algorithm.

For an optimized clear sky assimilation, the input would only accept high-spectral reso-

lution IR radiances from field of view (FOV) measurements that have not been a↵ected

by clouds. The more FOVs incorporated into the algorithm, the more accurate the as-

similation and bias correction would be. With an improved algorithm, cloudy FOVs

would be rejected and more clear FOVs would be identified and assimilated. As will be

described in the NCEP Algorithm Explained section of this paper, the NCEP Algorithm

is relatively conservative in the classification of clear sky. This results in relatively few

FOVs classified as clear, potentially losing valuable data for downline processing. Even

with this conservative approach, some cloudy FOVs are still misclassified as clear, which

produces a cold bias in the assimilation. This is especially true for FOVs with high level

(above 200 hPa) optically thin cirrus clouds.

For this study, three algorithms were compared with the NCEP Algorithm to investigate

if they better classify measurements within a FOV as cloudy or clear, and to note the

CTP and N" values:

i. Dual Regression (DR) described by Smith et al. (2012)

ii. European Centre for Medium-Range Weather Forecasts Cloud and Aerosol Detection

Algorithm (henceforth called ECMWF-CAD) described by McNally and Watts (2003)

iii. CO2 Slicing described by Wylie and Menzel (1989).
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The focus of this work is on data from the Cross-track Infrared Sounder (CrIS). Each

algorithm is currently being used in operations in some capacity, most directly demon-

strated with ECMWF-CAD at the European Centre. This paper outlines the process

used to compare each of the algorithms against the NCEP Algorithm and suggests the

best preforming algorithm. A description of the 4 algorithms and the data used is fol-

lowed by an account of the methodology for algorithm performance analysis, noting the

variability taken into account, assumptions made, and plots used. The algorithms are

evaluated for performance initially over ocean only (limiting the data set to a relatively

uniform earth surface) and then globally (including complex land surfaces) for one day

in January, April, July, and October covering the four seasons. A summary of the re-

sults and recommendations for consideration by NCEP is o↵ered in the discussion and

conclusion.
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Methodology

2.1 Data Used

For all algorithms investigated in this paper, observation brightness temperature (BT) and

transmittance data was required as an input, specifically coming from CrIS. CO2 Slicing,

ECMWF-CAD, and the NCEP Algorithm further required simulated clear BT from a

model as an input. The model data, in this case, came from the analyses data, which will

be further discussed below. For this project, Visual Infrared Imaging Radiometer Suite

(VIIRS) data were used as visual confirmation of algorithm outputs, and were assumed

to be observation truth in most cases. This section provides a brief description of the

data used.

2.1.1 CrIS

CrIS is a sounding instrument part of the Joint Polar Satellite System (JPSS)—a NOAA

and NASA program—currently aboard Suomi-NPP (launched 2011-28-10) and NOAA-

20 (launched 2017-18-11). It is the successor to High-resolution IR Radiation Sounder

(HIRS). Note, only CrIS data from NOAA-20 was used in this paper. It hosts 2211 spec-

tral channels, ranging from 650 cm
�1 to 2250 cm

�1 (Iturbide, 2021)), of which the NCEP

Algorithm uses a subset of 431 channels. Although all 2211 channels were input into DR
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and the subset were input into the NCEP Algorithm and ECMWF-CAD, channels with

smaller wavenumbers were exclusively used in CO2 Slicing, and were primarily used in

analysis, as larger wavenumbers tend to be associated with surface features. Frequency

bands in the longwave/small wavenumber have spectral resolution of 0.625 cm
�1. The

spatial resolution of a CrIS FOV is 13.5 km at nadir. The temporal resolution varies by

latitude, with a full orbit scan taking 101 minutes, resulting in twice daily passes over

equatorial regions and up to 14 daily passes at the poles. Ignoring orbital track features,

CrIS completes a nearly full global scan in approximately 12 hours.

2.1.2 VIIRS

VIIRS, like CrIS, is a part of JPSS and is on SNPP and NOAA-20. The standard spatial

resolution at nadir is 750 m, and can be colocated with CrIS at 13.5 km. For the purposes

of this project as visual confirmation, 24-hour simulated true color composites were used.

True color was simulated via channels 5, 4, and 3, or 0.672 µm, 0.555 µm, and 0.488 µm

respectively (NASA, 2021). Note, as this is visible data, the imagery is limited to daylight

hours defined as FOVs with local solar zenith angle � 84� . Additionally, colocated VIIRS

CTP and N" approximations were considered as an additional estimate of CTP and N".

2.1.3 Analyses

Model calculated clear sky BTs were an input to the NCEP Algorithm, CO2 Slicing, and

ECMWF-CAD. These values came by way of the Community Radiative Transfer Model

(CRTM). The CRTM was developed via a conglomeration of multiple radiative transfer
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models (RTM). A RTM is a way to model the radiative processes between incoming solar

as well as outgoing earth radiation and the atmosphere, and the earth’s surface. Every

RTM uses assumptions to approximate the radiative system, but each essentially boils

down to a summation of incoming shortwave solar radiation, and longwave and shortwave

absorbed, reflected, and refracted radiation. For this project, the model data came from

Finite-Volume Cubed-Sphere Global Forecast System (FV3GFS). FV3GFS is a part of

the NCEP Central Operations (NCO) weather forecast suite, and outputs values such as

ambient atmospheric temperature and pressure profiles, water vapor content, etc. (Lin

et al., 2017). These variables are then analyzed via the Gridpoint Statistical Interpolation

(GSI) software in time and space. Next, the FV3GFS GSI analyses data are inputted

into the CRTM. The outputs of interest from the CRTM for the algorithms are simulated

clear sky radiance, transmittance, and weighting values at multiple pressure levels (128

in the case of analyses) at every CrIS wavenumber (JCSDA, 2021). From here on, the

term ”analyses”, abbreviated as A, will refer to the channel equivalent clear radiances

from the CRTM via the FV3GFS atmospheric analyses.

2.2 Explanation of the NCEP Algorithm

The current NCEP Algorithm, as outlined in Eyre and Menzel (1989), works via compar-

ing clear analyses calculated radiances to observed IR radiances at each model layer using

the channel’s/wavenumber’s Jacobian at the specific model layer. For each IR profile, the

NCEP Algorithm will output a binary cloud mask value of cloudy or clear. If cloudy,

the NCEP algorithm will determine the model layer where the cloud resides and estimate
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its cloud optical thickness (COT). With this information, the NCEP algorithm will then

determine which channels/wavenumbers are contaminated by clouds.

The NCEP Algorithm assumes:

• Clouds are single layered. Therefore, for each cloudy FOV, there is only one CTP

and one COT value.

• The cloud BT is the same as the environmental/surrounding pressure level calcu-

lated BT.

• Integration of radiance values are taken from the top of the atmosphere to the

surface in clear FOVs, or to the CTP in cloudy FOVs. However, clouds are searched

from the surface to the tropopause (Trop).

• The observed BT from a CTP to the surface are similar in value due to the nature

of satellite retrievals.

• All clouds are taken to be opaque, therefore, e↵ective emissivity is assumed to be

equal to 1.

• Smaller IR wavenumbers are more sensitive to features higher up in the atmosphere.

The following is the algorithmic protocol of the NCEP Algorithm. A visual representation,

is provided as Figure 2.1.
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Figure 2.1: The NCEP Algorithm inputs clear BT from the analysis (A) model and

observation (O) data from CrIS. The output clear or cloudy classification for each

FOV is determined via this process. The end result is either a clear FOV where all

wavenumbers are taken as clear, or a cloudy FOV a CTP value. For cloudy FOVs a

separate method is used to determine clear and cloudy wavenumber.
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1. A matrix of analyses clear BT is compiled for each FOV at every CrIS wavenumber.

A second matrix of observed layer temperature di↵erence for the same FOV is built

and used later in the process. Pressure layers are assigned within the data file array

values 1 to 127, where 1 is the near surface layer pressure and 127 is the top of the

atmospheric profile. Note: layers above the tropopause are ignored.

FOVanalyses =

2

6666664

BTA(⌫1, Pm) . . . BTA(⌫n, Pm)

...
. . .

...

BTA(⌫1, P1) . . . BTA(⌫n, P1)

3

7777775

FOVO =


BTO(⌫1) . . . BTO(⌫n)

�

2. A quality control algorithm is run to thin out the CrIS channels, eliminating con-

taminated (dust, smoke, etc.) and especially noisy channels.

3. A pressure layer is defined as the space between two sequential pressure levels. At

each pressure layer where a CrIS channel is accepted by the quality control, the

(analyses - observed) channel BT and pressure related weighted di↵erence (Jaco-

bian) of clear analyses BT is calculated, formulating an analyses weighted di↵erence

matrix.

�(⌫a, Pb,b�1) = (BTA(⌫a, Pb)� BTO(⌫a, Pb�1)) ⇤W (⌫a, Pb,b�1)

FOV� =

2

6666664

�(⌫1, Pm,m�1) . . . �(⌫n, Pm,m�1)

...
. . .

...

�(⌫1, P2,1) . . . �(⌫n, P2,1)

3

7777775
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4. This weighted di↵erence value is then summed through all channels/wavenumbers

at each pressure layer in two ways. The first multiplies this value at each wavenum-

ber to the corresponding (analyses - observed) BT, again taking the sum of all

wavenumbers at each pressure level.

sum1(Pb,b�1) =
P

n

i=1 �BT (⌫i)�(⌫i, Pb,b�1)

FOVsum(1)
=

2

6666664

sum1(Pm,m�1)

...

sum1(P2,1)

3

7777775

The second sum is e↵ectively the sum of the squared weighted di↵erence of analyses

BT at each pressure layer.

sum2(Pb,b�1) =
P

n

i=1 (�(⌫i, Pb,b�1))2

FOVsum(2)
=

2

6666664

sum2(Pm,m�1)

...

sum2(P2,1)

3

7777775

5. The ratio of the two sum values from the previous step provides the cloud percentage

at each pressure layer. If a pressure layer has an unrealistic value, that is a value

not between 0% and 100%, then it is rejected as a realistic pressure layer.

CLD%(Pb,b�1) =
sum1(Pb,b�1)
sum2(Pb,b�1)

FOVCLD% =

2

6666664

CLD%(Pm,m�1), 0  CLD%(Pm,m�1)  1

...

