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ABSTRACT

A two-layer quasigeostrophic model is used to investigate the influence of stratification on the inertial recir-
culation in a full basin model. It is found that the barotropic transport of the inertial recirculation is intensified
significantly through barotropic–baroclinic interactions in the presence of a shallow thermocline or a strong
stratification. Weakly nonlinear theories and numerical experiments show that a strong baroclinic–barotropic
interaction intensifies the advection of potential vorticity anomaly toward the inertial recirculation and therefore
forces a stronger recirculation. Furthermore, from the potential vorticity point of view, our model recirculations
belong to the generalized ‘‘modonlike’’ recirculation (with dQ/dc , 0). The increased zonal penetration of
recirculation cells with stratification is not caused by the internal dynamics of the recirculation cells. Instead,
it is caused by the increased advection of potential vorticity anomaly—an external forcing to the recirculation
cells.

1. Introduction

One striking feature of the North Atlantic circulation
is the strong recirculation cells flanking the exit region
of the Gulf Stream (Worthington 1976; Wunsch and
Grant 1982; Schmitz 1980; Hogg 1983). Recent studies
have shed light on the dynamics of the recirculation
(Marshall and Nurser 1986; Greatbatch 1987; Ierley
1987; Cessi et al. 1987; Cessi 1988, C88 hereafter; Ier-
ley and Young 1988). Barotropic processes have been
found important for the establishment of the inertial
recirculations. Observations show that the core of the
recirculation cell is relatively depth-independent com-
pared to the rest part (Schmitz 1980; Richardson 1985).
Numerical experiments and theories in barotropic mod-
els also demonstrate that the barotropic process alone
is able to establish a strong inertial recirculation (e.g.,
Bryan 1963; Cessi et al. 1987; Greatbatch 1988; Mar-
shall and Marshall 1992, MM hereafter).

At the same time, it is also straightforward that the
presence of stratification can significantly change the
baroclinic structure of the recirculation. Strong strati-
fication exists in the region of observed recirculations.
This stratification tends to trap the wind-driven circu-
lation in the thermocline, resulting in an intensified up-
per-layer recirculation (Holland and Rhines 1980; Mar-
shall and Nurser 1986; Greatbatch 1987; C88). In ad-
dition, there is a strong local diabatic surface forcing in
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the region of the inertial recirculation. Recent theories
have shown that this diabatic forcing is able to produce
a substantial baroclinic recirculation in the upper ocean
(Cushman-Roisin 1987; Huang 1990).

One natural question is then how the stratification
affects the barotropic flow of the recirculation. In the
interior ocean, the barotropic circulation is determined
by the Sverdrup relation, which is independent of strat-
ification (in the absence of topography). This is because
the advection of relative vorticity is negligible, and
therefore the barotropic flow is decoupled from the bar-
oclinic flow. However, unlike in the interior ocean, rel-
ative vorticity is crucial in the recirculation and the west-
ern boundary layer. Thus, the barotropic flow is strongly
coupled with the baroclinic flow. One may speculate
that the stratification can significantly affect the baro-
tropic circulation through the nonlinear interaction be-
tween the barotropic and baroclinic flows in the region
of the recirculation and western boundary current. This
will be confirmed in the paper. We will show that the
inertial recirculation will be intensified substantially by
either the structure or the intensity of the stratification
through baroclinic–barotropic interactions.

Our study will emphasize the dynamic linkage be-
tween the recirculation and the western boundary cur-
rent (WBC). In contrast, previous theories have focused
on the local dynamics of the recirculation. A potential
vorticity anomaly (Q anomaly) is prescribed as a bound-
ary forcing to drive the recirculation. This Q anomaly,
however, is determined by the matching of the recir-
culation with the basin-scale flow, and therefore cannot
be studied in a regional model. In a regional model, C88
showed that the barotropic transport of a stratified re-
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circulation is determined mainly by the barotropic Q
anomaly on the boundary of a recirculation cell. Thus,
the recirculation would remain unchanged if the baro-
tropic Q anomaly remains unchanged. However, in a
full basin study, an altered stratification may strongly
affect the WBC and its advection of Q anomaly. Thus,
stratification may change the barotropic transport of the
recirculation significantly.

This paper will be arranged as follows. Section 2
presents the numerical results, focusing on the effect of
the structure and intensity of the stratification on the
recirculation. The stratification effect is first studied in
terms of vorticity dynamics with a weakly nonlinear
theory in section 3 and with numerical experiments in
section 4. Then, the stratification effect is examined in
terms of potential vorticity (Q) distribution. A summary
and additional discussions are given in section 6.

