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ABSTRACT

The interaction of open and coastal oceans in a midlatitude ocean basin is investigated in light of Rossby and
coastal Kelvin waves. The basinwide pressure adjustment to an initial Rossby wave packet is studied both
analytically and numerically, with the focus on the low-frequency modulation of the resulting coastal Kelvin
wave. It is shown that the incoming mass is redistributed by coastal Kelvin waves as well as eastern boundary
planetary waves, while the incoming energy is lost mostly to short Rossby waves at the western boundary. The
amplitude of the Kelvin wave is determined by two mass redistribution processes: a fast process due to the
coastal Kelvin wave along the ocean boundary and a slow process due to the eastern boundary planetary wave
in the interior ocean. The amplitude of the Kelvin wave is smaller than that of the incident planetary wave
because the initial mass of the Rossby wave is spread to the entire basin. In a midlatitude ocean basin, the slow
eastern boundary planetary wave is the dominant mass sink. The resulting coastal Kelvin wave peaks when the
peak of the incident planetary wave arrives at the western boundary.

The theory is also extended to an extratropical–tropical basin to shed light on the modulation effect of
extratropical oceanic variability on the equatorial thermocline. In contrast to a midlatitude basin, the fast mass
redistribution becomes the dominant process, which is now accomplished mainly by equatorial Rossby and
Kelvin waves, rather than the coastal Kelvin wave. The coastal Kelvin wave and the modulation of the equatorial
thermocline peak close to the time when the wave trail of the incident Rossby wave arrives at the western
boundary. Finally, the theory is also applied to the wave interaction around an extratropical island.

1. Introduction

In a midlatitude ocean basin, the two most important
low-frequency waves are the Rossby wave and coastal
Kelvin wave. Most previous works have focused on the
Rossby wave. Long Rossby waves (or planetary waves)
are important for the adjustment in the interior ocean,
while short Rossby waves are responsible for the in-
tensive current variability along the western boundary
(e.g., Pedlosky 1965, 1987; Anderson and Gill 1975;
Cane and Sarachik 1977, 1979; McCreary and Kundu
1988). However, relatively less attention has been paid
to the role of the coastal Kelvin wave and its interaction
with Rossby waves in the low-frequency variability of
the midlatitude ocean. In particular, there have been few
studies on the interaction of Rossby waves and coastal
Kelvin waves on the western boundary. When a Rossby
wave incident is on the midlatitude western boundary,
it is known that short Rossby waves are generated to
balance the incoming cross-shore mass and energy flux-
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es (Pedlosky 1987). Coastal Kelvin waves will also be
excited. However, the mechanism responsible for the
coastal Kelvin wave is not fully understood. This will
be the major question to be explored here.

The interaction of midlatitude Rossby and coastal
Kelvin waves has at least three applications. First, it is
an important process that contributes to the exchange
of open and coastal ocean variability. Second, the coast-
al Kelvin wave generated by decadal planetary waves
in the midlatitude may provide a mechanism for the
modulation of the equatorial thermocline and therefore
contributes to decadal climate variability in the sub-
tropical–tropical climate system (Lysne et al. 1997).
Third, this interaction, as will be seen later, is critical
for the low-frequency variability of island circulation.

Previous works on the interaction of Rossby and
Kelvin waves can be divided into three groups. The first
group includes numerous studies that investigated the
interaction of equatorial Kelvin wave and equatorial
Rossby waves (e.g., McCreary 1976; Cane and Sarachik
1977, 1979; Kawase 1987). It is found that wave re-
flection is determined mainly by the balance of zonal
mass transport. The alongshore mass distribution is ac-
complished by short Rossby waves, which contributes
little to the zonal mass transport and therefore plays
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little role in determining the reflected Kelvin and long
Rossby waves. These studies have laid the foundation
to our understanding of seasonal- to interannual climate
variability, such as the ENSO in the Pacific Ocean (e.g.,
McCreary 1983; Cane and Zebiak 1985; Battisti 1989,
1991; Kessler 1991) and the Somali Current system in
the Indian Ocean (e.g., McCreary and Kundu 1988).
However, it will be seen later that interaction of the
equatorial Rossby and Kelvin waves differs significantly
from that between a midlatitude Rossby wave and a
coastal Kelvin wave (see more discussions in section
5).

The second group focused on the extratropical ocean,
but only along the eastern boundary. The primary issue
is the generation of planetary waves by coastal Kelvin
waves along the eastern boundary (e.g., Enfield and
Allen 1980; White and Saur 1983; Jacobs et al. 1994;
McCalpin 1995). At low frequencies, coastal Kelvin
waves change the eastern boundary pressure, which in
turn generates planetary waves radiating westward into
the interior ocean. These studies are important to un-
derstand the impact of annual to decadal variability of
coastal upwelling on the interior ocean.

The third group investigated the interplay of midlat-
itude Rossby waves and coastal Kelvin waves, mostly
along the western boundary. Most of these works orig-
inated from the issue of mass conservation (or the con-
sistency condition) in a quasigeostrophic (QG) model
in a midlatitude basin (McWilliams 1977; Flierl 1977;
Dorofeyev and Larichev 1992; Millif and McWilliams
1994, hereafter MM). All these works strongly sug-
gested that the coastal Kelvin wave plays a key role in
mass conservation. Our work is a further extension of
these works. Godfrey (1975) and McCreary and Kundu
(1988) have discussed some initial reflection processes
and some local dynamics with the focus on low lati-
tudes. Dorofeyev and Larichev limited their discussion
to a half-plane midlatitude ocean, and therefore it does
not directly apply to a closed basin. Kelvin wave prop-
agation around a basin has also been discussed in nu-
merical models (Cane and Sarachik 1979; McCreary
1983; MM). As will be seen later, the modulation of a
coastal Kelvin wave is a nonlocal process due to the
rapid propagation of the coastal Kelvin wave. Conse-
quently, the response differs dramatically for different
ocean basins. The modeling study of MM shows a re-
markable resemblance between the shallow-water model
and the quasigeostrophic model, after the consistency
condition is imposed in the latter. This assures that the
principle mechanisms for the interaction of Rossby and
coastal Kelvin waves are contained in a QG system.
However, in none of these works are the physical mech-
anisms, especially those responsible for the quantitative
aspects of the wave interaction, fully studied.

We will investigate the basinwide adjustment process
to an initial planetary wave packet incident on a mid-
latitude western boundary, with the focus on the quan-
titative aspects of the interaction. We will attempt to

address the following questions: What is the magnitude
of the slowly evolving coastal Kelvin wave, and when
does it peak? What are the major factors that determine
the strength and timing of the Kelvin wave amplitude?
Furthermore, in a basin that includes the equator, what
is the impact of the wave interaction in the midlatitude
on the modulation of the equatorial thermocline? A sim-
ple analytical theory is first developed to determine the
amplitude evolution of the coastal Kelvin wave. Exten-
sive numerical experiments are performed to substan-
tiate the theory. The modulation of the Kelvin wave is
found to be determined by two nonlocal mass redistri-
bution processes: one fast and the other slow. The for-
mer is due to the coastal Kelvin wave current, while the
latter is attributed to the eastern boundary planetary
wave. The amplitude evolution of the coastal Kelvin
wave depends critically on the mass redistribution pro-
cess. Different from the reflection of equatorial Rossby
and Kelvin waves, which is determined by the balance
of cross-shelf mass flux along the equator, the coastal
Kelvin wave is generated to balance the alongshore mass
flux of the incident long Rossby wave in the midlatitude.

The paper is arranged as follows. A QG theory is
developed in section 2 to illustrate the major processes
that determine the interaction between planetary waves
and coastal Kelvin waves in a midlatitude basin. Sup-
porting numerical experiments are carried out in a shal-
low-water model in section 3. The theory is then ex-
tended to a combined extratropical–tropical basin in sec-
tion 4 to study the modulation of midlatitude planetary
waves on the equatorial thermocline. A summary and
a brief comparison with the interaction of equatorial
Rossby and Kelvin waves are given in section 5. Finally,
a direct application of our theory to the wave interaction
around an island is given in the appendix.