CLD%(P2,1), 0  CLD%(P2,1)  1

3

7777775
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6. A final sum at each pressure layer (of (analyses - observation) BT cloud amount

weighted analyses di↵erence) is calculated. This one reduces the observed BT by

using the weighted analyses di↵erence and cloud percent values, then squares this

di↵erence. Another interpretation of this is the squared sum of weighted observed

minus (analyses - observation) clear radiances through all considered wavenumbers

at each pressure layer. This provides a value in which to compare pressure layers

against one another to detect a cloud.

sum3(Pb,b�1) =
P

n

i=1 [�BT (⌫i)� CLD%(Pb,b�1)�(⌫i, Pb,b�1)]2

FOVsum(3)
=

2

6666664

sum3(Pm,m�1)

...

sum3(P2,1)

3

7777775

7. The search for a cloud signal begins at the surface with a fog and surface cloud

detection test. If sum3 for a FOV at the first pressure layer, defined as P2,1, is less

than 0.75, then the NCEP Algorithm indicates fog or a surface level cloud. The

CTP is then defined as halfway through pressure layer P2,1.

sum3(P2,1)  0.75 ! P2  CTP  P1

However, if that statement is false, that is sum3(P2,1) > 0.75, then the NCEP Algo-

rithm starts to compare pressure layer sum3 values against one another. There is a

caveat that sum3 values should not be exactly 0, or that there must be di↵erences

between observed and analyses BT values.
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FOVCTP =

2

666666666666664

sum3(Pm�1,m�2) > sum3(Pm,m�1) ! Pm  CTP  Pm�1

...

sum3(Px,x�1) > sum3(Px+1,x) ! Px+1  CTP  Px

...

sum3(P2,1) > sum3(P3,2) ! P3  CTP  P2

3

777777777777775

A cloud is detected at the first pressure layer the upper layer is greater than the

layer just below it. For example, a FOV has a cloud between pressure levels 40

and 41. At the surface level, the NCEP Algorithm will not detect surface fog or

clouds. It will then compare layer 2, the layer comprised of the surface level and

the first pressure level, sum3 value to layer 3 sum3 value (between pressure level

2 to level 3). In this instance, layer 2 will have a sum3 value less than the layer 3

sum3 value. For all layers in between the surface and the cloud, the sum3 will be

increasing with increasing height. However, at the cloud layer, the lower layer will

have a higher sum3 value than the upper layer. In the example, the sum3 value for

layer 40 (between pressure levels 39 and 40) will be more than the sum3 value for

layer 41 (between pressure levels 40 and 41). Therefore, the FOV will be classified

as cloudy, and the CTP will be calculated as between pressure levels 40 and 41.

The NCEP Algorithm was developed during the era of and for the HIRS. HIRS, which

was last launched on NOAA-19, has 19 IR channels. Its successor, CrIS, has significantly

higher spectral resolution with 2211 IR channels. The NCEP Algorithm currently uses

a subset of the available CrIS data, typically working with 431 of the 2211 channels.
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However, not all 431 channels are used in every assimilation. For example, during a

random assimilation, after a quality control is applied, only about 23% of the 431 channels

were used (aka not monitored), and only 13.5% of the 431 channels were used in the clear

sky scheme. That is, the NCEP Algorithm used 58 CrIS channels, nearly triple the

number of HIRS channels, but a mere 2.6% of the 2211 CrIS channels.

Part of the investigation in this paper is to question this statistic, explicitly with the

scope of the NCEP Algorithm. Is only using 2.6% of the available channels adequate in

producing an accurate clear sky scheme? It is also important to question the quality of the

selected channels, and how each channel is used. That is, are the selected CrIS channels

utilizing CrIS’ full potential as a sensor? Do they maximize the correct selection of clear

sky FOVs, and if not would adding more channels and/or selecting di↵erent channels

and/or assimilating the channels in a di↵erent way impact the accuracy of clear sky FOV

detection? A noteworthy point, then, is that while the other algorithms have similar

structures to the NCEP Algorithm, as will be demonstrated in the next section, possibly

small assumption, process, and decision-making modifications could greatly a↵ect the

outcome.

2.3 The Alternate Algorithms Explained

2.3.1 Explanation of CO2 Slicing

CO2 Slicing, just as with the NCEP Algorithm, compares analyses and observed BT

values throughout a FOV atmospheric profile to detect a cloud. CO2 Slicing also assumes
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that clouds are single layered, clouds share similar observed BT and surrounding BT,

and smaller IR wavenumbers are more sensitive to features higher up in the atmosphere.

Additionally, it uses a top of atmosphere to surface approach in searching for a cloud,

and a surface up approach in integration.

But CO2 Slicing has two basic structural di↵erences that sets it apart from the NCEP

Algorithm. First, CO2 Slicing only uses CO2 absorption channels, rather than the sub-

set of 431 channels NCEP Algorithm uses (specifically spectrally close CO2 absorption

paired). Moreover, only selected paired channels are used to detect clouds and CTP, re-

lying on the aforementioned wavenumber and atmospheric height relationship. Secondly,

CO2 Slicing does not rely on the assumption the NCEP Algorithm uses that clouds are

opaque. Rather, if two wavenumbers are spectrally close to one another, then the ratio

of their " should be very similar.

"(⌫1) ⇡ "(⌫2) ) "(⌫1)
"(⌫2)

⇡ 1

This assumption allows for FOVs with optically thin clouds, specifically optically thin

cirrus, to be classified as cloudy (Zhang and Menzel, 2002). These clouds are of particular

interest as they are often non-detectable in the visible spectrum, and the NCEP Algorithm

often misidentifies these FOVs as clear sky. Additionally, as explained by Sassen et al.

(2002), sensors such as radar and lidar have proven e↵ective at detecting thin clouds,

but the lower spatial and temporal resolution of these sensors limits in their e�cacy as

secondary cloud detection measures.
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The CO2 Slicing is encapsulated in this equation:

A1(⌫) = RA(⌫)�RO(⌫)

A2(⌫, P ) =
R

P

PPBL

⌧(⌫, P )BT (⌫, T (P ))dP

N"(⌫, P ) = RO(⌫)�RA(⌫)
BT (⌫,T (P )))�RA(⌫)

A3(nu1, ⌫2, PCLD) =
A1(⌫1)
A1(⌫2)

�
⇣

N"(⌫1,PCLD)
N"(⌫2,PCLD)

⌘⇣
A2(⌫1,PCLD)
A2(⌫2,PCLD)

⌘

CO2(⌫1, ⌫2) = PCLD ! A3(nu1, ⌫2, PCLD) ⇡ 0

(Note, the N" fraction on the right side of the equation was included for completion, but

as perviously stated, is assumed to equal 1.)

Where:

⌫ = CrIS wavenumber

⌫1, ⌫2 = paired, spectrally close CO2 absorption wavenumbers

P = pressure level

PSFC = surface pressure

PCLD = cloud pressure, as calculated by CO2 Slicing

RO(⌫) = observed radiance at some P and ⌫

RA(⌫) = analyses clear calculated radiance at some ⌫

⌧(⌫, P ) = analyses calculated transmittance at some ⌫
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BT (⌫, T (P )) = blackbody radiance from Planck’s function, using temperature T at P

and ⌫

The original CO2 Slicing framework, as described in Wylie and Menzel (1989), was

adapted for this project to better employ the spectral resolution CrIS o↵ers, including:

1. Defining an atmospheric boundary for CTP.

Clouds are assumed to fall between the planetary boundary layer top height and the

Trop height. The planetary boundary layer, as defined by AMS (2012a), is the bottom

region of the troposphere that is a↵ected by surface conditions. CO2 Slicing was limited

to above the PBL in order to limit surface e↵ects and issues in the CO2 Slicing algorithm

which may arise from the inversion. The planetary boundary layer top height (PBL) is

typically no higher than 850 hPa, and can be as low as the surface. The PBL can be

found as the first inversion in the temperature profile. Therefore, for the CO2 Slicing

algorithm, the PBL was found by searching the temperature profile between the surface

and 850 hPa for a temperature inversion, where if no inversion exists, then the PBL was

assumed at the 850 hPa. This is mathematically represented as:

P(PBL) =

8
>>>>>><

>>>>>>:

PSFC ! T (P(SFC)) < T (P(SFC+�P ))

Pa ! T (P(a)) < T (P(a+�P ))

P850[hPa] ! T (P(850[hPa])) � T (> P(850[hPa]+�P ))

The Trop, according to the AMS (2012b), defines the boundary of the troposphere and

stratosphere. Because of the diametrically di↵erent temperature, moisture, and stability
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profiles at the troposphere and stratosphere, the Trop is indicated as a caping inversion

at the top of the troposphere. Except in the case of tropospheric protrusions, such in

the case of overshooting tops, CTP typically occur at or below the Trop. Therefore, the

Trop can be found by searching for the lowest height temperature inversion within the

upper troposphere. The Trop is latitudinally and seasonally variant, resulting in possible

Trop ranges depending on those two variables (Hu and Vallis, 2019). In the tropics and

mid-latitude regions, defined here as 60N - 60S, there is limited variability throughout

the year. But at the poles, the north 90N - 60N (south 60S-90S) pole has a potentially

lower Trop during boreal (austral) summer compared to autumn and spring months, and

potentially an even lower Trop during boreal (austral) winter compared to boreal (austral)

summer. This is simplified in the table below.

Mid-November to Mid-March

Latitude Range 90N - 60N 60N - 60S 60S - 90S

Trop Range 0 hPa - 375 hPa 0 hPa - 200 hPa 0 hPa - 250 hPa

Mid-March to Mid-May and Mid-September to Mid-November

Latitude Range 90N - 60N 60N - 60S 60S - 90S

Trop Range 0 hPa - 200 hPa 0 hPa - 200 hPa 0 hPa - 200 hPa

Mid-May to Mid-September

Latitude Range 90N - 60N 60N - 60S 60S - 90S

Trop Range 0 hPa - 250 hPa 0 hPa - 200 hPa 0 hPa - 375 hPa
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2. Increasing the number of channel pairs from 3 to 4, including a smaller wavenumber

channel pair for upper-level features.