2. Numerical experiments

a. Model and experiments

We will use the two-layer quasigeostrophic (QG)
model whose upper layer and lower layer simulate the
thermocline and abyssal water respectively. The follow-
ing nondimensional equations will be used throughout
the paper:

2] q 1 J(c , q ) 5 w /h 1 d¹ q (2.1a)t 1 1 1 e 1 1

2] q 1 J(c , q ) 5 d¹ q , (2.1b)t 2 2 2 2

where the upper- and lower-layer nondimensional Q are,
respectively,

2q 5 a[¹ c 1 f (c 2 c )] 1 y (2.1c)1 1 1 2 1

2q 5 a[¹ c 1 f (c 2 c )] 1 y. (2.1d)2 2 2 1 2

Here, with standard notations, and denoting the corre-
sponding dimensional quantities with a star, the non-
dimensional quantities are defined as

(x*, y*) t* (c*, c*)1 2(x, y) 5 , t 5 , (c , c ) 5 ,1 2L T C

w* (H , H )e 1 2w 5 , (h , h ) 5e 1 2W H0

2f W L L C0 0C 5 , T 5 , a 5 ,
3bH C bL

2 2L f d*0f 5 , d 5 , (2.2)n g9h* Cn

where the dimensional quantities are chosen as the hor-
izontal length scale L 5 2000 km; the total depth H 5
4 km; the magnitude of Ekman pumping W0 5 1024 cm
s21; the lateral viscosity d 5 1.4 3 106 cm2 s21; the
Coriolis parameter f0 5 1024 s21; and b 5 1.3 3 10213

cm21 s21. This gives the barotropic Sverdrup velocity
on the order of C/L 5 0.2 cm s21 and the corresponding

advective timescale T 5 30 yr. Two parameters that
determine the stratification will be varied in our exper-
iments: the reduced gravity g9, which determines the
intensity of the stratification, and the thermocline depth
H1 (or the lower-layer thickness H2 5 H 2 H1), which
determines the structure of the stratification.

The equations are solved with a leapfrog time step-
ping and a free-slip lateral boundary condition. Stream-
functions are derived from potential vorticities by a FFT
elliptical solver. A rectangular basin (0, 0.5L) 3 (20.5L,
0.5L) is adopted with a horizontal resolution of 16 km
in both longitude and latitude. The Ekman pumping
adopts the form we(y) 5 sin[2p(y 2 y0)], where the
intergyre boundary is located at y0 5 0.05. In the fol-
lowing, we will only discuss the subtropical gyre unless
otherwise specified.

The control run uses a standard stratification that re-
sembles observations: g9 5 2 cm s22 and H1 5 1 km,
H2 5 3 km. The streamfunctions for the final steady
circulations are presented in Figs. 1a–d for the upper-
layer, lower-layer, barotropic (cB 5 h1c1 1 h2c2), and
baroclinic (cC 5 c1 2 c2) flows respectively. The most
important feature is a pair of recirculation cells flanking
the exit region of the midlatitude jet. The recirculation
cell is strong in the upper-layer, barotropic, and baro-
clinic flow fields, but weak in the lower layer. Upper-
and lower-layer Q are presented in Fig. 1e and Fig. 1f,
respectively. The upper-layer Q is characterized by a
strong front along the intergyre boundary and a rela-
tively uniform Q pool within the recirculations. The
lower layer is characterized by a single homogenized Q
pool containing both recirculation cells. The nondimen-
sional maximum Sverdrup transport now is cB 5 0.5
[corresponding to 8 Sv (Sv [ 106 m3 s21)]. However,
the maximum barotropic flow in the control run reaches
a maximum of about cB 5 1.2, which is more than twice
the interior Sverdrup transport.

We will discuss the final equilibrium state of two sets
of experiments, each with five experiments (Table 1).
The first set (DPs) is designed to test the effect of the
vertical structure of stratification on the recirculation,
with the thermocline depth h1 different in the experi-
ments (the total depth is fixed); the second set (RGs)
tests the effect of the intensity of the stratification on
the recirculation, with the value of the reduced gravity
changing in each experiment.

b. Effect of thermocline structure

The effect of the vertical thermocline structure on
recirculation can be seen in the barotropic flow of the
five experiments in Fig. 2. These experiments have the
same total depth, but different upper-layer thickness, or
thermocline depth. The control run is replotted here as
DP0 in Fig. 2b. The thermocline depth is increased to
2 km in run DP21 (Fig. 2c). The interior flow remains
unchanged, as determined from the Sverdrup relation.
However, the inertial recirculation is weakened sub-
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FIG. 1. The flow and potential vorticity field for the control run. Nondimensional streamfunctions are shown for
(a) upper-layer, (b) lower-layer, (c) barotropic, and (d) baroclinic flows. The contour interval is 0.2. Nondimensional
potential vorticity is shown for (e) upper-layer and (f) lower-layer flows. The contour interval is 0.05. In (c), the
region A and region B are for vorticity term balances in Fig. 5.
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TABLE 1. Table for experiments. For DPs g9 5 2 cm s22; for RGs
H1 5 1 km.

