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Abstract

A Numerical Study on the Aerodynamics of Freely Falling Planar Ice

Crystals

by Joseph J. Nettesheim

Fluid flow fields and fall patterns of falling planar ice crystals are studied by numeri-

cally solving the unsteady, incompressible Navier-Stokes equations using a commercially

available computational fluid dynamics package. The ice crystal movement and orien-

tation are explicitly simulated based on hydrodynamic forces and torques representing

the six degrees of freedom. This study extends the current framework by investigat-

ing four planar-type ice crystals: crystals with sector-like branches, crystals with broad

branches, stellar crystals, and ordinary dendritic crystals. The crystals range from 0.1 –

0.5 mm and 1 – 5 mm in maximum dimension, corresponding to Reynolds number ranges

from 0.2 – 384. The results indicate that steady flow fields are generated for flows with

Reynolds numbers less than 100; larger plates generate unsteady flow fields and exhibit

horizontal translation, rotation, and oscillation. Empirical formulas for drag coefficient,

terminal velocity, and ventilation effect are given. Fall trajectory, pressure distribution,

wake structure, vapor field, and vorticity field are examined.
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Chapter 1

Introduction

Consider a tiny, fragile ice crystal falling before you, drifting gently toward the surface of

the earth. This is simply one of many beautiful, everyday examples of time-dependent

fluid dynamics at low to intermediate Reynolds numbers. When envisioning the fall tra-

jectory of a snow or ice crystal, firsthand experience, or perhaps a bit of imagination, tells

us to expect complex translational and rotational motions, such as side-to-side oscilla-

tions (fluttering), sideways drifting, and tumbling. The fluttering and tumbling motions

of flat bodies falling through a viscous medium has interested scientists for centuries,

dating back at least to Newton and Maxwell and is relevant in the study of meteorology

and various branches of engineering. The goal of this study is to extend the framework

laid out in Cheng et al. (2015) by obtaining the theoretical numerical solutions of the

flow fields around four types of planar ice crystals—crystals with sector-like branches,

crystals with broad branches, stellar crystals, and ordinary dendrites—of various sizes,
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where smaller sizes exhibit steady flow fields and larger sizes demonstrate unsteady flow

fields with eddy shedding.

Frozen hydrometeors take on all types of shapes and sizes, from hexagonal ice crys-

tal plates to more complicated dendrites and aggregates. Ice crystals of various shapes

and sizes possess varying masses and cross-sectional areas, generating different flow fields,

which influence the microphysics of the particles, including their fall velocities, heat dissi-

pation rates, ventilation effects, diffusional growth rates, and collision efficiency with other

hydrometeors (Pruppacher and Klett, 1997, Wang, 1982, Wang and Denzer, 1983). Crys-

tal and snow processes influence thunderstorm anvil and other cloud structures, which

have important radiative impacts (e.g., Takano and Liou, 1993). Quantitative knowledge

of all of these microphysical processes is required for accurate weather and climate pre-

dictions, though these processes are not well understood on the scale of individual ice

crystals.

Flow fields and fall attitudes can be studied experimentally from field observations of real

ice crystals falling through air (e.g., Nakaya and Terada, 1935), tank measurements of

model ice crystals falling through viscous liquids (e.g., Jayaweera and Mason, 1965, 1966,

List and Schemenauer, 1971, Willmarth et al., 1964), or from theoretical calculations (e.g.

Cheng et al., 2015, Hashino et al., 2016, 2014, Ji and Wang, 1991, Wang and Ji, 1997,

2000). More recent studies such as Matrosov et al. (2005) have inferred fall attitudes of

ice crystals from radar data and Takahashi (2014) has used a cloud tunnel to investigate

growth processes. Observational studies cover a broad range of natural crystal shapes,
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though these measurements are subject to large experimental error while tank experi-

ments have small experimental errors (≈ 10%) but only a small sampling of idealized

crystal shapes are studied (Heymsfield and Westbrook, 2010). Theoretical calculations

are essential for fully understanding the motions of ice crystals and making meaningful

assessments of their role in cloud microphysical processes.

Previous studies have found that small ice crystals exhibit steady fall behaviors, though

very small particles (Reynolds number Re ≤ 1) likely fall with random orientations (Wang,

2013). Planar hexagonal ice crystals in the intermediate Reynolds range (1 ≤ Re . 100)

fall steady with horizontally oriented basal planes (Figure 2.2). The upper Reynolds

limit for steady motion for planar ice crystals with narrow branches, such as e.g. stellar

crystals and dendrites, is Re ≈ 200. Note, these Reynolds ranges are not exact, and

different crystal habits, such as ice columns, have different Reynolds ranges that describe

steady fall behavior. The flow fields become unsteady and downstream eddy shedding

begins to occur for increasingly larger ice crystals. Eventually secondary motions occur

simultaneously, such as rotational, oscillatory, and weaving translational motions that are

easy to envision, though complicated to understand.

The use of numerical methods for studying flow fields around particles is nothing new.

For example, Dennis and Chang (1969), Kawaguti (1953), Nieuwstadt and Keller (1973),

Thom (1933) studied the two-dimensional flow past circular cylinders, and Masliyah and

Epstein (1970), Rimon and Lugt (1969) studied flow around thin, axisymmetric oblate
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spheroids. Often, early studies made assumptions and approximations that are not realis-

tic. For example, Schlamp et al. (1975) assumed falling ice crystals could be approximated

as infinitely long circular cylinders, reducing the three-dimensional problem to one in two

dimensions. Similarly, Pitter et al. (1973) approximated hexagonal ice crystals as thin

oblate spheroids.

Ji and Wang (1990, 1991) and Wang and Ji (1997) used realistic columnar and hexagonal

plate ice crystal shapes in their flow field calculations, obtaining steady and unsteady

flow fields for low to intermediate Reynolds numbers. One limitation of these studies,

and all prior studies, is the assumption that the ice crystals fall with their largest di-

mension (length-axis for columnar crystals; basal plane for hexagonal plates) oriented

perpendicular to the direction of fall, which is the expected orientation of steady falling

ice crystals (Pruppacher and Klett, 1997). Of course, firsthand experience tells us that

snow and ice crystals do not fall down straight with no changes in orientation, rather

the motion depends on the Reynolds number and dimensionless moment of inertia (e.g.,

Field and Klaus, 1997, Willmarth et al., 1964). Unstable fall behavior has been shown

to occur for plate-like crystals as small as 1.23 mm, corresponding to Re = 47, and that

the orientation and horizontal motions are important in crystal aggregation (Kajikawa,

1992).

While studies such as Hashino et al. (2014) provide insight into the flow fields of ice

crystals with fixed inclined orientation of the crystal’s largest dimension, even these results

would differ from the realistic case of unsteady freely falling crystals. Up to this point, by
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not simulating freely falling ice crystals, the previous results suggest that, while crystal

fall motions generate flow fields, the crystals themselves do not respond to changes in the

flow fields. Cheng et al. (2015) addresses this deficiency and provides the first numerical

results for the flow field calculation of freely falling hexagonal ice plates, allowing for

the hydrodynamic forces of the flow field to influence the plate, such that oscillatory,

rotational and translational motions are allowed. In a similar manner, Hashino et al.

(2016) simulates the flow fields around freely falling columnar crystals.

In addition to calculating flow fields, previous theoretical studies have also investigated

the enhancement of ice crystal diffusional growth due to falling motion, or the ventilation

effect (e.g., Cheng et al., 2014, Ji and Wang, 1999, Masliyah and Epstein, 1970, Pitter

et al., 1974). Earlier studies approximated hexagonal plates as thin oblate spheroids,

though with the advance of computer technology it is possible to perform calculations

using the true shapes of ice plates. Similar to Cheng et al. (2014), in this study spe-

cific water vapor density boundary conditions are prescribed in order to calculate the

ventilation effect, or the enhancement in growth by vapor diffusion due to falling motion.

Working to extend the framework laid out by Cheng et al. (2015) and previous studies,

the flow fields of four additional types of planar ice crystals—crystals with sector-like

branches, crystals with broad branches, stellar crystals, and ordinary dendrites—are cal-

culating for crystal size ranges of 0.1 to 0.5 mm and 1 to 5 mm in maximum dimension.

The methods of this study are split into two chapters; chapter 2 addresses the properties
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of the crystals and fluid while chapter 3 presents the math and physics behind the cal-

culation of the fluid flow fields and includes information on the meshing process and the

computational fluid dynamics solver. The results are presented in chapter 4. Finally, a

discussion of the results and a summary of the work are given in chapter 5.
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Chapter 2

Crystal & Fluid Properties

The flow fields described by falling objects depend on the properties of both the object

and of the fluid. Six quantities work together to determine the falling motion of objects:

the diameter of the object d, its thickness h, the density of the object ρs, and of the fluid

ρa, the kinematic viscosity of the fluid ν and the gravitational acceleration g. From these,

three non-dimensional numbers arise: the aspect ratio AR, the dimensionless moment of

inertia I∗, and the Reynolds number Re. This chapter is concerned with the dimensional

and non-dimensional quantities used to describe crystal fall behavior.

2.1 Ice Crystal Properties

This study focuses on crystals with sector-like branches, crystals with broad branches,

stellar crystals and ordinary dendrites. Subsection 2.1.1 presents the categorization of
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and general background on planar ice crystals, along with a mathematical method of

categorizing crystals. The geometric properties of planar ice crystals are considered in

Subsection 2.1.2.

2.1.1 Classification

Ice crystals have been classified into various categories throughout history (e.g., Magono

and Lee, 1966, Mason, 1971, Nakaya and Sekido, 1936) and are continuously revised to

include new categories for snow crystals, such as those discovered in Polar Regions. Fig-

ure 2.1 illustrates the 80 crystal classes according to the classification efforts of Magono

and Lee (1966). More recently, Kikuchi et al. (2013) provide detailed information,

photographs and schematic summaries of 121 types of snow crystals, ice crystals, and

other solid precipitation particles, including needle-type crystals, dendrite-type crystals,

column-type aggregate crystals, and lump graupel, to mention a few.

The wide variety of ice crystal shapes, or “habits” are due to crystal growth processes.

From a crystallographic viewpoint, crystals generally exhibit a hexagonal, six-sided sym-

metry, comprised of the c axis normal to the two basal faces, and the a axis, which is

parallel to the basal face (Figure 2.2). Crystal habit is determined by preferential growth

along these planes and axes and is a complicated function of a variety of factors, including

environmental temperature and supersaturation with respect to ice (e.g., Hallett, 1965,

Mason, 1953, Ono, 1970, Young, 1993).

