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Abstract 

Data assimilation using ensemble Kalman filters (EnKF) has led to significant 

improvements in atmospheric state estimation. The advantages of EnKF over common 

operational assimilation methods such as three-dimensional variational (3D-VAR) methods 

and its impressive performance in the assimilation of radar data at convective scales have led 

to its increasing popularity. While most previous studies have involved the assimilation of 

conventional observations only, this study presents an innovative approach in the EnKF 

assimilation scheme that involves the assimilation of GOES -12 channel 3 (6.5 micron) and  

channel 4 (i.e. 10.7 micron) brightness temperature data. In this study, the potential of the 

assimilation of GOES-12 infrared brightness temperature data was explored in the context of 

track and intensity forecasts for hurricane Rita from the 2005 Atlantic hurricane season. 

The experiments were run at two different resolutions. In the lower resolution 

experiments (60 km horizontal grid spacing) results show that the assimilation of GOES 

brightness temperatures improved the representation of TC structure and produced better 

track and intensity forecasts when compared to the control experiment (CTL), which 

involved conventional observations only. RMS errors and calibration values of different 

fields produced by the assimilation of GOES-12 brightness temperatures generally compared 

well to the CTL results and in certain cases performed better than the CTL. An example of 

this is the microphysical fields, where the marked improvements shown by the assimilation 

of GOES radiance data is due to the close relationship between radiance and microphysics. It 

is also shown that the assimilation of radiance data eliminated a spurious cyclone that 
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developed in the CTL experiment, which further highlights the potential of geostationary 

radiance data assimilation. In the higher resolution experiments (18km horizontal grid 

spacing), the improvement was much more limited. However, RMS errors for certain fields 

indicated that the scheme certainly shows potential for future application in TC analysis and 

forecasting. 
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Chapter 1 

Introduction 

Tropical cyclone (TC) forecasting remains one of the most challenging areas in the 

atmospheric  sciences.  Since  Gray’s  studies  of  TC  formation  in  1968,  tropical  cyclone 

forecasting has seen a constant evolution of forecasting techniques. While TC track 

forecasting skill has steadily improved due to the advances in numerical modeling and 

observing capabilities, deterministic predictions of TC intensity still score poorly in mean 

absolute error (MAE) verification (DeMaria et al. 2005; DeMaria and Gross 2003). The 

National Hurricane Center (NHC) reports that the official 48-hr intensity forecast errors for 

the Atlantic basin have decreased only by 17 % during the past 15 years (Rogers, 2006). This 

is a large contrast to the 45 % decrease in track forecast errors. A dramatic example of the 

need for increased skill in TC intensity forecasts was seen in 2005, in the days preceding 

landfall by Hurricane Katrina. Due to the large threat that TCs present to civilization, the 

ability to accurately predict the full development of these systems many hours in advance is 

crucial and has been the goal that many hurricane researchers strive for. 

While our knowledge of TCs has vastly increased since the initial TC studies, 

intensity forecasting still presents many challenges.  The limited improvement in TC 

intensity forecast skill over the last fifteen years can be attributed to three main things: 

limited internal TC observations; a limited understanding of TC intensification processes; 

and a limited understanding of internal TC microphysics (Rogers, 2006).  
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  Collecting an appropriate number of internal observations spanning the life cycle of 

a TC is essential to understanding its development (Rogers, 2006). While TC track is 

primarily determined by the surrounding environmental profile, rapid changes of storm 

intensity are driven by highly variable, small scale dynamics internal to the storm. These 

features are not resolved by coarse models, and are difficult to observe, both due to the high 

temporal variability, but also due to the distance from land-based assets, and the difficult 

conditions at the center of the storm (Houze, 2007). This lack of predictive ability leads to a 

reactive stance to changing TC dynamics, such as formation of secondary eyewalls, eyewall 

replacement cycles, and transition to sheared or unsheared environments. Hurricane Katrina 

demonstrated the necessity of being able to anticipate such events, and understand their 

implications on coastal development.   

Linked to a lack of high resolution internal observations is our limited understanding 

of TC intensification processes (Rogers, 2006). These challenges in fully understanding the 

physical processes governing hurricane intensification makes it difficult to set up proper 

physical parameterizations in NWP models (Karyampudi et al. 1998; Houze et al. 2006). 

Therefore, numerous studies have focused on investigating the physical processes associated 

with TC intensification in order to improve model physics (Frank 1977; Frank and Ritchie 

1999; Montgomery et al. 2006). Of all the factors that contribute to TC intensification, storm 

scale vortex internal dynamics, thermodynamics, and ocean surface fluxes seem to be the 

essential processes that need to be captured in numerical models (Li and Pu, 2008).  Certain 

physical parameterization schemes that have been developed to better simulate these 

processes has greatly aided in improving forecasts of TC intensity.  
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TC intensity, however, does not solely depend on storm physics. Previous studies 

have shown that representation of cloud microphysics schemes in NWP models greatly 

influences TC internal structure (Wang, 2002; Li and Pu, 2008, Zhu & Zhang, 2006). Li and 

Pu (2008) found that the minimum sea level pressure (MSLP) of a TC can vary up to 29 hPa 

depending on the cloud microphysics scheme that is applied. Zhu and Zhang (2006) had also 

previously illustrated the sensitivity of TC intensity forecasts to different cloud microphysics 

schemes in the MM5 model with the case study of Hurricane Bonnie (1998). They found that 

the weakest storm was produced when all ice particles were removed from the cloud 

microphysical processes while the fastest developing storm was produced when all 

evaporation processes were removed. Therefore, in addition to the storm-scale physics, 

accurately modeled microphysics is also essential in TC intensity forecasting.  

In addition to these three challenges, it has long been argued that model resolution 

would continue to limit improvements in TC intensity forecasting. However, the recently 

completed High-Resolution Hurricane test (HRH), a part of the Hurricane Intensity 

Improvement Project (HFIP), has demonstrated that higher model resolution doesn't 

necessarily lead to better intensity forecasts (Davis. et. al, 2010; Bernadet, L., 2010). This is 

not an isolated result-Li and Pu (2008) also showed that applying a 1-km grid resolution to 

forecast intensity only produced a limited improvement, and that resolution failed to 

reproduce the real intensity of the TC.  

Although improving model physics and microphysics has significantly aided in 

improving forecasts of TC intensity, these approaches cannot overcome deficiencies in model 

initial conditions. Inaccurate TC representation at the initial time will significantly deteriorate 
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the forecast, and observations at these early stages are often lacking (Rogers, 2006). For this 

reason, we have had to rely on statistical based methods, such as ensemble forecasting, to 

account for the uncertainty in initial conditions when initializing model forecasts. The main 

advantage of ensemble based assimilation is that in addition to providing an ensemble of 

analyses, the ensemble spread provides information on the flow dependent uncertainty in the 

forecast. While ensemble forecasting is not entirely new, studies which have used an 

ensemble Kalman filter (EnKF) approach have been particularly successful. Successful uses 

of ensemble forecasting with an EnKF include the assimilation of radar data at convective 

scales (Synder & Zhang, 2003; Zhang et. al. 2004; Zhang, F., 2009) as well as the 

assimilation of TC data from Hurricane Katrina (R. D. Torn and Gregory J. Hakim, 2009). 

The latter was able to produce accurate TC position estimates for this storm, which as we 

know, would have been invaluable in 2005.  

Although improvements have been made with the advent of ensemble forecasting, TC 

intensity forecasting still remains a problem due to the disadvantages that current data 

collection methods present. Airborne reconnaissance remains the gold standard, but is 

necessarily limited since  it  is  not  cost  effective,  is  time  consuming,  and  can’t  begin  to  cover  

the initial conditions of every TC that develops. Low-earth orbiting (LEO) satellites have 

limited swaths and, therefore, limited sampling that does not cover much of the region of TC 

genesis. Accurate TC intensity forecasting requires observations that sample the TC core and 

its environment early and continuously, which is not possible with either airborne 

reconnaissance or LEO satellite data sources. To have any hope of simulating intensity and 
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structure changes, we need to observe TCs with sufficient frequency, coverage and resolution 

to capture these processes. 

In order to solve this issue, this study proposes the use of data from geostationary 

satellites for data assimilation with an EnKF. Geostationary platforms, as opposed to aircraft 

reconnaissance and LEO satellites, offer superior coverage in time and space due to the fact 

that geostationary orbits are synchronous  with  earths’  motion, and stationary relative to the 

earth’s  surface.  Geostationary  platforms  allow  us  to  obtain  continuous data in the region of 

TC development and thus capture much more detail in the tropical cyclone structure early in 

its evolution. Continuous observations over the TC core and its environment provide 

information of small scale features that are essential to TC intensification. In addition to this, 

continuous observations could also provide information on vortex hot towers, rainbands, and 

secondary eyewalls as these are also important for TC intensity changes (Guimond, 2005; 

Houze 2006). GOES data can aid in further understanding TC intensification processes and 

lead to significant improvement in TC forecasting skill.     

In Chapter 2 of this thesis, the potential of using GOES-12 channel 4 brightness 

temperature data for assimilation with an EnKF is explored. The GOES-12 10.7micron 

brightness temperature data assimilation scheme is presented and the impact of employing 

this scheme is assessed with the case study of Hurricane Rita (2005). This study verifies the 

impact of the GOES brightness temperature assimilation scheme on hurricane track and 

intensity forecasts, hurricane structure representation, and representation of microphysical 

and non-microphysical fields.  
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Results from a 60 km low resolution run performed in this experiment showed that 

the GOES brightness temperature assimilation produces improved results over the control 

experiment, which involved conventional observations only. In most areas that were 

examined, results from the experiments involving the assimilation of GOES brightness 

temperatures surpassed those from the control run. The assimilation of GOES brightness 

temperatures significantly improved the TC track forecast and also produced an intensity 

forecast with less error than the control.  In addition to this, RMS errors for most non-

microphysical fields were also lower than those of the control experiment. Moreover, results 

showed that the assimilation of GOES-12 brightness temperatures with an EnKF shows 

promise in eliminating current issues with spurious cyclone genesis.  

Chapter 3 of this thesis study presents a discussion on the methodology employed for 

the experiments in Chapter 2 and also introduces alternate methods that could improve upon 

the obtained results. The bogussing TC initialization method is presented as a solution to 

remedy issues with sparse observations. The concept of perturbing the TC vortex to create an 

ensemble of analyses is also presented. Details on these procedures and their advantages are 

discussed. In addition to this, an overview of the next series of experiments, which employ 

the procedures discussed in this chapter, is presented.         

   The multiple areas of success of the low resolution run from Chapter 2 encouraged a 

second run at a higher resolution of 18 km. In Chapter 4, an 18km resolution is employed for 

simulations of Tropical Cyclone Rita. As in Chapter 2, GOES-12 10.7micron brightness 

temperatures are assimilated with an EnKF to assess the impact of these observations in the 
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forecast of track and intensity, representation of TC structure, and representation of 

microphysical and non-microphysical fields. A few different changes were made to the 

methodology that was used in Chapter 2. First, a bogussing scheme was employed for TC 

initialization in this study. In addition to this, a separate experiment was performed with the 

assimilation of GOES-12 water vapor observations to determine if assimilating these 

observations presented any improvement over the use of GOES-12 brightness temperatures.  

Results from the experiments performed in Chapter 4 show that assimilating GOES-

12 brightness temperatures and water vapor observations produce little improvement in all 

examined fields over the experiments involving conventional observations only. Track and 

intensity forecasts for the experiment involving conventional observations only were superior 

to those produced with the use of GOES-12 brightness temperatures and water vapor 

observations. However, there were certain non-microphysical fields where experiments 

incorporating GOES-12 brightness temperatures and water vapor observations outperformed 

those involving conventional observations only.  

In comparisons of the experiments incorporating brightness temperatures with 

experiments incorporating water vapor observations, assimilating GOES-12 water vapor 

observations produced overall improved results over assimilating GOES-12 brightness 

temperatures. Errors for the majority of the examined fields were lower when assimilating 

GOES-12 water vapor observations. Although the results from both these experiments fell 

below those of the control (involving conventional observations only), there is potential for 

improvement in the future.          
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The final chapter of this thesis study, Chapter 5, presents conclusions on all the 

efforts that were carried out in this study and also discusses future work.  
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Chapter 2 

Improving Track and Intensity Forecasts for Hurricane Rita from GOES-12 10.7 

micron Brightness Temperature Assimilation with an Ensemble Kalman Filter 

 

2.1) Introduction 

Uncertainties in tropical cyclone (TC) initialization are one of the fundamental 

reasons for the current lack of skill in tropical cyclone intensity forecasts (Rogers, 2006). 