2. The theory

a. Model and solution

The modeling study of MM assures convincingly that
the initial adjustment of Rossby and coastal Kelvin
waves in a midlatitude ocean basin can be simulated in
a QG model. Indeed, a low-frequency Kelvin wave can
be approximated as an alongshore current because of
its rapid along boundary propagation. This so-called
coastal Kelvin wave current (CKC) is nearly geostrophic
and can therefore be represented in a QG model. Math-
ematically, the speed of the Kelvin wave co 5 (g9D)1/2

is independent of forcing frequency, where g9 is the
reduced gravity and D is the mean depth. Thus, along
a straight coast, the alongshore wavenumber diminishes,
k 5 v/co → 0, as the forcing frequency vanishes (v →
0). In other words, a low-frequency coastal Kelvin wave
has a long alongshore wavelength and therefore resem-
bles a coastal current. In a closed basin, this mathe-
matical argument, although not strictly true, is still help-
ful. The adjustment time for the completion of a CKC
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FIG. 1. Schematic figure of an extratropical basin: various solution
regimes for the adjustment process are plotted. The initial planetary
wave is plotted in solid lines against the western boundary. The
dashed lines separate the basin solution into western (hW), southern
(hS), eastern (hE), and northern (hN) regions.

around the basin is the traveling time of the Kelvin wave
around the basin. For the first two baroclinic modes, co

is no less than 1 m s21. Thus, the boundary adjustment
time ranges from days to months and is less than half
a year even for a basin of the size of the North Pacific
Ocean.

As a first step, a linearized 1.5-layer QG model will
be used to study the interaction between the Rossby
wave and coastal Kelvin wave in a midlatitude basin.
Mean advection and nonlinearity are not included at this
stage. The most serious impact of the mean boundary
current advection is likely to be on slow short Rossby
waves, although coastal Kelvin waves may also be af-
fected. Since short Rossby waves contribute little to the
mass redistribution—the key process that determines the
modulation of the coastal Kelvin wave, the absence of
mean boundary current advection may not affect our
conclusion on the coastal Kelvin wave significantly. The
equation can be written in terms of sea surface height
(SSH) h as

]t(¹2h 2 h/d2) 1 b]xh 5 2r¹2h, (1a)

where d 5 co/ f 0 is the deformation radius, co 5
(gDDr/r)1/2 is the gravity wave speed, and D is the mean
thickness of the upper moving layer. A linear momentum
damping is also used.1 The boundary condition is no
normal flow across the boundary

h|]V 5 K(t), (1b)

where K(t) will be determined by mass conservation—
a key point to be returned to later.

Following MM, the total SSH (h) can be decomposed
into two parts: the Rossby wave part (hR) and the Kelvin
wave part (hK):

h 5 hR 1 hK. (2)

The Rossby wave satisfies the QG equation

]t(¹2hR 2 hR/d2) 1 b]xh 5 2r¹2h (3a)

within the basin and has no pressure anomaly around
the basin boundary ]V:

hR|]V 5 0. (3b)

The Kelvin wave has an amplitude K(t) and a fixed
spatial structure h*(x, y):

hK 5 K(t)h*(x, y), (4)

where

¹2h* 2 h*/d2 5 0, h*|]V 5 1. (5)

Equation (5) implies that the Kelvin wave makes no

1 All major conclusions can be derived in a generalized QG equa-
tion and are independent of the form of dissipation. More specifically,
the solution along the eastern boundary in a generalized QG equation
has been derived in McCalpin (1995). The solution along the western
boundary in a generalized QG equation is derived in Liu et al. (1999),
which is also similar to Godfrey (1975).

contribution to local potential vorticity—a feature that
can be verified directly for a shallow-water Kelvin wave
along a straight coast on an f -plane. The implication is
that the interaction between the Kelvin and planetary
wave is not caused by potential vorticity flux.

The structure of the CKC can be derived using the
standard boundary layer method (Pedlosky 1987). In
the following, we will only consider a rectangular basin
of 0 # x # X and YS # y # YS 1 Y (see Fig. 1). The
boundary layer solution of the CKC is then derived from
(5) as

h* 5 e2x/d 1 1 1 , (6)2(X2x)/d 2(y2Y )/d 2(Y 1Y2y)/dS Se e e

where the first through fourth terms on the rhs represent
the CKC along the western, eastern, southern, and north-
ern boundaries, respectively. This is a coastal current
of width d, or the CKC. Here a small correction due to
corners (at the order of d/L K 1) is neglected as in the
Fofonoff basin mode (Fofonoff 1954). This neglection
seems to be justified based on the numerical simulation
of MM, which shows an insignificant effect of the corner
on the modulation of the boundary pressure. The small
effect of the corner has also been discussed in the case
of an inertial western boundary current by Liu (1990).

Now we derive a basin solution for the adjustment
in response to an initial planetary wave packet

h 5 hi(x 1 Ct, y), (7)

where C 5 bd2 is the speed of the planetary wave. The
planetary wave satisfies

]t(2hR/d2) 1 b]xh 5 0 (8)

in the interior ocean. In addition, the Kelvin wave van-
ishes in the interior ocean according to (6), leading to
h 5 hR. For the long wave in (8), we have assumed a
weak dissipation such that the dissipation timescale (1/r)
is much longer than that of the planetary wave (xp/bd2).
For an initial planetary wave packet of zonal scale xp

k d, this requires 1 K (1/r)/(xp/bd2) 5 d2/dxp, where
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d 5 r/b is the width of the Stommel boundary layer.
Therefore, the dissipation effect on long waves is neg-
ligible if d/d K d/xp K 1.

The planetary wave first reaches the western bound-
ary, where Eq. (1a) can be reduced to the western bound-
ary layer equation:

b]xh 5 2r]xxh (9)

on the western boundary layer.
Here we have assumed that reflected short Rossby

waves are damped within the boundary layer in a time-
scale (1/r) much shorter than that of the short Rossby
wave adjustment (Tbdry). The temporal variability term
in (1) can be shown negligible with d/d K 1. The re-
sulting boundary layer pressure field has a quasi-steady-
state response (9). The western boundary layer solution
has to satisfy the no-normal flow boundary condition
(1b). In addition, it has to match the incident wave in
the interior as

h → hi(x 1 Ct, y)|x50 5 hi(Ct, y)

as x/d → `. (10)

The western boundary layer solution can therefore be
derived as

h 5 hi(Ct, y)(1 2 e2x /d) 1 K(t)e2x /d; 0 , x/d , `,

where we have used Eqs. (2), (3b), (5), and (10). Thus,
the solution in the entire western part of the basin (see
Fig. 1) can be written as

hW 5 hWL 1 hWS 1 hWK, 0 , x , xp 2 Ct, (11a)

where

hWL 5 hi(x 1 Ct, y), hWS 5 2hi(Ct, y)e2x/d,

hWK 5 K(t)e2x/d. (11b)

Here hWL is the incident planetary wave, hWS is the
damped reflected short Rossby wave, and hWK is the sum
of the CKC along the western boundary K(t)e2x/d [see
(6)] and the damped short Rossby wave that is forced
by the western boundary Kelvin wave K(t)(e2x /d 2
e2x /d) [see Liu et al. (1999) for further discussions]. Note
that the spatial structure of the total response to the
Kelvin wave forcing along the western boundary (hWK)
is determined by the viscous boundary layer scale d,
which is independent of the structure of the Kelvin wave
having a deformation radius d. The hWK solution is sim-
ilar to the Kelvin–Munk wave of Godfrey (1975) where
he used a no-slip boundary condition.

Along the southern and northern boundaries (Fig. 1),
there are no reflected Rossby waves. Thus, the solutions
in the southern and northern boundaries consist only of
the CKCs [note (6)]:

2(y2Y )/dsh 5 K(t)e , 0 , (y 2 Y )/d , ` (12)S s

2(Y 1Y2y)/dsh 5 K(t)e , 2` , (y 2 Y 2 Y )/d , 0.N s

(13)

Here we assumed that the pressure anomaly of the in-
cident planetary wave vanishes in both the southern and
northern boundary layers. Otherwise, an additional dif-
fusive boundary layer need to be added (Pedlosky et al.
1997).

Along the eastern boundary there is no viscous
boundary layer; therefore, the solution consists of a
planetary wave that radiates away from the eastern
boundary. This wave should satisfy the planetary wave
equation (8) and, consequently, should have the form
of hE(x 1 Ct). The boundary condition (1b) requires
hE(X 1 Ct) [ K(t) along the eastern boundary. There-
fore, the solution in the eastern part is

hE 5 K[t 1 (x 2 X)/C], X 2 Ct , x , X. (14)

Notice that the two diffusive boundary layers on the
northern and southern boundaries have been neglected
in (14). The hE is dominated by an eastern boundary
planetary wave (EBP). It can be considered as the sum
of the forced planetary wave K[t 1 (x 2 X)/C] 2
K(t)e2(X2x)/d and the CKC along the eastern boundary
K(t)e2(X2x)/d in (6). Solution (14) can be shown to be the
low-frequency limit in a generalized QG equation
(McCalpin 1995; Liu et al. 1999). Thus, except for the
unknown amplitude K(t) of the CKC, Eqs. (11)–(14)
give the complete basin solution, valid until the EBP
reaches the western boundary, or t , X/C.

b. Mass conservation and Kelvin wave amplitude

The CKC amplitude is determined by total mass con-
servation ] tM [ ] t ##V h dx dy 5 0 (Godfrey 1975;
McWilliams 1977; Flierl 1977; Dorofeyev and Larichev
1992; MM). In the following, the incident planetary
wave is assumed to arrive at the western boundary at t
5 0 and is of the form (Fig. 1)

h (x, y) 5 h sin(px/x ) cos[p(y 2 Y )/y ],i 0 p c p

for 0 # x # x ,p

20.5y # y 2 Y # 0.5y (15a)p c p

h (x, y) 5 0 elsewhere, (15b)i

where the initial amplitude is h0, and the center latitude
of the initial pulse is Yc 5 YS 1 0.5Y. The initial mass
is therefore

m 5 h dx dy 5 (2x /p)(2y /p)h , (16)o EE i p p 0

V

where the factor 2/p arises from the integral of the half-
sine profile.