Figure 2.3 depicts the four crystal types used for this flow field investigation. They
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Figure 2.1: Magono-Lee classification of naturally occurring snow crystals from
Magono and Lee (1966). Included by permission of Hokkaido University; reproduced

figure courtesy of Pao K. Wang.

c-axis

Figure 2.2: Schematic representation of the c axis of a sector plate ice crystal. Here,
the c axis is normal to the basal plane.
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correspond to planar crystals under the Magono and Lee (1966) classification scheme.

According to their classification method, crystals with sector-like branches (hereafter,

sector plates) are assigned a classification identification tag of P1b, where P represents

planar crystals, 1 refers to the sub-category “regular crystal developed in one plane,” and

b signifies that the sector plate is the second of six crystals with the P1 classification. In a

similar fashion, the other ice crystal types that are studied included the broad-branched

crystal P1c, stellar crystal P1d, and ordinary dendritic crystal P1e. This work builds

on the investigation into the aerodynamics of hexagonal ice plates P1a, by Cheng et al.

(2015) and thus were not considered for this study. The sixth planar type, regular crystal-

—fernlike crystals P1f —are not considered due to both their similarity to the ordinary

dendritic crystal and a lack of sufficient fall velocity data from Kajikawa (1972) and

Mitchell (1996), used in part to predict terminal velocity initial conditions for the flow

field calculations.

Having qualitative classification schema are extremely useful for understanding the de-

scriptive categorization of ice and snow crystals, however these classifications are in-

adequate for performing physical calculations, which require quantitative classification.

There are a handful of possible ways to quantitatively classify frozen hydrometeors. For

example, Lim et al. (2013) devised a classification methodology of snow particles, such

as crystals, aggregates, rimed snow, etc., by utilizing radar reflectivity fields, which can

be used for determining more accurate estimates of snowfall rates. Another classification

approach, using simple mathematical functions to describe hydrometeor shapes, is a more

suitable approach for studying physical properties, such as heat diffusion rates, flow fields
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Figure 2.3: The 2D crystal shapes considered in this study: (a) sector plates; (b)
broad-branched crystal; (c) stellar crystal; and (d) ordinary dendritic crystal.

around hydrometeors, and light scattering properties by ice crystals in cirrus clouds (e.g.,

Liou, 1992). The mathematical approach of hydrometeor classification is employed in

this study and is based on the efforts of numerous previous studies (e.g., Auer and Veal,

1970, Wang, 1982, 1987, 1997, 1999).

Auer and Veal (1970) were among the first to study the dimensions of natural ice crys-

tals and created empirical relationships that describe the dimensions, namely height,
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diameter, width, and length, of a wide range of ice crystals. Their results work well

for simple-shaped ice crystals, such as hexagonal plates and columnar ice crystals, how-

ever their relationships make it difficult to analyze physical and geometrical properties,

such as calculating the volume of complex ice crystals. Addressing this topic, a series of

papers in the 1980s and 1990s provide simple, mathematical functions to describe the two-

dimensional shapes of conical hydrometeors (Wang, 1982), columnar ice crystals (Wang,

1997), polygonally symmetric particles (Wang, 1987), and, the topic of this thesis, planar

ice crystals (Wang and Denzer, 1983).

The geometries of three ice crystals investigated in this study are the product of a conve-

nient, simple technique first discussed in Wang and Denzer (1983), and revised into more

general forms and for three dimensions in a subsequent publication (Wang, 1997). This

technique, termed the Successive Modification of Simple Shapes (SMOSS), can be used

to generate a variety of idealized shapes representing observed ice crystals.

SMOSS involves applying a mathematical function to a simple shape in order to generate

a more complex shape (Wang, 1997). For example, to create the shape of a planar ice

crystal, one can start with an equation describing a circular disk, then use a periodic

sine or cosine function to modulate the width, amplitude and polygonality of a complex

shape. The general form of the equation used to modify crystal shape in this study, in

polar coordinates, is

r = a[sin2(nθ)]b + c, (2.1)
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Table 2.1: The parameters for the three crystal types produced using the SMOSS
technique. The Magono and Lee symbols, along with the amplitude parameter (a),
width parameter (b), center size parameter (c) and polygonality parameter (n) are

presented.

Crystal type Shape/ID a b c n

Sector plate P1b -0.4 10 0.5 3

Broad-branch P1c 0.4 1 0.1 3

Stellar P1d 0.5 100 0.01 3

where r is the radial coordinate and θ is the angular coordinate (0 ≤ θ ≤ 2π). The

parameter a modulates the amplitude of the peak (termed the amplitude parameter; c

≤ a ≤ ∞ ), b adjusts the peak width (width parameter; 0 ≤ b ≤ ∞), c represents the

size of the center disk (center size parameter; 0 ≤ c ≤ ∞), and n dictates the number of

peaks, and must be a multiple of 1/2 in order to satisfy the condition of a self-closing curve

(polygonality parameter; n: 0, 0.5, 1, 1.5, 2, ···). In an attempt to aid the reader in better

understanding the modulating role of each parameter, Figure 2.4 presents an application

of the SMOSS technique on the square of the sine function, r = sin2(θ), parameter by

parameter, and Table 2.1 provides the values of the parameters used to create them.

0
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b
  + c
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Figure 2.4: A demonstration of the application of the SMOSS technique applied to
the function r = sin2(θ) over the domain 0 ≤ θ ≤ 2π.
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In this study, the 2D shapes of three planar crystal types are developed using the SMOSS

technique (Figure 2.3, Table 2.1). Two-dimensional SMOSS was chosen over the 3D alter-

native because the availability of AutoDesk AutoCAD® software allowed for the seamless

extrusion of 2D surfaces, resulted in smaller file sizes when exporting the curves to stere-

olithography (STL) file format for geometry and mesh generation (Subsection 3.2.2), and

was already employed for calculating the moments of inertia (Subsection 2.1.2). It is

noted that growth processes (nucleation, deposition, collision) are not considered when

arriving at the ‘perfect’ mathematically defined shapes. Keep in mind that observed ice

crystals would have imperfections in symmetry compared to the idealized ice crystals

produced using the SMOSS method. The geometry of the dendritic crystal is created

using AutoCAD software.

2.1.2 Dimensions & Mass

Using empirical relationships to describe ice crystal dimensions for various crystal types

began in earnest with the works of Ono (1969) and Auer and Veal (1970). The diameter

and thickness of ice crystals affect the crystal’s growth, mass, and fall velocity. A few key

relationships for crystals used in this work are described below.

By fitting polynomial or power functions to experimental data using a least squares

technique, Auer and Veal (1970) present empirical relationships for crystal types according

to the Magono and Lee (1966) classifications and temperature regimes. For crystals of

interest in this study, the following power law relationships describe the height/thickness

h and diameter d, given in µm:
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Sector plates: h = 2.020 d 0.449, (2.2)

Broad-branched and stellar crystals: h = 2.028 d 0.431, (2.3)

Dendritic crystals: h = 2.801 d 0.377, (2.4)

and these relationships are shown graphically in Figure 2.5.
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Figure 2.5: Diameter-thickness relationships for: sector plates (dotted), broad-
branched/stellar crystals (dashed), and dendritic crystals (solid). The diameter d and

thickness h are given in µm. Based on data from Auer and Veal (1970).
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The Auer and Veal (1970) diameter-thickness relationships are in general agreement with

earlier studies (e.g., Mason, 1953, Ono, 1969, Schaefer, 1947), and subsequent studies

(e.g., Hobbs et al., 1974). The Auer and Veal (1970) empirical relationships are the

method of choice for this study, since they provide relationships for the variety of the

four crystal types of interest.

The diameter and thickness of ice crystals can be conveniently expressed as the non-

dimensional aspect ratio AR, or the ratio of an ice crystal’s thickness to its diameter

(i.e., AR = h/d). Knowledge of the aspect ratio is especially important for determining

radiative properties of ice crystals, such as the asymmetry parameter (e.g., Diedenhoven

et al., 2012).

The mass of an object described by a 2D curve for a given thickness is determined by

solving for the volume and multiplying by the density of the material. Here, the density

of ice, ρs, is assumed to be 916.68 kg m-3. The thickness, h, depends on the type of

crystal, and is a function of the diameter (Equations (2.2) to (2.4)). The area A enclosed

by a curve generated from the SMOSS technique is calculated by integrating the right

hand side of Equation 2.1:

A =
1

2

∫ 2π

0

r2dθ (2.5)

and thus the volume V is: V = A h. The equation used to determine the mass m is

simply: m = ρsV. Additionally, AutoCAD software provides a tool for calculating the

area enclosed by the curve and the volume of an extruded surface, and is utilized in this

study.
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The motion of ice crystals falling through the atmosphere also depends on the objects’

moments of inertia or the distribution of mass with respect to a chosen axis of rotation,

and a measurement of an objects resistance to rotational acceleration. The most general

form of the moment of inertia, I, is given by

I =

∫
r2dm, (2.6)

and the dimensionless moment of inertia I∗ is defined as

I∗ =
Ia

ρaD5
(2.7)

where Ia specifies the moment of inertia about the a axis of the ice plate (i.e., parallel to

the basal face, see Figure 2.2), ρa is the density of air, and D is the maximum dimension

measured along the a axis (diameter for planar ice crystals). The calculation of Ia was

performed with the AutoCAD software. Willmarth et al. (1964) found the free-fall pattern

of disks generally depends on Re and I∗, while the Best number X and I∗ have been shown

to determine the onset of unstable falling motion for plate-like ice crystals (Kajikawa,

1992). The effects of the fluid on falling body motion is expected to be greatest for small

I∗; the crystal moment of inertia dominates for large I∗ (Field and Klaus, 1997).
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2.2 Fluid Properties

The following subsections present the density, viscosity and thermal conductivity, and

diffusivity of air at 900 hPa, -10 C.

2.2.1 Air Density & Viscosity

The density of moist air is a function of pressure, temperature and humidity. The follow-

ing equation describe the calculation of the density of air ρa, based on Yau and Rogers

(1996) and Brutsaert (1982):

ρa =
P

Rd T

(
1−0.378 es

P

)
, (2.8)

where P is the atmospheric pressure (in Pa), Rd is the gas constant for dry air (287.05

J kg-1 K-1), T is the temperature (in K), and es is the saturation vapor pressure (in Pa).