Observations taken over the tropical cyclone vortex by airborne reconnaissance are only 

available for select storms, which makes it challenging to obtain an accurate representation of 

the tropical cyclone structure during the initial state. Efforts focusing on improving model 

resolution have not shown significant results (Bernadet, L, 2010; Davis et. al., 2010) and 

improving model microphysics has, so far, only aided in resolving certain vortex features (LI, 

X., and A. PU, 2009). Despite the improvements made in the model physics, errors in the 

intensity forecast still exist due to poor initialization. Thus, numerical weather prediction 

relies on data assimilation based methods that allow the integration of all available 

observations to generate a set of plausible initial conditions that are used to initialize the 

forecast.  

Even though many variants of data assimilation have been explored throughout the 

years, the ensemble based data assimilation scheme has become more common due to the 

advantages it presents over operational based assimilation methods such as 3D-VAR and 4D-
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VAR. The main advantage of ensemble based assimilation is that in addition to providing an 

ensemble of analyses it can provide information of the flow dependent uncertainty, which is 

captured by the ensemble spread. Results from previous studies have shown that the spread 

predicted by the EnKF analysis captures well the observed distribution of error about the 

initial analysis (Toth, 2001). Among the successful applications of the EnKF is the 

assimilation of radar data at the convective scales (Synder & Zhang, 2003; Zhang, F., 2009). 

The EnKF has also shown excellent performance in the assimilation of observations from 

Hurricane Katrina and produced accurate TC position estimates for this storm without the 

need of vortex bogussing and repositioning methods (R. D. Torn and Gregory J. Hakim, 

2009).   

However, while data assimilation schemes have greatly aided in improving TC 

forecasting skill, accurate prediction of TC intensity still remains a challenge. Accurate TC 

intensity forecasting requires observations that sample the TC core and its environment on 

the space-time scales of the convective phenomena that must be defined in the models initial 

state. This requires high frequency observations over the period of fluctuation of the 

dynamical entity simulated.  Airborne reconnaissance remains the gold standard, but it is 

necessarily limited to short periods of storm penetration, which is insufficient to capture any 

but the shortest period fluctuations.  Moreover, the cost of even these observations is 

prohibitive on the scale necessary to capture all possible genesis events. Low-earth orbiting 

satellites have limited swaths and cannot sample with the space-time frequency necessary to 

define the storm scale structure. Therefore, to have any hope of simulating intensity and 
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structure changes, TC’s must be observed with sufficient frequency over space-time periods, 

coverage and resolution to capture these processes. 

In order to solve this issue, this study proposes the use of Geostationary Operational 

Environmental Satellites (GOES) brightness temperature data for assimilation with an EnKF 

in order to improve TC track and intensity forecasting skill. The geosynchronous orbit of 

GOES is ideal for monitoring regions of tropical cyclone development. This allows for 

observations of exceptional temporal continuity and allows observation of greater detail in 

the  TC  structure.  GOES’s  continuous  observations  of  small  scale  features  within  the  TC  and  

its environment during intensification may also aid in further improving the understanding of 

hurricane intensification processes. While GOES radiance data has not been previously 

employed for TC data assimilation studies, it has proven to be successful in assimilation 

studies involving cloudy sky conditions. Koyama et al. (2006) showed that temperature and 

moisture-sensitive channels of the GOES infrared sounder are useful for data assimilation in 

clear sky conditions and also in the presence of optically thin to moderate high level clouds.  

Their results showed that that the use of infrared sounding observations in data assimilation 

could improve temperature and humidity profiles below optically thin-moderate ice clouds. 

Due to these promising results, the author (Koyama et. al.) encouraged the use of GOES data 

under all weather conditions. In contrast to Koyama et. al. (2006), the assimilation 

experiment described in this paper involves the use of GOES-12 imager observations rather 

than GOES sounder data. As opposed to the sounder, the GOES-12 imager provides larger 

spatial coverage that is necessary for accurate TC forecasting.  



15 

 

The objective of this paper is to prove that the continuous assimilation of GOES-12 

10.7 micron brightness temperatures (TB) improves the representation of the TC structure in 

the model initial conditions despite its ability to see only the upper cloud surface. At the 

current time, GOES represents the only consistent source of large spatial and temporal scale 

data consistent with the space-time scales that we hypothesize are critical to TC intensity 

predictions. It is expected that improved dynamic representation of these TC structure at the 

initial time will lead to improved forecasts and predictability of track and intensity. 

Hurricane Rita represents an ideal test case for such hypothesis. This storm went 

through rapid intensification as it passed over the Gulf of Mexico, where it went from 

category 3 to category 5 in less than 36 hours. It was a storm that went through an eyewall 

replacement cycle and also showed concentric eyewall development. Rapid intensification 

and eye wall structure  changes  in  TC’s  make  it challenging to obtain an accurate forecast of 

intensity. Simulating such intensity and structure change can be achieved with the use of 

GOES-12 TB data. Although this would be better investigated with the use of a higher 

resolution, this study employs a coarse resolution of 60 km to perform the experiments as this 

is a test study that explores the potential of the use of GOES-12 data for TC predictions. 

Successful results would eventually lead to further experiments that would be performed at a 

higher resolution.   

With Hurricane Rita identified as a suitable case study, the subsequent sections of this 

paper discuss details on the implementation of the experiments performed in this study. The 

second gives a brief overview of the EnKF. The third section discusses important features of 
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the University of Wisconsin-Madison Non-Hydrostatic Modeling System (UW-NMS) while 

the fourth section discusses the model configuration, experiment design and details of the 

EnKF implementation. Results are discussed in the fourth section and conclusions and 

presented in the final section. 

 

2.2) The Ensemble Kalman Filter (EnKF) Assimilation Algorithm 

  

 The Ensemble Kalman filter (EnKF) is a Monte Carlo approximation to the original 

Kalman Filter (Kalman and Bucy 1961; Gelb et al. 1974). It was introduced by Evensen 

(1994) and since then it has been applied in numerous studies in the geophysical sciences. 

The popularity gained by the EnKF is mainly due to its relative ease of implementation as it 

requires no derivation of a tangent linear operator or adjoint equations, and no integrations 

backward in time (Evensen, 2004).  Moreover, it is computationally feasible and also 

compares well to other sophisticated data assimilation methods of interest to the 

meteorological community (e.g. 4D-VAR). 

 The implementation of the EnKF is very simple. Its implementation is discussed 

below with equations taken from Houtekamer at Mitchell (1998). The basic analysis equation 

for the EnKF at time t is: 

                              𝜳𝒂 = 𝜳𝒇 + 𝑲  ൫𝑶 − 𝑯𝜳𝒇൯                        𝑖 = 1, . . . , 𝑁     (1) 
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where 𝜳𝒇 is a an m-dimensional column vector containing the model forecast, O is a p-

dimensional column vector of observations that are assimilated. H is an operator that 

interpolates the true state (generated by the model) to the observed quantities (O). K is the 

Kalman gain matrix. As pointed out by Lewis et. al., the Kalman gain “provides the means 

for converting the discrepancy between model and observation at a particular point into a 

smooth increment applied to rest of the model domain” (Lewis et. al, 2006). K is defined as: 

 

𝑲 = 𝑷𝒇𝑯𝑻[𝑯𝑷𝒇𝑯𝑻 +   𝑹]ି𝟏         (2) 

                                               

where R is the p x p observation-error covariance matrix,  𝑷𝒇 is the m x m background-error 

covariance matrix of the model forecast (𝜳𝒇). 

 In the EnKF, 𝑷𝒇 is approximated using the sample covariance from an ensemble of 

model forecasts. However, the full matrix 𝑷𝒇does not need to be calculated and stored as it is 

very impractical. Instead, 𝑷𝒇𝑯𝑻 and 𝑯𝑷𝒇𝑯𝑻are estimated directly using the ensemble 

(Evensen 1994; Houtekamer and Mitchell 1998). 

 

𝑷𝒇𝑯𝑻 =    𝟏
𝑵ି𝟏  ∑ ൫𝜳𝒇 − 𝜳𝒇തതതത൯[𝑯൫𝜳𝒇 − 𝜳𝒇തതതത൯]  𝑻𝑵

𝒊ୀ𝟏       (3) 

 

𝑯𝑷𝒇𝑯𝑻 =    𝟏
𝑵ି𝟏  ∑ 𝑯൫𝜳𝒇 − 𝜳𝒇തതതത൯[𝑯൫𝜳𝒇 − 𝜳𝒇തതതത൯]  𝑻𝑵

𝒊ୀ𝟏       (4) 

 
where, 
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𝜳𝒇തതതത = 𝟏
𝑵∑ 𝜳𝒇𝑵

𝒊ୀ𝟏             (5)  

 

and N is the number of ensemble members. The overbar shown on variables denotes the 

ensemble mean. 

Application of the EnKF requires that an initial ensemble of model states be defined. 

These  “model  states”  are created by perturbing a best-guess estimate of the initial state. After 

the ensemble of initial conditions is created, the NWP model is run once for each ensemble 

member. Observations are then assimilated into the different ensemble first-guess fields 

where equations (3) and (4) are used to calculate 𝑷𝒇𝑯𝑻and 𝑯𝑷𝒇𝑯𝑻. Afterwards, equation 2 

is used to calculate the Kalman gain 𝑲, and the analysis for each ensemble member is then 

calculated from equation (1). The result of this is an ensemble of analyses that are then 

integrated forward to the next observation time.  

One of the significant advantages of the EnKF over other assimilation methods is that it 

provides information on the flow dependent uncertainty in the forecast. The flow dependent 

uncertainty of the forecast is provided by the covariance matrix 𝑷𝒇, or ensemble spread, 

which serves as a measure of forecast accuracy. The ensemble spread is flow dependent due 

to the method that is employed to calculate 𝑲. Since 𝑲 is calculated from an ensemble of 

model states it can evolve with the nonlinear dynamics of the NWP (as opposed to the 

original Kalman filter, where the Kalman gain was propagated according to a linear model) 

(Lewis, 2006). The “flow dependent”  error  statistics  are  a  very  attractive  feature of the 

EnKF. Although the EnKF is a statistical method, it also takes into account the evolution of 
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the flow and thus the error statistics are employed to determine the confidence that can be 

attributed to such a forecast.  Methods that are purely stochastic (i.e. that do not take into 

account dynamics of the flow) would not have information on the state of the flow and 

therefore  wouldn’t  be  as  useful  for  determining  the forecast uncertainty.  Now that a brief 

overview has been given on the EnKF the next section will proceed to discuss the model that 

was employed for this study.  

 

2.3) The UW-Madison Non Hydrostatic Modeling System (UW-NMS) 

The primary mission of ensemble forecasting is to generate a set of plausible solutions 

which encompass the true state of the atmosphere. While ensemble techniques help improve 

the ability to predict the forecast uncertainty or error distribution, the quality of the model 

and initial conditions will determine the accuracy of the predictions of the mean state of the 

atmosphere. The model error is related to the systematic errors of a forecast, which can 

accumulate to further degrade forecast skill. Therefore, a model that accurately represents the 

dynamics and physics of the atmosphere is essential to the success of ensemble forecasting.  

The numerical model used in this study is University of Wisconsin Non-Hydrostatic 

Modeling System (UW-NMS) described in Tripoli (1992). The UW-NMS is a time split 

compressible non hydrostatic model employing a single moment explicit bulk microphysics 

predictions. It is used here to simulate the interaction between convection and mesoscale or 

synoptic- scale phenomena. It uses ice-liquid water potential temperature as the prognostic 

thermodynamic variable since it is conserved during all phase changes. Potential 
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temperature, temperature, and cloud water are the diagnostic variables. The model is phrased 

on  an  Arakawa  ‘C’  grid. 

Of particular interest to the author are the schemes the UW-NMS incorporates to 

effectively treat numerical accuracy issues and represent moist convective processes. Integral 

constraints emphasizing conservation of kinetic energy, entropy, vorticity, and enstrophy are 

incorporated into the model to simulate more realistic energy spectra (Sadourny, 1969). It has 

been shown that these constraints lead to a reduction in the systematic accumulation of 

truncation errors that produce anomalous bifurcations from the physical solutions (Tripoli, 

1992).  

In addition to treating accumulation of truncation error, the UW-NMS shows marked 

improvement over other models in the representation of cloud convective processes with the 

use of the Modified Emanuel Convective Parameterization (CP) Scheme. This CP scheme 

regards the subcloud-scale drafts, instead of the clouds themselves, as the fundamental 

entities of moist convective transport (Emanuel, 1991). Accounting for the effects of these 

drafts is essential for accurate TC forecasting since convective downdrafts provide a mean to 

stabilize the atmosphere and therefore can weaken convection within the TC eye wall. 