CO2 Slicing was originally limited to the channels available on HIRS. This limited the

number of available CO2 absorption to just 4 wavenumbers, or 3 pairs. These channel

pairs were each roughly associated with CTP heights. That is,

HIRS channels 4 and 5 (704 cm�1, 716 cm�1) associated with high (weighting peak around

350 hPa) level CTP

HIRS channels 5 and 6 (716 cm�1, 732 cm�1) associated with mid (weighting peak around

550 hPa) level CTP

HIRS channels 6 and 7 (732 cm
�1, 748 cm

�1) associated with low (weighting peak around

850 hPa) level CTP

From Menzel et al. (2008), CO2 Slicing works best at 700 [hPa] or higher, and CO2

Slicing shows more promise higher up in atmosphere where it can detect upper level

cirrus. Thus, an addition of a fourth, smaller wavenumber would best enhance the CO2

Slicing algorithm. This was done by including 691.875 cm
�1. Additionally, to align with

CrIS channels, 705 cm
�1, 715 cm

�1, 733.125 cm
�1, and 748.125 cm

�1 were used.

3. Using channel pair groupings, rather than just a singular channel pairs, and IR

window test.
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To limit observation noise, 4 wavenumbers surrounding each of the central 4 smaller

wavenumbers were used as quality control and to enable CO2 Slicing CTP averaging. The

wavenumbers surrounding the central wavenumber were selected at 1.2 cm
�1 intervals.

This was to keep all wavenumbers on the rotational band. Moreover, an IR window test

was added as a secondary test and to detect lower level CTP (Menzel, 2009). That is,

CTP Category Wavenumber 2 ⌫2 cm
�1 Wavenumbers 1 ⌫1 cm

�1

High 705 689.375, 690.625, 691.875, 693.125, 694.375

Mid-High 715 702.5, 703.75, 705, 706.25, 707.5

Mid 733.125 712.5, 713.75, 715, 716.25, 717.5

Mid-Low 748.125 730.625, 731.875, 733.125, 734.375, 735.625

Low and SFC N/A 959.375

The three component equations of the CO2 Slicing algorithm are the CO2 Slicing equa-

tion, the IR window test equation, and the optical thickness equation. As with the NCEP

Algorithm, a visual representation of CO2 Slicing can be found in Figure 2.2. Below is

the CO2 Slicing algorithm protocol:

1. The PBL and Trop are calculated using the 128 analyses pressure levels and the

associated ambient atmospheric temperature profiles. Then, an array of A2(⌫, P )

is compiled for each FOV at each 21 CrIS channels listed above (i.e., not including

the 959.625 cm
�1 IR window test channel).
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Figure 2.2: CO2 Slicing works by first searching where the assimilation (A) and

observation (O) radiances di↵erence (dots above) at spectrally close CO2 absorption

wavenumbers are at or above 0.5 radiance. In this example, 733.125 cm�1
and 748.125

cm�1
work. Then the wavenumber pair are used to calculated the CTP in the CO2

Slicing formula (A3 ) as the pressure level closest to 0. For the example, that occurs at

715 hPa.
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A2(⌫, P ) =
R

P

PPBL

⌧(⌫, P )BT (⌫, T (P ))dP

A2(FOV ) =

2

66666666664

A2(⌫689.375, PTrop) A2(⌫690.625, PTrop) ... A2(⌫748.125, PTrop)

A2(⌫689.375, PTrop��P ) A2(⌫690.625, PTrop��P ) ... A2(⌫748.125, PTrop��P )

...
...

...
...

A2(⌫689.375, PPBL+�P ) A2(⌫690.625, PPBL+�P ) ... A2(⌫748.125, PPBL+�P )

3

77777777775

⌧ values are simulated from model data. Values of BT are calculated via Planck’s

function using the following equation:

BT (⌫, T (P )) = 1.191042⇤10�5⇤⌫3

e
( 1.4387752⌫

T (P )
)

2. Meanwhile, an additional array is compiled for A1 at each FOV for the 21 CrIS chan-

nels. Analyses clear radiances, are provided as singular values for each wavenumber,

just as with observed radiance data, making A1 not pressure depended.

A1(⌫) = RA(⌫)�RO(⌫)

A1(FOV ) = [A1(⌫689.375) A1(⌫690.625) ... A1(⌫748.125)]

3. The last array calculated is for the IR window test. It compares the ambient

temperature profile to the observed BT at a wavenumber sensitive to surface features

(959.375 cm
�1). This is done for the full atmosphere, rather than from the PBL

to the Trop, as this test is used to detect any near surface level clouds, as well as

potential identify an upper layer CTP missed earlier. This test can also identify if

a FOV is clear or surface fog by indicating a pressure level at or near the surface.

N" will not be calculated quite yet, as the calculated CTP will be required.
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IR(PCTP ) ! 0 ⇡ T (PCTP )� BTO(959.375)

IR(FOV ) =

2

66666666664

T (Pm)� BTO(959.375) = min ! PCTP = Pm

...

T (P2)� BTO(959.375) = min ! PCTP = P2

T (P1)� BTO(959.375) = min ! PCTP = P1

3

77777777775

4. The observed radiance for FOV in a cloud should, ideally, be su�ciently di↵erent

from the model analyses calculated clear radiance. CO2 Slicing takes this concept to

identify a cloud by searching through the analyses and observation di↵erence array,

A1(FOV ). This is done by assuming that a 0.5 radiance di↵erence or more indicates

a cloud and assuming that if this di↵erence is large enough for one wavenumber it

should also be large enough for larger wavenumbers. This cuto↵ value was selected

after a cloud type distribution chart of various CO2 Slicing runs using di↵erent cuto↵

values was compared to a climatology (Menzel, 2009), and the NCEP Algorithm.

This is visualized in Figure 2.3. Therefore, the algorithm will search at each channel

group for that larger di↵erence, starting with the smallest wavenumber group. If

there is no di↵erence above the 0.5 radiance threshold in the first channel group,

then the next channel group is searched. The search will stop either when at least

one channel in a channel grouping satisfies the cloud detection threshold test or all

channel groups have been exhausted.

If a channel group has at least one wavenumber where A1(⌫1) � 0.5, then the

CO2 Slicing equation is calculated for all wavenumbers in the group that meet the
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Figure 2.3: The distribution of cloud types, defined by CTP and N", were plotted for

three iterations of CO2 Slicing. The iterations di↵ered by the threshold, at 0.25 (A), 0.5

(B), and 1.0(C). They were compared against for climatology (D) to determine the best

match (Warren et al., 1986). NCEP Algorithm (E) distribution included for reference.

Inconclusive data occurs when CO2 Slicing did not provide a conclusive result.
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criteria. If no channel makes A1(⌫1) � 0.5 true in the 4 groupings, then the CO2

Slicing is inconclusive, and the IR window channel test is performed.
2

666666666666666666666666666666666666666666666666666666666666664

{A1(689.375)|A1(690.625)|A1(691.875)|A1(693.125)|A1(694.375) � 0.5

! CO2(⌫1, 705), ⌫1 = [689.375|690.625|691.875|693.125|694.375] ! Done

{A1(689.375)&A1(690.625)&A1(691.875)&A1(693.125)&A1(694.375) < 0.5

#

{A1(702.5)|A1(703.75)|A1(705)|A1(706.25)|A1(707.5) � 0.5

! CO2(⌫1, 715), ⌫1 = [702.5|703.75|705|706.25|707.5] ! Done

{A1(702.5)&A1(703.75)&A1(705)&A1(706.25)&A1(707.5) < 0.5

#

{A1(712.5)|A1(713.75)|A1(715)|A1(716.25)|A1(717.5) � 0.5

! CO2(⌫1, 733.125), ⌫1 = [712.5|713.75|715|716.25|717.5] ! Done

{A1(712.5)&A1(713.75)&A1(715)&A1(716.25)&A1(717.5) < 0.5

#

{A1(730.625)|A1(731.875)|A1(733.125)|A1(734.375)|A1(735.625) � 0.5

! CO2(⌫1, 748.125), ⌫1 = [730.625|731.875|733.125|734.375|735.625] ! Done

{A1(730.625)&A1(731.875)&A1(733.125)&A1(734.375)&A1(735.625) < 0.5

#

Refer to IR Window Test

3

777777777777777777777777777777777777777777777777777777777777775

(a) The case that A1(⌫1) � 0.5 is true at least once:

Because analyses datasets are discrete, rather than continuous, there is typ-

ically not an exact point where the two ratios equate. So, the CO2 Slicing
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equation works by searching for the closest pressure level where the equation

is most true. The pressure level which that is true is assumed to be the CTP.

If 1 wavenumber matches the criteria, then the CTP from that one wavenum-

ber is use as truth. If 2 wavenumbers match, a simple average is taken of

the calculated CTP. If 3-5 wavenumbers match, then a weighted average is

taken, only taking the average of CTP values with 1 standard deviation of the

mean. This is visualized in Figure 2.4, and the e�cacy of using 5 channels is

demonstrated in Figure 2.5. A detailed explanation of O-A plots is provided

in 3.1.1. The O-A plot suggests that using the single central channel would

limit the number of FOVs that meet the cuto↵ value. Using the 5 channels,

resulting in 31 combinations of wavenumbers used, results in nearly a 20%

increase in FOVs used as compared to one, and a 10% increase compared to

3. No significant increase was provided for using above 5 channels, and would

result in wavenumbers not su�ciently close spectrally.

This CO2 Slicing CTP value is then compared to the IR window test value. If

the CTP from the IR window test is higher up in the atmosphere than from

the CO2 Slicing CTP, then the IR window test CTP is selected. Additionally,

a further tests based on N" is performed to verify that the N" is less than 1.3

(allowing for some error) using the CTP as the pressure,

N"(959.375, PCLD)  1.3

However, if this test fails, the FOV is marked inconclusive.

(b) The case that A1(⌫1) � 0.5 is false for all wavenumbers:
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Figure 2.4: Each CO2 Slicing wavenumber group has 32 combinations of possible

solutions. For example, take the wavenumber group with ⌫2 = 733.125 cm�1
. Above

are the ⌫1 wavenumbers within the group, and below are the 31 combinations. In

combination 01, all 5 wavenumber meet the cuto↵ threshold, so the weighted average

of the 5 wavenumbers is calculated. The 32 combination is that no wavenumber meet

the cuto↵ threshold, and CO2 Slicing continues to the next group/step.

The conclusion then is not that CO2 Slicing equation did not detect a cloud,

therefore the FOV is clear. The conclusion is that the CO2 Slicing equation

was inconclusive in finding a cloud, and the IR window test is used. The IR

window test may provide a CTP provided N" is acceptable.