DP23 DP22 DP21 DP0 DP11

H1 (km) 4 3 2 1 0.5

RG23 RG22 RG21 RG0 RG11

g9 (sm s22) 0.02 0.2 1 2 4

stantially in both its strength and size. A further increase
of thermocline depth results in a further weakening of
the recirculation, as shown in DP22 (Fig. 2d) and DP23

(Fig. 2e, which is identical to the barotropic case be-
cause of a zero lower-layer thickness). In contrast, if the
thermocline depth is reduced by a half from that of the
control run, the recirculation is intensified substantially
as seen in DP11 of Fig. 2a. This set of experiments
suggests that, unlike in the interior ocean, the barotropic
flow of the recirculation can be affected substantially
by the structure of the stratification: the recirculation
intensifies with a shallower thermocline depth.

c. Effect of stratification intensity

The effect of stratification intensity on recirculation
can be seen in the barotropic flows of the five experi-
ments in Fig. 3. These experiments have the same thick-
ness for the upper and lower layer, but different inter-
facial reduced gravity. The control run is again shown
in Fig. 3b for reference (RG0). With the reduced gravity
decreased by a half in RG21 (Fig. 3c), the recirculation
weakens substantially, while the interior flow remains
unchanged. A further reduction of the reduced gravity
in RG22 (Fig. 3d) leads to a further weakening of the
recirculation. Figure 2d resembles closely the pure
barotropic flow (see Fig. 2e) because of the extremely
weak stratification. A further reduction of the reduced
gravity by a order in RG23 (not shown) only produces
a slight reduction of the recirculation. In contrast, if the
reduced gravity is doubled that of the control run as in
RG11 (Fig. 3a), the recirculation is intensified signifi-

cantly. Thus, the recirculation intensifies with an in-
creased stratification. The recirculation is particularly
sensitive to the reduced gravity near the observed val-
ues.

The rest of the paper intends to understand the phys-
ical mechanism through which stratification affects the
recirculation. As an introduction, we first notice one
common feature in both sets of experiments: the bar-
otropic flow of the inertial recirculation increases (de-
creases) with the strength of the upper (lower)- layer
flow or the baroclinic flow. A shallower thermocline
depth tends to increase the upper-layer flow, but to de-
crease the lower-layer flow. This in turn results in an
intensified baroclinic flow. In the interior ocean where
relative vorticity is negligible, the change in the baro-
clinic flow is unable to feed back on the barotropic flow
field, which is governed by the Sverdrup relation. How-
ever, in the western boundary layer/recirculation region
where relative vorticity is crucial, the barotropic and
baroclinic flow are strongly coupled. It is therefore con-
ceivable that a change in the baroclinic flow can feed
back on the barotropic flow through baroclinic–baro-
tropic interactions. (The effect of the reduced gravity is
more subtle. It involves dissipation processes in the
boundary layer as will be seen soon.) C88 has pointed
out that the barotropic transport of recirculation is main-
ly determined by the barotropic Q anomaly injected by
the midlatitude jet. Since the Q anomaly is advected by
the WBC toward the midlatitude jet, one may further
speculate that the change of the recirculation under var-
ious stratification may be affected strongly by the altered
WBC due to barotropic–baroclinic interactions. This
speculation is confirmed in the following two sections.

3. A weakly nonlinear theory: The vorticity
dynamics

We first present a weakly nonlinear analysis to show
the effect of stratification on the WBC. Rewriting the
steady form of (2.1a,b) in terms of the barotropic and
baroclinic streamfunctions, we have

4 2 2[2d¹ 1 ] ]c 5 w 2 aJ(c , ¹ c ) 2 ah J(c , ¹ c ) (3.1a)x B e B B e C C

2 2L w Le2 2 22d ¹ 2 ¹ 1 ] c 5 2 aJ c , ¹ 2 cx C B C5 1 2 6 5 1 2 6[ ] [ ]L h LD 1 D

2 2 22 aJ{c , ¹ [c 1 (h 2 h )c ]}, (3.1b)C B 2 1 C

where he 5 h1h2 is the equivalent depth and LD 5
g9H1H2/H)/f0 is the deformation radius. In the interiorÏ

ocean, relative vorticity is negligible. The barotropic
and baroclinic flows are determined by

] c 5 w (3.2a)x BI e

] c 5 w /h . (3.2b)x CI e 1

This is a Sverdrup flow in the upper layer and no motion
in the lower abyssal layer: ]xc1I 5 we/h1, ]xc2I 5 0.

The dynamics in the western boundary layer are much
more complicated. In order to show explicitly the role of
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FIG. 2. The nondimensional barotropic streamfunction for the five runs
with different thermocline depths (DP). The dimensional total depth is
H 5 4 km for all the runs, but the upper-layer depth decreases as (a)

FIG. 3. Similar to Fig. 2 but for four runs with different reduced
gravity (RG): (a) g9 5 4 cm s22, (b) g9 5 2 cm s22, (c) g9 5 1 cm
s22, and (d) g9 5 0.2 cm s22. While the interior flow remains un-
changed, the recirculation is intensified dramatically for a larger re-
duced gravity. The recirculation is particularly sensitive to the re-
duced gravity at the order of observed values.