Furthermore,  these  convective  downdrafts  can  also  prevent  spontaneous  genesis  of  TC’s  over  

warm oceans (Emanuel, 1989). The Emanuel CP scheme also addresses the issue of 

accounting for the redistribution of water, such as net fallout of precipitation, by introducing 

closure parameters linked to the cloud microphysics and dynamical processes. Specification 
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of these parameters leads to a more accurate representation of the vertical profiles of net 

heating and moistening by cloud processes (Emanuel, 1991).  

Equally important to note are the major improvements that the UW-NMS presents over 

other nonhydrostatic modeling systems, such as its computationally efficient non-Boussinesq 

framework that conserves energy during transformations between kinetic, turbulent, and 

thermal energy. This proves to be essential for accurate TC forecasting.  

The following section discusses the methodology of this case study and also presents 

details on the configuration of the model for this study.  

 
 

2.4) Methodology 

 

The objective of this study is to explore the potential of the assimilation of GOES-12 

brightness temperature data to improve hurricane track and intensity forecasts. The EnKF is 

used to assimilate conventional (RAOB, METAR, ACARS, etc.) and GOES-12 10.7 micron 

brightness temperatures (TB) observations to improve track and intensity forecasts for 

Hurricane Rita. Two experiments were performed in this study, one experiment with 

conventional observations only (CTL) and a second experiment assimilating both 

conventional and GOES-12 channel 4 brightness temperatures (CH4). The differences 

between results from the experiments were then examined to determine how the assimilation 

of GOES brightness temperatures impacts the forecast. While many centers possess resources 

to perform data assimilation procedures, this study acknowledges computational resource 
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limitations associated with atmospheric data assimilation. Therefore, a small size ensemble 

size was applied.  

The CTL and CH4 experiments were performed at two different resolutions. Initially, a 

coarse resolution of 60 km was applied. A full analysis of the TC track, intensity, structure 

representation, as well as representation of microphysical and non-microphysical fields was 

done with the results of the low resolution run as a sensitivity test. More importantly, results 

from the low resolution experiments were used to determine the forecast bias, which was 

then employed to perform bias correction on the higher resolution experiments.  

Upon analysis of the results from the 60 km resolution run, the experiments were run at a 

higher resolution of 18 km. The analysis done with the results from the 60 km resolution run 

were replicated for the 18 km resolution run. However, now being able to resolve the TC 

core, representation of mesoscale features essential to TC development and intensification 

was examined in more detail.  

 

a. Model Configuration 

The UW-NMS was initialized on a domain employing 40, 140 and 80 grid points 

respectively in the vertical, zonal and meridional directions. The grid spacing was of 60-km 

in the horizontal directions and 250-m stretched to 700-m in the vertical direction. A time 

step of 60s was used to integrate the model forward. A single moment bulk microphysics 

scheme was employed for rain and snow, and two-moment microphysics for cloud ice 

(Tripoli, 1992). Graupel and aggregates were not predicted.   
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b. Observations  

As mentioned previously, two experiments were performed in this study, one 

experiment with conventional observations only (CTL) and a second experiment 

assimilating both conventional and GOES channel 4 brightness temperatures (CH4). The 

CTL experiment incorporated METAR (SLP), Aircraft Communication Addressing and 

Reporting System (ACARS (u, v, T)), RAOB (u, v, T, Td), and POES (retrieved T, Td) 

data obtained from the meteorological assimilation data ingest system (MADIS); and 

Vortex Information (lat, lon of TC center) data obtained from the TC VITALS. Cloud 

drift winds (AMV (u, v)) from GOES-11 and GOES-12 are also employed. The errors 

used for the conventional data are the NCEP Global Data Assimilation System (GDAS) 

values. 

The CH4 experiment incorporates the GOES-12 Channel 4 10.7 micron brightness 

temperature data (thinned to 120km), which was retrieved from the NOAA 

Comprehensive Large Array-data Stewardship System (CLASS).  An observation error of 

10K was used in this study.  

c. Ensemble Initialization and generation of perturbations 

 

The Ensemble was initialized from the GFS analysis at 00Z on SEP 19 by perturbing 

the stream function and computing corresponding u, v and T perturbations with the 

method described by MH (Mitchell and Houtekamer, 2002). A 32 member ensemble was 
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created around that analysis. The procedure for generating perturbations is documented in 

detail in MH02 but will be discussed briefly in this paper for completeness.  

 To begin assimilating data it is necessary to have a model state 𝜳𝒄
𝒇(𝑡଴) that will 

represent the most accurate estimate of the true state of the atmosphere 𝜳𝒕(𝑡଴) (Mitchell and 

Houtekamer, 2002). The true state of the atmosphere is unknown. Therefore, to obtain the 

model state that best represents the true state of the atmosphere equation (7) from HM 98 

(Houtekamer and Mitchell, 1998) can be used: 

𝜳𝒄
𝒇(𝑡଴) = 𝜳𝒕(𝑡଴) +   𝑟𝑎𝑛𝑑𝑜𝑚  𝑓𝑖𝑒𝑙𝑑    (1) 

where the random field represents a random perturbation field added to the true state. Even 

though the true perturbation value is unknown, a set of solutions 𝜳𝒕(𝑡଴) + 𝜳ᇱ can be 

generated to include the truth 𝜳𝒄
𝒇 or an error distribution 𝜳ᇱ that has the random perturbation 

field within the estimated distribution. That is, it should satisfy: 

𝜳𝒄
𝒇(𝑡଴)   ∈   𝜳𝒕(𝑡଴) + 𝜳ᇱ        (2) 

 The random perturbation field consists of u, v and T perturbations at each model 

level and a 𝑝௦ perturbation. To obtain perturbations that are quasi geostrophically balanced, 

these u, v, T, and 𝑝௦ perturbations are derived from a random stream function perturbation 

that is generated as a realization of a multivariate probability distribution (Mitchell et. al, 

2002). The method to generate these stream function perturbations is discussed in detail in 

MH02 (Mitchell and Houtekamer, 2002).  

 Upon adding the perturbation field to 𝜳𝒕(𝑡଴),  a model state 𝜳𝒄
𝒇(𝑡଴) is obtained. 

This model state serves as the central state for the pair of initial ensemble of first guess fields 
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(Mitchell and Houtekamer, 2002). To obtain a pair of N member ensembles of first guess 

fields at time 𝑡଴, two sets of random perturbations are added to 𝜳𝒄
𝒇(𝑡଴) as in equation (8) of 

HM 98: 

𝜳𝒊,𝒋
𝒇 (𝑡଴) =   𝜳௖

௙(𝑡଴) + 𝒓𝒂𝒏𝒅𝒐𝒎  𝒇𝒊𝒆𝒍𝒅𝒊ା(𝒋ି𝟏)𝑵      (3) 

where the spread in the ensemble will represent the uncertainty in  𝜳௖
௙(𝑡଴). 

 Now that the generation of the ensemble has been discussed the assimilation procedure 

will be described. A 27 hour spin up was allowed before beginning the assimilation of 

observations. For both CTL and CH4, a 3-hourly cycle was employed, meaning 9 total 

assimilation cycles between 03Z September 20 and 03Z September 21. To ascertain the 

impact of GOES-12 channel 4 brightness temperatures, the difference between the ensemble 

mean solutions of CH4 and CTL were examined. Details on the procedure for the 

assimilation of GOES brightness temperatures are discussed in the following section.  

 

d. Assimilation of GOES Brightness Temperatures  

 

The procedure used to assimilate GOES T୆ is the same procedure that was applied to 

assimilate all other observations. The model was integrated forward and the Community 

Radiative Transfer Model (CRTM) was then used to compute model-based estimates of the 

10.7 micron brightness temperature observations.  

Some additional schemes were incorporated in the implementation of the EnKF to 

improve imbalances introduced by the covariance localization in the assimilation results. One 
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of the schemes applied was the Ensemble Square Root Filter method (EnSRF) developed by 

WH (Whitaker and Hamill, 2002) since it has shown to produce improved numerical 

precision  and  stability  over  the  standard  Kalman  filter  algorithm. The EnSRF eliminates the 

sampling error associated with perturbed observations and thus produces an analysis 

ensemble with an ensemble mean error that is lower than the EnKF for the same ensemble 

size (Whitaker and Hamil, 2002).  In addition to this, a covariance relaxation technique with 

alpha=0.2 was applied (Zhang et al., 2004). To further improve the efficiency of the EnKF 

and filter distant-dependent covariance estimates, the Gaspari-Cohn covariance localization 

(Gaspari and Cohn, 1999) was also applied (900-km conventional, 240-km satellite). This 

method involves reducing the magnitude of covariance estimates more as the distance from 

the observation is increased. In this study, only data points within the specified km from the 

observation point can affect the analysis. 

 

2.5) Results and Discussion  

 Nine total assimilation cycles between 03Z SEP 20 and 03Z SEP 21 were 

performed to assess the impact of the assimilation of GOES brightness temperatures on the 

simulation  of  Rita’s  track,  intensity  and  representation  of  TC  structure.  In  addition  to  this,  the 

performance of the CH4 experiment on the representation of non-microphysical and 

microphysical fields is examined by comparisons of the ensemble mean solutions of the CTL 

and CH4 experiments and root-mean-square (RMS) analysis error. Results from both 60 km 

and 18 km resolution runs are presented and discussed below.   
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a. Tropical Cyclone Track Forecasts 

 First, the track forecasts for the CTL and CH4 experiments are compared to the best 

track positions to determine how well each of the experiments performed in the forecast of 

Hurricane  Rita’s  track. The results are shown in Figure 1.  

 

 

Figure 1. Track forecast for best track data in black, CTL experiment in red, and the CH4 experiment in blue. 
The data is plotted at every 3 hour intervals from September 20 03Z-September 21 03Z.     
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 The best track data was originally available at 6 hour intervals from 0Z SEP 20 to 

6Z SEP 21while the CTL and CH4 results were available at 3 hour intervals from 03Z SEP 

20 to 03Z SEP 21. The best track data was interpolated with splines to obtain the 

corresponding values at 3 hour intervals so the results could then be compared to those 

obtained for the CTL and CH4 experiments. As shown in Figure 1, both the CTL and CH4 

results compared well to the best track. However, the CH4 experiment performed 

significantly better than the CTL. Both experiments had similar initial values and remained 

similar for the first 3 times. After 12Z SEP 20, the track values for the CTL and CH4 

gradually changed. Both remained close to the best track values throughout most of the 

simulation. However, at the final time the CH4 experiment results converged towards the 

same coordinates as the best track while the CTL results deviated further from the best track. 

Even with the large difference in the initial values between the best track and the two 

experiments, the final CH4 simulation results matched the best track. The CTL experiment, 

on the other hand, had the same initial values as the CH4 experiment but did not converge 

towards the best track results at the final time. The average track error for the CTL 

experiment was 36.69 km, while the average track error from the CH4 experiment was 23.36 

km. These results show that the CH4 assimilation experiment produced a better analysis of 

Rita’s  track  over the period under consideration. . 

 

b. Tropical Cyclone Intensity Forecast 

 After examining track results, the performance of the experiments in the forecast of 

Hurricane  Rita’s  intensity  was  evaluated.  Maximum wind forecasts for the CTL and CH4 
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experiments were compared to the maximum wind results for the best track at 3 hour 

intervals. The results are shown in figure 2 below.  

 

Figure 2.  Maximum wind speed forecast in knots (kn) for best track data in black, CTL experiment in red, and 

the CH4 experiment in blue              

  

 The best track values were interpolated with the same method used to make the 

track figure above. From the figure, it is apparent that the CTL and CH4 results are 

somewhat similar but are both significantly below the best track results.  The best track 
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results are two times greater than the results obtained from our simulations. This large 

discrepancy is partly due to the fact that this was a coarse-resolution simulation and intensity 

was not assimilated. In addition, taking the intensity from the ensemble mean gives a 

somewhat greater underestimate than taking the mean of the intensities of the individual 

members. Despite the fact that this was not a high resolution experiment, it is evident that the 

intensity errors for the CH4 brightness temperature assimilation experiment are significantly 

lower than the intensity errors for the CTL, which is very encouraging. Maximum wind 

speed RMS errors were 7.82 kn for the CTL experiment and 4.82 kn for the CH4 experiment, 

which shows marked improvement. It is also interesting to note that the CH4 experiment 

produced a better simulation of the intensification that took place from15Z SEP 20 to 0Z SEP 

21.  