The equation for es, with temperature in degrees Celsius TC :

es = 611.2 exp

(
17.67 Tc

Tc + 243.5

)
, (2.9)

is the result of an empirical fit to data, since solving the Clausius-Clapeyron equation

for the saturation pressure of water vapor pressure involves a difficult calculation due

to the temperature dependence of latent heat (Pruppacher and Klett, 1997). For the

atmospheric conditions in this study—atmospheric pressure and temperature of P = 900

hPa and T = -10 C, respectively—-the density of air is ρa= 1.19 kg m-3.
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Another relevant property of the fluid is the viscosity. Viscosity is a measurement of a

fluid’s resistance to flow. The absolute and kinematic viscosity are calculated, respec-

tively, using the following:

η = 1.72e− 5

(
393

T + 120

) (
T

273.15

)1.5

(2.10)

ν =
η

ρa
(2.11)

where η is the absolute viscosity (kg m-1 s-1; also known as the dynamic viscosity), and

ν is the kinematic viscosity [m2 s-1](Yau and Rogers, 1996). A dimensionless quantity is

formed by combining the fluid viscosity with a characteristic velocity, which we define

using the terminal velocity u∞, and the diameter of an object:

Re =
u∞ dρa
ηa

=
u∞ d

νa
, (2.12)

where Re is the Reynolds number. The Reynolds number provides a dimensionless mea-

surement of the flow speed; low Re tend to correspond to laminar, viscous flow in which

the viscous forces dominate, whereas turbulent flow is generally characterized by high Re,

where the flow is dominated by its inertial forces.

2.2.2 Thermal Conductivity & Diffusivity

The thermal conductivity, diffusivity and specific heat capacity are fluid properties that

describe the fluid’s ability to store and transfer heat and are critical for modeling processes

that deal with heat. The thermal conductivity describes how a material conducts heat,
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and while there are a number of ways to measure it, a simple equation for calculating the

thermal conductivity, accurate to within 1% over the temperature range -30 to 230◦C, is

used:

K = 0.0264

(
T

300

)0.8646

(2.13)

where K is the thermal conductivity of the air (W m−1 K−1) (Dixon, 2007). Intimately

related to the thermal conductivity is the diffusivity, or the measure of the rate of heat

transfer of a material from the “hot” side to the “cold” side. The diffusivity of water

vapor in air Dv is the ratio of the thermal conductivity K to the product of the density ρ

and specific heat capacity at constant pressure cp (i.e., Dv = K/ρcp). It can also be given

by the empirical relation from Hall and Pruppacher (1976):

Dv = 0.211

(
T

T0

)1.94(
P0

P

)
, (2.14)

where T0 = 273.15 K and P0 = 1013.25 hPa, and Dv is given in cgs units cm2 s−1. This

relation is valid for the temperature range -40 to 40 C.

2.3 Terminal Velocity

The terminal velocity u∞ of falling ice crystals and snowflakes has been a topic of interest

and debate since the Nakaya and Terada (1935) paper, where the velocity of individual

crystals were measured through crystal position observations with the naked eye and the

time was measured with a stop watch. Subsequent studies measured fall velocity using

photographic techniques with stroboscopic illumination (e.g., Higuchi, 1956, Langleben,
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1954, Schaefer, 1947, Zikmunda and Vali, 1972), and radar (e.g., Marshall, 1953). The

need for accurate predictions of terminal velocity is critical for modeling cloud processes,

which have been shown to be sensitive to the parameterization of fall velocities (Starr and

Cox, 1985). For the purposes of this study, an accurate terminal fall velocity is required

to avoid large displacements of the ice crystal in the ẑ direction, which would require a

larger domain size to ensure proper boundary conditions.

Subsection 2.3.1 describes the process of using dimensionless quantities, the Reynolds

Re and Best X numbers, to predict the terminal fall velocity given a relationship be-

tween Re and X, which is determined in laboratory or field experiments (e.g., Knight

and Heymsfield, 1983). Subsection 2.3.2 presents the technique used to predict the initial

guess terminal fall velocities of the ice crystal flow field simulations.

2.3.1 Theoretical Relationship between Re & X

A theoretical approach to determining ice crystal terminal velocities involves deriving

relationships between crystal dimensions, fluid properties and fall velocities from aerody-

namic principles, based on the conclusion that when a planar ice crystal falls, with its

basal face perpendicular to the direction of fall, the terminal velocity is reached when the

object’s weight is balanced by the air drag. For example

u∞ =

√
2mg

ρaAprojCD
, (2.15)
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where Aproj is the object’s projected area (in the direction normal to the flow) and CD is

the drag coefficient (Magono, 1954). The issue with Equation 2.15 is the dependence on

the drag coefficient CD, which varies with Reynolds number and is therefore dependent

on u∞.

Ice crystal terminal velocities are typically calculated by finding a relationship between

the Reynolds number and the Best, or Davies number X

X = CDRe2 =
2mgρaD

2

Aprojη2
, (2.16)

where D is the object’s maximum dimension (diameter d for planar ice crystals)(List and

Schemenauer, 1971). Note that X has no dependence on u∞, and depends only on the

properties of the object and fluid.

In early studies, the Best number for ice crystals was based on more simple geometries.

For example, the fall velocity of plate-like crystals can be estimated from drag data by

approximating their shape as thin, oblate spheroids (Jayaweera and Cottis, 1969, Pitter

et al., 1973). Once Re, X, and a relationship between the two is known, the terminal

velocity can be calculated from the Reynolds number, since Re = U∞D/ν. The Re-X rela-

tionships were algebraic and often contained velocity adjustment coefficients dependent

on the ice crystal aspect ratio (e.g., Beard, 1980, Jayaweera and Cottis, 1969, Pruppacher

and Klett, 1997). This approach was followed by (e.g., Cornford, 1965, Heymsfield, 1972,

Jayaweera, 1972, Jayaweera and Ryan, 1972, Kajikawa, 1971, 1972, 1973, Michaeli, 1977),
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and the results were often limited to specific flow regimes (i.e., Re . 100) and crystal

orientation (i.e., the broadest dimension of a thin disk normal to the direction of fall)

(Pruppacher and Klett, 1997).

2.3.2 Power Law Relationship

Having analytically continuous fall speed-dimensional power law expressions are a de-

sirable alternative to various relationships for differing Re, and the approach has been

widely used for fall velocity expressions in publications such as Heymsfield et al. (2007a),

Heymsfield and Kajikawa (1987), Heymsfield et al. (2007b), Jiusto and Bosworth (1971),

Khvorostyanov and Curry (2002, 2005), Langleben (1954), Locatelli and Hobbs (1974),

Mitchell (1996). Additionally, using projected area- and mass-dimensional power laws

instead of oblate spheroid geometry approximations results in calculation improvements

(Mitchell, 1996). This type of approach is used to model cloud processes, such as the

evolution of cirrus clouds, because it is simple and accurate (Liu et al., 2003).

Mitchell and Heymsfield (2005) provide a velocity power law for the calculation of the

terminal velocities of many ice particles using a continuous Re-X relationship over a wide

range of Re and X, in cgs units:

u∞ = AvD
Bv . (2.17)

Here, the velocity power law coefficients and power index are
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Table 2.2: Coefficients of mass- and area-power laws for ice crystals used in the
calculations of aRe, bRe and X from Mitchell (1996).

Mass Area

Crystal type α β γ σ

Sector plates (P1b)
40 µm ≤ D ≤ 2000 µm 0.00142 2.02 0.55 1.97

Broad-branched crystal (P1c)
100 µm ≤ D ≤ 1000 µm 0.000516 1.80 0.21 1.76

Stellar crystal (P1d)
Plane dendrites(P1e)

90 µm ≤ D ≤ 1500 µm 0.000270 1.67 0.11 1.63

Av = aReν
(1−2bRe)

(
2αg

ρaγ

)bRe

, and (2.18)

Bv = bRe (β − σ + 2)− 1, (2.19)

where α, β, γ, and σ are coefficients and indices from the mass- and area-dimensional

power law expressions for ice crystals, respectively:

m = αDβ, and (2.20)

A = γDσ, (2.21)

which vary with crystal habit and size, and are given in Table 2.2. Note, Mitchell (1996)

assumed stellar crystals to be representative of plane dendrites. Under this same assump-

tion, the mass and area parameters for stellar crystals are also used for dendritic crystals

for establishing a first approximation of terminal velocities in this study.
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The dimensionless Reynolds and Best number can now be expressed in terms of (2.20)

and (2.21) as:

X =
2αgρaD

β+2−σ

γη2
, (2.22)

The drag terms that relate Re and X, aRe and bRe, are:

aRe =
C2

[
(1 + C1X1/2)1/2 − 1

]2
XbRe

, (2.23)

bRe =
C1X1/2

2 [(1 + C1X1/2)1/2 − 1] (1 + C1X1/2)1/2
, (2.24)

where C1 = 4/δ20C
1/2
0 and C2 = δ20/4. The constants δ0 and C0 are the boundary layer

depth and drag coefficients from boundary layer theory derived for ice particles, having

values of 5.83 and 0.6, respectively, determined by Böhm (1989) and used by Mitchell

and Heymsfield (2005). It is noted that the terminal velocity prediction was generally

an underestimation, so much so that for larger ice crystals (i.e., d ≥ 1 mm) the surface

roughness parameters from Abraham (1970), δ0 = 9.06 and C0 = 0.292, were used in

this study. The theoretical terminal velocities from the simulations could possibly be

explained by deviations in natural ice crystal geometries from the highly idealized crys-

tals simulated in this study. For instance, an idealized broad-branched crystal with an

equivalent maximum dimension (diameter), thickness, and ice density as a natural crystal

will likely serve as the upper bound for the mass of this type of crystal, since natural
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crystals exhibit non-uniform growth, thus a smaller basal face surface area. This suggests

the terminal velocity of an idealized crystal is the upper bound for that of a natural ice

crystal. With differences in natural and idealized geometries in mind, more precise ter-

minal velocities used to initialize the ice crystal flow simulations were attained by a trial

and error method, using Equations (2.17) to (2.24) to provide a reasonable first guess.

2.4 Ventilation Coefficient

Diffusion growth is one of two general processes of hydrometeor growth, the other being

growth through collision and coalescence with other hydrometeors. Diffusion growth

occurs when an ice crystal is in an environment that is supersaturated (with respect to

the crystal), resulting in a water vapor flux towards the surface of the crystal, causing an

increase in mass. For a stationary crystal suspended in a supersaturated environment,

the vapor density distribution should be highly symmetric, depending only on the radial

coordinate r. Of course, in reality, hydrometeors fall relative to air, and this motion

results in an asymmetric vapor density field, responding to the resultant flow field. The

vapor density gradient will generally be enhanced upstream of the particle, and relaxed

in the wake, compared to the symmetry stationary case (Figure 2.6). When integrated

over the entire surface of the ice crystal, the magnitude of the vapor flux will always be

greater than the surface integrated vapor flux of a stationary crystal. This enhancement

of the vapor flux implies an enhancement of the diffusion growth rate, and is known as

the ventilation effect. The enhancement factor due to motion, the ventilation coefficient,

is determined by comparing the diffusion growth rate of a falling ice crystal to that of a
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stationary crystal. Conversely, for an ice crystal in a subsaturated environment given the

same temperature, pressure, and Reynolds number, motion induces an enhancement in

the evaporation rate relative to a stationary crystal by the same factor, the ventilation

coefficient.

a)

Vapor Density

2.405

2.4

2.395

2.39

2.385

2.38

2.375

2.37

2.365

b)

Figure 2.6: Example vapor density distributions for: (a) a stationary broad-branched
crystal; (b) a broad-branched crystal falling through air. The cross-section location is
indicated by the dashed line in the upper righthand corner of the figure and applies to

both frames.