←

H1 5 0.5 km, (b) H1 5 1 km, (c) H1 5 2 km, (d) H1 5 3 km, and (e)
H1 5 4 km. The contour interval is 0.1. While the interior flow remains
unchanged, the recirculation is intensified dramatically with a shallower
thermocline depth. In the figure, most of the subpolar gyre is not shown.
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barotropic–baroclinic interaction, we derive the boundary
layer equations. We first denote dM 5 (d*/b)1/3 and dI 5
[C/(Lb)]1/2 as widths of the Munk boundary layer and the

inertial boundary layer respectively (Pedlosky 1987). In
terms of the boundary layer variable j 5 xL/dM, the
boundary layer equations can be derived from (3.1) as

[2] 1 1]] c 5 2e{J(c , ] c ) 1 h J(c , ] c )} (3.3a)jjj j B B jj B e C jj C

[2(] 2 b)] 1 1]] c 5 2e{J[c , (] 2 b)c ]jj j j C B jj C

2 22J[c , ] (c 1 (h 2 h )c )]}, (3.3b)C jj B 2 1 C

where the nondimensional parameters are e [ (dI/dM)2

and b [ (dM/LD)2 ; 1/g9, representing the nonlinearity
and stratification intensity respectively. We will discuss
the weakly nonlinear limit e K 1 in this section.

a. A preliminary analysis

First, a crude analysis will be helpful for the under-
standing of the role of stratification and the mechanism
of barotropic–baroclinic interaction. The barotropic vor-
ticity equation (3.3a) has two nonlinear terms: the bar-
otropic–barotropic interaction term 2J(cB, ]jjcB) and
the baroclinic–baroclinic interaction term 2heJ(cC,
]jjcC). They represent the advection by the barotropic
flow of barotropic relative vorticity and the advection
by the baroclinic flow of baroclinic relative vorticity,
respectively. Both terms can contribute to the barotropic
flow. However, the stratification affects the barotropic
flow mainly through the baroclinic–baroclinic interac-
tion, because the barotropic–barotropic interaction is in-
dependent of stratification at the first order as in (3.2a).
In addition, the interior baroclinic flow increases for a
shallower thermocline depth because of the factor 1/h1

in Eq. (3.2b). Thus, the increase in the barotropic trans-
port due to the net effect of the baroclinic–baroclinic
interaction, denoted by DcB z C, varies with h1 as

DcB z C ; ehe ; e h2/h1,2 2c wC e (3.4)

where the transport of the WBC is assumed to be of the
same order as the interior flow cC ; cCI. Equation (3.4)
shows clearly that a shallower h1 can affect the baro-
tropic transport in the western boundary layer dramat-
ically.

The role of the reduced gravity can be further seen
in the limit of a weak stratification b → `. Neglecting
a free-slip sublayer, Eq. (3.3b) for the baroclinic flow
can be approximated at the lowest order as

(b]j 1 1)]jcC 5 0. (3.5)

The boundary layer solution is

cC0 5 cCI(1 2 e2j/b). (3.6)

A larger b gives a wider width of the boundary layer
lb ; b. From Eq. (3.3a), one then obtains

DcB z C ; ehe / ; e h2/ (h1b2).2 2 2c l wC b e (3.7)

Thus, an increase in stratification (smaller b) leads to
an enhancement of baroclinic–baroclinic interaction on
WBC. This occurs because a stronger stratification gives
a larger deformation radius and therefore reduces the
stretching component of potential vorticity, which
would result in a reduction of vorticity diffusion toward
the interior ocean if the boundary layer thickness re-
mains unchanged. To balance the total vorticity input
over the basin, a narrower boundary layer is therefore
needed that enhances the Q diffusion. This narrower
boundary layer enhances the relative vorticity and in
turn the advected Q anomaly.

It should be noticed that the crude analysis here does
not address the other important issue: the sign of the
nonlinear advection term. This will be discussed in the
formal analysis below.

b. Weakly nonlinear analysis

Now we discuss the general weakly nonlinear cases.
The streamfunctions in the boundary layer will be ex-
panded as

2c 5 c 1 ec 1 O(e ),B B0 B1

2c 5 c 1 ec 1 O(e ). (3.8)C C0 C1

The lowest order solutions cB0 and cC0 are the linear
Munk-type solution [appendix A and B, Eqs. (A.3) and
(B.4)]. The next order barotropic solution cB1 is caused
by the feedback of nonlinear interactions on the baro-
tropic flow. The cB1 has two parts: cB1 5 1 ,B Cc cB1 B1

where and are caused respectively by the bar-B Cc cB1 B1

otropic–barotropic interaction term and the baroclinic–
baroclinic interaction term in Eq. (3.3a). A detailed der-
ivation of the solution is given in appendix A and B.
For our purpose, we only present the perturbation ve-
locity of WBC corresponding to and . That is,B Cc cB1 B1

y B1 5 1 , whereB Cy yB1 B1

B B 2 2y 5 ] c (j 5 0) 5 25] (c )/12 ; 2] [w (y)] (3.9a)B1 j B1 y BI y e

C C 2y 5 ] c (j 5 0) 5 2h ] (c )G(b)B1 j B1 e y CI

2; 2] [w (y)]h /h G(b). (3.9b)y e 2 1
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In (3.9a,b), the interior flow cBI and cCI are given in
(3.2a,b). The effect of reduced gravity (in b) appears
only in the function G(b), which is given in (B.8) and
plotted in Fig. B1a.