 

c. Tropical Cyclone Structure Representation 

After comparing track and intensity errors, it was appropriate to compare the 

observation and simulation results for the CH4 experiment at the beginning, middle and end 

of the assimilation window in order to assess the overall impact of the assimilation of 

brightness temperatures in the representation of the TC structure. Figure 3 shows the CTL, 

CH4 experiment simulation, and observation results, in columns 1, 2 and 3 respectively. The 

data is plotted for three different times: 03Z SEP 20 in row 1, 18Z SEP 20 in row 2, and 12Z 

SEP 21 in row 3.  
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Figure 3. CTL, simulation, and observation results of GOES Channel 4 TB (˚K)  at  the  beginning,  middle,  and  

end of the assimilation window. GOES Channel 4 CTL data is plotted in column 1, simulation results are 

plotted in column 2, and observations are plotted in column 3. The data is plotted for 03Z September 20 (row 

1), 18Z September 20 (row 2), and 12Z September 21 (row 3). 

Our experiment was not high resolution but, there are still notable improvements in 

the results. Overall, the CH4 results compare very well to the observation results and present 

marked improvements over the CTL results. The assimilation of GOES-12 brightness 

temperatures produces a more realistic TC cloud field relative to the CTL. In addition to this, 

the brightness temperature structure throughout the rest of the domain also compared well to 



32 

 

the observations. The superior performance of the CH4 experiment is especially evident 

when comparing the brightness temperature structure produced by both experiments in the 

Tropical Pacific region. The CTL experiment produced a very large cloud field that is not 

present in the observations. On the other hand, the CH4 produced a better cloud field due to 

the fact that it involves the assimilation of GOES-12 observations that are taken at a greater 

frequency. Observations taken at a greater frequency aid in producing an improved 

representation of the TC and the environment in the model initial conditions, which 

eventually leads to produce accurate TC sizes and structures for all times.  

The comparison done above for the GOES-12 CH4 TB field was also done for the 

GOES 12 channel 3 TB. The CTL and CH4 observation and simulation results are shown in 

figure 4, in columns 1, 2, and 3 respectively. 
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Figure 4. CTL, observation, and simulation results of GOES Channel 3 TB (˚K)  at  the  beginning,  middle,  and  

end of the assimilation window. CTL data is plotted in column 1, simulation results are plotted in column 2, and 

observations are plotted in column 3. The data is plotted for 03Z September 20 (row 1), 18Z September 20 (row 

2), and 12Z September 21 (row 3). 

 

Even though GOES-12 channel 3 data were not assimilated, the assimilation of GOES 

channel 4 TB produced improvements in the simulated results of GOES channel 3 TB. As in 
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the case of the CH4 TB, the simulation produced TC sizes and structures similar to what was 

produced by the observations. The brightness temperature structure produced throughout the 

rest of the domain also compared well to the observed. So far, the results have shown that the 

assimilation of GOES CH4 TB produces remarkable improvement in the TC representation 

and this improved representation leads to a better forecast of track and intensity. 

Improvements can still be made with the use of other techniques to reduce some of the noise 

evident in the assimilation results. However, these techniques will not be discussed since the 

focus of this paper is to show the potential of the assimilation of GOES-12 CH4 TB in the 

representation of TC structure. In the remainder of this paper, the impacts of the assimilation 

on all the simulated fields will be quantitatively assessed and discussed.  

 

d. Microphysical Fields Representation 

 A microphysical field, precipitable water content, was also selected to determine if 

the relationship between reflectivity and microphysics leads to an improved representation of 

microphysical fields. The differences between the CTL and CH4 results for each field were 

examined. Results are shown in figure 5. The figures were made by subtracting the CTL 

results from the CH4 and plotting these differences. The u and v wind components were 

plotted for the 1176m level. CTL SLP was contoured over each field from 970-1030hPa at 

5hPa intervals to determine the location of the storm center and determine how well the 

assimilation performed in the storm center.  
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Figure 5. CTL and CH4 differences for u wind component at 1176m height (a), v wind component at 1176m 

height (b), SLP (c), and Precipitable Water (d). SLP for the CTL experiment was contoured over each field 

from 970-1030m at 5m intervals.  

 Overall, the results of the CTL and CH4 experiments are very similar upon 

examining the differences. The CH4 experiment performed very well in the case of SLP. 

There is very little difference between the CTL and CH4 results, especially in the TC center.  

It is interesting to note that in the lower left hand portion of the SLP figure, the CTL had 

produced a spurious cyclone, which disappeared upon assimilation. Spurious TC genesis is 

often a problem with numerical weather predictions so this result further supports that the 

assimilation of GOES brightness temperatures produces results that compare well to the 
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observations. For the u and v wind components however, the CH4 underestimated the results 

in certain portions of the storm center. Some localization tuning may be necessary to improve 

the representation of the u and v wind components. 

 

e. Non-Microphysical Fields Representation  

 As a final analysis, the RMS error of the ensemble mean for 14 different observed 

fields was examined to quantitatively assess the overall impact of the assimilation of GOES 

CH4 TB on the forecast of each field. The RMS error (RMSE) indicates the forecast error and 

is defined as follows: 

 

𝑅𝑀𝑆𝐸 = ටଵ
஽  ∑ ൫𝑥௙ௗ − 𝑥௔ௗ൯

ଶ஽
ௗୀଵ           (4) 

 

where 𝑥௙ௗ and 𝑥௔ௗ are respectively the forecast and analysis values at grid point 𝑑, and 𝐷 is 

the number of grid points. The RMSE results are summarized in table1. The errors in table 

1were calculated as the average RMS errors over all times for each field.  

 

Observation Type Experiments 
 RMS Errors Calibration 
 CTL CH4 CTL CH4 

Max Wind (kn) 7.82296 4.81562 .7114 .4561 
AMV u (m/s) 3.83035 3.88645 .7694 .7819 
AMV v (m/s) 3.463313 3.492188 .6903 .7019 

SLP (hPa) 1.623869 1.633578 .8133 .8223 
RAOB U (m/s) 2.8721 2.89735 .7286 .7551 
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RAOB V (m/s) 2.8309 2.93345 .7354 .7612 
RAOB Z (m/s) 15.19825 14.30715 .4499 .4413 
RAOB T (K) 1.1726 1.1366 .7291 .7098 
CH3 𝑇஻ (K) 6.864388 6.338338 .7626 .7165 
CH4 𝑇஻ (K) 13.08631 11.54479 .7225 .6773 

ACARS U (m/s) 3.533533 3.502156 .8403 .8390 
ACARS V (m/s) 1.569522 3.473933 .8230 .8304 
ACARS T (K) 1.569522 1.554422 1.0575 1.0516 

Vortex Latitude 0.262911 0.122589 .6661 .3229 
Vortex Longitude 0.161456 0.146244 .2560 .2511 

Table 1. RMS errors ad calibration values averaged over the nine assimilation cycles for each field. Errors for 
max wind, AMV u, AMV v, RAOB U, RAOB V, RAOB Z, ACARS U, and ACARS V are in m/s. Errors for 
SLP are in hPa. Errors for ACARS T, RAOB T, CH3 𝑻𝑩, and CH4 𝑻𝑩  are in K.  

  

 The CTL performed slightly better in most cases but the CH4 experiment 

performed significantly better in the maximum wind forecast, as was shown in figure 2 of 

this paper. This was a very encouraging result, especially since this was not a high resolution 

assimilation experiment. In addition to this, the CH4 brightness temperature assimilation 

experiment also performed slightly better than the CTL with respect to the RAOB geo 

potential heights and temperatures as well as vortex position. The CTL experiment, on the 

other hand, performed significantly better in capturing the ACARS V wind field. For the 

most part, however, RMS errors for the CTL and CH4 experiments compared well to each 

other.  

 Calibration values were calculated, in addition to the RMS errors, since these also 

serve as a quantitative measure that further aids in assessing the impact of the assimilation on 

the results. The calibration is defined as the square of the innovation divided by the square of 
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the ensemble spread. The innovation and ensemble spread are defined by the following 

equations: 

 

𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) =   𝑜௧ − 𝐻௧  𝜇௙(𝑡)                   (6) 

 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  𝑠𝑝𝑟𝑒𝑎𝑑 = ටଵ
ே  ∑ (𝑥௡ − �̅�)ଶே

௡ୀଵ             (7) 

 

where 𝑜௧ is the observation vector, N is the number of ensemble members, 𝑥௡ is the nth 

ensemble member, and �̅� is the ensemble average. The innovation represents the residual 

between the observation and forecast while the ensemble spread represents the difference 

between the ensemble members and ensemble mean. Ideally, the innovation and ensemble 

spread values are comparable and the calibration value would be close to unity. The 

calibration was calculated as the average calibration over all times for each field. The results 

of this calculation are shown on the right side panel of Table 1. In general, the calibration 

values for the CTL and CH4 experiment compared well to each other. Results show that the 

CH4 experiment performed exceptionally well in the cases of RAOB and AMV u and v wind 

components. The CH3 𝑇஻ and CH4 𝑇஻ calibration results of the CH4 experiment also 

compare well to the results for the CTL, even though they are slightly lower. The only case 

where the CTL outperformed the CH4 was maximum winds. Overall, the results of the 

experiments performed in this study show that the assimilation of GOES-12 brightness 

temperatures leads to an improved representation of TC structure and simulated fields as well 

as a better forecast of hurricane track and intensity.     
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2.6) Conclusions 

 

 The results obtained in these experiments have shown that the assimilation of 

GOES-12 channel 4 brightness temperatures with an EnKF produces track and intensity 

errors lower than simulations that involve conventional observations only. The temporal 

continuity of the data produces a more realistic TC structure at the initial time. This improved 

representation at the initial time allows the simulation to generate more accurate track and 

intensity forecasts. In addition to this, the assimilation of GOES brightness temperatures 

produced an improved representation of microphysical and non-microphysical fields. The 

SLP field shows evidence of the improvement in the representation of non-microphysical 

fields since the assimilation of GOES 𝑇஻ eliminated the spurious cyclone that developed in 

the CTL experiment. Therefore, in addition to producing more accurate track and intensity 

forecasts, assimilation of GOES 𝑇஻ shows promise in eliminating the existing numerical 

weather prediction issues with spurious cyclone genesis.  

  Improvements can always be made to obtain better assimilation results. One 

method that is usually employed to improve upon assimilation results and eliminate spurious 

correlations is covariance localization, which can be done in the horizontal and in the 

vertical, and in time (Campbell and Bishop, 2009).  While horizontal covariance localization 

was applied in this study, vertical covariance localization may have further aided in 

improving results. The covariance models that are currently applied are stationary and 

assume uniformity in the vertical, which is not necessarily true for observations near the 

surface. As opposed to integrated quantities, near-surface parameters have weaker 
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connections to the flow components above. Thus, the performance of stationary covariance 

models can be limited if observations near the surface are incorporated. For this reason, 

vertical localization may be crucial to obtain more accurate results when the ensemble 

assimilation involves the use of surface data (Hacker et. al. 2007). This could prove to be 

especially beneficial in the assimilation of intensity. Experiments involving the application of 

different localization schemes are currently in progress.   

 In conclusion, GOES-12 channel 4 micron brightness temperature data shows 

promise in becoming an alternate method to the use of conventional observations to forecast 

TC track and intensity. The temporal continuity of this data presents many advantages over 

the use of conventional observations and may in further understanding TC intensification 

processes. Even though a higher resolution would have been desirable to perform the 

experiments in this study, the results obtained are very promising. Therefore, the author 

encourages the use of GOES-12 channel 4 data in assimilation experiments to forecast TC 

track and intensity. Further research should be done to continue exploring the potential of the 

assimilation of radiance data from the different channels on GOES-12. 
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Chapter 3 

Bogussing Methods for Quantification of Uncertainties in the Tropical Cyclone 

Vortex Structure 

 

Environmental flow and tropical cyclone vortex structure are the two main factors 

that determine tropical cyclone motion. Of these two factors, environmental steering is the 

most important as it can explain a large part of the TC motion, especially when the flow is 

strong. Studies by Fiorino and Elsberry (1989) have demonstrated that TC motion is not very 

sensitive to the intensity and inner-core structure, but depends more on the outer-core 

velocity profile. The fact that TC track is not very dependent on vortex structure has a 

positive impact on TC track forecasting. The NHC reports that improvement in 24–72-h track 

forecast errors for the Atlantic basin have been reduced by about 50% in the last 15 years 

(Franklin, 2010). This accomplishment in TC track forecasting would not be possible if 

cyclone motion were highly dependent on vortex structure as TC inner core structure cannot 

be determined accurately from the sparse observations over the tropical oceans. Heavily 

relying on vortex structure to forecast track would introduce a significant amount of error 

into TC track forecasts.  