The mass in the western region is contributed by the
incident long wave (MWL), the reflected damped short
wave (MWS), and Kelvin wave (MWK) [per (11)]:
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Y 1Y x 2CtS p

M 5 dy h dx 5 M 1 M 1 M .w E E W WL WS WK

Y 0S

(17a)

Using the hWL, hWS, and hWK in (11b), one can show that

M 5 0.5m [1 1 cos(Ctp/x )]H(x 2 Ct) (17b)WL o p p

M 5 0.5m [2q sin(Ctp/x )]H(x 2 Ct) (17c)WS o p p

M 5 K(t)Yd, (17d)WK

respectively, where q 5 dp/xp and H is the Heaviside
function: H(z) 5 1 for z $ 0 and H(z) 5 0 for z , 0.
Clearly, the mass of the short Rossby wave MWS is neg-
ligible compared with the incident planetary wave MWL

as long as xp k d. Along the southern and northern
boundaries, the mass is due to CKCs (12) and (13) as

Y 1Y XS

M 5 dy h dx 5 K(t)XdS E E S

Y 0S

and
Y 1Y XS

M 5 dy h dx 5 K(t)Xd. (18)N E E N

Y 0S

Finally, the mass in the eastern region is dominated by
the EBP and can be derived from (14) as

Y 1Y X tS

M 5 dy h dx 5 CY K(t9) dt9. (20)E E E E E
Y X2Ct 0S

Therefore, the amplitude K(t) is determined by the total
mass conservation

MW 1 MS 1 ME 1 MN 5 m0. (21)

The mass source MW is redistributed by two processes:
MN and MS represent the fast mass redistribution process
due to CKC along the northern and southern coasts (MWK

is also a fast process), while ME represents a slow mass
redistribution process toward the interior ocean by the
EBP. The fast process redistributes mass over the entire
coastal region, which has a width d and, therefore, a
fixed area. The slow process, however, redistributes
mass over an area that slowly expands westward. It will
be seen that the evolution of the CKC amplitude K(t)
is determined predominantly by these two mass redis-
tribution processes.

The mass conservation (21) can be differentiated to
yield an ordinary differential equation

dK
1 bK(T ) 5 a[sin(pT ) 1 q cos(pT )]H(1 2 T )

dT
(22a)

with the initial condition of

K(0) 5 0. (22b)

Here we have used the normalized quantities

Ct YxpT 5 , b 5 ,
x p(2Xd 1 Yd)p

m0a 5 . (23)
2(2Xd 1 Yd)

The time

TEI 5 1 (24a)

is the time when the incident long wave trail just reaches
the western boundary (end time hereafter), and the time

TPI 5 0.5 (24b)

is the time when the peak of the incident wave reaches
the western boundary (peak time hereafter). The non-
dimensional parameter b (except for a factor p) is the
area ratio of the final EBP area Yxp and the CKCs area
along the southern, northern, and western boundaries
2Xd 1 Yd. This is an important parameter, because it
measures the relative importance of the slow (EBP) and
fast (CKC) processes. Finally, a is proportional to the
ratio of the initial perturbation area to the coastal wave
area. The amplitude K(t) can be derived from (22) as

a
2bpTK(T ) 5 {e 2 cos(pT ) 1 b sin(pT )

21 1 b
2bpT1 q[b(cos(pT ) 2 e ) 1 sin(pT )]}

for T # 1 (25a)
2bp2adX(1 1 e )

2bpT 2bpTK(T ) 5 K(1)e [ e
21 1 b (2Xd 1 Yd)

for T . 1. (25b)

The complete basin adjustment solution is therefore giv-
en by regional solutions in (11), (12), (13), (14), and
the amplitude (25).

c. Mass exchange and modulation of CKC

Figures 2a–d plot four snapshots during an adjustment
process in a basin of X 5 208 and Y 5 208, where 18
5 111 km. Other parameters are Dr/r 5 0.002, f o 5
7.3 3 1025 s21, b 5 2 3 10211 m21 s21, and D 5 500
m. These parameters give a Stommel boundary layer
width of d 5 19 km and a deformation radius of d 5
44 km. Zonal and meridional sections of the four snap-
shots are also plotted along the central latitude (Fig. 3a)
and longitude (Fig. 3b), respectively. A planetary wave
patch (of size xp 5 108, yp 5 108) is initiated near the
western boundary at T 5 0 (Fig. 2a and circle-connected
lines in Figs. 3a,b). At the peak time, TPI 5 ½ (Fig. 2b
and solid lines in Figs. 3a,b), half of the patch has moved
out of the western boundary, a sharp viscous boundary
layer is formed along the coast, a significant CKC is
established around the basin, and an EBP radiates into
the eastern ocean. At the end time TEI 5 1 (Fig. 2c and
dash–dot lines in Figs. 3a,b), the initial perturbation
planetary wave has just passed the western boundary
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FIG. 2. Four snapshots of the analytical solution in Eqs. (11)–(14). (a) Initial condition, (b) T
5 0.5, the peak time of the initial long wave, (c) T 5 1, the end time of the initial long wave,
and (d) T 5 1.5. The contour interval is 0.05 for the solid lines and 0.2 for the dotted lines.

FIG. 3. Sea surface height profiles of the snapshots in Fig. 2 along (a) the zonal section of
the middle basin latitude, y 5 308N, and (b) the meridional section of the middle basin longitude,
x 5 108.
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FIG. 4. (a) Evolution of the amplitudes for the Kelvin wave K(T ) with (solid line) and without (b 5 0, dashed line)
the EBP and the magnitude of the incident long wave at x 5 08, y 5 308N (dotted line). (b) The evolution of each
mass component of the solution with the EBP [solid line in (a)]. (c) The evolution of each mass component of the
solution without the EBP [dashed line in (a)]. The definitions for each mass component are [Eqs. (17)–(21)] MWL,
incident long wave; ME, eastern boundary planetary wave; MN, northern boundary Kelvin wave; MS, southern boundary
Kelvin wave; MWK, western boundary Kelvin wave and the resulting short Rossby wave; and MWS, damped western
boundary short Rossby wave. Both the amplitude and mass are normalized by the initial perturbation amplitude.

and only a weak short Rossby wave (forced by CKC)
exists. Around the coast, the CKC weakens, yet is still
visible. On the east, the EBP has left the coast. Finally,
at T 5 1.5 (Fig. 2d and dashed lines in Figs. 3a,b), the
CKC has virtually disappeared along all boundaries and
the EBP has propagated to the middle basin. All of the
major features of our theoretical solution closely resem-
ble the QG model experiment of MM. One difference
is that the initial wave packet in the QG model also
generates dispersive waves that trail the leading wave
packet. In addition, in the shallow-water model, the
planetary wave front propagates faster at lower latitudes
due to decreases in the Coriolis parameter.

The evolution of the CKC amplitude K(T) is plotted
in Fig. 4a (solid line). For comparison, the SSH variation
of the incident planetary wave at the western boundary
[hWL(08, 308)] is also plotted (dotted line). It is seen that
the K(T) maximum is about 0.3 times the initial anomaly
and is achieved at about T 5 0.58, slightly after TPI 5
0.5.