c. Barotropic–barotropic interaction: Latitude shift of
maximum WBC

We first discuss the effect of barotropic–barotropic
interaction. The solution (3.9a) states that the WBC is
accelerated in the northern half [ ; 2]y( ) . 0]B 2y cB1 BI

but is decelerated in the southern half [ 2 ]y( ) ,B 2y cB1 BI

0] by barotropic–barotropic interaction. The separation
latitude between the northern and the southern regions
is located at ]y( ) 5 0, which is determined by the2cBI

interior Ekman pumping for the linear basic state here.
Thus, the maximum WBC is shifted north toward the
intergyre boundary. Physically, since less (more) anti-
cyclonic relative vorticity is advected northward in the
southern (northern) half of the WBC, the required dif-
fusive vorticity flux toward the interior ocean is reduced
(enhanced). The reduced (enhanced) vorticity diffusion
is then balanced by a weaker (stronger) planetary vor-
ticity advection in the southern (northern) part of the
WBC, implying a weaker (stronger) WBC there. This
physical explanation is valid only in the weakly non-
linear case.

The shift of the maximum WBC should further induce
changes of the recirculation. Since the inertial recircu-
lation is established by the Q anomaly that is advected
through the WBC, a stronger WBC converging toward
the intergyre boundary should enhance the eastward
penetration of the Q anomaly along the midlatitude jet.
This establishes a stronger recirculation with a greater
zonal penetration and meridional width (e.g., Cessi et
al. 1987; Ierley and Young 1988). This explains, from
a weakly nonlinear point of view, the dynamic linkage
between the WBC and the recirculation.

d. Baroclinic–baroclinic interaction: The
intensification

The effect of baroclinic–baroclinic interaction is sim-
ilar to that of the barotropic–barotropic interaction.
Since G(b) is positive (Fig. B1a), has the same signCy B1

as . Thus, by reinforcing the barotropic–barotropicBy B1

interaction, the baroclinic–baroclinic interaction en-
hances the shift of the WBC toward the midlatitude and
therefore intensifies the recirculation.

Unlike the barotropic–barotropic interaction, how-
ever, the baroclinic–baroclinic interaction depends
strongly on the stratification. The baroclinic–baroclinic
interaction is proportional to 1/h1 [see (3.9b)] and b.
[The dependence on b can be seen in Fig. B1a, which
shows a monotonical decrease of G(b) with b.] Thus,
the baroclinic–baroclinic interaction intensifies in the
presence of either a shallower thermocline or a larger
reduced gravity (smaller b). The baroclinic–baroclinic

interaction is particularly sensitive to the reduced grav-
ity at the order of observed values. This can be seen in
Fig. B1a, where the slope of the G(b) function is greatest
for 0(b) , 1, which is close to observed values (the
control run has b 5 1/3). The intensification occurs
because the surface Ekman pumping forcing is trapped
more in the thermocline, which results in a stronger
baroclinic circulation. The baroclinic flow then feeds
back nonlinearly on the barotropic flow. In the opposite
limit, with either h2 5 0 or a zero reduced gravity [b
5 `, noticing G(`) 5 0 in Fig. B1a], the effect of the
baroclinic–baroclinic interaction vanishes.

In short, the weakly nonlinear theory seems to be
able to explain qualitatively our numerical experiments
for different thermocline depth (Fig. 2) and stratification
intensity (Fig. 3). The stratification can strongly affect
the recirculation through the baroclinic–baroclinic in-
teraction, which feeds back on the barotropic flow of
the WBC to increase the advection of Q anomaly and,
in turn, enhances the recirculation.

4. Numerical analysis. I: Vorticity dynamics

Here we further analyze the vorticity dynamics of the
numerical experiments to compare with our weakly non-
linear theory. We will only discuss the set of runs with
different thermocline depth (DPs) because the other set
(RGs) is similar (not shown).

a. Recirculation and Q anomaly

As the depth of thermocline decreases (from DP23 to
DP11), Fig. 4a shows a monotonic increase in the max-
imum barotropic transport, the zonal penetration dis-
tance, and the meridional width of the recirculation. The
intensification of the recirculation is accompanied by an
increase in the barotropic Q anomaly along the northern
boundary of the subtropical gyre (Fig. 4b), consistent
with previous theories (C88; Ierley and Young 1988).
However, it is interesting to notice in Fig. 4b that the
maximum Q anomaly, which occurs along the western
boundary, remains almost unchanged for different ex-
periments. Thus, it is the different zonal penetration of
the Q anomaly that results in the different recirculation.