The limited sensitivity of TC motion to vortex structure is what led to the improved 

track forecast (over the intensity forecast) in the experiments discussed in Chapter 2. The 

experiments described in Chapter 2 focused on perturbing only the environment to create an 
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ensemble of initial conditions that were employed to initialize the model. Therefore, the 

ensemble mean provided a better estimate of TC track than each ensemble member 

individually while the ensemble spread provided a measure of the uncertainty in the 

environmental flow. While producing an accurate forecast is always important and is the 

main goal, knowledge of the uncertainty associated to the factors that determine TC motion 

is also essential as this will help determine the confidence that can be attributed to such a 

forecast.  

Although the environmental flow uncertainty was determined in the set of 

experiments described in Chapter 2, the methods that were employed do not provide 

information about the uncertainty associated with the TC vortex structure. Accurately 

representing TC structure in the model initial conditions has always been a challenge. The 

lack of observations over the ocean surface and the near the TC core region makes it difficult 

to capture detail in the tropical cyclone structure and produce a realistic vortex. Initial 

vortices produced by the large scale analysis from operational centers are weak, poorly 

defined, and in some cases misplaced (Zou, 1999). Small errors in vortex position, motion, 

strength, and environmental flow can lead to inaccurate short-term forecasts of TC track and 

intensity (Kurihara et al. 1993). High resolution experiments have been implemented in an 

attempt to address this issue but have proven that due to the difficulty of observation, it is not 

certain whether the accurate structure of the TC is available at higher resolution (Kwon, 

2009). Consequently, employing a method that remedies issues with sparse observations in 

the TC vortex as well as quantifies the uncertainty associated with the vortex structure is 

crucial.  
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While improving vortex structure representation and quantifying the uncertainty 

associated with it is important for determining TC motion, it is even more important for TC 

intensity forecasting. Shortcomings in the collection of TC inner-core data makes it difficult 

to provide real-time estimates of TC structure and intensity to forecasters and for assimilation 

into the NWP models. Limitations in observing capabilities near the TC inner core are one of 

the main reasons that have contributed to the limited improvement in TC intensity 

forecasting skill (Rogers, 2006). Therefore, to have any hope of accurately simulating TC 

intensity, issues with sparse observations need to be addressed as data assimilation methods 

by themselves (without enough observations) are not sufficient to produce significant 

improvement in TC intensity forecasts.  

One method that has been implemented by the Geophysical Fluid Dynamics 

Laboratory (GFDL) to get past issues with sparse observations is the “bogus”  vortex  method.  

The GFDL bogussing method involves substituting the original weak vortex from the large-

scale analysis with a more realistic synthetic vortex.  To remove the poorly resolved vortex 

from the large scale-analysis, two spatial filters are applied. The specified vortex to be placed 

in the environmental field consists of a symmetric vortex and an asymmetric flow. The 

symmetric component is generated from a time integration of an axisymmetric version of the 

hurricane prediction model, with an observationally derived constraint imposed on the 

tangential flow. The generated symmetric wind is used in the computation of the asymmetric 

component using a simplified barotropic vorticity equation, thus providing consistent 

symmetric and asymmetric components. The mass field is then recomputed using a static 

initialization method in which the generated wind field is not modified. This TC bogussing 
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initialization method has led to significant success when applied in operational TC 

forecasting (Kurihara et al. 1993, 1995; Bender et al. 2007).  It has also significantly 

improved the accuracy of TC track and intensity predictions (Thu and Krishnamurti 1992; 

Serrano and Unde´n 1994; Leslie and Holland 1995; Bender et al. 2007). 

More recently, a new approach to the TC bogussing initialization method 

denominated bogus data assimilation (BDA) has been developed. This method uses a four-

dimensional variational data assimilation (4DVAR) technique in combination with the bogus 

surface pressure (Zou and Xiao 2000; Pu and Braun 2001; Zhang et al. 2007; Wang et al. 

2008). BDA suppresses the incorporation of the synthetic vortex to a minimum while 

producing a TC with variables that are dynamically and physically balanced. When 

compared to cases without TC initialization, forecasts with BDA have shown improvement 

in both intensity and structures representation of TCs.  

Besides showing promise in solving issues with limited observations, bogussing 

methods also allow quantification of the uncertainty associated with the TC vortex structure 

when applied in ensemble forecasting. According to Cheung and Chan (1998), the addition 

of such a vortex can be viewed as part of the model configuration. Consequently, an 

ensemble that is created by perturbing the bogus vortex can sample the vortex uncertainties 

better when compared with the methods that create an ensemble by perturbing the 

environmental flow. The idea behind the bogussing method is “to consider how errors in the 

observed quantities (e.g., position and intensity) are transferred to the various components of 

the vortex”, as was pointed out by Cheung and Chan (1998). 
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Although results obtained in BDA studies have been successful, Kwon and Cheong argue 

that detail in the structures of BDA simulated TCs suggests that the results would improve if 

a bogus vortex of a realistic three-dimensional structure were applied (Kwon and Cheong, 

2010). Such scheme to produce a bogus vortex of a three-dimensional structure for TC track 

and intensity predictions was implemented by Kwon and Cheong (2010). This scheme is 

similar to the GFDL bogus initialization method. However, it employs a different method to 

derive the radial profiles of the surface pressure and tangential wind and to derive the 

asymmetric component (beta gyre), which are the most important factors to derive the TC 

initial structure. In their scheme, a spherical high-order filter with double-Fourier series 

capable of giving a sharp cutoff is applied to split the disturbance from the basic field in the 

global analysis. In addition to this, empirical formulas for the variables in the axisymmetric 

components are also employed. Kwon and Cheong indicate that making such modifications 

to bogus and BDA schemes are possible as long as the qualitative structure of the TC (rather 

than the detailed structure) is thought to be important as the initial condition.  

Kwon  and  Cheong’s  bogus  TC  initialization  scheme  has  proven to be successful in 

the study of typhoons in the North Pacific and East China during the year 2007. In their 

study, track errors improved over forecasts without TC initialization by 46%, improvements 

over the operational center at RSMC were of 49%, and errors of minimum SLP were reduced 

by 55% compared to the operational forecasts of RSMC (Kwon and Cheong, 2010). Such 

feats make this scheme attractive for application in ensemble forecasting schemes and thus 

will be applied in our study. 
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 The focus of the next series of data assimilation experiments will change from the 

environmental flow to the TC vortex structure. A bogussing method implemented by Kwon 

and Cheong is applied for TC initialization and the ensemble members are created via 

perturbations of the TC vortex structure. GOES-12 channel 4 10.7 micron brightness 

temperature observations will be assimilated as well as GOES-12 channel 3 water vapor 

observations. It is expected that GOES data in combination with the Kwon and Cheong 

bogussing method will lead to an improved representation of TC structure, which will 

hopefully lead to an improved forecast of TC track and intensity. The next chapter discusses 

the details of the experiments and also presents results.  
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Chapter 4 

Assimilation of GOES-12 Brightness Temperatures and Water Vapor Observations 

with an EnKF and Bogus Vortices for Simulations of Tropical Cyclone Rita  

 

4.1) Introduction 

In the first part of this study (Chapter 2), an EnKF scheme was applied to assimilate 

GOES-12 channel 4 10.7 micron brightness temperatures and produce track and intensity 

forecasts for Tropical Cyclone Rita. The performance of the scheme in the representation of 

TC structure, microphysical, and non-microphysical fields was also examined. In this EnKF 

scheme, the ensemble members were created via perturbations of the environment. 

Therefore, the ensemble mean provided a better estimate of TC track and intensity than each 

ensemble member individually while the ensemble spread provided a measure of the 

uncertainty in the environmental flow. The most interesting of the result was the elimination 

of the spurious cyclone upon assimilating GOES-12 channel 4 brightness temperatures. 

Although the experiments were performed at a coarse resolution of 60 km, results showed 

that the assimilation of GOES-12 brightness temperatures with an EnKF scheme shows 

potential in improving TC forecasts and eliminating issues with spurious cyclones.   

However, a significant downside of the experiments performed in Chapter 2 is that they 

do not provide a measure of uncertainty in the TC vortex structure, which is useful for TC 

intensity forecasting. Observing capabilities are extremely limited in the region of the 
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tropical cyclone vortex, which makes it difficult to produce an accurate representation the TC 

inner core structure in the model initial conditions. The inability to accurately represent TC 

structure in model initial conditions is one of the main reasons that explains the limited 

improvement in TC intensity forecasting (Rogers, 2006) as changes in storm intensity are 

driven by highly variable, small scale dynamics internal to the storm. Given the sparse 

amount of observations that sample the TC inner core, a measure that quantifies the 

uncertainty associated with these observations is useful. Employing a method that treats 

issues with sparse observations and allows ensemble members to capture different possible 

states of the TC vortex structure may aid in improving TC intensity forecasts. 

One method that has been implemented to treat issues with sparse observations is the 

“bogus”  vortex  method (Kurihara et al. 1993, 1995). This method is applied by the 

Geophysical Fluid Dynamics Laboratory (GFDL) and involves substituting the original weak 

vortex from the large-scale analysis with a more realistic synthetic vortex. This GFDL 

bogussing initialization method has successfully been applied to operational forecast of TCs 

(Kurihara et al. 1993, 1995; Bender et al. 2007).  It has also significantly contributed to 

improving the accuracy of TC track and intensity forecasts (Thu and Krishnamurti 1992; 

Serrano and Unde´n 1994; Leslie and Holland 1995; Bender et al. 2007). 

More recently, a new approach to the TC bogussing initialization method denominated 

bogus data assimilation (BDA) has been developed. This method uses a four-dimensional 

variational data assimilation (4DVAR) technique in combination with the bogus surface 

pressure (Zou and Xiao 2000; Pu and Braun 2001; Zhang et al. 2007; Wang et al. 2008). The 
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object of this method is to suppress the incorporation of the synthetic vortex to a minimum 

while producing TCs with variables that are dynamically and physically balanced. When 

compared to cases without TC initialization, forecasts with BDA have shown improvement 

in both intensity and structures of TCs. Some researchers (Kwon and Cheong) argue, 

however, that the detail in the structure of the TCs simulated with BDA could improve with a 

bogus vortex of a realistic three-dimensional structure (Kwon and Cheong, 2010). 

 Such scheme to produce a bogus vortex of a three-dimensional structure for TC track 

and intensity predictions was implemented by Kwon and Cheong (2010). This scheme is a 

variant of the GFDL method with certain modifications made to the method to derive the 

radial profiles of the surface pressure and tangential wind and to derive the asymmetric 

component (beta gyre), as discussed in Chapter 3.  Kwon  and  Cheong’s  bogus TC 

initialization scheme has proven to be successful in the study of typhoons in the North 

Pacific and East China during the year 2007. The improvement produced by their scheme in 

the reduction of errors in track and minimum SLP over RSMC and forecasts without TC 

initialization makes this method attractive for application in ensemble forecasting schemes 

and thus was chosen for our study.  

  In this study, the Kwon and Cheong TC initialization bogussing method is applied in 

conjunction with the EnKF to assimilate GOES-12 channel 4 10.7 micron brightness 

temperatures and simulate tropical cyclone Rita. It is hypothesized that applying the Kwon 

and Cheong TC bogussing scheme in conjunction with the continuous assimilation of GOES-

12 brightness temperatures will lead to an improved representation of TC structure in the 
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model initial conditions. With an improvement in TC structure representation at the initial 

time, improved forecasts and predictability of track and intensity are also expected.  

 In addition to the experiment described above, a separate experiment is performed 

where GOES-12 channel 3 water vapor observations are assimilated. Moisture sensitive 

channels on GOES (as well as temperature sensitive channels) are useful for assimilation in 

clear sky conditions and also in the presence of optically thin to moderate high level clouds 

as was shown by Koyama et. al.(2006). Results from their study showed that the use of 

infrared sounding observations in data assimilation could improve temperature and humidity 

profiles below optically thin-moderate ice clouds. Although Koyama employed GOES 

sounder observations instead of GOES imager observations, it is expected that assimilating 

GOES-12 imager water vapor observations will have a positive impact on TC structure 

representation, track and intensity. Results for this experiment will be compared to the 

brightness temperature assimilation experiment to determine which observations lead to a 

more significant improvement.          

The details of the experiments in this chapter are described in the following sections. 