Subsection 2.4.1 provides the physical framework for determining the ventilation coeffi-

cient of an idealized, spherical water drop and Subsection 2.4.2 presents the adjustments
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required to arrive at the same conclusion by numerically solving for diffusion growth for

complicated ice crystal geometries.

2.4.1 Theoretical Calculation

For simplicity, consider a spherical water drop of radius a falling at a velocity described

by the vector u in air with a water vapor density ρv, which is a function of space and

time. The flux density vector of water vapor jv towards the drop surface is:

jv = −Dv∇ρv + ρvu, (2.25)

where − Dv∇ρv is the diffusion flux density component, with Dv being the diffusivity of

water vapor in air (Subsection 2.2.2) and ρvu is the convective flux due to the falling

motion.

The conservation of mass dictates that ρv must also satisfy the continuity equation, such

that

∂ρv
∂t

= −∇ · jv. (2.26)

Substituting (2.25) into (2.26), assuming Dv is constant, and recognizing that ∇ · u = 0

for incompressible flow, we arrive at the unsteady convective diffusion equation for water
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vapor:

∂ρv
∂t

= Dv∇2ρv−u · ∇ρv. (2.27)

Assuming ρv is in steady state (i.e., ρv responds immediately to environmental adjust-

ments), the drop diffusion growth rate is given by integrating the vapor flux density over

the drop surface:

dm

dt
= −

∮
s

(Dv∇ρv)r=a · dS, (2.28)

where the integration is carried out over the surface of the water drop S, which is directed

in the positive, “outward” radial direction (Ji and Wang, 1999). Regarding the sign

convention, the minus sign indicates that the calculation is for the “inward” flux, such

that when ρv,∞ > ρv,a, the growth rate dm/dt is defined as positive.

The mean ventilation coefficient f̄v is given by

f̄v =
(dm/dt)

(dm/dt)0

, (2.29)

where (dm/dt)0 is the diffusion growth rate for the stationary drop and f̄v is the factor by

which the vapor flux toward the drop is enhanced as a result of motion.
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To solve this numerically, the following boundary conditions for the vapor density distri-

bution are imposed:

ρv = 2.3613×10−3 kg m−3 at r = a

ρv = 2.4086×10−3 kg m−3 at r →∞,
(2.30)

such that the environment is saturated at the surface of the drop (i.e., 100% relative

humidity), and the environment is 2% supersaturated sufficiently far from the drop (i.e.,

102% relative humidity). Note, for extremely small drops (i.e., a ≤ 10 µm), a correction

for the diffusivity of air is required due to the behavior of water vapor as individual

molecules, rather than a continuum (Wang, 2013). Also, Equation 2.28 does not address

the inherent release or consumption of latent heat associated with the condensation and

evaporation phase changes of water substance, which influences the vapor density field.

This is discussed in the following section.

2.4.2 Heat Conduction Analogy

In principle, one can determine the theoretical growth rate of ice crystals using the frame-

work laid out in Subsection 2.4.1. Numerically solving for the diffusion growth rate re-

quires a finite computational domain, which requires reconsideration of the boundary

conditions (2.30). The inner boundary condition for a spherical drop, where saturation

occurs at the surface (i.e., r=a), becomes more complicated when considering the com-

plex geometries of ice crystals. Mathematical expressions that describe three-dimensional

surfaces, such as those presented in Wang (1999), can remedy this problem by applying
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the surface boundary condition at points defined by the radial coordinate. However, since

the crystal geometries in this study were chosen to be defined by two-dimensional expres-

sions, this approach is not pursued. For the outer boundary condition, the constraint

of a finite domain requires the placement of the domain boundaries sufficiently far away

from the crystal, since r →∞ cannot be achieved (Ji and Wang, 1999). Additionally, for

unsteady flow, a pre-defined constant vapor density at the boundary downstream of the

ice crystal is unrealistic. Instead, this condition must be modified such that the vapor

field at the downstream boundary is continuous (i.e., ∂ρv/∂z = 0).

Fortunately, there exists an alternative method for determining the vapor density distri-

bution without solving the unsteady convective diffusion equation for water vapor (2.27)

subject to the boundary conditions (2.30), adjusted for ice crystal geometries and the con-

straints of a finite computational domain. The electrostatic analogy is a method that takes

advantage of the versatility of the Euler form of the continuity equation (2.26). Wang

(2013) describes how the electrostatic potential Φ of a perfect conductor, along with the

induced electric field ~E, can be used as an analog to ρv for ice crystals with measured or

theoretically calculated capacitance C. Accurate capacitance values are not available for

the ice crystals studied here. Instead, in a similar manner, the heat conduction analogy

is used to calculate the diffusion growth rate.

Where water vapor diffusion is a mass transfer process, heat transfer due to motion is a

heat diffusion process. The ventilation of heat is analogous to the ventilation of vapor, and

the equations and boundary conditions are the same, except temperature replaces vapor
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density and the thermal conductivity of air is used in place of the vapor diffusivity. In

other words, the transport of temperature is modulated by the same equation governing

the transport of water vapor. Thus, Equation 2.25 can be re-written as the vapor flux

vector for heat transport jh given by Fourier’s law: jh = −Ka∇T , where Ka is the thermal

conductivity coefficient of moist air through which heat is transported (Pruppacher and

Klett, 1997).

Analogous to Equations (2.28) to (2.29), ignoring heat changes due to radiation and

frictional dissipation, and again assuming steady-state conditions, the rate of conductive

heat transport dq/dt and the ventilation coefficient for heat diffusion become, respectively:

dq

dt
= −

∮
s

(Ka∇T )r=a · dS, (2.31)

f̄h =
(dq/dt)

(dq/dt)0

. (2.32)

In the context of cloud physics, the ventilation coefficient for heat diffusion and vapor

diffusion are assumed to be equivalent (Pruppacher and Klett, 1997), therefore the ven-

tilation coefficient calculation is determined using the heat conduction method in this

study. The mean ventilation coefficient for vapor diffusion is computed directly by nu-

merically solving the heat transport equation for a crystal under moving and stationary

conditions (i.e., dq/dt and dq/dt0, respectively). In order to make temperature analogous

to water vapor, great care is taken in prescribing the correct parameters for the energy

solver in the fluid dynamics package used, ANSYS® Fluent, Releases 15.0 and 16.2.



33

2.5 Summary of Properties

Table 2.3 lists the diameters (the largest possible dimension, measured from two opposing

tips), aspect ratios, dimensionless moments of inertia, Reynolds numbers, terminal veloc-

ities and ventilation coefficients of the four ice crystals investigated: sector plates (P1b

under the Magono-Lee classification scheme), crystals with broad branches (P1c), stellar

crystals (P1d) and ordinary dendritic crystals (P1e). Here, the aspect ratio, dimension-

less moment of inertia, Reynolds number, terminal velocities, and ventilation coefficients

are previously described in chapter 2.
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Table 2.3: Dimensions, dimensionless moments of inertia, Reynolds numbers, terminal
velocities and ventilation coefficients for the planar ice crystals investigated in this study.

Type
Diameter
d (mm)

Aspect
ratio
AR

Dimensionless
moment of inertia

I∗

Reynolds
number

Re

Terminal
velocity

u∞ (cm s−1)

Ventilation
coefficient

fv

P1b

0.2 0.109 3.117 2 14.50 1.15
0.3 0.087 2.478 5 22.28 1.28
0.4 0.074 2.108 8 29.08 1.42
0.5 0.066 1.861 12 34.21 1.54
1 0.045 1.266 39 54.96 2.10
2 0.031 0.863 115 80.52 3.39
3 0.025 0.690 198 92.39 4.30
4 0.021 0.589 288 100.85 5.09
5 0.019 0.520 384 107.69 5.94

P1c

0.2 0.099 1.334 1 10.12 1.08
0.3 0.079 1.052 4 16.14 1.18
0.4 0.067 0.890 6 20.94 1.30
0.5 0.059 0.782 9 26.20 1.37
1 0.040 0.525 31 43.56 1.81
2 0.027 0.354 93 65.14 2.72
3 0.021 0.281 175 81.76 3.57
4 0.018 0.238 258 90.56 4.19
5 0.016 0.210 345 96.78 4.76

P1d

0.2 0.099 0.110 0.2 1.19 1.01
0.3 0.079 0.087 0.5 2.09 1.02
0.4 0.067 0.073 1 3.17 1.05
0.5 0.059 0.065 2 4.25 1.09
1 0.040 0.043 7 9.44 1.29
2 0.027 0.029 25 17.59 1.90
3 0.021 0.023 53 24.74 2.55
4 0.018 0.020 89 31.18 3.04
5 0.016 0.017 133 37.17 3.47

P1e

0.2 0.103 0.690 0.5 3.82 1.03
0.3 0.080 0.533 1 6.19 1.10
0.4 0.067 0.444 2 8.59 1.16
0.5 0.058 0.386 4 10.85 1.23
1 0.038 0.250 14 19.46 1.61
2 0.025 0.162 43 29.82 2.75
3 0.019 0.126 77 35.75 3.77
4 0.016 0.105 123 43.11 4.93
5 0.014 0.092 173 48.56 5.87
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Chapter 3

Math & Physics of the Flow Field

Calculations

This chapter is reserved for a discussion of the theory and numerical methods used to

solve the set of differential equations for fluid motion. Technical details about the software

used to carry out the flow field calculations are included, along with a discussion of the

meshing technique employed.