If this IR window equation CTP is within the PBL and Trop range, and

A1(959.375) � 0.5, then the CTP provided is taken as true.

If this IR window equation CTP is very close to the surface and A1(959.375) �

0.5, then the FOV has a surface cloud or fog.

If this IR window equation CTP provided and A1(959.375)  �0.33 over land

or A1(959.375)  0.5 over ocean, then the FOV is marked as clear.

In any other case, the FOV is marked inconclusive.

5. The end result of the CO2 Slicing algorithm, then, is a clear or cloudy classifica-

tion for each FOV at each of the 22 CrIS wavenumbers. For FOVs with cloudy
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Figure 2.5: The utility of using 5 wavenumbers for CO2 Slicing is demonstrate in this

figure. Only using wavenumber 715 (green) results in more than 356,000 fewer FOVs

used. The bulk of the missing FOVs have O-A values close to 0, as shown by the area

under the curve between the wavenumbers 712.5 (red) and 715.
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classification at any CrIS wavenumber, a singular CTP and N" value is calculated.

Note, there are still several CrIS CO2 absorption wavenumbers not used in this version of

CO2 Slicing. This suggests that CO2 Slicing could be further adapted to fully optimize

the use of CrIS.

2.3.2 Explanation of DR

DR, as described in Smith et al. (2012), works from the fact that small wavenumbers

are associated with features higher up in the atmosphere to develop atmospheric pro-

files. Namely, clear and cloudy trained atmospheric profiles are developed for each FOV.

This is done by noting that each wavenumber spectrally peaks at di↵erent pressure level,

providing a height coordinate, and thus the calculated BT can be used to infer an atmo-

spheric profile. DR is operational on HyperSpectral ReTrieVal (HSRTV) software, hosted

by University of Wisconsin-Madison (UW-Madison), Space Science and Engineering Cen-

ter (SSEC), and JPSS’s Community Satellite Processing Package (CSPP) (Weisz, 2020).

Dissimilar to the other algorithms, DR on HSRTV develops the two atmospheric profiles

from simulated clear radiances via the Principal Component-based Radiative Transfer

Model (PCRTM) and historical thermodynamic properties, such as wind and temper-

ature, tendencies. Di↵erent orthogonal functions are used for clear and cloud radiance

calculations. The coe�cients for the functions come from a weighting system based on

all CrIS channels  2400cm�1. The coe�cients are selected via the observed BT and

radiances measured by CrIS, as well as the FOV location and time of year. Like CO2
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Slicing, DR runs through 8 height levels for cloudy profile formulation. The height range

for the two profiles is 100 hPa - 1000 hPa, bounding CTP classification in that range.

The identification of a cloud is logically parallel to the NCEP Algorithm and CO2 Slicing.

That is, a cloud is identified if the clear and cloudy trained profiles diverge at some height.

Conceptually this works by assuming above the CTP, the clear and cloudy profiles should

coincide. However, at the CTP the profiles should bifurcate, with the cloudy trained

profile terminating at a colder BT than the clear profile at 1000 hPa. If the FOV is clear,

there should be no divergence of the profiles. The N" is calculated via the PCRTM.

DR, as with the NCEP Algorithm, does not select channels used in the algorithm specific

to the FOV, rather via quality controls as a function of the full input file. However,

unlike how the other algorithms provide a unique channel and FOV specific cloudy or

clear classification, DR only provides one classification per FOV representing the full

atmospheric profile. The end product of DR, then, for each FOV is a clear or cloudy

classification, and a CTP and N" value for cloudy FOVs. HSRTV additionally provides

an output array of the channels used in the retrieval with dimensions of CrIS channels

 2400cm�1. A distinctive feature of DR on HSRTV is the algorithm can also be run

using the European Space Agency IR Atmospheric Sounding Interferometer and NASA

Atmospheric IR Sounder on the Aqua satellite, broadening the scope of DR’s capabilities.
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2.3.3 Explanation of ECMWF-CAD

ECMWF-CAD is a software package developed by ECMWF, comprising of an aerosol

and a cloud detection component. The cloud detection component is based on the work

by McNally and Watts (2003). It uses observed and calculated BT di↵erence at multiple

CrIS wavenumbers and a cloud sensitivity ranking of those CrIS wavenumbers to detect

clouds. The channels are ranked according the channel height assignment, which was

done in this paper via a weighting function derived pressure provided by the analyses.

The analyses also provided the clear simulated BT. The observed BT came from CrIS.

Because of the channel ranking system, it cannot be assumed that smaller wavenumbers

are more sensitive to features higher up in the atmosphere. Additionally, as discussed in

the description of the algorithm below, clouds are generally assumed to be between the

Trop and PBL.

The McNally and Watts (2003) paper provides ECMWF-CAD with assumed limits on

what channels are used, and how many FOVs are classified as clear at various wavenum-

bers. Between 666.67 cm
�1 (15 µm) and 714.3 cm

�1 (14 µm), more FOVs are marked

clear than at any other wavenumber range at 40-100% of all FOVs, and from 714.3 cm
�1

(14 [µm]) to 888.33 cm
�1 (12 µm) around 5-10% of all FOVs are marked clear. This

roughly aligns with the other algorithms.

The objective of ECWMF-CAD is to provide a list of FOVs at each wavenumber that

are calculated as clear. While it outputs a binary cloudy or clear classification for each



31

FOV at each wavenumber, it does not provide a CTP or N" value for each FOV. A CTP

or N" could be calculated via interoperable input data, but would only work as a proxy,

is not automated, and is not as direct as other algorithms.

2.4 Algorithm Outputs and Interoperability

The output of each algorithm is designed for the algorithm’s functionality and purpose.

This does, however, occasionally cause challenges when comparing algorithms against one

another. Data interoperability is required for algorithm comparisons. Interoperability

may need to be forced, or was innate. An example of innate interoperability within

the scope of this project is the NCEP Algorithm and CO2 Slicing. Both algorithms

require the same input data, ensuring that spatial and temporal resolution is conserved.

Within the scope of this project, both also output many of the same variables, where the

missing data comes from CO2 Slicing only assimilating over 22 channels versus the NCEP

Algorithm potential over 431. Interoperability was arranged for ECMWF-CAD and DR

with some adjustments. ECMWF-CAD, while requiring the same inputs as the NCEP

Algorithm and CO2 Slicing, has latitude and longitude data in a di↵erent array dimension

as the others, and with less significant figures. Therefore, the NCEP Algorithm and CO2

Slicing had to be indexed to ECWMF-CAD while limiting significant figures and searching

for similar coordinate points. DR required a di↵erent input file compared to the other

algorithms a↵ecting temporal resolution, and restructuring the spatial resolution. This

required the NCEP Algorithm and CO2 Slicing FOVs to provide a coordinated perimeter

to match the gridded and smaller resolution of DR.
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Additionally, ECWMF-CAD did not output CTP or N" information, and DR didn’t

output a cloudy or clear classification for each wavenumber. Therefore, only certain

output variables of each algorithm were compared. That is, only CTP and N" values

from CO2 Slicing and DR were compared against the NCEP Algorithm. And only cloudy

or clear classification for each wavenumber from CO2 Slicing and ECMWF-CAD was

compared against the NCEP Algorithm.

2.5 Simple Case versus Complex Case Method

There are several potential challenges in working on a global scale as it pertains to IR

cloud detection. Broadly speaking, surface IR " varies drastically over di↵erent regions

in the world, and can impact the boundary conditions of the algorithm (Li et al., 2013).

The algorithm may misclassify the surface as clouds when the surface has " values con-

siderably less than 1 (especially over desert sand, snow, and ice). Regions with multiple

topography types over a small distance, such as land-sea boundaries or forests, require

oversimplification to represent a complex scene with one " value. Surface " also assumes

a smooth surface, so rough surfaces such as forest, mountains, or ice have complicated

radiative scattering routines. Additionally, cloud detection via satellite remote sensing

comes with its own challenges. Satellite scan from the top down, with stronger retrieval

accuracy higher up in the atmosphere than the surface, father away from the satellite.

Using a scanning method results in poorer resolution than nadir view for FOVs not at

nadir—however, not drastically for CrIS. And daylight is required when comparing IR

methods against visible satellite imagery.
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A simple case using an IR cloud detection algorithm would seek to limit this variability.

This case would come from limiting the FOVs within a 24-hour test day to just those

over ocean. The ocean is a relatively smooth surface, is more uniform than land, and

has approximately the same constant " throughout the entire body. To limit ice and

snow e↵ects, polar regions (between latitude 60N-60S) would be eliminated. A test day

around an equinox should be selected to further limit seasonal e↵ects, such as snow,

and hemispherical di↵erence. For visual confirmation and comparison of cloud truth via

VIIRS, only FOVs with solar zenith angles  84� would be used. This simpler case would

demonstrate the natural capability of an algorithm.

However, to test the robustness and global capabilities of an algorithm, a more complex

case could be used. This complex case would not limit any parameterization of the data,

and would come for a di↵erent 24-hour test day. If the results of this complex, global

case are very similar to the simple, idealized case, then it could be assumed that the

algorithm has limited sensitivity to topographic, temporal, and latitudinal variability.

And to ensure reproducibility, reliability, and accuracy of the results, multiple complex

cases could be compared to the simple case.

Therefore, a simple case and multiple complex cases were studied in this project. The

four test days used were selected as visual VIIRS imagery implied a robustness of cloud

quantity, types, and global distribution. Cloud types were categorized by CTP and N",

where:
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N"

Optically Thin N" < 0.5

Optically Thick 0.5  N"  0.95

Optically Opaque N" > 0.95

CTP

High-Level 50 hPa – 440 hPa

Mid-Level 440 hPa – 660 hPa

Low-Level 660 hPa – surface

For the simple case, April 11, 2021 was used, whereas the complex cases days selected

were October 10, 2020, January 2, 2021, April 11, 2021, and July 30, 2021. Each of

the algorithms were run for the simple case day. Then interoperable outputs from the

algorithms were compared to one another via objective assessment techniques discussed

in the results section. Only the best candidate algorithm alongside the NCEP Algorithm

were run for the complex cases. The conclusion section details suggestions from the results

to improve the NCEP Algorithm.
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Results

3.1 Plot Types Explained

Several types of plots were used to investigate and explain the accuracy and viability of

the algorithms. Some of them are typical atmospheric plots, such as CTP and N" point

plots. Other plots are more specialized to the topic at hand. Therefore, for clarification

and simplification purposes, a description of specialized plots used is detailed in this

section.