Section 4.2 discusses (a) the model configuration, (b) observations, (c) TC initialization, as 

well as (d) the methodology to generate perturbations of the TC vortex and (e) assimilate 

GOES data. Section 4.3 presents the results obtained from the analysis and discussion. These 

include the results for (a) track forecasts, (b) intensity forecasts, (c) TC structure 

representation, (d) microphysical field representation, (e) non microphysical field 

representation. Finally, Section 4.4 presents conclusions and future work.   
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4.2) Methodology 

The objective of this research is to build upon the study described in Chapter 2 and 

further explore the potential of a GOES-12 brightness temperature assimilation scheme to 

improve TC track, intensity, and structure representation. Certain modifications were made to 

the methodology described in Chapter 2 to determine if further improvement can be obtained. 

The modifications that were made to the methodology are directed towards improving the 

representation of the TC structure. Hopefully this will lead to more accurate forecasts of TC 

track and intensity.   

The first modification made in this study was to the method employed for TC 

initialization and to create the ensemble of analyses. In Chapter 2, the ensemble members 

were created via perturbation of the environment. In this study, a bogussing method is 

applied for TC initialization and the ensemble members are now created via perturbation of 

the TC vortex. The idea behind this approach is that this will allow better quantification of 

the uncertainty in the TC vortex structure. Knowledge of this uncertainty is essential given 

the difficulties in observing capabilities near the TC core.   

In addition to modifying the TC initialization and the method employed to create the 

ensemble members, the experiments in this study are run at a higher resolution of 18km. In 

Chapter 2, the experiments were run at a coarse resolution of 60km. A full analysis of the TC 

track, intensity, structure representation, as well as representation of microphysical and non-

microphysical fields was done with the results of the low resolution run as a sensitivity test. 
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More importantly, the low resolution experiments performed in Chapter 2 were essential to 

determine the forecast bias in the GOES CH3 and CH4 observations, which was employed to 

perform bias correction in respect to the CH3 and CH4 observations in the high resolution 

experiments of this chapter. With a higher resolution, now it is possible to better resolve the 

TC core, which allows examination of mesoscale features in more detail.  

As in Chapter 2, the EnKF is used to assimilate conventional (RAOB, METAR, ACARS, 

etc.) and GOES-12 brightness temperatures (TB) observations to improve the representation, 

track, and intensity forecasts for Hurricane Rita. A control experiment (CTL) with 

conventional observations only and a CH4 experiment, which assimilates both conventional 

and GOES-12 channel 4 brightness temperatures, are performed in this study.  The 

differences between results from the experiments were then examined to determine how the 

assimilation of GOES brightness temperatures impacts the forecast. In addition to the CTL 

and CH4 experiments, a third experiment assimilating GOES-12 channel 3 water vapor 

observations (CH3) is also performed. Further details on this third experiment are discussed 

later on. Details on the methodology employed in this study are presented below. 

 

a. Model Configuration 

The UW-NMS was initialized on a domain employing 40, 200 and 150 grid points 

respectively in the vertical, zonal and meridional directions. The grid spacing was of 18-km 

in the horizontal directions and 300-m stretched to 700-m in the vertical direction. A time 

step of 60s was used to integrate the model forward. The bulk microphysics scheme applied 
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uses two liquid (rain, cloud water) and two ice (snow, pristine crystals) species with a single-

moment scheme (Tripoli, 1992). A covariance relaxation factor of 0.2 was applied.  

 

b. Observations 

Three different experiments were performed in this study. The two main experiments are 

the control (CTL), which incorporates conventional observations only, and the CH4 

experiment, which incorporates GOES channel 4 brightness temperatures in addition to 

conventional observations. However, a third experiment, denominated CH3, is performed in 

this study, and involves the assimilation of GOES-12 channel 3 water vapor data and 

conventional observations.  

The CTL experiment incorporates METAR (SLP), Aircraft Communication Addressing 

and Reporting System (ACARS (u, v, T)), RAOB (u, v, T, Td), and POES (retrieved T, Td) 

data obtained from the meteorological assimilation data ingest system (MADIS); and Vortex 

Information (lat, lon of TC center) data obtained from the TC VITALS. Cloud drift winds 

(AMV (u, v)) from GOES-11 and GOES-12 are also employed. Different from the CTL 

experiment in chapter 2, this experiment also assimilated vortex maximum surface winds in 

knots. The errors used for the conventional data are the NCEP Global Data Assimilation 

System (GDAS) values.  

The CH4 experiment incorporates the GOES-12 Channel 4 10.7 micron brightness 

temperature data (thinned to 120km), which was retrieved from the NOAA Comprehensive 
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Large Array-data Stewardship System (CLASS).  An observation error of 10K was used in 

this study.   

The CH3 experiment incorporates the GOES-12 channel 3 6.5 micron water vapor 

observations, which were also retrieved from NOAA CLASS. An observation error of 2.5K 

was used.  

 

c. TC Initialization Bogussing Method 

The TC initialization method employed for this experiment is similar to that employed by 

Kwon and Cheong (2010). In summary, The Kwon and Cheong TC initialization method 

consists of four steps: 1) Input of the Regional Specialized Meteorological Center (RSMC) 

information and splitting of the global analysis data into basic field and disturbance, 2) 

determining TC domain in the disturbance field, 3) design of an idealized three-dimensional 

axisymmetric vortex, and 4) merging the axisymmetric vortex with the disturbance within the 

TC domain, and modification of the relative humidity (Kwon and Cheong, 2010). However, 

instead of using RSMC information as Kwon and Cheong did in step 1, tropical cyclone 

vitals (TcVitals) were employed for the purpose of our study. 

Kwon  and  Cheong’s  TC  initialization  method  is  a  variant  of  Kurihara’s  GFDL  

initialization method (Kurihara et. al. 1993, 1995). While the first two steps are very similar 

to what is done in the GFDL initialization,  the  third  step  is  unique  to  Kwon  and  Cheong’s  



62 

 

study.  To  avoid  any  confusion,  Kwon  and  Cheong’s  initialization  method  will  be  referred  to  

hereafter as KC initialization method.  

The  KC  TC  initialization  methodology  was  chosen  over  the  GFDL’s  methodology due to 

the encouraging results obtained by Kwon and Cheong in their 2010 study. They 

implemented and employed such initialization method to produce forecasts of track and 

intensity of typhoons observed in 2007 over the western North Pacific and East China. From 

their study, track errors improved over forecasts without TC initialization by 46%, 

improvements over the operational center at RSMC were of 49%, and errors of minimum 

SLP were reduced by 55% compared to the operational forecasts of RSMC (Kwon and 

Cheong, 2010).  There are a few factors in the KC initialization methodology, different from 

the  GFDL’s,  that  led  to  these  improved  results  and  thus  were  of  interest  for  the  purpose  of  

our study. 

The first factor is the balance among variables that is taken into account during the 

construction of the three dimensional bogus vortex to maintain gradient wind balance, 

hydrostatic balance, and mass balance. All the variables of the bogus vortex are determined 

in analytic functions on input of the basic four parameters provided by TcVitals best track 

data: central pressure, positions of the TC center, radial distances of tangential wind of 30kt, 

and the maximum wind. However, two additional parameters, ambient mean surface pressure 

and the averaged temperature at the surface pressure level, are added to the TcVitals 

parameters to match the data over which the bogus vortex replaces the disturbance field. 

These six parameters explicitly include the information about the size and intensity of the 

storm. This leads the bogus vortex to accurately reproduce important features that are 
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specific to the tropical cyclone of interest. Imbalances among variables of the bogus vortex 

can cause abrupt changes in TC intensity, which would cause systematic bias in the forecast 

model (Kwon and Cheong, 2010). 

Finally,  the  second  factor  that  led  to  the  improved  results  in  Kwon  and  Cheong’s  study  is  

the method that was employed to specify the radial flow. Usually, the radial flow in TC 

initializations is obtained through the time integration of an axisymmetric model with 

tangential wind forcing (Iwasaki et. al. 1987, Kurihara et. al. 1993, 1995).In this study, the 

radial flow is determined empirically based on observations. An appropriate specification of 

the radial flow that maintains mass balance is believed to facilitate vertical motion, especially 

near the center of the TC. In the absence of either the inflow or outflow, the vertical motion 

may not be sufficiently organized into the magnitude necessary to develop the TC. The 

authors  (Kwon and Cheong) believe that the success of their scheme for the TC track and 

intensity prediction in a variety of ranges in horizontal scales and intensity seems to have 

been achieved by the flexibility of the bogus vortex whose vertical and horizontal scale are 

specified automatically upon input of the TcVitals information.     

Although  Kwon  and  Cheong’s  TC  initialization  methodology  proved  to  be  successful  for  

their study, a slightly different approach was taken in this study to separate the disturbance 

from the global analysis. For the purpose of this study, the scale separation was done with the 

method employed by GFDL. In the GFDL method, the scale separation is done by filtering 

the horizontal two dimensional grid point data with a digital filter, which consists of a three –

point spatial operator. It is a one dimensional spatial operator that is applied to the zonal 

direction first and then to the meridional direction. The KC method, on the other hand, 
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employs a sharp cutoff filter for the splitting of the disturbance from the basic field in the 

global analyses. The spectral filter applied in the KC method is isotropic on the spherical 

surface since it gives the same damping rate for the disturbances of a certain horizontal scale 

regardless of their meridional locations. As the filter order increases, a sharper splitting of the 

global analysis is achieved.  While a sharp-cutoff filter is useful in cases where a global 

spectral  model  is  employed  (as  in  Kwon  and  Cheong’s  study),  the  GFDL  method is easier 

apply in cases where a regional model in being employed (as in our study).   

 

d. Perturbations of the TC vortex to create and Ensemble of Analyses 

The ensemble of analyses was created by perturbing maximum velocity, latitude, and 

longitude deterministically. Maximum velocity perturbation values that were used are -7, -5, 

0, 5, 7 kn while -1, 0, and 1 degrees were used for latitude and longitude. The ensemble of 

initial conditions was created using all possible combinations of these values.   

 

e. Assimilation of GOES-12 Brightness Temperatures 

  The method to assimilate GOES-12 channel 4 brightness temperatures was the 

same that was used in Chapter 2. This procedure is discussed in Section 2.3 e) of Chapter 2.  

 

4.3) Results and Discussion 

Eight total assimilation cycles were performed to assess the impact of the assimilation of 

GOES-12 channel 4 brightness temperatures on the simulation of tropical cyclone Rita 
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during the time period between 15Z SEP 20 and 12Z SEP 21. As opposed to the experiments 

from Chapter 2, these experiments were performed at an 18km resolution and the ensemble 

members were created via perturbations of the TC vortex. Although the methodology applied 

in this study is different than that of Chapter 2, the methods employed to analyze the results 

are similar. First, the impact of assimilating brightness temperatures on the simulation of TC 

track, intensity, and TC structure is discussed. Then, the performance of the CH4 experiment 

on the representation of non-microphysical and microphysical fields is examined by 

comparisons of the ensemble mean solutions of the CTL and CH4 experiments and root-

mean-square (RMS) analysis error. The impact of assimilating water vapor observations 

(CH3 experiment) is also discussed. 

 

a) TC Track Forecast 

In this section, the track forecast of the CH4 and CTL experiments are analyzed to 

determine how well the results compared to the positions given by the best track. As in the 

experiments of Chapter 2, the best track data was only available at 6 hour intervals from 0Z 

SEP 20 to 12Z SEP 21 while the CTL and CH4 data was available at 3 hour intervals from 

03Z SEP 20 to 12Z SEP 21. Therefore, the best track data was interpolated with splines at 3 

hour intervals so the times matched those of the CTL and CH4 experiments. The results 

obtained for the track forecast are shown in Figure 1 with the best track data in black, CH4 

data in blue, and CTL in red.     
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Figure 1. Track forecast for best track data in black, CTL experiment in red, and the CH4 experiment in blue. 
The data is plotted at 3 hour intervals from September 20 15Z-September 21 12Z.     

 

The track forecasts for both, the CTL and CH4 experiment, do not compare well to the 

positions given by the best track. Although the initial times for both experiments were similar 

to that of best track, the results do not converge to the same position as the best track during 

the final time. There is only one occasion where the CTL converges to the same position as 

the best track, which was at 0Z on SEP 21. The CH4 experiment never converges to the same 
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positions as the best track. Overall, the CTL positions compare better to the best track. The 

average track error of the CTL is 26.57 km while the CH4 average track error is of 29.38 km.   

It is interesting to note, however, that although the CTL experiment produced a better 

track forecast than the CH4, there were only two times where the values give by the CTL 

were different from that of the CH4 simulation. The CTL and CH4 positions were the same 

at the first four times (not shown) and they also converged to the same value at the sixth and 

final time. The positions at the fifth and seventh time were what led to the improved results 

of the CTL over the CH4.  