3.1 Governing Equations

The time-dependent Navier-Stokes equation, coupled with the incompressible flow con-

dition are the governing set of equations for the flow field around falling ice crystals
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(Pruppacher and Klett, 1997):

∂u

∂t
+ (u · ∇) u = −∇p

ρa
+ ν∇2u + g (3.1)

∇ · u = 0, (3.2)

where u is the air velocity, p is the static pressure, ν is the kinematic viscosity (Sub-

section 2.2.1) and g is the gravitational acceleration, a constant [0,−9.81] m s-2. The

boundary conditions are

u = 0 at r = a,

u = u0 · êz at r →∞,

p = 0 at r →∞

(3.3)

where u0 is the reference wind speed (close to the terminal fall velocity of the ice crystal,

see Subsection 2.3), and êz is the unit vector along the fall direction (ẑ). The first

condition is the no-slip condition, stating that the fluid will have zero velocity at the rigid

ice crystal surface. The second condition states that the velocity of the flow sufficiently

far away is not influenced by the presence of the ice crystal and that it is constant. These

are the common boundary conditions for these types of problems (Wang, 2013). The

unsteady Navier-Stokes equation is necessary because the resulting flow around falling

ice crystals at terminal velocity is intrinsically unsteady, exhibiting asymmetries in the

flow.
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While (3.1) and (3.2) provide the flow field around the ice crystals, they do not provide

insight into how the crystal will respond to changes in the flow field. The motion of ice

crystals subjected to changing flow fields is determined by solving the degrees of freedom

(DOF) motion problem for a rigid body in space. For an unrestrained rigid body in space,

such as an ice crystal falling through the atmosphere, there are six degrees of freedom

(6DOF): three translational motions along x, y and z axes and three rotary motions about

the x, y, and z axes (for example, role, pitch, and yaw for airplanes, respectively).

The 6DOF motion is governed by the following equations:

~̇vG =
1

m

∑
~fG (3.4)

~̇ωB = L−1
(∑

~MB− ~ωB × L ~ωB
)

(3.5)

where Equation 3.4 is Newton’s second law for the translational motion of the center of

gravity and Equation 3.5 is Euler’s equation of motion for the rotational motion. Here,

~̇vG is the translational motion of the center of gravity, m is the mass, ~fG is the force

vector due to gravity, ~̇ωB is the angular motion of the object, L is the inertia tensor, ~MB

is the moment vector of the body and ~ωB is the rigid body angular velocity vector. The

ANSYS, Inc 6DOF solver is employed, which calculates the forces and moments exerted

on the planar ice crystal by the ambient flow, and subsequently determines the 6DOF

motions of the crystal, including translations and rotations about three perpendicular

axes (ANSYS, 2013). These angular and translational motions are then used to update
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the position of the rigid body within the dynamic mesh calculation (see Subsection 3.2.2).

3.2 CFD Model

The numerical approach for resolving the flow fields around falling planar ice crystals in

this study makes use of Computation Fluid Dynamics (CFD) simulations. The ANSYS

Fluent CFD model is used to solve the governing differential equations of fluid motion

laid out in the previous section. This section works to describe the approach of modeling

ice crystal free fall in terms of the solver, ANSYS Fluent and the gridding, or mesh,

choice.

3.2.1 ANSYS Fluent

The computational fluid dynamics package Fluent 15.0.0 and 16.2.0 of ANSYS, Inc are

used for simulating the flow fields around falling planar ice crystals. The CFD solver solves

both the Navier-Stokes equation and the 6DOF motion problem at each time step. Instead

of simulating crystals falling at their terminal velocity, we treat the equivalent problem

of air passing the crystal at the crystal’s terminal velocity. This approach improves

calculation efficiency by reducing the size of the computational domain through shortening

the distance the crystal must fall to reach quasi-steady state (falling at the terminal

velocity). However, note the motion and position of the crystal is allowed to change

according to the forces imparted on the crystal from the flow field, such that the velocity

of the ice crystal will vary depending on the orientation, which acts to modulate the drag

force.
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For each case, a steady and transient simulation are performed. The steady solution is

achieved before allowing the solver to advance in time, serving as an initialization for

the transient solution, which reduces computation time and results in a more accurate

solution. The following paragraphs provide the solution methods and schemes used within

Fluent for the transient calculations.

A coupled pressure-based solver is used, which involves simultaneously solving for the

momentum equations and the pressure-based continuity equation in a closely coupled

manner. The governing equations are nonlinear and coupled, so the solution process is

an iterative one in which the entire set of equations is solved repeatedly until the solution

reaches a convergence criterion before stepping forward in time. Figure 3.1 shows the

process of the solver.

The Pressure-Implicit with Splitting Operators (PISO) algorithm is chosen for solving

the pressure-velocity coupling (Issa, 1986). The scheme satisfies the momentum balance

after corrections in pressure are finished, and mass flux is corrected through coupling with

neighboring cells. The PISO scheme is used when there are large gradients in velocity.

Gradients, or the value of scalar quantities at cell faces, are computed using the default

Least Squares Cell-Based method, which assumes linearity of the solution, is computa-

tionally less expensive than other methods but provides a comparable level of accuracy

compared to superior methods, such as node-based gradients. For cases with skewed and

distorted meshes, such as those used in this study, this method is superior.
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Figure 3.1: Flow chart for the Fluent pressure solver algorithm. From the ANSYS
Fluent Theory Guide.
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The Body Force Weighted pressure interpolation scheme is chosen for interpolating pres-

sure values since the body forces are known a priori in the momentum equations. The

spatial discretization of the advection of momentum is solved with the Quadratic Up-

stream Interpolation for Convective Kinematics (QUICK) scheme (Freitas et al., 1985).

A Second-Order Upwind Scheme is chosen for the energy discretization, which is used for

the calculation of vapor diffusion, and provides high-order accuracy over other methods.

The first order option would have difficulty for cases such as these with tetrahedral grids,

since the flow is rarely in line with the grid, unlike structured grids. A first order implicit

scheme was chosen for the transient formulation with a time step typically set to 1 ×

10−4 s, though some simulations required smaller time steps in order to better resolve

large displacements due to the forces exerted on the crystal from the flow. Gradients are

needed determining values of scalars at cell faces and for computing secondary diffusion

terms and velocity derivatives.

Finally, as described, the position and orientation of the crystal changes with time, so

a fixed, gridded mesh is unsuitable. ANSYS Fluent provides dynamic mesh capabilities,

which allows the mesh to adapt and match the position and orientation of the crystal

at each time step. Figure 3.2 shows an example demonstration of the dynamic mesh

technique. For each time step, the 6DOF solver determines the position and orientation

of the crystal. Next, the mesh is modified in accordance with the crystal’s altered position

and orientation. In order to maintain mesh quality, diffusion smoothing and re-meshing

options are used when the mesh is updated to reflect the 6DOF motions of the crystal.
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Figure 3.2: Example of the dynamic mesh technique applied to two randomly selected
snapshots of a 5 mm P1c crystal, demonstrating that the mesh adapts with time to

match varying orientations of the crystal.

3.2.2 Mesh

Gridding is completed using ANSYS ICEM CFD meshing software. Stereolithography

(STL) faceted geometries are created in AutoCAD using extruded crystal shapes devel-

oped using the ‘SMOSS’ technique laid out in Subsection 2.1.1. The STL files are then

loaded into ANSYS ICEM CFD where the computational domain is constructed. The

computational domain in this study is spherical, made up of four fluid zones [wind tunnel

(WT), sub-wind tunnel (SWT), boundary layer zone (BL), and the sub-boundary layer

zone (SBL)] and three boundaries (inlet, outlet, and crystal surface), used to specify

boundary conditions (Figure 3.3).
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(a) 

outlet

inlet

SWT

(b) 

SWT BL

SBL

(c) 

SBL

Figure 3.3: Definition of computational domain. The spherical domain consists of four
fluid zones (WT,SWT,BL, and SBL) and three boundaries (inlet, outlet, and crystal
surface). (a) The mesh within WT deforms as SWT moves according to the translational
movement of the crystal. (b) The mesh within SWT is not affected by crystal motion.
The mesh within BL deforms to account for SBL rotation. (c) SBL moves passively

with the crystal, and the mesh contained in the SBL does not change.
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The computational domain must be divided in order to constrain the area of the dynamic

mesh, and in order to insure adequate mesh quality. The mesh within the WT is allowed

to deform to account for movement of the first interior zone, the SWT. The SWT is

specified such that it can move according to the translational motion of the ice crystal,

but does not rotate. The mesh within the SWT is not affected by the movement of the

crystal, and is thus stationary. The BL mesh deforms to account for rotation of the SBL.

The SBL moves passively with the ice crystal, inside which the mesh is stationary relative

to the crystal. Note, the positions of BL, SBL, and the crystal stay the same relative to

SWT.

The WT is spherical with a radius that is 10 times larger than the radius of the ice crystal,

with the inlet and outlet spanning the entire lower and upper hemisphere, respectively.

The SWT is a cylindrical shape with hemispheric ends. The radius of the cylinder is 1.8

times that of the crystal and the length of the cylinder is 5 times that of the crystal radius.

The BL is spherical with radius 1.4 times that of the crystal. The SBL is a hexagonal

geometry that fits close to the largest dimension of the crystal. The circle in which the

hexagon is inscribed has a radius 1.04 times that of the crystal, and the thickness of the

hexagonal region is 1.9 times the thickness of the ice crystal.

The computational domain is discretized with an unstructured tetrahedral grid, which

allows precise fitting to the ice crystal shape. The domain consists of about 1.5 - 2.5 ×

106 cells (more for larger diameter/smaller aspect ratio). A high density region is imposed
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within the SWT, resulting in a mesh that is finer towards the crystal surface and in the

crystal wake and becomes coarser further away from the crystal and wake.



46

Chapter 4

Results & Discussion

The results of the numerical simulations of freely falling planar ice crystals are presented in

this section. Flow fields, fall behavior, velocity, and vapor fields are discussed. While there

are 36 cases– four crystal habits, nine diameters– simulated, the results are comparable

across different crystal sizes, and thus only a select number of cases are presented as a

representation of the results.

4.1 Flow Field & Fall Attitudes

4.1.1 Flow Characteristics

Figure 4.1 shows the pressure distribution and streamlines around four planar ice crystals

with Reynolds number near 150 (range 115-175) on the y-z plane for a randomly selected

timestep consistent across the each panel. The flows are steady in each case, with a
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(a) 2 mm P1b (b) 3 mm P1c

(c) 5 mm P1d (d) 5 mm P1e

Figure 4.1: Pressure deviation (Pa) and streamlines (2D projection onto the central
y-z plane) around planar crystals with Reynolds number near 150. Pressure is shown
by color shades (red: positive; blue: negative) and contoured (solid: positive; dashed:
negative) over a range of -0.35 – 0.35. All snapshots correspond to the same randomly

selected timestep.
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general left-right symmetry about the central x axis, despite slight rotation about the

z axis in many cases. The region of relatively higher pressure in the upstream region

is expected, and may work to prevent tiny crystals, droplets, or aerosol particles from

colliding with the crystal (Vittori and Prodi, 1967). Standing eddies are present in the

wake of the sector plate and broad-branched crystal; the ice plates are falling vertically,

while the characteristic of the eddies remain constant. The ice crystals mainly affect

the flow within the vertical column in which they fall, only slightly disturbing the area

outside this column up to a distance of a few diameters. The results are consistent across

the current study for crystals with Re near and less than 100, and is in general agreement

with previous studies (e.g. Cheng et al., 2015, Willmarth et al., 1964).