The mass exchange among various wave components
is shown in Fig. 4b. The mass of the incident long wave
(solid line) decreases monotonically, losing all the mass
at the end time TEI 5 1. The mass loss is little affected
by the damped short Rossby wave (dotted line). Instead,
most mass is initially lost to the CKC along the southern,
northern, and western boundaries (dash–dot). Later,
most mass leaks into the EBP (dashed line), which even-
tually completely absorbs the initial mass. Therefore, in

this case, K(T) is determined predominantly by the slow
transfer from the incident planetary wave to the ex-
panding EBP, as shown in Fig. 4b.

d. Slow and fast mass redistribution

The mass balance for slow redistribution occurs be-
tween the incident planetary wave and the EBP:

MWL 1 ME 5 m0, slow mass redistribution. (26)

This mass balance, together with (17) and (20), leads
to the amplitude

dM aWLK(T ) 5 5 sin(pT )H(1 2 T ),
dT b

X
for 0 , T , . (27)

xp

The maximum amplitude is therefore

a m 2 y0 pK 5 5 5 h # h , (28a)M o ob 2x Y /p p Yp

or

m0 5 1. (28b)
2K x Y /pM p

Equation (28b) states that the maximum amplitude is
such that the total initial mass is completely converted
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FIG. 5. The time for maximum Kelvin wave amplitude (TM) as a
function of the area ratio parameter b [defined in (23)]. Friction is
neglected in this case (q 5 0).

to that of the EBP that has an amplitude KM and an area
xpY. In x direction, both the initial and final planetary
waves have the same width xp and the same shape (a
half sine patch). Therefore, Km is determined only by
the ratio of the widths of the two waves in y direction
as shown in (28a). The 2/p factor arises from the half
sine shape in y for the initial wave, which differs from
the eastern boundary wave that always has a uniform
sea level in y as shown in (14).

The amplitude in (27) first increases to its maximum
at the peak time TM 5 TPI 5 0.5, then decreases to zero
at the end time TEI 5 1 and remains unchanged there-
after. This behavior is similar to the example in Fig. 4a
(solid line), which has KM ø 0.31, slightly smaller than
the 1/p ø 0.32 estimated from (28), and which has TM

ø 0.58, slightly later than the peak time TPI 5 0.5.
The fast mass redistribution may also be important

in determining the amplitude evolution K(t), as will be
seen later in section 4 for the case of a combined ex-
tratropical–tropical ocean basin. The evolution of K(t)
that is driven by the fast process differs significantly
from that by the slow process. Indeed, if the mass is
completely redistributed by the fast process along the
northern and southern boundaries (neglecting friction so
q 5 0),

MW 1 MS 1 MN 5 m0, fast mass redistribution.
(29)

The amplitude can be derived as

K(T ) 5 a[1 2 cos(pT )] for T # 1 (30a)

K(T ) 5 2a for 1 , T # X /x . (30b)p

Now, K(T) continues to increase until the end time and
remains unchanged thereafter, so TM 5 1. The dashed
line (b 5 0 curve) in Fig. 4a illustrates this response.
This evolution is in sharp contrast to the slow process
discussed above, where TM 5 0.5. The different peaking
time for fast and slow mass redistribution can be un-
derstood as follows. In the absence of an EBP, the CKC
can only redistribute mass to a fixed coastal area (of
width d on the southern, and northern, and d on the
western boundaries).2 Therefore, as the incident wave
injects more mass into the Kelvin wave, the amplitude
of the CKC increases. The maximum amplitude is there-
fore achieved at the end time, when all the incident mass
is accumulated to the CKC. As shown in Fig. 4c, the
decreasing mass of the incident planetary wave (solid
line) is balanced completely by the increasing mass in
the CKC (dash–dot line). In contrast, when the slow
process becomes important (Fig. 4b), as time progresses,
the continued addition of mass to the CKC is offset by
an increasing area due to the slow westward expansion

2 The effect of the Kelvin wave on the eastern boundary is always
much smaller than the EBP and therefore will not be discussed sep-
arately.

of the EBP. This offset precludes an increase of ampli-
tude. In the extreme case, when all the mass is redis-
tributed by the slow process, as in (26), K(T) reaches
its maximum at TPI 5 0.5 when the rate of incident
mass reduction is the greatest [see (27)].

The relative importance of the slow EBP versus the
fast CKC processes is measured by the area ratio pa-
rameter b in (23). A large (small) b favors the slow
(fast) process. The solutions for the complete slow and
fast redistributions [(27) and (30), respectively] are the
asymptotic solutions of the full solution (25) in the lim-
its of b → ` and b → 0, respectively (neglecting
friction). Figure 5 plots the time of maximum amplitude
TM as a function of b. In general, TM is later than TPI

5 0.5, but earlier than TEI 5 1 due to the competition
between the fast and slow processes. If the slow process
dominates (large b), TM is closer to ½, and vice versa.
Even for a modestly large b (b 5 2), TM is already fairly
close to ½. The example of Fig. 4b has b ø 5.7; there-
fore, its evolution (solid line in Fig. 4a) resembles the
slow process. In an extratropical basin, b k 1 is usually
true because the EBP has an area comparable to the
basin area, while the CKC has an area of subbasin scale
due to the narrow offshore width d. However, if the
equatorial region is included, the dominant role of EBP
will no longer be true, as will be discussed in section 4.

e. Energetics

The slow EBP process and the fast CKC process are
the two major mass sinks and, therefore, determine the
modulation of the CKC. However, neither of them is
the dominant energy sink of the initial long wave dis-
turbance. Instead, most of the initial energy is converted
in the western boundary to the kinetic energy of the
short Rossby wave (Pedlosky 1965), which, because of
its dispersive nature and the small area occupied, plays
little role in the mass balance. The consistency of the
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FIG. 6. Energy evolution for different basin regions (Fig. 1): the
western region (EW, circle marked), the eastern region (EE, plus
marked), and the northern and southern regions (EN 1 ES, star
marked). The total energy is also plotted (ETotal, solid). Kinetic energy
for each region is indicated by symbols without line connection.

mass and energy balances can be understood as follows.
First, we notice that the energy of the QG model, after
neglecting a constant factor, is

E 5 (]xh)2 1 (]yh)2 1 (h/d)2,

where the first two terms are the kinetic energy and the
last term is the available potential energy (APE). The
initial mass and energy (mainly APE) of the incident
planetary wave are at the order of

M0 ; A0h0, E0 ; A0(h0/d)2, (31)

where A0 5 xpyp is the initial area and h0 is the initial
amplitude. Eventually, the EBP has the mass and energy
(again mainly APE) of

ME ; AEK, EE ; AE(K/d)2, (32)

where AE 5 xPY is the area of the EBP. Mass conser-
vation of the initial and final flow field requires M0 ;
ME, or, with (31) and (32), K ; (A0/AE)h0. Therefore,
the final energy of the EBP is EE ; AE[(A0/AE)h0/d]2

; (A0/AE)E0. Since the area of the initial wave cannot
be larger than the basin, A0/AE 5 yp/Y # 1, we have
EE # E0. Thus, as long as the initial pulse occupies an
area smaller than the basin scale, the energy of the EBP
is always smaller than the initial energy and, therefore,
cannot be the dominant energy sink. Physically, al-
though the initial mass is transmitted to the EBP, the
larger area of the EBP reduces the response amplitude
and, in turn, the center of gravity. Consequently, part
of the APE is lost. This energy loss can be seen clearly
in Fig. 6, the energy evolution diagram for the example
in Fig. 2. The energy associated with the incident plan-
etary wave (EW) decreases monotonically, vanishing at
about the end time 1. The energy of the EBP (EE) in-
creases monotonically, but reaches a final energy level
that is much smaller than the initial distrubance energy
level. The CKC energy (EK) is even less then the EBP
in the later stage of the evolution. The remaining energy
is lost mainly to the short Rossby wave along the west-
ern boundary. Since the short Rossby wave is associated
principally with the kinetic energy of the western bound-
ary current, its energy should dominate the kinetic en-
ergy of the western region (EW). However, in our viscous
case (1), the damped short Rossby wave (17c) has the
area integrated energy within the viscous boundary layer
(mainly kinetic energy from the alongshore current) of
EW ; (h0/d)2ypd ; (d/xp)(d/d)E0. For an incident plan-
etary wave that is much wider than the deformation
radius (d K xp), the damped short wave energy is much
smaller than the initial energy EW K E0. This difference
can be seen in the kinetic energy (circles) for the western
region, diagrammed in Fig. 6. In the presence of dis-
sipation, the total energy (ETotal) is reduced as shown in
Fig. 6.

In an inviscid case, however, the lost energy of the
incident long wave can be absorbed by the reflected
short Rossby waves. To estimate the area integrated ki-
netic energy of the short Rossby wave, we notice that

the area occupied by the short Rossby wave has the
meridional extent yp and the zonal extent of CgTb, where
Cg ; b/k2 is the group velocity of the short Rossby
wave, Tb ; xp/C is the time for the incident planetary
wave to pass through the western boundary, and k ;
1/d is the dominant short zonal wavenumber. The energy
of the short Rossby wave is then on the order of EWS

; (h0k)2CgTbyp · ; (h0/d)2xpyp · ; E0. Thus, the initial
energy can be converted completely to the kinetic en-
ergy of the short Rossby wave. This discussion also
helps to understand the QG model in which, if one only
considers Rossby waves, the energy is conserved, but
not the mass.