Note, each FOV is represented by a data point. Scatterplots were selected over the typical

contour plots for two reasons. Firstly, the output data was spatially and temporally

discrete. So while two points may be spatially close, they may be temporally distant,

or vice versa. Therefore, linear interpolation can’t be used. Secondly, the end product

requires discrete point data.

3.1.1 Observation Minus Analyses [O-A] Distribution Plots

Observation minus analyses model BT distribution plots (henceforth O-A plots) are used

to count the number of accurately identified clear FOVs and test error type. O-A plots

graph the quantity of FOVs identified by the algorithm as clear in 0.1� bins. Bins are

classified by the di↵erence of the FOV analyses calculated clear BT and FOV observed
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Figure 3.1: On the x-axis is the di↵erence between the FOV clear analysis BT (A) and

CrIS observed BT (O). On the y-axis is the number of FOVs classified by an algorithm

as clear normalized to a gaussian curve. The black curve is from an idealized solution,

that is symmetrical on 0, with a tall and skinny distribution. The blue (red) curve

demonstrates a distribution that has a cold (warm) tail, identified by the blue (red)

arrow. Note, this is a theoretical example.

BT at a given wavenumber. If the observed BT is very close to the clear analyses BT (a

di↵erence close to 0), the FOV is almost certainly clear. This is shown in Figure 3.1.

Ideally, the distribution should be Gaussian and centered on 0. A tall distribution at

0 indicates a large number of correctly identified clear FOVs. Any peak skewed from

0 may indicate an algorithm with a bias error. A relatively small number of FOVs
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centered on 0 indicates the algorithm is potentially not using viable clear FOVs, or a

particularly cloudy retrieval. A skinny and symmetrical curve indicates that any errors

are statistically random. Deviations from a symmetrical curve include a cold tail, a

warm tail, double peaks, and wide distributions. A cold tail occurs when several FOVs

classified clear have analyses BT much warmer than observed BT. This likely indicates

the algorithm misclassified these cloudy FOVs as clear. A warm tail occurs when several

FOVs classified clear have analyses BT values much colder than observed BT. This likely

indicates the global model temperatures have a cold bias. Double peaks typical indicate

a false clear signature. For example, FOVs with surface clouds may algorithmically get

classified as clear, but still have O-A values reminiscent of cloudy FOVs at large (near

surface) wavenumbers. Wide distributions may indicate the algorithm is classifying FOVs

clear with lower certainty of clear. Though note that global model, analyses, CrIS, or

random errors can’t always be isolated and diagnosed.

Therefore, a reliable algorithm will have a symmetrical distribution and a relatively large

number of FOVs with a 0 di↵erence. The purpose of O-A plots was to demonstrate

the algorithm’s accuracy of the binary cloudy or clear classification of the FOVs at each

wavenumber. This verification was used to both compare algorithms against one another

by selecting the algorithm with the best fitted distribution that could then be used as a

proxy for observation truth.
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3.1.2 Plots from Confusion Matrices

Confusion matrices (also called comparison matrices) are used to identify algorithm agree-

ment with another algorithm or observation truth of binary characteristics. This is best

described by this table, assuming Algorithm A is truth and Algorithm B is predictive:

Algorithm A Clear Algorithm A Cloudy

Algorithm B Clear True Positive (+T) False Positive (+F)

Algorithm B Cloudy False Negative (-F) True Negative (-T)

For this project, rather than identifying one algorithm as truth, the NCEP Algorithm

was determined as Algorithm A, and Algorithm B was one of the other algorithms.

Furthermore, rather than +F and -F or +T and -T, FOVs were classified as contrasting

or comparable. FOVs that contrasted were then investigated. A FOV where the other

algorithm disagreed with the NCEP Algorithm and identified a cloud could be a cloud

a↵ected FOV; a FOV identified as clear from the other algorithm could be an additional

FOV that could be assimilated.

Aside from reporting the raw FOV counts, there were several ways to use the informa-

tion confusion matrices. Visualizing was useful in recognizing patterns where the NCEP

Algorithm contrasted with other algorithms. This was done by plotting FOV confusion

matrix classifications using 4 distinct colors representing each case. ECMWF-CAD or

CO2 Slicing compared to the NCEP Algorithm were plotted at various wavenumbers.
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While the full atmospheric clear or cloudy classification were plotted for DR or CO2 Slic-

ing compared to the NCEP Algorithm. Confusion matrices information was also applied

to general plots depending on the classification. For example, 4 di↵erent O-A plots were

made for each comparable and contrasting type.

3.2 Simple Case Results

As a reminder, the simple case was classified as:

• Day only FOVs (where solar zenith angle was  84�) for colocated VIIRS spatial

and temporal interoperability

• Ocean only FOVs to limit land surface emissivity e↵ects

• FOVs between 60N and 60S latitude to limit ice and snow e↵ects

• April 11, 2021, which has several clouds and cloud types, was used to limit seasonal

e↵ects (near an equinox)

CO2 Slicing, ECMWF-CAD, and the NCEP Algorithm output binary cloudy or clear

classifications for all FOVs at several CrIS wavenumbers. The algorithms can only output

this classification for input wavenumbers. That is, the NCEP Algorithm and ECMWF-

CAD have a classification for every input wavenumber, and CO2 Slicing only has outputs

for wavenumbers listed in 2.3.1. Therefore, as an initial test, only those 22 CO2 Slicing

wavenumbers were used in the simple case comparison. A set of O-A plots were used
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Figure 3.2: For the simple case test, i.e., only daylight, ocean, 60N-60S FOVs. O-

A distribution plots are plotted using the central CO2 Slicing wavenumber 691.875

cm�1
. The NCEP Algorithm (red) was compared to ECMWF-CAD (green) and CO2

Slicing (blue). They are shown side by side for additional CO2 Slicing and ECMWF-

CAD comparison. This is for all FOVs in the 24-hour period. For CO2 Slicing ⌫1 =

691.875 cm�1
.

to compare all three algorithms. The main CO2 Slicing wavenumbers were included as

691.875 cm
�1 (Figure 3.2), 705 cm

�1 (Figure 3.3), 715 cm
�1 (Figure 3.4), 733.125 cm

�1

(Figure 3.5), 748.125 cm
�1 (Figure 3.6), plus the IR Window Test wavenumber 959.375

cm
�1 (Figure 3.7).

Indicating some random error (noise) at 705 cm
�1 and 715 cm

�1, the distribution of the

NCEP Algorithm O-A plots were mostly symmetric. Similarly, CO2 Slicing only had

one distribution that was not symmetric on 0 at 748.125 cm
�1. ECMWF-CAD, however,

had a cold tail starting at 715 cm
�1. This cold tail persisted and grew more prominent
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Figure 3.3: As with Figure 3.2, this is the O-A plots for 705 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 705 cm�1
.

throughout the remaining wavenumbers. The count of clear FOVs from ECMWF-CAD

was also consistently lower than the NCEP Algorithm and CO2 Slicing. The highest

peak value for ECMWF-CAD, which was 1.6 ⇤ 105 for 691.875 cm
�1, was still 1.5 ⇤ 104

less than CO2 Slicing at the same wavenumber. This was more pronounced at 705 cm
�1,

where ECMWF-CAD had a peak value half that of the NCEP Algorithm and CO2 Slicing.

Moreover, at 959.375 cm�1 the ECMWF-CAD peak value around 0 was more than 8 times

less than the NCEP Algorithm and CO2 Slicing. It could be that our use of ECMWF-

CAD was not optimal, resulting in an underperformance of the algorithm compared to

CO2 Slicing or the NCEP Algorithm. In the simple case, the ECMWF-CAD was deemed

less likely to improve the NCEP Algorithm than CO2 Slicing. ECMWF-CAD was further
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Figure 3.4: As with Figure 3.2, this is the O-A plots for 715 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 715 cm�1
.

compared to the NCEP Algorithm in the complex case for the April day.

Conversely, CO2 Slicing and the NCEP Algorithm could be compared in more depth.

Comparison of distribution shapes and clear FOV peak counts were used as indicators of

whether CO2 Slicing could improve the NCEP Algorithm. The distribution shape of both

O-A plots were similar and symmetric, but CO2 Slicing more sharply confined indications

of a cold tail as the wavenumbers increased. At 691.875 cm
�1 and 705 cm

�1, CO2 Slicing

and the NCEP Algorithm had comparable peak values, with less than 15% di↵erence. At

715 cm
�1, the number of near certain clear FOVs detected by CO2 Slicing was still about

25% higher than the NCEP Algorithm (Note, there is a plotting artifact for the NCEP

Algorithm 715 cm
�1). At 733.125 cm

�1, CO2 Slicing also detected 20% more clear FOVs
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Figure 3.5: As with Figure 3.2, this is the O-A plots for 733.125 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 733.125 cm�1
.

than the NCEP Algorithm. Lastly, CO2 Slicing and the NCEP Algorithm performed

similarly for wavenumbers lower in the atmosphere. The NCEP Algorithm developed

more of a cold tail at this wavenumber. This cold tail became more pronounced with the

complex case.

3.3 Complex Case Results

The idea of using the simple case was to perform a test in the most simplistic conditions

for cloud detection. The complex cases tested the full capabilities of the algorithms, that

is, to test if the algorithms could work well for all surface types (ocean, land, ice, etc.)

and year-round. First this was done using the simple case test day. Then reproducibility
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Figure 3.6: As with Figure 3.2, this is the O-A plots for 748.125 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫2 = 748.125 cm�1
.

of results was tested by using the October 2020, January 2021, and July 2021 test days.

Note that these 4 test days do not necessarily represent every facet of the algorithms or

test every condition or variable, but it provided su�cient insight into the accuracy of the

algorithms.

3.3.1 Visual Review Analysis

The first approach in analyzing the algorithms globally was a visual review of the April

complex case day. This started by plotting the calculated CTP for CO2 Slicing, DR, and

the NCEP Algorithm (see Figure 3.8). ECMWF-CAD did not provide a CTP value, and

thus was not plotted. The CTP plots were compared with each other and the VIIRS
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Figure 3.7: As with Figure 3.2, this is the O-A plots for the IR window wavenumber

of 959.375 cm�1
. The NCEP Algorithm (red) was compared to ECMWF-CAD (green)

and CO2 Slicing (blue).