The track forecast from the CH3 experiment was also compared to the positions given 

by CTL and best track for the same time period. The results are shown below in Figure 2 

with the best track in black, CH3 in blue, and CTL in red.  



68 

 

 

 

Figure 2. Track forecast for best track data in black, CTL experiment in red, and the CH3 experiment in blue. 
The data is plotted at 3 hour intervals from September 20 15Z-September 21 12Z.     

Overall, the CH3 experiment produced a track forecast that compares well to the CTL. 

The only exception is at the second time, where the CTL position compares better to the best 

track.  It is interesting to note, however, that the CH3 converges to the best track position at 

0Z SEP 21, which was not accomplished by the CH4. Although the CTL outperforms the 

CH3 experiment in the track forecast, the TC track positions given by the CH3 still present 
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improvement over the CH4. The track error for CH3 is given by 29. 49 km while the error for 

CH4 is 29.38 km.   

 

b) TC Intensity Forecast 

Next, we proceeded to analyze the performance of the CH4 and CTL experiment in the 

forecast  of  Hurricane  Rita’s  Intensity.  The  maximum  wind  (knots)  forecast  produced  by  the  

CH4 and CTL experiments were compared to the maximum wind values given by the best 

track. The best track maximum wind values were interpolated with splines at 3 hour 

intervals, as was done for the TC track, so the times would match those of the CTL and CH4. 

The results of the maximum wind forecasts are shown in figure 3 with the best track in black, 

CH4 experiment in blue, and CTL in red.  
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Figure 3. Maximum wind speed forecast in knots (kn) for 15Z SEP 20-12Z SEP 21. The best track data is 
shown in black, CTL experiment in red, and the CH4 experiment in blue 

 

 From the results it is evident that there are very large discrepancies between the best 

track and the two experiments. At the initial time, both the CH4 and CTL experiments show 

very high maximum wind values. The initial CH4 maximum wind values are overestimated 

by approximately 14 knots while the CTL overestimates the maximum wind values by 12 

knots. The opposite happens at the final time. At the final time, both the CTL and CH4 

converge towards the same value of approximately 92 knots but they fall significantly below 

the best track, which indicates maximum wind speeds of 120 knots.  
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 Although this was a higher resolution experiment than the one performed in Chapter 

2, there are a few reasons that could explain the lack of improvement shown in the results. 

TC intensity was not assimilated in these experiments, which affects the results. In addition 

to that, the intensity is taken from the ensemble mean. This will give a greater underestimate 

or overestimate than taking the mean of the intensities of the individual members. However, 

it is important to note that although there are overall large discrepancies between the 

forecasted and best track maximum wind values, there are two times where the CH4 shows 

similar values to the best track. This occurs at 21Z SEP 20 and 00Z SEP 21. However, the 

CTL still outperforms the CH4 in this simulation with a root mean square error (RMSE) of 

7.92 knots compared to a RMSE of 10.18 knots for the CH4.  

The maximum wind speed values for the CH3 experiment were also compared to the 

CTL and best track estimates for the same time period. The results are shown below in 

Figure 4 with the best track in black, CH3 in blue, and CTL in red. 
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Figure 4. Maximum wind speed forecast in knots (kn) for 15Z SEP 20-12Z SEP 21. The best track data is in 
black, CTL experiment in red, and the CH3 experiment in blue. 

  

  The same issues that both the CTL and CH4 showed in estimating maximum wind 

speeds are presented by the CH3 experiment. During the first few times the maximum wind 

speeds are significantly overestimated and at the final times the results fall significantly 

below the best track. CH3 does not converge towards the wind speeds given by the best track 

at any of the times while the CTL converges towards the best track value at 00Z SEP 21. 
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Although the CTL has lower errors than the CH3, the CH3 presents improvement over the 

CH4 with a RMSE of 9.46 kn compared to 10.18 kn for CH4.  

 

c) Representation of TC Structure 

After comparing track and intensity errors, observation and simulation results for the 

CH4 experiment were compared at the beginning, middle and end of the assimilation window 

in order to assess the overall impact of the assimilation of brightness temperatures in the 

representation of the TC structure. Figure 5 shows the CTL, CH4 experiment simulation, and 

observation results, in columns 1, 2 and 3 respectively. The data is plotted for three different 

times: 15Z SEP 20 in row 1, 03Z SEP 21 in row 2, and 12Z SEP 21 in row 3. 
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Figure 5. CTL, simulation, and observation results of GOES Channel 4 TB (˚K)  at  the  beginning,  
middle, and end of the assimilation window. GOES Channel 4 CTL data is plotted in column 1, 
simulation results are plotted in column 2, and observations are plotted in column 3. The data is 
plotted for 15Z September 20 (row 1), 03Z September 21 (row 2), and 12Z September 21 (row 3). 

Overall, the TC structure shown in the CTL and CH4 figures is very similar. There 

are only a few differences that can be noticed. For the second time, the CTL shows that the 

TC extends further south below Cuba than in shown in CH4. At the final time, however, the 

size of the TC shown by CH4 is much larger than the CTL. Other than this, brightness 

temperature values for both experiments are overall the same in the all regions of the storm.    
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 There are a few differences that are more evident when comparing the results given 

by the observations (panel 3) with the CTL and CH4 results. The eye of the storm in the 

observations is much smaller than the one produced by CH4 and CTL. The rain bands also 

cover a larger area in the observations than in the CTL and CH4.  There is a small low 

pressure region in the Pacific (near Mexico) that was produced by the observations. Although 

the CH4 and CTL also produced this feature, it is not an intense as shown by the 

observations. However, the CH4 and CTL brightness temperature values in the region of the 

TC compare well to those produced by the observations.      

The same analysis of TC structure that was performed for the CH4 observations was also 

done for CH3. Observation and simulation results for the CH3 experiment were compared for 

the same time periods to assess the overall impact of the assimilation of brightness 

temperatures in the representation of the TC structure. The results are shown in Figure 6 

below. The CTL, CH3 experiment simulation, and observation results are shown in columns 

1, 2 and 3 respectively. The data is plotted for 15Z SEP 20 in row 1, 03Z SEP 21 in row 2, 

and 12Z SEP 21 in row 3. 
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Figure 6. CTL, observation, and simulation results of GOES Channel 3 TB (˚K)  at  the  beginning,  
middle, and end of the assimilation window. GOES Channel 3 CTL data is plotted in column 1, 
simulation results are plotted in column 2, and observations are plotted in column 3. The data is 
plotted for 15Z September 20 (row 1), 03Z September 21 (row 2), and 12Z September 21 (row 3). 

  

There  weren’t  many  marked  differences  between  the  CTL  and  CH3  results  in  the  

representation of TC structure.  The only evident difference is the storm radius, which is a bit 

lager for the CH3 experiment, especially at the end of the assimilation window. Other than 
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the storm radius, both experiments produced the same features in the same locations and 

brightness temperature values are overall the same. 

 However, there are significant differences when comparing the CH3 and CTL results 

to the observations. First, the storm radius (eye) is much larger (smaller) in the observations 

than in the CH3 and CTL. In addition to this, the low pressure region shown by the 

observations is not as intense in the CH3 and CTL. This was also the case with the CH4 

observations. The most evident difference, however, is in the storm intensity. The storm 

produced by the CH3 and CTL is much weaker than the one produced by the observations. 

Brightness temperature values produced by the observations are significantly lower than 

those shown by CH3 and CTL, especially in the region closest to the TC core.   

   

d) Microphysical Fields 

 

A few different variables were selected to examine the performance of the CH4 

experiment relative to the CTL in the representation of these fields. The selected fields are u 

wind component, v wind component, and sea level pressure. A microphysical field, 

precipitable water, as also selected to determine if the relationship between microphysics and 

brightness temperatures leads to an improved representation of the field. The differences 

between the CTL and CH4 experiment are examined by subtracting the CTL from the CH4 

results and plotting these differences. The results are shown in Figure 7.   
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Figure 7. CTL and CH4 differences for u wind component at 1176m height (a), v wind component at 1176m 
height (b), SLP (c), and Precipitable Water (d). SLP for the CTL experiment was contoured over each field 
from 970-1030m at 5m intervals 

 

From the results it is evident that there are significant differences between the CH4 and 

CTL results for all the selected fields. The u wind component, v wind component, and 

precipitable water show the largest differences. Both experiments show disagreements in 

different portions of the storm center. Since the ensemble members are created via 
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perturbations of the TC vortex, any differences in the vortex position, regardless of how 

small, will lead to significant differences in the results.  

 In the case of the SLP field, the maximum difference between the CTL and CH4 results 

is of approximately 1.5 hPa and occurs in the TC center. The CH4 experiment produced 

lower SLP values than the CTL in the TC core. Although the CH4 SLP values were overall 

lower than those of the CTL, and lower SLP values are correlated to a weaker storm, it still 

was not sufficient to produce an accurate forecast of maximum winds for the initial times 

where the storm was still weak, as was shown in Figure 3. 

The representation of the selected variables by the CH3 experiment was also examined. 

The differences between the CTL and CH3 experiment were examined by subtracting the 

CTL from the CH3 results and plotting these differences. The results are shown in Figure 8.  
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Figure 8. CTL and CH3 differences for u wind component at 1176m height (a), v wind component at 1176m 

height (b), SLP (c), and Precipitable Water (d). SLP for the CTL experiment was contoured over each field 

from 970-1030m at 5m intervals 

 

Overall, the differences between the CTL and CH3 results are larger and are mostly 

confined to the eye and a portion of the inner eye wall of the TC. The only exception is in the 

precipitable water field, where the discrepancies between the CH3 and CTL extend 

significantly past the inner eye wall. However, the differences between the CH4 and CTL are 

still smaller in all the cases.  
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e) Non-Microphysical Fields 

As a final analysis, the root mean square (RMS) error of the ensemble mean for 14 

different observed fields was examined to quantitatively assess the overall impact of the 

assimilation of GOES CH4 TB on the forecast of each field. The RMS error (RMSE) 

indicates the forecast error and was calculated using equation (4) on Chapter 2. The errors 

were calculated as the average RMS errors over all times for each field. The RMSE results 

are summarized in the left side panel of Table 1. 

Observation Type Experiments 
 RMS Errors Calibration 
 CTL CH4 CTL CH4 

Max Wind (kn) 7.9163 10.1829 1.0179 1.3737 
AMV u (m/s) 3.6772 3.7023 .7965 .7952 
AMV v (m/s) 3.3111 3.3154 .7120 .7119 

SLP (hPa) 1.3230 1.3673 .8171 .8445 
RAOB U (m/s) 2.8465 2.8197 .7910 .7708 
RAOB V (m/s) 2.7331 2.7569 .7629 .7593 
RAOB Z (m/s) 10.6690 10.2128 .4318 .4073 
RAOB T (K) 1.0688 1.0589 .6598 .6564 
CH3 𝑇஻ (K) 5.1392 3.8410 .9793 .9358 
CH4 𝑇஻ (K) 6.3151 6.0438 .3884 .3787 

ACARS U (m/s) 3.2543 3.2744 .8627 .8675 
ACARS V (m/s) 3.0690 3.1053 .8157 .8233 
ACARS T (K) 1.4180 1.4244 1.0328 1.0363 

Vortex Latitude .1878 .2175 1.4311 1.5963 
Vortex Longitude .1355 .1336 .9438 .8769 
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Table 1. RMS errors and calibration values for the CTL and CH4 experiment averaged over the eight 
assimilation cycles for each field. Errors for max wind, AMV u, AMV v, RAOB U, RAOB V, RAOB Z, 
ACARS U, and ACARS V are in m/s. Errors for SLP are in hPa. Errors for ACARS T, RAOB T, CH3 𝑻𝑩, and 
CH4 𝑻𝑩  are in K.  

 

Overall, the RMS errors show that there was little improvement produced by the 

assimilation of GOES CH4 brightness temperatures. The RMS errors for the CTL are lower 

than the CH4 for most of the fields. The only fields where the CH4 outperformed the CTL 

were RAOB U, RAOB T, RAOB Z, vortex longitude, CH3, and CH4. Interestingly, the field 

where the CH4 presented the most improvement over the CTL was for CH3 water vapor. 

The RMS errors for all the fields were also examined for the CH3 experiment. Results are 

shown below in the left panel of Table 2. 