In short, our study above suggests that the incident
planetary wave first loses its mass to CKC. Along the
eastern boundary, the Kelvin wave sheds mass into a
planetary wave, generating an EBP. Available energy is
reduced compared to the initial energy because of the
EBP’s smaller amplitude, which is caused by the spread-
ing of the EBP. Instead, most of the incident energy is
lost to the short Rossby wave along the western bound-



SEPTEMBER 1999 2391L I U E T A L .

ary. In spite of its importance in energy balance, the
short Rossby wave contributes little to mass redistri-
bution and, therefore, has little impact on the modulation
of the CKC. The EBP balances most of the mass and
determines the modulation of the CKC.

3. Shallow-water model experiments

Here, we present numerical experiments to further
substantiate our theory. The model is a 1.5-1ayer shal-
low-water model on a beta plane (Wallcraft 1991). The
horizontal resolution is 1⁄88. The control run has the mod-
el configuration and parameters the same as those of the
analytical solution in Fig. 2. The coefficient of Laplacian
diffusion is 140 m2 s21, which gives a Munk boundary
layer width 19 km, the same as the Stommel boundary
layer width in the case of Fig. 2. The initial SSH is also
chosen to be the same form as (15), and the initial cur-
rents are in geostrophic balance. The initial amplitude
is small so that the solution is essentially linear.

Figure 7 shows four snapshots of SSH, and Fig. 8
shows the SSH profiles along the zonal and meridional
midbasin sections (all SSH are normalized by the am-
plitude of the initial perturbation wave). Overall, the
shallow-water solutions in Figs. 7 and 8 resemble close-
ly the corresponding QG theoretical solutions in Figs.
2 and 3, respectively. There are also two differences.
First, the initial shallow water wave has a weak dis-
persion during its westward propagation—a feature that
also exists in the QG model simulation of MM. Second,
the planetary wave propagates faster at lower latitudes.
This feature can be simulated in a generalized QG model
if the wave speed is allowed to vary with latitude
(McCalpin 1995) and therefore can be readily included
in our theory.

The evolution of the CKC in Fig. 9a closely resembles
that in the theoretical QG solution in Fig. 4a. For ref-
erence, the time series of midlatitude SSH outside the
western boundary layer at (0.68, 308N) is used to cal-
culate the proxy for the SSH amplitude evolution of the
incident planetary wave on the western boundary (dot
in Fig. 9a) corresponding to hWL(08, 308N) in the QG
theory (dotted line in Fig. 4a). The theoretical peak and
end times of the incident wave can be calculated as
0.5xp/C 5 180 days and xp/C 5 360 days, respectively.
These correspond roughly to the peak and end times of
the western boundary SSH [hWL(08, 308N) in Fig. 9a].
The evolution of the CKC can be seen in the coastal
SSHs on the southern (solid), eastern (star), northern
(plus), and western (circle) boundaries (Fig. 9a). The
coastal SSHs evolve with virtually the same amplitude
and phase, although the amplitude is slightly larger on
the western coast. This supports the speculation that a
low-frequency coastal Kelvin wave has a uniform SSH
along the coast, as assumed in (1b). The coastal SSHs
in Fig. 9a, therefore, correspond to K(t)—the amplitude
of CKC in the theory (solid line in Fig. 4a). The max-
imum amplitude is KM ø 0.26 for the shallow-water

case (Fig. 9a), slightly less than the theoretical value
KM ø 0.3 (Fig. 4a). The maximum occurs at about TM

5 190 days in the shallow water case (Fig. 9a), cor-
responding to a nondimensional TM 5 0.54, close to the
theoretical value TM 5 0.57 (Fig. 4a).

The mass exchange process and energetics are also
similar between the shallow-water model (Figs. 9b,c)
and the QG theory (Figs. 4b and 6). Figure 9b plots the
mass evolution of the western region [MW as in (11a)]
that is dominated by the incident long wave, the EBP
(ME), and the CKC along the southern and northern
boundaries (MN 1 MS). As in the theory (Fig. 4b), the
mass of the incident wave decreases monotonically until
the end time about day 300. Initially, the mass loss to
the CKC and EBP is comparable, but the mass loss to
the EBP dominates in the later stage. A comparison of
the theoretical solution, Fig. 4b, with the shallow-water
solution, Fig. 9b, reveals a somewhat stronger CKC in
the shallow-water case, especially in the later stage after
day 400. This difference is due to a more realistic EBP
in the shallow-water model. First, the EBP front is ac-
companied by a meridional current that intersects the
southern and northern boundaries, forcing CKCs there.
Second, in the later stage, the faster EBP front in the
southern basin reaches the western boundary (Fig. 7d),
generating an additional CKC.

The energy evolution of the shallow-water solution
is plotted in Fig. 9c for the same three components as
the mass. For each component, both the total energy
(solid line with marks) and the kinetic energy (uncon-
nected marks) are plotted. It is seen that the initial en-
ergy in the western region (EW) is lost rapidly, initially
to the CKC (EN 1 ES) and then to the EBP (EE). There
is a small amount of kinetic energy in the western re-
gion, mostly due to the damped short Rossby wave: the
CKC kinetic energy is about half the total energy, while
the EBP kinetic energy is negligible, as they should be.
All of the features agree with the theory (Fig. 6) re-
markably well.

Finally, sensitivity experiments are performed for
various sizes and locations of the initial anomaly. Figure
10 presents the normalized maximum amplitude (KM)
(Figs. 10a,c) and time of maximum (TM) (Figs. 10b,d)
CKC amplitude for four sets of sensitivity experiments.
The first set has seven experiments (pluses in Figs.
10a,b) in which the initial patches are all centered in
the middle of the basin (x 5 108, y 5 308N) but have
different zonal widths; the second set also has seven
experiments (pluses in Figs. 10c,d), which are the same
as the first set, except that meridional sizes are varied;
the third set has four experiments (stars in Figs. 10a,b),
which are the same as the first set, but the initial patch
has its western edge on the western boundary; the fourth
set has four experiments (stars in Figs. 10c,d), which
are the same as the third set except with different me-
ridional widths. The experiments with varying zonal
size (Figs. 10a,b) all have yp 5 68, while the experiments
with varying meridional size (Figs. 10c,d) all have
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FIG. 7. Four snapshots of sea surface height of the shallow-water experiment (normalized by
the initial perturbation amplitude) at (a) initial time, (b) t 5 0.5TEI, (c) t 5 TEI, and (d) t 5 1.5TEI,
where TEI is the end time of the initial planetary wave (360 days). Contour interval is 0.05.
Contours larger than 0.4 are not plotted.

xp 5 68. The corresponding theoretical QG solutions are
also plotted in Fig. 10 (circles). It is seen that the model
and theory have a good overall agreement, with the error
usually within about 20%. The agreement is particularly
good for the two sets of experiments with the initial
patch against the western boundary (stars) because of
the small wave dispersion during the initial wave prop-
agation toward the western boundary. The major fea-
tures of the theoretical solution are clearly captured. For
example, the amplitude does not change much with the
zonal size (Fig. 10a), but increases linearly with the
meridional size (Fig. 10c). This result is easy to un-
derstand, because, for the extratropical basin case, the
dominant mass redistribution is the slow process due to
the EBP. Therefore, the amplitude is determined, to first
order, by the ratio of the meridional size yp/Y, but in-
dependent of xp, as shown in (28a). Overall, the theory
tends to agree better with experiments of larger xp. This
is expected because of the role of the long wave ap-
proximation in the theory.

In short, our theory and model experiments suggest
that in an extratropical basin the CKC is modulated

mainly by the slow mass spreading of the EBP. As a
result, the amplitude of CKC is weaker than the initial
pulse, and the maximum is achieved slightly after the
peak time of the incident wave. Most of the initial en-
ergy is lost to short Rossby waves, which are then dis-
sipated on the western boundary. Finally, it is important
to point out that our theory, although derived in an
extratropical basin, can be applied directly to the ad-
justment process around an island. This will be dis-
cussed in the appendix. Furthermore, it can be shown
that the formation of an island circulation (Godfrey
1989) can be clearly understood in terms of the inter-
action of coastal Kelvin waves and Rossby waves (Liu
et al. 1999).

4. Application to extratropical–tropical interaction

The QG theory discussed above, after some modifi-
cations, can also be applied to a basin of combined
extratropics–tropics with the inclusion of the equator.
For the application to decadal climate variability (Lysne
et al. 1997), it is important to keep in mind that we are
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FIG. 8. Normalized sea surface height profiles for the shallow-water solution snapshots
in Fig.7, along (a) the middle basin latitude y 5 308N, and (b) the middle basin longitude
x 5 108.