While negative deviations in pressure generally occur in the downstream wake, pressure

minima also occur at the upper edge of the plate (Figure 4.2). This behavior is consistent

with other numerical studies which treat planar ice crystals as hexagonal plates with finite

thickness (two sharp edges), such as Cheng et al. (2015), Hashino et al. (2014), Ji and

Wang (1991), Wang and Ji (1997). This configuration of the pressure field at the upper

edge of an ice plate likely impacts the collision efficiency, altering the riming rate and the

location at which a supercooled drop will strike a plate. This pressure configuration is

consistent across all plates in this study.

Figure 4.3 shows the pressure distribution about a 5 mm diameter ordinary dendritic

crystal in the y-z plane, offset to see the effect of the thin branches on the pressure field.

The same features are observed in this slice as in the central slice, with a high pressure
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Figure 4.2: Pressure deviation (shaded, Pa) around the edge of a 1 mm sector plate
with Reynolds number near 40. The time of the snapshot is as in Figure 4.1.

region in the upstream region, and low pressure in the wake. The gaps between the small

branches allow the flow to pass through, and the branches themselves have a small radius

of influence on the flow. Pressure minima are found along the sharp edges, and in the

case of the dendrite, there is ample opportunity for growth along these edges.

As expected, the flow becomes unsteady with increasing Reynolds number (Figure 4.4).
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Figure 4.3: Pressure deviation (shaded, Pa) around a 5 mm ordinary dendritic crystal
with Reynolds number near 175. The 2D slice is slightly off center, revealing the pressure
distribution near the small branches of the crystal. The approximate location of the slice
is shown in the upper righthand corner. The time of the snapshot is as in Figure 4.1.
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(a) 5 mm P1b (b) 5 mm P1c

Figure 4.4: Pressure deviation (Pa) and streamlines (2D projection onto the central
y-z plane) around planar crystals with Reynolds number near 350. Pressure is shown
by color shades (red: positive; blue: negative) and contoured (solid: positive; dashed:
negative) over a range of -0.60 – 0.60. All snapshots correspond to the same randomly

selected timestep, as in Figure 4.1.

The stellar crystal and ordinary dendritic crystals do not exhibit unsteady fall behavior

over any range of Reynolds number simulated in this study; the sector plate and broad-

branched crystal begin to demonstrate unsteady behavior for diameters of 3 mm and

above for the sector plate, and 4 mm and above for the broad-branched crystal, corre-

sponding the Reynolds numbers 198 and 258, respectively. Snapshots of a 5 mm diameter

sector plate and broad-branched crystal are presented in Figure 4.4. The upstream high

pressure region, along with pressure minima along the edge of the crystal surface, are two

similarities between the steady cases. The eddies in the downstream wake are no longer

symmetric, with eddy shedding occurring in the downstream. Unlike the steady cases in

Figure 4.1, the pressure minimum in the wake is not always in contact with the surface
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of the plate, but is found slightly above the surface, or in contact with only one region.

The pressure minimum changes in both magnitude and location on a near-periodic basis,

resulting in eddy shedding. Consistent with Cheng et al. (2015), the location of the up-

stream pressure maximum is not stationary either, but tends to vary with the orientation

of the crystal. As the crystal tilts in a direction, the asymmetric maximum pressure

distribution on the underside of the plate will generate a torque, causing the crystal to

begin to take on the opposite inclination and move in the opposite direction.

Figure 4.5: Pressure deviation (shaded, Pa) on the top (a), bottom (b), and side (c)
surfaces of a 2 mm broad-branched crystal with Reynolds number near 95. The time

of the snapshot is as in Figure 4.1.

A look at the pressure distribution over the surfaces of a 2 mm broad-branched crystal
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is shown in Figure 4.5. Both basal planes are shown as viewed from above and below,

along with the edges of the crystal, as viewed from the side. This perspective of the

low-pressure side shines light on the location of the pressure minima along the edges seen

in the y-z plane slices. Notice that there is not a uniform region of pressure minima along

the perimeter of the crystal, rather the minima occur at the peaks of the branches of the

crystal and taper off towards the center. This configuration works to explain the process

of growth along branches, reproducible in modeling studies (e.g. Gravner and Griffeath,

2009, Pitter and Pruppacher, 1974). The pressure distribution on the surface of the high

pressure side of the crystal is more chaotic than the other side. An extremely small sliver

of low-to-negative pressure is observed along the entire perimeter of the branches. Finally,

the side-view echoes the observations from the basal surfaces; the pressure distribution is

such that the minima occur at the peaks, with pressure increasing towards the center of

the crystal.

4.1.2 Fall Attitudes

An analysis of the dimensionless displacement, vibration frequencies, and characteristic

angles is performed, and the results of each crystal type are presented in Table 4.1.

Results are omitted when the vibration frequency or characteristic angles are not obvious

or would require subjective interpretation. The vibration frequency about the x and y axis

are generally the same, though it is noted when the frequencies differ slightly, and both

frequencies are listed for 0.5 mm ordinary dendritic crystal, which differed significantly.
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The dimensionless horizontal displacement l∗ describes the characteristic length of the

horizontal motions relative to the largest dimension of the ice crystal, defined as:

l∗ =
l

d
, (4.1)

where l is the length of swing, spiral and irregular motions of the crystal. The dimension-

less horizontal displacement of the crystals range from 0.009 to 3.525. In other words,

the falling crystals simulated in this study move horizontally with the smallest (largest)

distance of 0.9% (353%) of its diameter. The crystal type with the largest range in l∗ is

the sector plate (P1b); the smallest range in l∗ is seen with the stellar crystal (P1d). As

in Cheng et al. (2015), no systematic relationship appears to exist between diameter and

horizontal dimensionless displacement.

The horizontal motions and orientation of ice crystals may have impacts on the collision

efficiency of two crystals. Currently, collision efficiency is defined under the assumption

that a collector hydrometeor falls only vertically, ignoring horizontal motions (Pruppacher

and Klett, 1997, Wang, 2013). An ice crystal falling with a horizontal component will

travel a farther distance than one falling with pure vertical motion, providing more op-

portunity to collide with small droplets at a different efficiency than the vertically-falling

plate. Crystal orientation is important when considering radar backscatter signals from

ice plates (e.g., Ishimoto, 2008, Matrosov, 2007).

The Tait-Bryan angles φ, θ, and ψ, are used to quantitatively describe the orientation
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Table 4.1: Dimensionless displacement, vibration frequencies and characteristic angles
for the planar ice crystals investigated in this study.

Type
Diameter
d (mm)

Dimensionless
Displacement

l∗
Vibration frequency

about x & y axes (Hz)
Characteristic

φ (◦)
Characteristic

θ (◦)
Vibration frequency
about z axis (Hz)

Characteristic
ψ (◦)

P1b 0.2 3.525 3.66 0.12 0.12 1.22 0.14
0.3 0.510 25.64 0.30 0.19 12.21 0.05
0.4 0.052 30.52 0.11 0.04 7.32 0.03
0.5 1.000 29.30 0.09 0.17 8.55 0.01
1 0.235 25.64 0.07 0.17 18.81 0.27
2 0.069 17.09 1.23* 0.24* — —
3 0.826 13.43 1.12 1.49 4.88 0.01
4 0.115 10.99 2.68 1.17 7.32 0.01
5 0.263 8.55† 1.77 3.15 23.19 0.27

P1c 0.2 0.043 13.43 0.01 0.01 13.43 0.03
0.3 0.015 4.88 0.02 0.02 3.66 0.12
0.4 0.761 1.22 0.16 0.09 4.88 1.16
0.5 2.466 1.22 0.09 0.11 3.66 0.07
1 0.015 24.41 0.01 0.04 — —
2 0.009 19.53 0.01 0.01 — —
3 0.012 14.65 0.24* 0.28* — —
4 0.054 12.21 0.88 0.29 1.22 0.08
5 0.052 10.99 4.30 1.97 1.22 3.45

P1d 0.2 0.059 — — — 14.65 0.00
0.3 0.274 3.66 0.39 0.82 1.22 0.03
0.4 0.199 3.66 0.58 0.44 25.64 0.01
0.5 0.217 3.66 0.23 0.42 8.55 0.01
1 0.141 10.99 0.07 0.13 3.66 0.14
2 0.162 4.88 0.14 0.21 — —
3 0.310 3.66† 0.01 0.59 — —
4 0.121 3.66 0.96 0.30 3.66 0.02
5 0.227 3.66 0.57 0.53 — —

P1e 0.2 0.060 4.88† 0.09 0.04 10.99 0.02
0.3 0.554 1.22 0.09 0.06 — —
0.4 0.796 7.32 0.04 0.06 — —
0.5 0.415 1.22/4.88 0.08 0.15 8.55 0.01
1 0.293 3.66† 0.00 0.02 — —
2 0.120 10.99 5.32‡ 1.06‡ 3.66 8.38
3 0.144 7.32† 1.92‡ 3.77‡ 3.66 3.16
4 0.047 4.88 0.04 0.06 — —
5 0.044 4.88§ 0.03 0.01 — —

*Amplitude shows an increasing trend with time, may be underestimated.
†The vibration frequency about the x axis is slightly larger than the y axis.
‡Amplitude shows a decreasing trend with time, may be overestimated.
§The vibration frequency about the y axis is slightly larger than the x axis.

of the ice crystals with respect to their initial orientation (Table 4.1). The angles φ, θ,

and ψ are defined and correspond to rotation about the x, y, and z axes of the crys-

tal, respectively. The characteristic angle and vibration frequency results are confirmed

using supporting evidence from performing a fast Fourier transform (FFT) of the ori-

entation data. The vibration frequency about the z axis have been omitted when the

high-frequency signal was not obvious compared to the low-frequency signal.

Figure 4.6 shows the time-varying Tait-Bryan angles for a 3 mm broad-branched crystal

(P1c). The rotation around the x and y axes (φ, θ) show periodic behavior, oscillating at
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the same frequency (14.65 Hz), appear anti-phased, and have amplitudes which increase

with time. The low-frequency signal of the vibration frequency about the x axis is well

demonstrated. This is an example of a case in which the smaller amplitude, high frequency

signal is not obvious.
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Figure 4.6: Tait-Bryan angles φ, θ, and ψ of a falling 3 mm broad-branched crystal
(P1c) as a function of time.