Furthermore, the increase of Q anomaly from run
DP23 to DP11 (Fig. 4b) is accompanied by an increase
(decrease) of boundary current speed in the northern
(southern) part of the WBC. This is clear if one com-
pares Fig. 4b with Fig. 5a, the latter of which plots the
downstream profile of the WBC speed for each run.1

1 The separation latitude between the northern acceleration part and
the southern deceleration part of the WBC is located north of the
middle of the subtropical gyre. This occurs because the basic state
in the numerical experiment is not linear, and therefore the maximum
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FIG. 4. (a) The maximum barotropic streamfunctions of the five
DP experiments (star). The zonal penetration distance (circle) and
meridional width (cross) of the barotropic recirculation are also plot-
ted. The recirculation intensifies with a shallower thermocline depth.
(b) Zonal penetration of the barotropic potential vorticity qB 5 h1q1

1 h2q2 averaged along the midlatitude jet on the subtropical side (y
5 0.008 to y 5 0.031) for the DP runs. The penetration of the potential
vorticity anomaly increases for shallower thermocline depth.

This seems to be consistent with our weakly nonlinear
theory. However, later discussions show that in strongly
nonlinear experiments, this is not so.

b. Vorticity dynamics in the southern part of WBC

The vorticity balance in the southern deceleration part
of the WBC is shown in Fig. 5b, which plots each term
of the barotropic equation (3.3a) in the southern region.
First, the local wind term is always negligible (not
shown). The vorticity balance at the first order is be-
tween the planetary vorticity advection and dissipation
(Munk type),

]xcB ; ¹4cB. (4.1)

As h1 decreases (from DP23 to DP11), the total nonlinear

streamfunction near the western boundary has already been shifted
north (see Fig. 2).

advection (roughly the difference between ]xcB and ¹4cB

curves) increases significantly and is accompanied by a
strong reduction of the dissipation term. The planetary
vorticity advection also exhibits a moderate reduction,
which is consistent with the deceleration of WBC in
this region (Fig. 5a). Furthermore, Fig. 5b shows that
the increase of the nonlinear term is due to the rapid
increase of the baroclinic–baroclinic interaction. In con-
trast, the barotropic–barotropic interaction decreases be-
cause of the reduction in barotropic current. Thus, for
a reduced h1 (or an increased 1/h1), the change of the
vorticity equation is dominated by

4 2][2¹ c ] ][2h J(c , ¹ c )]B e C C; . 0. (4.2)
](1/h ) ](1/h )1 1

The perturbed planetary vorticity advection is then de-
rived from (4.1) as

4](] c ) ](¹ c )x B B; , 0. (4.3)
](1/h ) ](1/h )1 1

This results in the reduction of the WBC speed. The
results here agree with the weakly nonlinear study in
section 3 and appendixes A and B.

c. Vorticity dynamics in the northern part of WBC
The vorticity balance becomes more complex farther

north, as shown in Fig. 5c. In the cases of deep h1 such
as DP23 and DP22, nonlinearity is weak and the vorticity
balance is similar to (4.1)–(4.3), except for an opposite
sign in the nonlinear advection

2][2h J(c , ¹ c )]e C C , 0.
](1/h )1

This advection implies a northward advection of more
anticyclonic relative vorticity, and therefore accelerates
the WBC as discussed in the weakly nonlinear theory
(3.9b).

As h1 further decreases (or 1/h1 increases) (DP21 to
DP11), the WBC increases further as implied by the ]xcB

term. However, the vorticity balance becomes dramat-
ically different from the weakly nonlinear case. First,
dissipation reduces rapidly to become of secondary im-
portance, while the nonlinear advection becomes dom-
inant. Thus, at the lowest order, the vorticity dynamics
is inertial;

]xcB ; 2[J(cB, =2cB) 1 heJ(cC, =2cC)]. (4.4)
Second, the barotropic–barotropic interaction becomes
stronger than the baroclinic–baroclinic interaction even
with a very shallow h1. Third, the nonlinear advection
for both barotropic–barotropic interaction and baroclin-
ic–baroclinic interaction changes sign from that of the
weakly nonlinear cases, implying an advection of less
anticyclonic relative vorticity northward. This advection
is the same sign as in the southern part of Fig. 5b.
However, opposite to the southern part, the WBC in-
tensifies. In Fig. 5c for DP21 to DP11, while the dissi-
pation perturbation remains similar to (4.2), the pertur-
bation planetary vorticity advection is mainly balanced
by the perturbation nonlinear advection
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FIG. 5. (a) The meridional variation of the speed of western boundary current (averaged
between x 5 0.008 and x 5 0.031) for the five DP runs. Term balance for the barotropic equation
Eq. (3.1a) is shown for the DP runs in (b) region A and (c) region B, respectively. The local
Ekman pumping is always negligible and therefore is not plotted. Region A is located in the
middle-south of the subtropical western boundary current, while region B is in the northern part
(see Fig. 5a and Fig. 1c). The legend for each term, as indicated in (c), is ‘‘1’’ for ]xcB, ‘‘3’’
for d¹4cB, ‘‘2’’ for we, ‘‘*’’ for 2J(cB, ¹2cB), and ‘‘o’’ for 2heJ(cC, ¹2cC).