FIG. 9. (a) Evolution of coastal sea surface heights on the eastern (hEB, star), southern (hSB, solid), northern (hNB, plus), and western (hWB,
circle) boundaries (in the middle of each boundary). These sea surface heights can be taken as the proxies for the Kelvin wave amplitude
K(t) in the theoretical QG solution. The proxy time series of the incident long wave at the west coast [hWL (x 5 08, y 5 308N), dot] is
calculated using the sea surface height outside the western boundary layer (x 5 0.68, y 5 308N) by adding a time offset of 0.68/C. (b) The
mass evolution in the western region MW, eastern region ME, and the combined northern and southern boundary region MN 1 MS (see Fig.
1). The boundary of the western and eastern regions change with time as in Fig. 1 to track the planetary wave packets. For comparison with
the theoretical results in Fig. 4, the nondimensional time T 5 1 there corresponds to the dimensional time of about 360 days.
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FIG. 10. Shallow-water sensitivity experiments on the size (xP and yP) and location of the initial
planetary wave packet. The normalized maximum amplitude KM (a), (c) and time of maximum
amplitude TM (b), (d) are plotted against the different zonal (a), (b) and meridional (c), (d)
dimensions. (a) and (b) Two sets of experiments with different zonal widths (xP): one set of seven
experiments (pluses) have the initial perturbation patch centered in the middle of the basin, while
the other set of four experiments (stars) have the west edge of the initial pulse on the western
boundary. All 11 cases have the same yP 5 68. The maximum amplitude in (a) is normalized by
the maximum derived from the time series of SSH outside the western boundary layer h(0.88,
308N), while the time for maximum in (b) are normalized by the theoretical end time TEI 5 xP/
C. The QG theoretical solutions are also plotted (circles). (c) and (d) Same as (a) and (b), except
that the experiments have different meridional dimensions while using the same zonal width xP

5 68.

studying the slow decadal modulation of the equatorial
thermocline, rather than the fast (intraannual) equatorial
waves. First of all, we should realize that, in a combined
extratropical–tropical basin, the fast mass redistribution
involves not only coastal Kelvin waves but also equa-
torial Kelvin and Rossby waves, all of which propagate
with a speed comparable to that of the coastal Kelvin
wave c0. The slow process, however, is still due to the
extratropical EBP, now at decadal timescale. Along the
western boundary, an equatorward coastal Kelvin wave
will first be converted to an eastward equatorial Kelvin
wave, which is then reflected on the eastern boundary
by shedding most its mass and energy into a westward
equatorial Rossby wave (Cane and Sarachik 1977,
1979). The Rossby wave then reflects as an equatorial
Kelvin wave and so forth. These reflections of equatorial
waves rapidly build up an equatorial quasi-basin mode
(Cane and Moore 1981). A small amount of mass leaks
out poleward along the eastern boundary in each hemi-
sphere as a coastal Kelvin wave. The Kelvin wave then
generates the EBP in the extratropics (Miles 1972; En-
field and Allen 1980; White and Saur 1981; Jacobs et

al. 1994; McCalpin 1995). These fast processes in an
combined extratropical–tropical basin will be referred
to as the ‘‘Equatorial–Coastal Kelvin Wave Current’’
(ECKC), although one should keep in mind that equa-
torial Rossby waves are also included.

The conceptual model that we obtained in a midlat-
itude basin can be generalized to a combined extra-
tropical–tropical basin. The major modification is to re-
place the coastal Kelvin waveguide (equator side) width
of d for the equatorial region of fast mass redistribution
due to equatorial waves. Realizing that the so-called fast
or slow process is relative to the adjustment of the initial
long wave, the latitude width yE of the fast equatorial
region (Fig. 11) can be estimated as follows. First, the
equatorial region has to adjust faster than the incident
extratropical planetary wave. Second, the slowest pro-
cess in the equatorial region is the eastern boundary
planetary wave radiating at yE. Therefore, for this wave
to be a part of the fast redistribution process, this wave
must cross the basin width X at the speed bg9D/ f 2(yE)
by the time the initial midlatitude planetary wave (cen-
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FIG. 11. The schematic figure of different solution regimes in a
combined extratropical–tropical ocean basin. Compared with an ex-
tratropical basin, the equatorial region replaces the equator-side coast-
al Kelvin wave region.

tered at latitude Yc) passes the western boundary after
traveling xp at the speed of bg9D/ f 2(Yc); that is,

X xp5 .
22 22f (y ) f (Y )E c

The latitude width of the fast equatorial region is there-
fore determined by

f (yE) 5 f (Yc)(xp/X)1/2. (33)

For a large-scale initial pulse in the midlatitude, this
width is usually much larger than the deformation radius
in the extratropics (d) or in the equator (dEQ 5 [(g9D)1/2/
b]1/2).3 This implies that, if an extratropical basin is
extended to include the equator, the amplitude of the
ECKC will be reduced due to the spreading of the initial
mass into a larger area. Furthermore, the time of max-
imum ECKC should be delayed closer to the end time
TEI. This is because the increased area is contributed
predominantly by the equatorial region, which has a fast
mass redistribution. Therefore, the area that the fast pro-
cess occupies is significantly increased relative to the
slow process. The mass balance should resemble more
the fast process (29) than the slow process (26) of an
extratropical basin. These speculations are confirmed by
the shallow-water experiments below.

The major features of the adjustment process in a
combined extratropical–tropical basin are demonstrated
in the shallow-water experiment illustrated by Figs. 12
and 13, which should be compared with the correspond-
ing figures for the extratropical basin case, Figs. 7 and
9, respectively. The initial anomaly (Fig. 12a) is the
same as in Fig. 7a. The snapshots at 180, 360, and 540
days are plotted in Figs. 12b, 12c, and 12d, respectively.
In spite of strong inertial–gravity waves, the large-scale
pattern in each hemisphere is characterized by a narrow

3 The equatorial deformation radius dEQ is the latitude where the
speeds of the equatorial Kelvin wave and extratropical Rossby wave
equal each other: (g9D )1/2 5 bg9D/ f 2(dEQ).

western boundary region due to the short Rossby wave,
a widespread equatorial region due to equatorial waves,
a widespread region of EBP, and a poleward boundary
region of coastal Kelvin waves.

The evolution of the monthly mean SSH associated
with the ECKC is plotted on the equator (hEQ), the east-
ern (hEB), and northern (hNB) boundaries (Fig. 13). The
three SSH time series show virtually the same amplitude
and phase, as in the case of the extratropical basin, in
Fig. 9a. However, different from Fig. 9a, the coastal
SSH along the western boundary (not shown) is much
larger than the others. One possible explanation is that
the mass flux of the western boundary coastal Kelvin
wave, which is trapped in a western boundary layer in
the extratropics (tens of kilometers), is spread onto the
equatorial Kelvin wave, which has a much wider equa-
torial deformation radius (dEQ ø 300 km). Fortunately,
as in an extratropical basin, the western-boundary
Kelvin wave contributes little to the total mass redis-
tribution and therefore has little impact on the modu-
lation of the ECKC.

The amplitude of the ECKC (multiplied by 10 in Fig.
13a) is about an order smaller than in the extratropical
basin in Fig. 9a. This is due to the mass spreading over
a much larger area, which now includes a large equa-
torial region and the Southern Hemisphere. As for Fig.
9, the end time for the initial pulse is about 360 days,
both from the theory and the proxy time series of the
incident wave (Fig. 13a, dot). However, the time of
maximum ECKC is achieved at about day 270, in Fig.
13a, almost 100 days later than in Fig. 9a. This is con-
sistent with the analysis above. The fast ECKC, which
is dominated by the fast equatorial region, has a much
larger area than the CKC in the extratropical basin.
Therefore, the mass balance is more like the fast balance
(29) than the slow balance in (26). Indeed, the mass
evolution diagram in Fig. 13b clearly shows that much
of the western-boundary incident mass (MW) is rapidly
injected into the ECKC (MN 1 MS 1 MEQ) due to the
fast redistribution. The EBP (ME) never becomes com-
parable to the ECKC except at the very latest stage.
This is in sharp contrast to the extratropical basin case
(Fig. 9b), where the EBP is the dominant mass sink.
The relatively greater importance of the ECKC can also
be seen in the energy evolution diagram in Fig. 13c. In
contrast to the extratropical basin case (Fig. 9c), the
energy in the ECKC (EN 1 ES 1 EEQ) is much stronger
than the EBP (EE) until after the end time.