Rotation about the z axis is observed with the small, steady state crystals, though the

characteristic angles are generally order 10−1 or 10−2 degrees. Nothing in principle should

cause spinning in the steady cases of the idealized crystals. This behavior likely arises

from slight imperfections in the meshing processes, which causes inevitable asymmetry.
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Lack of exact symmetry of the mesh and crystal, leading to an uneven distribution of

mass, is a possible explanation for some crystal cases demonstrating oscillation about a

preferential a axis, even though the moments of inertia about any a axis are the same.

Figure 4.7 shows the fall patterns of each crystal type with Reynolds number Re of

order 10, visualizing the x-z plane trajectories. The starting positions, with no initial

inclination angle, are shown by the projections highlighted in green; the end positions,

occurring at 0.5 s, are shown by the red highlighted projections. The projections are

displayed every 0.005 s. Generally, any early oscillation of the crystal, caused by being

subjected to an initial flow, is damped quickly for most crystal types, the exception being

the stellar crystal, which continues to fall with a slight orientation of around -0.65◦ after

0.2 s. The broad-branched crystal exhibits the largest horizontal displacement relative

to its diameter, 247%; the horizontal dimensionless displacements for the sector plate,

stellar, and ordinary dendritic crystals in Figure 4.7 are 5%, 14%, and 29%, respectively.

The velocity of the crystal relative to the base flow (a first approximation of the terminal

velocity) can be inferred by the distance between projections. The sector plate, with Re

= 12, demonstrates a reduction in velocity relative to the flow. When initially perturbed,

the broad-branched crystal falls quicker, relative to the flow, because of the reduction in

surface area exposed to the flow, also leading to a horizontal translation.

The x-z plane trajectories for crystals with Reynolds number near 350 are shown in Fig-

ure 4.8. These cases are less stable with time, and appear quite unstable towards the end
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Figure 4.7: Fall trajectories of planar ice crystals as shown through consecutive snap-
shots of the crystal position on the x-z plane for (a) sector plate (P1b), Re = 12; (b)
broad-branched crystal (P1c), Re = 9; (c) stellar crystal (P1d), Re = 7; and (d) ordi-
nary dendritic crystal (P1e), Re = 14. The time interval is 0.005 s. The initial (final)

position of the crystal is highlighted green (red) on the projection.
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of the simulation time. The zigzag swing oscillations in the sector plate result in horizon-

tal translations of roughly 26% of diameter of the plate; fluttering in the broad-branched

crystal produces a smaller horizontal displacement of 5% of its diameter. Intuitively, the

crystal is displaced rightward (leftward) horizontally in response to tilting to the right

(left), in agreement with experimental results of Willmarth et al. (1964) and Stringham

et al. (1969) and consistent with the numerical results of Cheng et al. (2015) and Hashino

et al. (2016).

Crystal fall behavior and fall velocity are contributing factors for understanding the aggre-

gation process of snow crystals (e.g., Sasyo, 1971). An observational study by Kajikawa

(1992) showed a relationship between increasing Reynolds number, above about 40, and

unstable falling motion due to vortex shedding. In that study, unstable falling motion

first began with oscillations about an a-axis of plate-like crystals, then proceeded to dis-

play swinging motion, followed by rotation about the z axis, with increasing Re. Note,

tumbling motions that were observed in tank experiments by Willmarth et al. (1964) and

Stringham et al. (1969) were not observed in the Kajikawa (1992) observational study.

Further, due to natural snow crystal asymmetry, the onset of observed unstable falling

motion in the Kajikawa (1992) study occurred at considerable smaller Re values than in

model experiments (e.g., List and Schemenauer, 1971). In the current CFD model exper-

iment, the onset of unstable fall motion did not occur until higher Re, with the highest

Re for stable motion occurring at Reynolds numbers 115 and 175 for the simulated sector

plate and broad-branched crystal, respectively; the stellar crystal and ordinary dendritic

crystal exhibits stable falling motion for all Re considered in this study. For comparison,
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Figure 4.8: Fall trajectories of planar ice crystals as shown through consecutive snap-
shots of the crystal position on the x-z plane for (a) sector plate (P1b), Re = 384; and
(b) broad-branched crystal (P1c), Re = 345. The time interval is 0.005 s. The initial

(final) position of the crystal is highlighted green (red) on the projection.

the highest Re for stable disk motion in the Willmarth et al. (1964) tank study was 172.

In that study, tumbling motions only occurred for Re in excess of 2000, much larger Re

than those observed in the current study.

For plate-like crystals, Kajikawa (1992) showed that the limit of the onset of unstable
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Figure 4.9: Stability number against Best number of planar crystals. Emphasized
boldface square, circle, diamond, and triangle markers indicate the results for: sector
plates (P1b), broad-branched crystals (P1c), stellar crystal (P1d), and ordinary den-
dritic crystals (P1e), respectively. Filled markers indicate cases exhibiting unstable fall
behavior. The results of Kajikawa (1992) are indicated by thin shapes of the respec-
tive type and corresponding color. Curves indicate the approximate boundary between
stable (northwest of line) and unstable (southeast) falling motions, also from Kajikawa
(1992): solid curve for sector plates, dashed curve for broad-branched crystals, dotted

curve for sector plates, and dash-dot curve for dendrites.
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falling motion is better determined by the Best or Davies number (X = CDRe2) and di-

mensionless moment of inertia, or stability number (I∗ = Ia/ρd5, Equation 2.7). Kajikawa

(1992) approximated the plate-like crystals as hexagonal plates in the calculation of Ia

and X, whereas this study performs those calculations without such an approximation.

Figure 4.9 investigates the relationship between stability number and Best number, in-

cluding I∗ and X data from the current study (emphasized data points, filled markers

when exhibiting unstable, swinging motions), along with data from previous studies by

Kajikawa, presented in Figure 4 of Kajikawa (1992). The boundaries between stable (left

of line) and unstable (right of line) from Kajikawa (1992) are given by the solid lines

corresponding to the crystal type of that color. Crystals with larger surface area exposed

to the flow are characterized by larger stability number. Unstable fall behaviors occur at

higher X in the current study compared to Kajikawa (1992) as explained above. Den-

dritic crystals, which have large internal ventilation, fall in a stable manner over a larger

range of X, suggesting falling motion stability is influenced by the internal ventilation of

crystals (Kajikawa, 1992).

4.1.3 Vorticity

The vorticity magnitude distributions on the cross section through the center of falling

5 mm sector plate and ordinary dendritic crystal are shown in Figure 4.10. As expected,

the maximum in the vorticity magnitude is observed at the edges of the crystal, where

the flow is changing direction and speed. The vorticity is transported downstream by

the flow, with higher vorticity forming a champagne glass-shape, with the center void of
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high vorticity for the sector plate. The vorticity is advected downstream for the dendrite

as well, not only at the outer edges, but at the interior edges as well. The vorticity is

advected further downstream in the 5 mm sector plate wake than the dendrite, due to the

difference in the speed of the flow–terminal velocity of 1.08 m s−1 and 0.49 m s−1 for the

plate and dendrite, respectively. The interior of the wake in the sector plate contains a

region of low vorticity (less than 100 s−1) located slightly above the surface of the crystal,

appearing in a random pattern.

(a) 5 mm P1b (b) 5 mm P1e

Figure 4.10: Vorticity distribution (s−1) around a sector plate (a) and ordinary den-
dritic crystal (b). Vorticity magnitude is shown by color shades (yellow: low; bright
blue: high) over a range of 100 – 4000 s−1. The snapshots correspond to the same

randomly selected timestep, as in Figure 4.1.

The vorticities form intertwining vortex tubes in the downstream wake, shown in Fig-

ure 4.11 as 3D ẑ-vorticity isosurfaces of ±400 s−1. This structure may impact the col-

lection of small cloud particles with subsequent ice crystals downstream by chaotically

redistributing the particles in space. The positive/negative alternating pattern of the
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Figure 4.11: 3D ẑ-vorticity isosurface (s−1) around a 5 mm sector plate to illustrate
the unsteady vortex structure. The blue isosurfaces correspond to ẑ-vorticity values
of -400 s−1 while the red isosurfaces correspond to ẑ-vorticity values of 400 s−1. The

snapshot corresponds to the same randomly selected timestep, as in Figure 4.1.
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vorticity isosurfaces around the sector branches is intuitively understood considering the

direction in which the flow will curl on either side of the branch.

The flow fields and fall attitudes discussed above are in general agreement with previous

studies (e.g. Cheng et al., 2015, Willmarth et al., 1964). Features, such as the pressure

minimum on the upper edge of the peaks of the ice plate, is prevalent in all cases, and

lends support to the observation that crystals tend to grow faster about their peaks.

Projections of the fall attitudes of crystals at varying Reynolds number, along with an

analysis of the characteristic angles, may be of use for the cloud modeling community.

4.2 Terminal Velocity & Drag Coefficients

4.2.1 Terminal Velocity

Consistent with the findings of Cheng et al. (2015), the results of this study show that the

terminal velocity of simulated ice crystals fluctuate throughout the fall process, generally

bound within a certain range. The range is smaller for crystals which fall with the basal

plane entirely normal to the fall direction, likely because the cross-sectional area exposed

to the flow is nearly constant. The range is larger for crystals exhibiting swinging, unstable

motion, because with an inclination relative to the flow, the implied smaller cross-sectional

area decreases the upward drag force and increases the downward acceleration. The

velocity relative to the flow initially varies from case to case as the crystal responds to

the first approximation base velocity to which it is subjected. For this reason, the terminal
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velocity is computed by averaging the last 3000 time steps of the simulation, as per the

method outlined in Cheng et al. (2015).

(a) 4 mm P1c (b) 4 mm P1d

Figure 4.12: ẑ-velocity (m s−1) and velocity vector (2D projection of the 3D vector
onto the central y-z plane) around a broad-branched (a) and stellar crystal (b). ẑ-
velocity is shown by color shades (red: positive; blue: negative) over a range of -0.40 –
0.40 m s−1. The snapshots correspond to the same randomly selected timestep, as in

Figure 4.1.

Figure 4.12 shows the ẑ-velocity distribution and velocity vectors around a 4 mm broad-

branched crystal and stellar crystal. Note the scales are panel-specific, corresponding to

the calculated terminal velocity for each crystal, 91.0 cm s−1 and 32.5 cm s−1, respectively.