Observation Type Experiments 
 RMS Errors Calibration 
 CTL CH3 CTL CH3 

Max Wind (kn) 7.9163 9.4553 1.0179 1.1441 
AMV u (m/s) 3.6772 3.6184 .7965 .7884 
AMV v (m/s) 3.3111 3.3151 .7120 .7144 

SLP (hPa) 1.3230 1.3375 .8171 .8276 
RAOB U (m/s) 2.8465 2.6904 .7910 .7805 
RAOB V (m/s) 2.7331 2.8284 .7629 .7832 
RAOB Z (m/s) 10.6690 10.5203 .4318 .4077 
RAOB T (K) 1.0688 1.0624 .6598 .6634 
CH3 𝑇஻ (K) 5.1392 3.6014 .9793 .9026 
CH4 𝑇஻ (K) 6.3151 5.8298 .3884 .3757 

ACARS U (m/s) 3.2543 3.3070 .8627 .8760 
ACARS V (m/s) 3.0690 3.1132 .8157 .8263 
ACARS T (K) 1.4180 1.4215 1.0328 1.0353 

Vortex Latitude .1878 .1910 1.4311 1.4157 
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Vortex Longitude .1355 .1601 .9438 1.0547 
Table 2. RMS errors and calibration values for the CTL and CH3 experiment averaged over the eight 
assimilation cycles for each field. Errors for max wind, AMV u, AMV v, RAOB U, RAOB V, RAOB Z, 
ACARS U, and ACARS V are in m/s. Errors for SLP are in hPa. Errors for ACARS T, RAOB T, CH3 𝑻𝑩, and 
CH4 𝑻𝑩  are in K.  

 

Although the errors of the CTL experiment are still lower than those of the CH3, the CH3 

RMS errors are overall lower than the CH4s for 7 different fields. Also, the CH3 presents 

marked improvement over the CTL in CH4 brightness temperatures, CH3 water vapor, 

RAOB T, RAOB Z, RAOB U, and AMV u. The most significant improvement was in the 

CH3 water vapor field.  

In addition to RMS errors, calibration values were calculated to further assess the impact 

of the assimilation on the results. The calibration is defined as the square of the innovation 

divided by the square of the ensemble spread. The innovation and ensemble spread are 

defined by equation (6) and (7) on Chapter 2. Calibration values were calculated as the 

average calibration over all times for each field. The calibration results for the CH4 and CTL 

experiments are found on the right side panel of Table 1 and those for the CH3 are found on 

the right hand panel of Table 2.  

According to the calibration values, the CH4 performed better than the CTL in the 

ACARS U, ACARS V, and SLP cases. The AMV u and AMV v results also compare well to 

the CTL, even though the CTL results were better. In the CH3 case, the AMV v, SLP, RAOB 

V, RAOB T, ACARS U, ACARS V and Vortex Latitude present marked improvement over 

the CTL. Vortex longitude is the case where the CTL significantly outperforms the CH3. 
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Upon analysis of the calibrations, the CH3 presents significant improvement over the CH4. 

The CTL, however, presents overall the most improved results.    

 

4.4) Conclusions 

An EnKF data assimilation scheme incorporating a bogus vortex TC initialization method 

was employed to simulate Hurricane Rita for the time period of 15Z SEP 20 to 12Z SEP 21. 

Three experiments were performed to determine if assimilating GOES-12 observations along 

with conventional observations would produce an improvement in TC forecasts and 

representation of vortex structure over experiments incorporating conventional observations 

only. The CH4 experiment incorporated conventional observations and GOES-12 brightness 

temperatures, the CH3 experiment incorporated conventional observations and GOES-12 

water vapor observations, and the final CTL experiment incorporated conventional 

observations only.   

Overall, results from the experiments showed that the assimilation of GOES-12 

brightness temperatures and water vapor observations produce limited improvement in all 

fields that were examined when compared to the experiment that incorporated conventional 

observations only (CTL). In the track forecast, average track errors for the CH4 and CH3 

experiments exceeded the CTL errors by 2.81 km and 2.92 km respectively. For intensity and 

all other fields that were examined, RMS errors for CH3 and CH4 were also above CTL 

errors for most cases. There are a few exceptions, however, where RMS errors for CH3 and 
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CH4 are lower than those for the CTL. Based on RMS errors, the CH4 experiment performed 

better than the CTL in RAOB (U, Z, T), vortex longitude, and CH3 and CH4 brightness 

temperatures. The CH3 experiment, on the other hand, performed better than the CTL in 

RAOB (U, Z, T), AMV (u), as well as CH3 and CH4 brightness temperatures. For the most 

part, CH3 and CH4 produced improved results over the CTL in the representation of the 

same variables.    

  Although the CTL produced overall the best results, assimilating GOES-12 water 

vapor observations produced more improvement than assimilating GOES-12 brightness 

temperature observations in most cases that were examined. CH4 performed better than CH3 

in the track forecast.  However, CH3 outperformed CH4 in the intensity forecast with an 

RMS error of 9.45 kn compared to 10.18 kn for CH4. RMS errors for the rest of examined 

fields are also overall lower for CH3. CH3 produced RMS errors lower than CH4 for 10 of 

the different fields examined in Table 1 and 2. CH3 observations are expected to produce 

more improvement than CH4 observations as  the  “water  vapor”  channel generally contains 

information about the middle and upper-troposphere in clear-sky conditions, and about the 

cloud-tops in cloudy conditions. CH4, on the other hand, can only see the surface in clear-sky 

conditions.  

There are certain things that can be improved upon for better assimilation results. An 

alternate approach that could be employed to create an ensemble of analyses is to perturb 

both the environment and the TC vortex. This would allow quantification of the ensemble 

spread in both the environmental flow and TC vortex. Without spread in the environment, 
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observations can only impact the vortex itself. While perturbing only the TC vortex allows 

decoupling of the environmental-scale and vortex-scale impacts, it also has the effect of not 

allowing any communication between the vortex and the environment and the observations. 

In reality, the interaction between the environment and TC vortex is a highly complicated 

feedback process. Therefore, perturbing both the environment and vortex structure would be 

a way to account  for  the  environment’s  impact  on  the  TC (and vice versa). 

 Despite the results obtained in this study, the assimilation of GOES-12 infrared data 

shows potential for application in assimilation schemes with an EnKF for TC forecasting. 

Results from the experiments performed in Chapter 2 clearly support this hypothesis. RMS 

errors for certain fields that were examined in this Chapter also show that GOES 

observations show potential for TC intensity forecasting.  Modifications in methodology, 

however, are necessary to optimize the performance of this scheme and use the GOES-12 

information efficiently. Work is already being done to improve upon the methodology 

described in this study.  Further research should be done to continue exploring the potential 

of the assimilation of radiance data from the different channels on GOES-12 as the temporal 

and spatial continuity of these observations can be an invaluable asset for TC forecasting. 
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Chapter 5 

Conclusions 
 
 

5.1) Summary and Future Work 
 

 This thesis study explored the potential of GOES-12 10.7 micron brightness 

temperatures and 6.5 micron water vapor observations for use in an EnKF scheme to improve 

forecasting and predictability of tropical cyclones. Two studies were performed to determine 

if assimilation of GOES-12 observations in conjunction with conventional observations 

would lead to improved results over a scheme that assimilates conventional observations 

only. The impact of assimilating GOES-12 observations was examined via analysis of TC 

track & intensity forecasts, TC structure representation, and representation of microphysical 

and non-microphysical fields.  

 In the first study (Chapter 2), GOES-12 10.7 micron brightness temperatures were 

assimilated with an EnKF scheme where ensemble members created via perturbations of the 

environment. The results obtained from this coarse resolution experiment showed that the 

assimilation of GOES-12 channel 4 brightness temperatures with an EnKF produces track 

and intensity errors lower than simulations that involve conventional observations only. The 

temporal continuity of GOES data produces a more realistic TC structure at the initial time. 

Such improved representation at the initial time allows the simulation to generate more 

accurate track and intensity forecasts. In addition to this, the assimilation of GOES-12 

brightness temperatures produced an improved representation of microphysical and non-
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microphysical fields. The SLP field showed evidence of the improvement in the 

representation of non-microphysical fields since the assimilation of GOES 𝑇஻ eliminated the 

spurious cyclone that developed in the CTL experiment. Therefore, in addition to producing 

more accurate track and intensity forecasts, assimilation of GOES 𝑇஻ shows promise in 

eliminating the existing numerical weather prediction issues with spurious cyclone genesis.  

In the second set of experiments performed in this thesis study (Chapter 4), GOES-12 

brightness temperatures and water vapor observations were both assimilated with an EnKF. 

The goal in this study was to determine which set of observations (assimilated in conjunction 

with conventional observations) would produce more improved results over the CTL 

experiment. Different from the experiments in Chapter 2, a higher resolution of 18km was 

employed as well as a bogussing scheme for TC initialization. In addition to this, ensemble 

members were created via perturbations of the TC vortex.  

An additional difference to note between the experiments in Chapter 2 and Chapter 4 

is that the CH3 and CH4 satellite observations in Chapter 4 were bias corrected. NWP 

models are not perfect and therefore, have systematic biases that may make the model state 

drift towards the model climatology. This generates simulated observations that significantly 

differ from the real world climatology (Delworth et al., 2005;Collins et al., 2006), that is, 

observations that are biased.  Bias correction can then be employed to correct this bias. It 

minimizes the error of the next forecast using bias from past errors. Bias correction is 

extremely important as forcing the model towards the observations would affect the model 
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prognostic variables. In the case of brightness temperatures, temperature, mixing ratio and 

vertical velocity would be impacted. 

Overall, results from the experiments showed that the assimilation of GOES-12 

brightness temperatures and water vapor observations produce limited improvement when 

compared to the experiment that incorporated conventional observations only (CTL). 

Average track and RMS errors were significantly higher for the experiments that assimilated 

GOES-12 brightness temperatures and water vapor observations. However, there were a few 

exceptions where RMS errors for CH3 and CH4 were lower than those for the CTL. This was 

the case for RAOB (U, Z, T), and CH3 and CH4 brightness temperatures variables.  

  Although the experiment assimilating conventional observations produced overall 

the best results, assimilating GOES-12 water vapor observations produced more 

improvement than assimilating GOES-12 brightness temperature observations in most cases 

that were examined. CH4 may have performed better than CH3 in the track forecast, but CH3 

outperformed CH4 in the intensity forecast with an RMS error of 9.45 kn compared to 10.18 

kn for CH4. RMS errors for the rest of examined fields were also overall lower for CH3.  

 Given the mixed results that were obtained from both studies, more 

experimentation is required in order to reach more conclusive results. There are certain 

modifications that can be made to this scheme that may aid in improving assimilation results. 

Covariance localization is often applied in studies to improve upon assimilation results and 

eliminate spurious correlations (Campbell and Bishop, 2009).  While horizontal covariance 

localization was applied in this study, vertical covariance localization may have further aided 
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in improving results. Current covariance models are stationary and assume uniformity in the 

vertical, which is not necessarily true for observations near the surface. Thus, the 

performance of stationary covariance models can be limited if observations near the surface 

are incorporated. For this reason, vertical localization may be crucial to obtain more accurate 

results when the ensemble assimilation involves the use of surface data (Hacker et. al. 2007). 

This could prove to be especially beneficial in the assimilation of intensity.  

A second modification that can be made to our scheme is to use perturbations of both 

the environmental flow and the TC vortex to create the ensemble members. The ensemble 

members in the first set of experiments ensemble members were created via perturbations of 

the environmental flow while in the second set of experiments they were created via 

perturbations of the TC vortex. Employing a method that combines both methods could lead 

to significant improvement as the uncertainty associated with both sources (environmental 

flow and TC vortex) will be included in the analyses of ensemble members. While TC track 

is mostly driven by environmental steering, TC intensity could benefit from accounting the 

uncertainty associated with both sources.      

Finally, more case studies are necessary to further assess the impact of incorporating 

GOES-12 observations for TC forecasting. This single case study proved that there is 

potential in this scheme. However, all storms are different and there are countless scenarios 

that could lead to significantly different results. With a larger sample of TCs it would be 

possible to reach more definitive conclusions on the impact of this scheme.  

In conclusion, although the second set of experiments was not as successful as the 

first, the assimilation of GOES-12 radiance data still shows potential for improving forecasts 
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and predictability of tropical cyclones. GOES-12 data provides the temporal and spatial 

continuity that can be an asset for improving representation of TCs in the model initial 

conditions. GOES provides continuous over the region of tropical cyclone genesis and 

development. More importantly, GOES provides continuous observations of the TC core 

region, which is not viable with any other existing data collection methods.  Observations 

over the TC core region are crucial for TC intensity forecasting and also to fill gaps in the 

current understanding of TC intensification dynamics. Modifications must be made to the 

experiments to further optimize the use of these observations as this was only an exploratory 

study.  Further research should be done to explore the potential of GOES-12 brightness 

temperatures and water vapor observations as well as other observations from the different 

channels on GOES.  
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