Most of the ECKC energy is now APE (Fig. 13c).
This is different from Fig. 9c. The reason is that the
fast process in the equatorial region is dominated by
low-latitude Rossby waves, rather than the equatorial
Kelvin wave. Indeed, (33) gives the width of the fast
equatorial region as yE 5 f (308) 3 (108/208)1/2 ø 208.
This is much wider than the equatorial deformation ra-
dius, dEQ ø 38, which is also the width of the equatorial
Kelvin wave. To further examine the relative contri-
bution of each subregion within the equatorial region,
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FIG. 12. As in Fig. 7 but in a combined extratropical–tropical basin. Now, the contour interval is 0.005 (label scaled by 1000), and
contours above 0.1 are not plotted.

the equatorial region is subdivided into four bands: |y|
# 58, 58 , |y| # 108, 108 , |y| # 158, and 158 , |y|
# 208. The evolution of mass and energy in each band
is plotted in Figs. 14a and 14b, respectively. It is seen
that each band contributes about the same amount of
mass and energy. The mass and energy of the two bands
within 108 of latitude peak earlier at about day 220,
while the other two bands peak later at day 300 and day
360. All these peaks occur before the end time TEI (;360
days) and therefore represent the fast process.

For a quantitative comparison between our QG theory
and the shallow-water experiments, two modifications
are needed for our QG solution (11)–(14). First, the
coastal Kelvin wave solution on the equatorial boundary
(12) should be replaced with the width of yE in (33),
representing the fast equatorial region. Second, the areas

of both the EBP and ECKC should be doubled to take
into account the Southern Hemisphere. The amplitude
of the ECKC can be derived from the same equation as
the CKC in (25), except that the coefficients a and b in
(23) need to be replaced by

b 5 2Yx /{p[2X(d 1 y ) 1 Yd]},p E

a 5 m /{2[2X(d 1 y ) 1 Yd]}. (34)0 E

For the shallow-water example in Figs. 12–14, the mod-
ified QG theoretical solution produces ECKC amplitude
in Fig. 15a (solid line). The maximum amplitude is KM

5 0.039, which is achieved at the time TM 5 0.9. This
is in good agreement with the shallow-water solution
(Fig. 13a), which has the normalized KM ø 0.036 and
TM ø 0.80. The theoretical mass redistribution (Fig.
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FIG. 13. Similar to Fig.9 but for the combined extratropical–tropical basin case in Fig. 12. (a) Evolution of boundary
sea surface heights multipled by a factor 10: along the equator (hEQ, solid), northern boundary (hNB, dash), and eastern
boundary (hEB, dash–dot). The western coastal sea surface height is not plotted. The dot is the proxy for the incident
long wave amplitude calculated from the sea surface height outside the western boundary at (08, 308N) (similar to
Fig.9). (b) Mass evolution and (c) energy evolution. The fast process region now consists of the northern boundary,
southern boundary, and the equatorial region. The equatorial region has the latitude span yE 5 208, as calculated from
Eq. (33).

FIG. 14. The mass (a) and energy (b) evolution in each subequatorial region (58 latitude in both
hemispheres) for the case of Fig. 12. The mass (energy) from both hemispheres, within the specified
bond, is combined in the plotted totals.
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FIG. 15. Evolution of the QG theoretical solution: same as in Fig. 4 but uses the modified theoretical QG solution
[Eqs. (25) and (34)] to simulate the case in a combined extratropical–tropical basin (Fig. 12). The b 5 0 case is without
the EBP.

15b) also resembles the shallow-water solution (Fig.
13b) remarkably well. To examine the role of the fast
mass balance (29) in determining the modulation of
ECKC, the area ratio parameter can be calculated from
(34) as b ø 0.3. Therefore, the fast process is dominant
in modulating the ECKC. This can be seen in Fig. 15a
from the strong resemblance between the K(T) with (sol-
id) and without (dashed) the EBP. The mass exchange
diagram (Fig. 15b) also resembles that without EBP in
Fig. 15c except in the later stage. This resemblance
becomes much clearer if one recalls the larger differ-
ences between Figs. 4b and 4c for the extratropical ba-
sin.

If the initial pulse is located closer to the equator
[smaller Yc in (33)], the width of the fast equatorial
region shrinks [smaller yE according to (33)], while the
latitudinal width of the EBP increases (larger Y). There-
fore, the area increases for the EBP, but decreases for
the ECKC. The maximum amplitude of ECKC should,
therefore, decrease and the time of that maximum should
occur earlier. This is confirmed by three shallow-water
sensitivity experiments in Fig. 16a, which plots the SSH
averaged along the equator and outside the western
boundary layer. One experiment is the same as in Figs.
12 and 13, with Yc 5 308N. The other two experiments
have Yc 5 258N and 208N. Equation (33) gives the
widths of the fast equatorial region as yE ø 208, 17.58,
and 148, respectively. Figure 16a shows that the max-
imum amplitude KM increases from about 0.036 to 0.042
and 0.048. The time for maximum (TM) tends to de-
crease only slightly from about 0.8TEI. In comparison,
the theoretical solution in Fig. 17a shows that KM in-

creases from 0.039 to 0.043 and 0.048, while TM de-
creases slightly from 0.9TEI to 0.88TEI and 0.86TEI. The
agreement is good, especially on the amplitude. Finally,
the mass evolution also agrees well between the model
and theory (Figs. 16b and 17b). As Yc moves toward
the equator, the mass controlled by the fast process de-
creases, while the mass in the slow process increases.
Correspondingly, the time of the maximum ECKC also
becomes earlier. All these features can be understood
from a stronger influence of the fast process of ECKC
in the case with a Yc closer to the equator. Thus, the
modified QG theory is able to capture the major features
of ECKC modulation. In contrast to an extratropical
basin, the most important mass redistribution mecha-
nism in a combined extratropical–tropical basin, be-
comes the fast equatorial waves. Consequently, the time
of maximum ECKC is delayed substantially, approach-
ing the end time of the incident wave. The maximum
amplitude is usually small.

5. Summary and discussions

The adjustment of a midlatitude ocean basin to a plan-
etary wave packet incident onto the western boundary
is studied both analytically and numerically. The focus
is on the low-frequency modulation of the resulting
coastal Kelvin wave. This coastal Kelvin wave, at low
frequencies, can be approximated as a coastal Kelvin
wave current (CKC) along the boundaries of the basin.
It is shown that the CKC is modulated mainly by two
mass redistribution processes: a fast process due to the
CKC, and a slow process due to the eastern boundary
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FIG. 16. Three shallow-water sensitivity experiments in the combined extratropical–tropical
basin with different center latitudes Yc 5 308N (solid), 258N (dash), and 208N (dash–dot) for the
initial planetary wave patch. (a) The evolution of the zonal mean equatorial sea surface height
(hEQ, multipled by 10) and the proxy of incident long wave sea surface height calculated from
the sea surface height outside the western boundary layer at (0.68, 308N). Time is normalized
by the end time of each corresponding initial patch. (b) The evolution of mass of the western
(MW), eastern (ME), and the combined equtorial, northern and southern boundary regions (MN 1
MS 1 MEQ).

planetary wave (EBP). Because the mass is eventually
redistributed to a much larger area of basin scale, the
amplitude of the CKC is usually much smaller than that
of the initial disturbance. In a midlatitude basin, the EBP
dominates mass redistribution, which results in a Kelvin
wave peak time close to that of the incident wave. The
short Rossby wave, although contributing little to mass
redistribution, absorbs most energy at the western
boundary.

The QG theory is further extended to a combined
extratropical–tropical basin. Now, the fast equatorial
waves, both Kelvin and Rossby waves, form the equa-
torial coastal Kelvin wave current (ECKC) and domi-
nate mass redistribution. As a result, the coastal Kelvin
wave peaks near the end time of the incident wave.

a. Rossby–Kelvin wave interaction in the midlatitude
and equatorial regions

It is interesting to compare our results of Rossby–
Kelvin wave interaction in the midlatitude with that in
the equatorial region (Cane and Sarachik 1977, 1979).
In both cases, mass redistribution is the major constraint
for the interaction. However, significant differences ex-
ist. First, the reflection of equatorial Kelvin and Rossby

waves is constrained by the balance of cross-shore mass
flux at the coast. In the midlatitudes, however, the coast-
al Kelvin wave is generated to balance the alongshore
mass flux of the incident long wave, while the cross-
shore mass flux is completely balanced by the reflected
short Rossby wave. Second, the equatorial Kelvin wave
and low mode Rossby waves have comparable wave
speeds, while the midlatitude Rossby wave is far much
slower than the coastal Kelvin wave. This has several
consequences. First, the equatorial interaction is a local
process. In the midlatitudes, however, the interaction
depends critically on the remote area that is affected by
the coastal Kelvin wave during the slow modulation
time. Given an incident long wave, the coastal Kelvin
wave evolves differently for various basins, as seen in
the cases of the midlatitude and extratropical–tropical
basins (compare Figs. 7 and 12). A closed basin also
differs from a half-plane ocean, in the latter of which
Kelvin waves eventually diminish because of the ever
expanding coastal area (Dorofeyev and Larichev 1992).
Second, the comparable speed of equatorial waves im-
plies that the incident and reflected waves occupy about
the same area and therefore both have a comparable
amplitude. Therefore, the reflected wave can balance
not only the mass but also the energy fluxes of the
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FIG. 17. As in Fig. 16 but for the modified QG theoretical solution of (25) and (34): (a) K(t)
(multipled by 10) and sea surface height on the west coast (dot); (b) the mass evolution.