24-hour visual composites using synthesized true color (see Figure 3.9). This data came

from a NASA database (EOS, 2022), which plotted the data via an equirectangular map

projection system. For consistency, all algorithm CTP plots used FOVs within the 24-

hour time frame and were plotted using the same projection system, scale, and pressure

range (0-1000 hPa). Note, this projection system does distort a FOV from satellite areal

size to Python plotted size. The size of the datapoints plotted were similar in scale to the

FOV resolution at nadir at the tropics. CTP datapoint size remains roughly the same

plots using the same datapoint size for FOVs in the poles and the in the tropics, despite

true spatial di↵erences in those regions due to the projection system. Also note, due to

the large temporal scale, there may be overlap in CTP values in the plots. This e↵ects
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the number of perceived clear FOVs in a visual display. This is addressed using other

plots such as O-A plots.

Additionally, to contrast between certain surface types, an edited version of the VIIRS

image was developed by using a 400% color saturation correction. For example, this

forced surfaces such as ice to be visually distinguished from similarly appearing clouds,

enhancing the accuracy of determining observed clear sky over polar regions.

There are a few general comments concerning the CTP plots. The NCEP Algorithm,

DR, and CO2 Slicing all detected mainly higher-level CTP for tropical regions. This is

typical for 30N-30S (Warren et al., 1986). CO2 Slicing and DR CTP values for FOVs over

ocean generally agreed in mid-latitudes. For example, look at eastern Great Australian

Bight (130E to 140E and 30S to 45S). CO2 Slicing calculated CTPs around 800-700 hPa.

However, the NCEP Algorithm calculated clouds in this region around 650-550 hPa. The

largest disparities between CTP values in all three algorithms were over polar latitudes

and land. Although, there were regional di↵erences globally.

For regions with discrepancies in the CTP calculations, VIIRS was compared to algorithm

CTP plots. In this comparison, there were several regions which make the case that CO2

Slicing might improve the NCEP Algorithm, more than DR, as demonstrated by the

better representation of the VIIRS observation. Three regions exemplify this.

Region one is the broader Indian Ocean around Western Australia (105E to 140E and

25S to 45S). At about (135E, 45S), VIIRS appears clear of clouds. Just northwest of this
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Figure 3.8: For FOVs that are cloudy, the NCEP Algorithm (top), DR (middle), and

CO2 Slicing (bottom) calculates a CTP. They all have been plotted with the same color

bar provided below.
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Figure 3.9: The 24-hour synthesized true color visible composite from VIIRS were

provided by a NASA database. VIIRS was used for visual confirmation and analysis

purposes. For added contrast between clouds and surfaces, an edited version of the

original composite was made by enhancing the color saturation 400% (bottom).
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is a region of scattered small, cloud (perhaps cumulus). The NCEP Algorithm and DR

di↵er regarding the cloud cover in this region. The NCEP Algorithm fully classifies this

region as mid-level clouds. While, DR classified this region as clear. Yet, CO2 Slicing

correctly classifies it clear where clear sky is seen in VIIRS, and cloudy where VIIRS

appeared cloudy.

Moving west, toward approximately (105E, 35S), VIIRS appears clear again. However,

this time DR classifies this region as lower-level clouds. The NCEP Algorithm and CO2

Slicing both identify the region as clear, but the NCEP Algorithm extent of clear is much

smaller than what appears with VIIRS. CO2 Slicing displays an appropriate extent of

clear FOVs, which is consistent with the clear sky viewed with VIIRS.

The second region is a near polar region south of Greenland, bounded by 75W to 30W

and 60N to 45N. The VIIRS image slightly detects some clear FOVs within a mostly

cloudy region. The cloud structures are enhanced in the 400% color saturated version,

and highlights the possibility of upper-level clouds in the region. DR identified this region

mostly cloud free. The NCEP Algorithm indicates a few FOVs with upper-level clouds,

as well as a few clear FOVs. CO2 Slicing identifies more FOVs clear and more upper-level

CTP than the NCEP Algorithm, in agreement with the VIIRS image. CO2 Slicing also

captures the complex multileveled cloud scene that the observation figure presumably

displays.

The third region, bounded by 180W to 160W and 30N to 15N, compares detection capa-

bilities of upper level optically thin cirrus. Optically thin cirrus, as the name suggests,
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are not easily detected by visible imagery. Aside from sun glint on the unedited VI-

IRS image, the region could be identified as clear. However, using the enhanced 400%

color saturated version, there are several structures that suggest the presence of clouds.

The NCEP Algorithm will not detect optically thin clouds, and only identifies the more

opaque upper level clouds. The other FOVs within this region are identified as mid-level

clouds. DR identifies some clear FOVs, but for the most part classifies these FOVs as

mid to lower-level clouds. CO2 Slicing, again, properly detects what VIIRS imagery sug-

gests. The dominate cloud level CO2 Slicing suggests for the FOVs is upper level. Where

applicable, CO2 Slicing classifies FOVs clear or classifies FOVs in the mid-atmosphere.

Therefore, at least for this one case study, there is good initial evidence that CO2 Slicing

might improve the NCEP Algorithm. And while DR was, for the most part, on par with

CO2 Slicing, these select regions suggest that CO2 Slicing may provide a more accurate

CTP classification than DR.

3.3.2 FOV Binary Classification Analysis

Two approaches were used to quantitatively test the capabilities of CO2 Slicing, ECMWF-

CAD, and the NCEP Algorithm for the April day complex case. The first compared

ECMWF-CAD to the NCEP Algorithm in a more isolated way than used in the simple

case. This was done via a distribution of clear FOVs on the full spectrum of wavenumbers.

The second compared the results of the simple case to the complex case by using the same

plots as in the simple case.



51

Figure 3.10: Plotted are the NCEP Algorithm (red) and ECMWF-CAD (blue) per-

cent of FOVs that are clear at each wavenumber. About 76 of 431 the NCEP Algorithm

wavenumbers are more than 60% clear FOVs. That same count is only 13 of 431 for

ECMWF-CAD.

As the output was binary, i.e., cloudy or clear, it can be presumed that the sum of all FOVs

classified clear plus all FOVs classified cloudy by ECMWF-CAD or the NCEP Algorithm

within a 24-hour period at a wavenumber equals the total sum of all FOVs output by

an algorithm. Thus, if the majority of the FOVs are clear, then the wavenumber can be

considered a clear channel, and vice versa. For a quantitative metric, if a wavenumber

has more than 60% clear FOVs, then the wavenumber is considered clear. The percent of

clear FOVs identified by the two algorithms at each wavenumber is shown in Figure 3.10.

One way ECMWF-CAD could demonstrate a potential to improve the current NCEP

Algorithm would be to identify more clear wavenumbers. Both algorithms used 431

wavenumbers. The NCEP Algorithm considered 17.6% (76/431) wavenumbers clear. This

was only 3% (13) for ECMWF-CAD. Lowering the 60% clear FOVs threshold to 50%,

ECMWF-CAD still fell short of the NCEP Algorithm at 5.3% compared to 19.7%. Only

two wavenumbers coincided with the NCEP Algorithm and ECMWF-CAD at 50% clear:
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661.25 cm
�1 and 683.125 cm

�1. The other 21 wavenumbers ECMWF-CAD identified

50% clear could potentially improve upon the NCEP Algorithm. Moreover, of those 21

wavenumbers, 4 overlapped with wavenumbers used in CO2 Slicing (694.375 cm�1, 706.25

cm
�1, 717.5 cm

�1, and 959.375 cm
�1).

However, it cannot be assumed that the FOVs identified by either algorithm are actually

clear. Therefore, O-A plots were employed for several wavenumbers. A set of O-A plots

were used to compare ECMWF-CAD and CO2 Slicing. This was done at the first three

ECMWF-CAD 50% clear wavenumbers that match CO2 Slicing (Figure 3.11). 959.375

cm
�1 was not included in this set as it was included in the second set. The second set of

O-A plots were used to compare all three algorithms to each other and the simple case.

As with the simple case, the O-A plots for CO2 Slicing wavenumbers were included for

691.875 cm
�1 (Figure 3.12), 705 cm

�1 (Figure 3.13), 715 cm
�1 (Figure 3.14), 733.125

cm
�1 (Figure 3.15), 748.125 cm

�1 (Figure 3.16), and 959.375 cm
�1 (Figure 3.17).

ECMWF-CAD and CO2 Slicing both execute fairly accurate clear FOV classification at

smaller wavenumbers (sensitive primarily in the upper troposphere). At 694.375 cm
�1,

for example, ECMWF-CAD and CO2 Slicing had O-A symmetrical distributions on 0;

ECMWF-CAD did detect more FOVs clear, where ECMWF-CAD detected around 5⇤104

more FOVs than CO2 Slicing at the peak. But going farther into the atmosphere, CO2

Slicing and ECMWF-CAD switched results. CO2 Slicing detected more FOVs clear cen-

tered at 0 than ECMWF-CAD. Additionally, the ECMWF-CAD O-A plots had a less

symmetrical distribution compared to CO2 Slicing, resulting in a cold tail. Starting as
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Figure 3.11: These O-A plots compares CO2 Slicing (blue) with ECMWF-CAD

(green) wavenumbers that had 50% or more clear FOVs. On the left O-A plot was

for 694.375 cm�1
, center 706.25 cm�1

, and right is 717.5 cm�1
. These are the ⌫1 value

for CO2 Slicing.

low as 705 cm
�1, there was a cold tail in the ECMWF-CAD curve. This was partic-

ularly significant for the wavenumbers which ECMWF-CAD classified as mostly clear

FOVs. It was evident from the O-A plot that ECMWF-CAD was possibly detecting a

significant percent of these potentially cloudy FOVs as clear. Therefore, there was a low

certainty that the wavenumbers were truly 50%+ clear. Conversely, CO2 Slicing main-

tained a relatively symmetric distribution at nearly all wavenumbers. The number of high

likelihood clear FOVs was nearly one order of magnitude greater with CO2 Slicing than

ECMWF-CAD for 717.5 cm
�1, and 5 times more for 715 cm

�1. CO2 Slicing also detected

more FOVs clear than the NCEP Algorithm at 715 cm
�1. CO2 Slicing had nearly 175%

(7.5 ⇤ 104) more FOVs at 0 in the O-A plot than the NCEP Algorithm.