2 2](] c ) ][2J(c , ¹ c ) 1 h J(c , ¹ c )]x B B B e C C; . 0.
](1/h ) ](1/h )1 1

(4.5)

In contrast to Eqs. (4.2) and (4.3), the same sign of
nonlinear advection term forces the opposite perturba-
tion current in the WBC. As shown at the end of ap-
pendix A, this difference is caused by a change of vor-
ticity balance from the dissipation-dominant weakly
nonlinear cases to the inertial-dominant strongly non-
linear cases.

In short, the vorticity dynamics in the numerical mod-
el supports our theory in the weakly nonlinear cases.
The barotropic recirculation can be enhanced signifi-
cantly by the baroclinic–baroclinic interaction, which
intensifies for either a shallower thermocline depth or
a stronger reduced gravity. The baroclinic–baroclinic
interaction tends to shift the maximum WBC northward
and therefore increases the advection of Q anomaly,
resulting in enhanced recirculation. Our analyses also
show dramatic differences in the vorticity dynamics be-
tween a strongly nonlinear case and a weakly nonlinear

case, especially in the northern region near the intergyre
boundary. Some further discussions on the strongly non-
linear cases will be presented in section 6.

5. Numerical analysis. II: Potential vorticity
distribution

We have studied the recirculation in terms of vorticity
dynamics. In this section, the recirculation will be stud-
ied further, but from the viewpoint of potential vorticity
distribution. The Q field in the recirculation has been
shown important in determining the penetration of the
recirculation. For a given strength of incoming flow,
Greatbatch (1988) and MM have shown that the ‘‘Fo-
fonoff-like’’ recirculation (dq/dc . 0) has a much larger
zonal penetration scale than the modonlike recirculation
(dq/dc , 0). In our cases, is it possible for the increased
zonal penetration to be caused by a transition from more
modonlike to more Fofonoff-like? Before we answer
this question, we first have to examine the Q field in
order to identify whether our recirculation belongs to
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FIG. 6. The potential vorticity profiles for the control run along a
longitude section across the core of the recirculation. (a) Potential
vorticity for the upper-layer (q1), the lower-layer (q2), and the bar-
otropic flow (qB) as functions of latitude. (b) The same potential
vorticity as functions of their corresponding streamfunctions. Each
streamfunction is normalized by its maximum value. The correspond-
ing potential vorticity is also rescaled such that the slope dq/dc re-
mains unchanged.

modon type or Fofonoff type. Again, we only discuss
the DP runs.

a. Q-field in the recirculation

We first examine the Q field in the basin of the control
run. In Fig. 6a, we plot Q in the control run along a
meridional section across the recirculation core for the
upper-layer (q1), lower-layer, (q2), and barotropic flows
(qB). Each profile is characterized by three regimes: the
midlatitude jet regime, the recirculation regime, and the

interior ocean regime. Across the midlatitude jet, q1 has
a sharp gradient, while q2 has a very weak gradient (the
barotropic Q is always the combination of the two). The
Q in each layer becomes relatively uniform within the
recirculation cell, and is almost identical to the planetary
vorticity outside the recirculation. It should be empha-
sized that the midlatitude jet here refers to those stream-
lines that will flow beyond the recirculation into the
Sverdrup interior. Indeed, the effect of the recirculation,
from the vorticity integral point of view, is to produce
a strong Q gradient across the midlatitude jet such that
the Q anomaly can be dissipated effectively and there-
fore allow a smooth transition to the interior flow.

The same Q in Fig. 6a is plotted against the stream-
function in Fig. 6b. On each curve, the three regimes
of Q that are identified in Fig. 6a can be seen clearly:
the midlatitude jet regime, the recirculation regime, and
the interior flow regime (in the vicinity of respectively
c 5 0 and q 5 0.05, the maximum and the second
maximum of streamfunction). The three regimes are la-
beled on the q1 curve. Furthermore, Fig. 6b shows that,
on each curve, the slope dq/dc is strongly negative in
the midlatitude jet regime, only slightly negative (or
even uniform) in the recirculation regime, and variable
in the interior flow regime. The lower layer is similar
to the upper layer except for a much smaller slope dq2/
dc2. Thus, we have dq/dc , 0 in both layers of our
recirculation. Furthermore, additional analyses of both
the Q field and the vorticity equations show that, except
in the western region, Q is almost conserved in the
region of recirculation.

b. Modonlike or Fofonoff-like recirculation?