incident wave. In the midlatitudes, however, the coastal
Kelvin wave is important for mass balance, but not for
energy balance. The latter is accomplished by reflected
short Rossby waves. Indeed, regardless of mass con-
servation (or the consistency condition of McWilliams
1977), the QG system conserves energy within a closed
basin. Third, the comparable speed and local reflection
nature of the equatorial waves also ensures that both
incident and reflected waves always peak at the same
time. For an incident midlatitude Rossby wave, how-
ever, the resulting coastal Kelvin wave could peak at
different times, depending on the basin. In a midlatitude
basin, the coastal Kelvin wave does peak around the
same time as the incident Rossby wave did at the west-
ern boundary. However, when the equator is present in
the basin, the coastal Kelvin wave peaks substantially
later.

b. Extratropical–tropical wave interaction

Our study suggests that an extratropical thermocline
anomaly can modulate the mean equatorial thermocline
through the ECKC. However, the resulted equatorial
thermocline anomaly is usually much smaller than the
initial extratropical anomaly. Nevertheless, a large-scale
anomaly at a relatively low latitude may still produce
a non-negligible anomaly in the equatorial region. This
seems to agree qualitatively with the numerical exper-
iment of Lysne et al. (1997). The equatorial thermocline
temperature anomaly that is transmitted by the western

boundary coastal Kelvin wave is about 0.28C (in com-
parison, their modeled subduction anomaly can reach
18C in the extratropics). These anomalies, although
small, could be amplified by positive ocean–atmosphere
feedbacks and therefore may still be important for cli-
mate variability.

One alternative way of thinking may also be helpful
in understanding extratropical–tropical interaction (Bat-
tisti 1989, 1991; Kessler 1991). In terms of the classical
theory of equatorial wave (latitudinal) modes, an extra-
tropical long Rossby wave packet could have significant
projection on some higher mode equatorial Rossby
waves, whose turning latitudes, and in turn the maxi-
mum pressure anomalies, are located in the extratropics.
For example, mode 15 has the peak pressure at about
latitude 178 (Fig. 1 of Kessler 1991). The reflected
Kelvin wave, calculated by zonal mass flux balance, has
a small amplitude, less than 10% of the incident wave
(Fig. 3 of Kessler 1991). The afterward equatorial wave
adjustment should have an amplitude comparable to this
equatorial Kelvin wave. Qualitatively, this small am-
plitude of equatorial response is consistent with our con-
clusion in section 4. This modal approach easily produce
the first reflection equatorial Kelvin wave, but it is not
convenient to describe the low-frequency modulation of
the equatorial thermocline, which is accomplished after
multireflection in the equatorial wave guide. The modal
approach is also inconvenient to describe a temporal
adjustment process. For example, it is difficult to obtain
the timing of maximum modulation of equatorial ther-
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FIG. A1. Schematic figure of different solution regimes for an ini-
tial planetary wave incident on the east coast of an island.

mocline. Indeed, it gives the timing of the first reflection
equatorial Kelvin wave the same as the incident Rossby
wave, which is earlier than the peak time of the mod-
ulated equatorial thermocline. In addition, a higher
mode of equatorial Rossby wave, although having a
pressure peak in the extratropics, has significant, alter-
nating zonal velocity all the way to the turning latitude
(Fig. 2 of Kessler 1991); these higher modes are also
very dispersive. Therefore, strictly speaking, any single
high mode is difficult to represent a nondispersive plan-
etary wave packet localized in the midlatitude. Finally,
the modal approach still uses zonal mass flux balance,
while our approach uses alongshore mass flux balance.
In spite of these differences, the modal approach and
our approach could still be complementary to each other.

Our study may have important implication to the un-
derstanding of general oceanic circulation and its low-
frequency variability. Past attention has focused on
Rossby waves. Our study shows that the coastal Kelvin
wave is an inseparable part of the general circulation
system especially for low-frequency variability. The as-
sociated CKC could be of critical importance in deter-
mining the boundary pressure distribution of the general
circulation, which in turn affects the interior ocean. In
an accompany paper (Liu et al. 1999), our theory is
extended to study the variability of the general circu-
lation around an island (Godfrey 1989). The interaction
between the coastal Kelvin wave and Rossby waves,
especially the short Rossby waves, will be seen as crit-
ical elements in the establishment of the island circu-
lation. This effect of short Rossby wave is reminiscent
of the wave interaction on an equatorial island (Cane
and du Penhoat 1982).

Our study so far remains preliminary. Many important
processes need to be studied in order to gain a full
understanding of the realistic ocean. One limitation of
the present work is the linear wave assumption. In the
real ocean such as the North Pacific, the main ther-
mocline tends to outcrop at mid- and high latitude. As
a result, a Kelvin wave may not be able to propagate
around the basin. We speculate that this latitudinal con-
straint of the Kelvin wave propagation will not change
the major features of our work here. This is because,
in our theory, the polar boundary plays a negligible role
in both the mass and energy balance. The reduction of
the latitudinal extent of the eastern boundary Rossby
wave, however, may result in a larger amplitude of the
Kelvin wave because the initial mass is redistributed
onto an area smaller than the entire basin. This spec-
ulation remains to be investigated. A study of the effect
of the mean flow advection is also in progress. The
adjustment in a realistic Pacific Ocean is also under
current study (Wu and Liu 1999, manuscript submitted
to J. Phys. Oceanogr.). Our preliminary results suggest
that the simple theory here can be applied successfully
to understanding the interaction of open ocean with the
western coastal Pacific Ocean and its marginal seas, as
well as the equatorial Pacific Ocean.
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APPENDIX

Wave Interaction around an Island

The basin solution (25) can be applied directly to an
island of the size X and Y, shown schematically in Fig.
A1. The incident wave now hits the east coast of the
island (x 5 XI 1 X), producing a CKC around the
northern (y 5 YI 1 Y), western (x 5 XI), and southern
(y 5 YI) boundaries of the island. A new planetary wave
is radiated westward from the west coast of the island
(corresponding to the EBP in the basin case, and thus
will still be called the EBP). Solution (25) is valid until
the EBP hits the western boundary of the basin (at x 5
0) or t , XI/C. All the discussions on the modulation
of the amplitude of CKC, the mass exchange, and en-
ergetics will be the same as in the QG theoretical basin
solution. Furthermore, later adjustment after the EBP
hits the western boundary of the basin can also be dis-
cussed similarly, if one replaces the basin size with XB

3 YB and the incident wave packet size with xP 3 Y.
Figure A2 shows one example of SSH snapshots in

a basin including an island. The evolution is essentially
the same as that in a basin (Fig. 2). The corresponding
shallow-water experiment is shown in Fig. A3, whose
mass and energy evolution are shown in Figs. A4a and
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FIG. A2. Four snapshots of the theoretical QG solution, similar to Fig. 2, but for the
corresponding island case.

FIG. A3. Four snapshots of a shallow-water experiment, similar to Fig. 7, but for the
corresponding island case.

A4b, respectively. The agreement of the mass evolution
Figs. A4a and the theoretical solution (the same as Fig.
4b) is remarkable. Indeed, the agreement is better than
the basin case of the shallow-water experiment (Fig.
9b). For example, the overestimation of the CKC mass

component in the basin case in Fig. 9b, compared with
the theory, Fig. 4b, virtually disappeared in the island
shallow-water experiment (Fig. A4b). Correspondingly,
the energetics (Fig. A4c) also show a better agreement
with the theory (Fig. 6) than the basin shallow-water
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FIG. A4. The same as in Fig. 9 but of the shallow-water experiment for the corresponding island case. The notation
of the solution regime is the same as in Fig. A1 with subcripts ‘‘W’’ for the region east of the island and ‘‘E’’ for the
region west of the island.

case (Fig. 9c). The reason is simple. In the island case,
the EBP does not interact with the northern and southern
boundaries of the basin, even in the shallow-water mod-
el. This is the case of the QG theoretical basin solution
(25), which has neglected the Kelvin wave produced by
the EBP on the northern and southern boundaries. How-
ever, in a basin model, either QG or shallow water, the
EBP will interact with the northern and southern bound-
aries, generating additional Kelvin waves.
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