Of note, CO2 Slicing demonstrated the most compelling and convincing case for improving
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Figure 3.12: For the complex case test. O-A distribution plots are plotted using

the central CO2 Slicing wavenumber 691.875 cm�1
. The NCEP Algorithm (red) was

compared to ECMWF-CAD (green) and CO2 Slicing (blue). They are shown side by

side for additional CO2 Slicing and ECMWF-CAD comparison. This is for all FOVs

in the 24-hour period. For CO2 Slicing ⌫1 = 691.875 cm�1
.

the NCEP Algorithm using wavenumbers at and surrounding 715 cm
�1 and for the upper

troposphere. CO2 Slicing and the NCEP Algorithm performed with similar high accuracy

at 691.875 cm
�1 and 705 cm

�1. Despite the NCEP Algorithm having a higher quantity

of FOVs at the peak than CO2 Slicing, 114.3% (5 ⇤ 104) and 140% (105) more FOVs

respectively, these percent margins are still lower than at 715 cm
�1. Additionally, the

lower number of clear CO2 Slicing FOVs at 691.875 cm
�1 may be due to optically thin

cirrus detection or incorrect classification on the part of the NCEP Algorithm. The

miss classification of FOVs by the NCEP Algorithm is highlighted by using a confusion

matrix of O-A plots at 691.875 cm
�1 (Figure 3.19). In reviewing FOVs that the NCEP
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Figure 3.13: As with Figure 3.12, this is the O-A plots for 705 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 705 cm�1
.

Algorithm as classified clear but CO2 Slicing classified as cloudy, there is evidence CO2

Slicing may have been correct. The distribution is multi peaked, and is not nearly as

symmetric as the O-A plot for FOVs where both CO2 Slicing and the NCEP Algorithm

agreed on a classification of clear. Also, the distribution of FOVs marked clear by CO2

Slicing but cloudy by the NCEP Algorithm demonstrates a loss of clear data assimilated.

The distribution, which is nearly identical to the agreed clear FOV distribution, includes

over 6 ⇤ 104 FOVs with high likelihood of being clear.

At 715 cm
�1 (Figure 3.21), the disparity between the classifications becomes even more

evident. CO2 Slicing retains a symmetric distribution of clear classified FOVs for both for

FOVs that agrees and FOVs that disagrees with the NCEP Algorithm. However, where
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Figure 3.14: As with Figure 3.12, this is the O-A plots for 715 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 715 cm�1
.

CO2 Slicing classified the FOV as cloudy and the NCEP Algorithm classified it as clear,

the distribution is not symmetric. It has three district peaks at di↵erent O-A values, with

one centered on 0 and two centered on negative values, and a slight cold tail. Moreover,

the spatial distribution of clear CO2 Slicing but cloudy NCEP Algorithm FOVs were at

polar latitudes and over land. The FOVs where they agreed occurred globally. But for

the FOVs classified cloudy by CO2 Slicing but clear analyses by the NCEP Algorithm,

where a substantial proportion could be wrongly classified clear by the NCEP Algorithm,

are over the ocean. This leads credence to CO2 Slicing improving cloud classification on

a global scale.

There were mixed results at 748.125 cm
�1 and 959.375 cm

�1 between CO2 Slicing and
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Figure 3.15: As with Figure 3.12, this is the O-A plots for 733.125 cm�1
. The NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫1 or ⌫2 = 733.125 cm�1
.

the NCEP Algorithm. For instance, there was a significant cold tail on the 748.125

cm
�1 (Figure 3.16) O-A plot for the NCEP Algorithm. While there is a slight double

peak within CO2 Slicing curve, this could possibly be an artifact of the peaks being

separated by one bin. Therefore, CO2 Slicing demonstrated an improvement to the

NCEP Algorithm at the lower-mid atmosphere. Another example is the count of FOVs

at O-A plot peak for 959.375 cm
�1 (Figure 3.17). This is e↵ectively the surface channel

and can detect clear sky for the full atmosphere. In other words, a clear FOV at 959.375

cm
�1 can be classified as clear for all other wavenumbers; the FOV is classified as cloud

free for the whole atmospheric column. There were 2⇤104 more cloud free FOVs with CO2

Slicing than with the NCEP Algorithm. However, 17.3% of NCEP Algorithm FOVs were
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Figure 3.16: As with Figure 3.12, this is the O-A plots for 748.125 cm�1
. Thr NCEP

Algorithm (red) was compared to ECMWF-CAD (green) and CO2 Slicing (blue). For

CO2 Slicing ⌫2 = 748.125 cm�1
.

classified clear and 10.9% by CO2 Slicing (Figure 3.22). Plausibly the NCEP Algorithm

both misclassified cloudy FOVs as clear and omitted include several clear FOVs.

In comparison to the simple case, the complex April test day was overall very similar.

For the most part, the simple case results represent the complex case results very well.

However, there were a few important di↵erences that must be mentioned. At the lowest

wavenumbers 691.875 cm
�1, the plots were nearly identical aside from the count of FOVs

represented in the complex case versus the simple case. While the shapes of the 705 cm
�1

curves were similar, with the simple case the clear FOV count for the NCEP Algorithm

and CO2 Slicing are about the same. The complex case showed nearly a 105 FOV disparity

with CO2 Slicing. This could have been caused by CO2 Slicing detecting more clouds over
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Figure 3.17: As with Figure 3.12, this is the O-A plots for the IR window wavenumber

of 959.375 cm�1
. The NCEP Algorithm (red) was compared to ECMWF-CAD (green)

and CO2 Slicing (blue).

Figure 3.18: This confusion matrix for CO2 Slicing and the NCEP Algorithm is for

691.875 cm�1
. The two algorithms agreed classifying 72% of FOVs clear (top-left green)

and 0.5% of FOVs cloudy (bottom-right blue). 10% of the FOVs were classified cloudy

by the NCEP Algorithm but clear by CO2 Slicing (top-right red). 17.5% of the FOVs

were classified clear by the NCEP Algorithm but cloudy by CO2 Slicing (bottom-left

purple).
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Figure 3.19: These O-A plots come from FOVs in the confusion matrix categories at

691.875 cm�1
. The left (green) plot comes from FOVs that both CO2 Slicing and the

NCEP Algorithm identified clear. The center (red) plot is where CO2 Slicing marked

the FOV clear, but the NCEP Algorithm marked it cloudy. The right (purple) plot is

where CO2 Slicing marked the FOV cloudy, but NCEP marked it clear. FOVs classified

cloudy by both algorithms were not plotted.

Figure 3.20: This confusion matrix for CO2 Slicing and the NCEP Algorithm is for

715 cm�1
. The two algorithms agreed classifying 13.8% of FOVs clear (top-left green)

and 60.6% of FOVs cloudy (bottom-right blue). 15.3% of the FOVs were classified

cloudy by the NCEP Algorithm but clear by CO2 Slicing (top-right red). 10.3% of

the FOVs were classified clear by the NCEP Algorithm but cloudy by CO2 Slicing

(bottom-left purple).
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Figure 3.21: These O-A plots come from FOVs in the confusion matrix categories

at wavenumber 715. The left (green) plot comes from FOVs that both CO2 Slicing

and the NCEP Algorithm identified clear. The center (red) plot is where CO2 Slicing

marked the FOV clear, but the NCEP Algorithm marked it cloudy. The right (purple)

plot is where CO2 Slicing marked the FOV cloudy, but NCEP marked it clear. FOVs

classified cloudy by both algorithms were not plotted.

Figure 3.22: This confusion matrix for CO2 Slicing and the NCEP Algorithm for the

full atmosphere. The two algorithms agreed classifying 6.7% of FOVs clear (top-left

green) and 78.5% of FOVs cloudy (bottom-right blue). 4.2% of the FOVs were classified

cloudy by the NCEP Algorithm but clear by CO2 Slicing (top-right red). 10.6% of the

FOVs were classified clear by the NCEP Algorithm but cloudy by CO2 Slicing (bottom-

left purple).
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land and at polar regions. Plots for 715 cm
�1 were also similar. The misclassifications

with the NCEP Algorithm were more pronounced in the simple case than in the complex

case, but the relative count of FOVs was comparable in the simple case and the complex

case. Unlike at 705 cm�1, at 733.125 cm�1 the shape of the O-A plots were similar but the

CO2 Slicing and the NCEP Algorithm counts di↵er in the simple case. For the simple case,

there was nearly 104 more FOVs classified clear with CO2 Slicing than with the NCEP

Algorithm. This was perhaps due to enhanced cloud detection by the NCEP Algorithm

over the Southern Hemisphere ocean (see Figure 3.22), compared to CO2 Slicing over

land and poles. At 748.125 cm
�1, the CO2 Slicing curve’s slight double peak and extra

cold peak was more pronounced in the simple case than the complex case. Therefore, this

feature must be a product of simple case conditions. Lastly at 959.375 cm
�1, the simple

case peak count for CO2 Slicing was similar to the NCEP Algorithm. However, in the

complex case, CO2 Slicing detected 2000 more clear FOVs than the NCEP Algorithm.

This could mean that CO2 Slicing could enhance the NCEP Algorithm for land and

polar clear sky detection. Moreover, there was a significant warm tail for the CO2 Slicing

complex case, indicating there may be more impact from model error than CO2 Slicing

algorithm error. Also note, there was only a 16.7% (200) FOV increase from the simple

case to the complex case. This further confirms that ECMWF-CAD may not have been

as e↵ective as CO2 Slicing or the NCEP Algorithm.
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3.3.3 Reproducibility and Validation

CO2 Slicing, by the simple and complex case results, was identified as the algorithm most

plausible at improving the NCEP Algorithm. Consequently, this section will focus on just

comparing CO2 Slicing to the NCEP Algorithm and VIIRS. O-A plots were primarily

used in comparing the two algorithms on the three additional test days. But the visual

confirmation method was used as an initial test.