Note that the velocity vectors are projections of the 3D vectors onto the y-z plane crossing

the center of the plate, thus not all vectors are on the same plane, and the uneven vector

distribution is explained by the non-uniform mesh used to conform to the surface of the

crystal and to allow for mesh adjustment with time. At distances sufficiently far from the

crystal, the velocity nears the initial condition terminal velocity estimation at which the
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crystals are subjected during the simulation. Due to the no-slip condition, the fluid is

stagnant everywhere on the solid crystal surface. Both crystals have areas of low velocity

from the high pressure on the underside of the crystal (“front stagnation” region); the

area of lower velocity is larger, relative to the diameter, for the broad-branched crystal

than the stellar crystal (Re 260, 89, respectively). The broad-branched crystal displays

a region of negative velocity, or return flow/recirculation, in the wake, as opposed to

the stellar crystal, with lower Reynolds number. There is a degree of symmetry to both

velocity fields, though the wake of the broad-branched crystal shows slight oscillation of

the velocity magnitude at a distance of about 4 mm above the surface of the crystal. The

velocity gradient near the crystal surfaces–and in the case of the 4 mm broad-branched

crystal, in the wake as well–implies the vorticity will be large here.

Figure 4.13 presents the terminal velocity for each crystal type in this study, alongside

the numerical results of the hexagonal plate P1a from Cheng et al. (2015) and the ob-

servational parameterizations of Heymsfield and Kajikawa (1987) for the corresponding

crystal type. The terminal velocity increases with increasing diameter, consistent with the

observational data and previous numerical results. For the sector plates, broad-branched

crystals, and ordinary dendritic crystals investigated in this study, the terminal velocities

are greater than those of the observational ones, likely because the mass of the idealized

crystals represent the upper bound for that of natural crystals, as discussed previously.

The simulated stellar crystals have terminal velocities consistently lower than those of the

observational results of Heymsfield and Kajikawa (1987) for a given diameter; Heyms-

field and Kajikawa (1987) observations may encompass a spectrum of “stellar” shapes,
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Figure 4.13: Terminal velocities (cm−1) of planar crystals. Square, circle, diamond,
and triangle markers indicate the results for: sector plates (P1b), broad-branched crys-
tals (P1c), stellar crystals (P1d), and ordinary dendritic crystals (P1e), respectively.
The corresponding bold curves are the power law fits given by Equations (4.2) to (4.5):
solid curve for sector plates, dashed curve for broad-branched crystals, dotted curve
for sector plates, and dash-dot curve for dendrites. Thick, grey, solid curve represents
the parameterization of hexagonal plates from Cheng et al. (2015). The corresponding
parameterizations of Heymsfield and Kajikawa (1987) are shown by thin curves, with

colors and line styles matching these experimental results.
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whereas the calculated values in this study are from idealized shapes.

The calculated terminal velocities u∞ of each crystal type can be fit by the following

power law relationships:

Sector plates: u∞ = 9.507×10−1 d0.1289 − 1.756, (4.2)

Broad-branched crystals: u∞ = 1.673×10−1 d0.2635 − 0.5899, (4.3)

Stellar crystals: u∞ = 1.872×10−4 d0.8939, (4.4)

Ordinary Dendritic crystals: u∞ = 1.944×10−3 d0.6511, (4.5)

where u∞ has units of meters per second and d is in microns. The root-mean-square error

of the fits are 0.020, 0.017, 0.008, and 0.017 m s−1, respectively. The relationships are

valid over the range of diameters studied, 200 µm to 5000 µm.

4.2.2 Drag Coefficient

Figure 4.14 shows the time-averaged drag coefficient as a function of Reynolds number,

where the CD has been computed as the average CD over the last 3000 time steps,

as described above. Drag coefficient data from other studies is presented in the figure

for comparison, including numerical results for hexagonal plates P1a from Cheng et al.

(2015), Hashino et al. (2014), Wang and Ji (1997) and for broad-branched crystals, also

from Wang and Ji (1997).
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Figure 4.14: Drag coefficient of planar crystals. Square, circle, diamond, and tri-
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The parameterizations of Wang and Ji (1997) are shown in thin lines: solid curve for

hexagonal plates, dashed curve for broad-branched crystals.
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The drag coefficient for the crystal types in this study can be fit by the following two

term power law relationships:

Sector plates: CD = 23.80Re−0.7229 + 0.7398, (4.6)

Broad-branched crystals: CD = 38.85Re−0.8652 + 1.085, (4.7)

Stellar crystals: CD = 686Re−1.173 + 5.842, (4.8)

Ordinary Dendritic crystals: CD = 123Re−0.7206 + 0.9325, (4.9)

where all variables are dimensionless. The root-mean-square error of the fits are 0.404,

0.193, 179.9, and 1.884, respectively, with adjusted r2 values of 0.0024, 0.9996, 0.9686, and

0.9991, respectively. Power law relationships were selected, because polynomial fits might

over-fit the data and are not representative of a realistic relationship. The relationships

are valid over the range of Re corresponding to each crystal type, found in Table 2.3.

4.3 Vapor Density Distribution

The ventilation effect, the enhancement of the diffusional growth/evaporation rate of

cloud and precipitation particles due to movement relative to the flow, is due to the

enhancement of the vapor density gradient around a falling hydrometeor compared to a

stationary one (see Section 2.4).

The computed vapor density distributions in the y-z plane around 5 mm diameter crystals

studied are shown in Figure 4.15. In common with all simulations, areas sufficiently
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far from the crystals and the upstream region are characterized by high vapor density

equal to the environmental 2% supersaturation condition, with lower vapor density in

the downstream region. This is caused by the motion of the ice crystals; a stationary

crystal in such an environment would have a symmetric vapor density distribution (e.g.,

Figure 2.6). In the downstream wake, there is an asymmetry in the vapor distribution for

the sector plate and broad-branched crystal (Re 384 and 385, respectively), and general

symmetry for the stellar and ordinary dendritic crystals (Re 133, 173, respectively). The

stronger return flows of the sector plate and broad-branched crystal act to transport the

water vapor closer to the surface of the crystal in the wake, leading to a tighter gradient

downstream. The vapor distribution is determined by both the convective current (ρvu)

and the diffusion current (−Dv∇ρv) from (2.27), though the convective current dominates

in the case of large u, which explains why the distribution closely resembles the flow field.

Important for the diffusional growth of an ice crystal is the gradient of the vapor density,

with the largest gradient corresponding to the highest local diffusion rate (Cheng et al.,

2014). The highest vapor density gradients are seen upstream of the crystal, though the

gradient downstream is certainly not negligible. Note that the patterns shown change

with time for unsteady flow, though the patterns and characteristics described above

remain similar over time.

The results of the mean ventilation coefficient are summarized in Figure 4.16, and include

numerical results from Ji and Wang (1999). The results from the current study can be fit
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(a) 5 mm P1b (b) 5 mm P1c

(c) 5 mm P1d (d) 5 mm P1e

Figure 4.15: Vapor density distributions (g m−3) around planar crystals with maxi-
mum dimension (diameter) of 5 mm. Vapor density is shown by shades of blue (darker:
approaching 2% supersaturation ρv = 2.4086 g m−3; lighter: approaching saturation ρv
= 2.3613 g m−3). All snapshots correspond to the same randomly selected timestep.
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by the following empirical formulae, taking a form similar to that of Ji and Wang (1999):

Sector plates:

f̄v = 1 + 0.9146 (X/10) + 3.317 (X/10)2

− 2.127 (X/10)3 + 0.5171 (X/10)4,

(4.10)

Broad-branched crystals:

f̄v = 1 + 0.6761 (X/10) + 3.780 (X/10)2

− 2.518 (X/10)3 + 0.5845 (X/10)4,

(4.11)

Stellar crystals:

f̄v = 1− 0.0440 (X/10) + 7.915 (X/10)2

− 7.778 (X/10)3 + 2.4040 (X/10)4,

(4.12)

Ordinary dendritic crystals:

f̄v = 1 + 0.2834 (X/10) + 6.066 (X/10)2

− 1.612 (X/10)3 − 0.5295 (X/10)4,

(4.13)

where f̄v is the dimensionless ventilation coefficient and X is a dimensionless number

defined as

X = (NScv)
1/3 (Re)1/2 , (4.14)

where NScv is the Schmidt number of water vapor (NSc air kinematic viscosity/NSc water vapor diffusivity).

The functional dependence of f̄v on X has been found by Pitter et al. (e.g. 1974). As

in Ji and Wang (1999), NScv is held at a constant value (=0.63), so the relationships
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in Equations (4.10) to (4.13) are essentially between f̄v and Re. The root-mean-square

errors for the above relationships are 0.034, 0.018, 0.014, and 0.028, respectively, and are

valid over the range of Re corresponding to each crystal type, found in Table 2.3.
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Figure 4.16: Ventilation coefficient of planar crystals. Square, circle, diamond, and
triangle markers indicate the results for: sector plates (P1b), broad-branched crystals
(P1c), stellar crystals (P1d), and ordinary dendritic crystals (P1e), respectively. The
corresponding curves are the power law fits given by Equations (4.10) to (4.13): solid
curve for sector plates, dashed curve for broad-branched crystals, dotted curve for sector
plates, and dash-dot curve for dendrites. The parameterizations of Ji and Wang (1999)
are shown in thin lines: dotted curve for circular columns, solid curve for hexagonal

plates, dashed curve for broad-branched crystals.
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Figure 4.16 also shows that the ordinary dendritic crystals generally have the higher ven-

tilation coefficient, at a given Reynolds number, compared to the other crystal habits.

This becomes more pronounced with increasing Re. This can be understood by con-

sidering the dimensions and structure of the varying crystal habits. The more skeletal

structure of a dendrite allows for a greater surface area that can be subjected to the

ventilation effect, despite falling at a lower terminal velocity compared to the sector plate

and broad-branched crystal at the same Re.
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Chapter 5

Summary

The numerical simulations of the hydrodynamic behavior of four types of freely falling

planar ice crystals are performed in this study. The crystals range from 0.2 mm – 0.5

mm, and 1 mm – 5 mm in maximum diameter, and cover both steady and unsteady flow

regimes. Fall behavior, flow characteristics, and an analysis of the results are reported,

and are in general agreement with previous numerical studies and reported observations.

Allowing the crystals to respond to the forcing of the flow field, as first done in Cheng

et al. (2015) for a hexagonal plate, provides for more realistic results and works to im-

prove the understanding of frozen precipitation particles in clouds. These results can be

parameterized for use by cloud and numerical weather prediction models. One particu-

larly interesting question: given ventilation coefficients for low-to-intermediate Reynolds

numbers in this study, can downbursts be more realistically numerically simulated?
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Only idealized, symmetric crystals are simulated. Observations show that natural ice

crystals do not demonstrate near-perfect symmetry most of the time, and often have

rough surfaces. Simulations can easily be run for different environmental conditions (tem-

perature and pressure) for comparison. Additionally, individual ice crystals often form

aggregates with other crystals while they fall toward the surface of the earth. Simulating

the flow fields around crystal aggregates is the next phase of this study. This endeavor

will prove more challenging to mesh and simulate, though early trials from a colleague in

the lab are promising.
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