From a preliminary inspection, CO2 Slicing and the NCEP Algorithm appear similar in

cloud distribution globally like the April 2021 complex case (refer to Figure 3.23). There

are, though, a few regions that highlight some features CO2 Slicing demonstrated in the

April 2021 complex case. For the January 2021 case, a color corrected version of VIIRS

indicates there were limited clouds over East Antarctica. While the NCEP Algorithm

detected lower-level clouds for the entire land mass, CO2 Slicing correctly identified clear

skies. Also on the January 2021 day, around 105E to 120E and 60N to 45N, the same

color corrected VIIRS detected mostly cloudy FOVs. The NCEP Algorithm classified the

majority of the region as clear, yet CO2 Slicing correctly classified many of the FOVs

cloudy. On the July 2021 day, there are some fairly optically thin clouds over the western

Sahara Desert, as visible with VIIRS. CO2 Slicing classified them as high clouds, whereas

the NCEP Algorithm placed them much lower. At the gridded region 0 to 15W and 0

to 15S for the October 2020 day, the clouds are broken with several clear FOVs patches

throughout. The NCEP Algorithm marked the entire region cloudy, but CO2 Slicing

correctly identified several clear FOVs. Therefore, CO2 Slicing could have assisted the
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Figure 3.23: The top plots come from 24-hour VIIRS synthesized true color visible

data composite archives. The middle plots come from the 24-hour calculated the NCEP

Algorithm CTP. The bottom plots are the CO2 Slicing calculated CTP. Both the NCEP

Algorithm and CO2 Slicing shared the same pressure color bar below. The three plots

are from October 10, 2020 (left), January 2, 2021 (center), and July 20, 2021 (right).

NCEP Algorithm by eliminating cloudy FOVs higher up in the atmosphere for the July

2021 day, enhanced the number of clear FOVs on the January 2021 and October 2020

days, and eliminated cloud infected FOVs on the January 2021 day.

CO2 Slicing had similar O-A plot distributions for all of these days. For example, Fig-

ure 3.24 displays the CO2 Slicing O-A plot for 715 cm
�1 for all test days on the same

plot. The shape of the O-A plot curve was just as accurate and symmetric for the April

2021 day as it was for the October 2020, January 2021, and July 2021 days. The number
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of FOVs at peak were relatively similar in value as well. These values were also con-

sistently higher than the NCEP Algorithm peaks values. Overall, the O-A plots were

similar throughout the 4 test days.

Moreover, the similarities between the cases is evident in the confusion plots. This was

exemplified by looking at the FOVs where the two algorithms disagreed in classification.

For example, at 715 cm
�1 the O-A plots results were consistent over the 4 days. The dis-

tribution of FOVs classified clear from CO2 Slicing and cloudy from the NCEP Algorithm

was very symmetric, has a very low range, and a relatively high peak across the test days

(Figure 3.25). The distribution for FOVs classified cloudy from CO2 Slicing but clear

from NCEP Algorithm had the same features throughout the test days (Figure 3.26).

That is, the double peak was present on each of the distributions, as well as the cold tail.

Therefore, it can be inferred that CO2 Slicing could have limited the number of data

points that were incorrectly classified by the NCEP Algorithm, and included more clear

FOVs into the assimilation.

3.4 Runtime

In addition to the improvement possible, the runtime of the algorithm was an important

factor of comparison. For reference, the number of seconds and minutes matters as it

pertains to algorithm runtime. With that said, it was critical that the algorithms require

a similar amount of time as the NCEP Algorithm. As CO2 Slicing made the most
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Figure 3.24: To demonstrate the similarity of CO2 Slicing result reproducibility, an

O-A distribution plot was made at 715 cm�1
for each test day. They have then been

plotted on the same plot, using the same y-axis.
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Figure 3.25: These are the O-A plots of FOVs classified as clear by CO2 Slicing but

cloudy by NCEP Algorithm on the three other test days. All are at 715 wavenumbers.

Left is the October 2020 day, center January 2021, and right July 2021.

Figure 3.26: These are the O-A plots of FOVs classified as cloudy by CO2 Slicing but

clear by NCEP Algorithm on the three other test days. All are at 715 wavenumbers.

Left is the October 2020 day, center January 2021, and right July 2021.
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convincing case of improving the NCEP Algorithm, only that algorithm will be tested

against the NCEP Algorithm for runtime.

However, both algorithms were run using di↵erent coding languages. The NCEP Al-

gorithm was written in FORTRAN and run as a Bash Shell script, and is operationally

written and used as a FORTRAN subroutine within the GSI. The objective of this project

was not to make the other algorithms operational. Rather it was to provide suggestions

for improving the NCEP Algorithm by testing these algorithms. CO2 Slicing was written

for this project in Python for simplicity purposes (though it can easily be translated in to

FORTRAN). But this variance of language changes the relevance of runtime. Python, at

least within the structure of the way CO2 Slicing was coded, is typically a slower program

than FORTRAN. Because of this, the NCEP Algorithm and CO2 Slicing runtimes were

drastically di↵erent. Without making CO2 Slicing operational, there is no fair determin-

istic way to address if CO2 Slicing would be too computational expensive for the benefits

it provides. Thus, runtime was not a factor included in the decision-making process.
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Discussion

4.1 The Case for CO2 Slicing

Many aspects of CO2 Slicing could enhance the performance of the NCEP Algorithm,

at least as demonstrated within the scope of this project. The case for CO2 Slicing

can be summed into the following three points. Firstly, CO2 Slicing demonstrated its

capability to improve clear radiance scheme by detecting more clear FOVs than the

NCEP Algorithm. This was especially true for 715 cm
�1 in Figure 3.25, but was also

evident at other wavenumbers, such as 691.875 cm�1 (Figure 3.19). This wavenumber was

significant because it enhanced a technique for detecting optically thin upper-level cirrus.

Secondly, CO2 Slicing demonstrated its capability for correctly identifying cloudy FOVs,

especially for FOVs the NCEP Algorithm incorrectly marked clear. Again, exemplified

in 715 cm
�1 in Figure 3.26 but demonstrated at other wavenumbers. This was displayed

via a significant cold O-A di↵erence. But CO2 Slicing marked these FOVs cloudy, which

would have eliminated several cloud contaminated FOVs from the assimilation process.

Thirdly, CO2 Slicing could improve cloud detection for more than just tropical, ocean

FOVs. While the results of the simple case demonstrated CO2 Slicing could improve the

NCEP Algorithm considerably, the complex case emphasized the global capabilities of

CO2 Slicing. This was best demonstrated in 3.3.1 for polar and land FOVs. Note that
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as it stands, the NCEP Algorithm is only one of many subsequent stages for downline

forecasting. However, any FOVs excluded or included incorrectly at the NCEP Algorithm

stage results in loss of valuable data for downline processes. Any cloudy FOVs not rejected

by the NCEP Algorithm require the additional, potentially unnecessary computation time

and memory, and could a↵ect the downstream product. But the improvements that CO2

Slicing demonstrated, the NCEP Algorithm could be optimized to include more clear and

less cloudy FOVs.

4.2 Sources of Error

Sources of errors could be categorized into four groups: interpolation, input, user, and

random. Spatial interpolation errors could have been introduced while comparing the

4 algorithms. Reprojecting the DR data to work with the other algorithms may have

resulted in estimation of location errors. This would have appeared in the visual map

analysis section of the results. However, detection of the spatial di↵erence would have

required a higher map resolution. Temporal interpolation errors could have also a↵ected

the visual map analysis. Because the NCEP Algorithm, DR, and CO2 Slicing were plotted

over a 24-hour period, there could have been overlaps in data. This would have not

appeared on the VIIRS images. The best mitigation would be to have a lower resolution

of spatial data points or to separate time intervals. Yet, changing the time intervals for

plotting CTP data from 24-hours to a lower timeframe (e.g., 6-hour) would have caused

VIIRS data to be operable with CTP data. Interpolation used in the FV3GFS could

have a↵ected the analyses input data. This would have been detected by O-A plots as
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a warm tail. Although, warm tails are not exclusively a product of interpolation errors.

Warm tails could have been a result of other errors in the analyses input data. The

FV3GFS has several sources of potential errors that could a↵ect the CRTM output, and

could change the results (Tong et al., 2020). There could have been errors with the

CRTM that could result in a warm tail. The input data from CrIS could have likewise

resulted in a cold tail. The average error of CrIS is less than a degree, but higher for

polar regions (Iturbide, 2021). The dataset was also relatively small, which could have

e↵ected the results. An extension of input error could be user error that could have

occurred in running the algorithm software or code. User error could have also occurred

when plotting the results, or during the analysis process. While all possible procedures

were implemented to avoid such error, this source of error was ultimately unavoidable.

Lastly, random errors would have come in the form of noise, which is unavoidable; the

Gaussian distribution in the O-A plots demonstrated the presence of the random noise.

The symmetry of the random noise was important. While the symmetry of the plots

would have been detectable via O-A plots, it would have had relatively low impact on

results.

4.3 Future Improvements and Next Steps

The logical next step will be to test suggestions made in this paper in an operational

capacity. Specifically, NCEP will run and statistically analyze an operational version of

CO2 Slicing as it compared to the current NCEP Algorithm. Aside from translating the

Python script into FORTRAN, there are a few adjustments that could be made to this
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version of CO2 Slicing. This includes implementing more CO2 channels, adjusting the

cuto↵ value for di↵erent wavenumber pairs, and enhancing detection over desert regions.

Though, as it stands, the current CO2 Slicing holds promise for improving the NCEP

Algorithm, at least within the scope of this project. However, the full results will require

a larger dataset and operational assimilation to determine the impact of including aspects

of CO2 Slicing in NCEP high resolution IR cloud detection.
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Conclusion

5.1 Conclusion

The objective of this paper and its research was to find an alternative to the NCEP

Algorithm which could reliably select more clear FOVs and better reject cloudy FOVs.

After an initial investigation, CO2 Slicing demonstrated the best potential for improving

upon the current NCEP Algorithm. As evident from the O-A plots, CO2 Slicing was able

to consistently detect clear FOVs that were classified cloudy by the NCEP Algorithm at

several wavenumbers. CO2 Slicing also demonstrated a marked improvement to cloudy

FOV detection, best illustrated by rejecting cloudy FOVs that the NCEP Algorithm

classified clear. In addition to providing better FOV classification for ocean, daytime,

tropics to mid-latitude regions, CO2 Slicing also exhibited improvements for land and

polar FOV classification. CO2 Slicing could also improve upon FOV classification for

optically thin cirrus. Lastly, CO2 Slicing demonstrated few disadvantages over the NCEP

Algorithm. Therefore, CO2 Slicing could improve the current algorithm without taking

away any of the NCEP Algorithm’s quality performance and advantages.
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