In a baroclinic flow, the proper way to judge the
Fofonoff-like or modonlike recirculation is to use the
so-called pseudobarotropic mode cA, and the corre-
sponding absolute vorticity qA (see definition in MM);
dqA/dcA $ 0 favors a resonant Fofonoff mode with a
great eastward penetration, while a dqA/dcA , 0 only
generates a tight recirculation modonlike mode. Similar
to MM, the pseudomodes can be derived straightforward
for our general two-layer Q in (2.1c,d) and for the linear
relation

q1 5 g1c1 2 c1, q2 5 g2c2 2 c2. (5.1)

One can show that if g2 5 0, the condition for the
existence of penetrating mode (dqA/dcA $ 0) is g1 $
0.2 In Fig. 6, we have seen that in the control run, dq2/
dc2 5 g2 is almost zero, and dq1/dc1 5 g1 is slightly
negative. Thus, dqA/dcA $ 0 is not satisfied for the re-
circulation. In other words, the recirculation in our con-
trol run is the modonlike recirculation mode, according

2 In the notation of (2.1c,d) and (5.1), the necessary and sufficient
condition for dqA/dcA $ 0 is a(f1 1 f2) 1 g1 1 g2 $ 0 and (af1 1
g1)(af2 1 g2) $ (af1)(af2).



936 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Upper (a) and lower (b) layer potential vorticity as a function of the streamfunction
along a meridional section across the core of the recirculation in each of the five DP runs. Each
streamfunction is normalized by its maximum value. The corresponding potential vorticity is also
rescaled such that the slope dq/dc remains unchanged. Only the part near the recirculation is
drawn. In (b), the DP23 case is not drawn because the lower layer has a zero thickness now.

to the definition of MM. This conclusion seems to be
independent of the model resolution. because a doubled
resolution shows no qualitative difference (not shown).

This modonlike recirculation is also true in other ex-
periments. Figure 7 plots the q1(c1) and q2(c2) similar
to Fig. 6b, but for the five runs with different thermo-
cline depth. The scales for q1,2 have been amplified to
show the detailed structure in the recirculation cell. Be-
cause the exact Q conservation is not valid, the exact
slopes of dq1/dc1 and dq2/dc2 are not definite. Never-
theless, it seems reasonable to use the ‘‘average’’ slope
within the recirculation cell to represent the dq1/dc1 and
dq2/dc2. Visual observation then suggests that the slopes
dq1/dc1 and dq2/dc2 are similar to the control run, which
is characterized by a slightly negative dq1/dc1 and a
virtually zero dq2/dc2. Thus, all our recirculations are
modonlike. As a result, the increased penetration for a
different thermocline is not due to the transition from
a more modonlike recirculation to a more Fofonoff-like
recirculation. Then, what causes the intensification of
the recirculation?

c. The cause of the greater penetration

For the modonlike recirculation, the penetration scale
is inversely proportional to the (square root of) slope
zdqA/dcAz, for a given incoming transport (MM). How-
ever, the dramatic intensification of recirculation, in-

cluding its penetration scale (Fig. 2 or Fig. 4a) is not
accompanied by an apparent increase of zdqA/dcA z. In-
deed, Fig. 7 shows that, while dq2/dc2 remains nearly
zero, the slope of dq1/dc1 even decreases slightly. This
may seem to contradict the scaling of MM, but it does
not. This is because the transports of the incoming flow
into the recirculation are different for different runs.
Thus, the increased recirculation is forced by the in-
crease in the external (to the recirculation cell) forcing:
the western boundary current and its advection of Q
anomaly (also see discussion regarding Fig. 4b).

In short, our Q analyses suggest that the recirculation
cells in our experiments are modonlike recirculation
mode. The intensification is not caused by the transition
to a more Fofonoff-like recirculation. Furthermore, the
intensification is not controlled by the internal modon-
like recirculation itself either. Instead, the intensification
is controlled externally by the advection of Q anomaly.
This implies that the interaction of the recirculation with
the basin-scale ocean gyre is crucial in the intensifica-
tion of the recirculation.

6. Summary and further discussion

Our two-layer QG model shows that the inertial re-
circulation is sensitive to the stratification structure. The
inertial recirculation can be intensified dramatically by
a stratification that favors a stronger upper-layer flow
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(or baroclinic flow), such as a shallower thermocline
depth or a stronger stratification in the thermocline. A
weakly nonlinear theory is presented to explain the
mechanism for this intensification. In spite of its limi-
tation, the weakly nonlinear theory does show clearly
how the stratification affects the baroclinic–baroclinic
interaction, and then feeds back on the barotropic flow
of the WBC to enhance the advection of Q anomaly
toward the midlatitude jet. The increased Q anomaly is
shown to be responsible for the intensification of the
recirculation.

From another point of view, the Q-field analyses sug-
gest that our recirculation are modonlike recirculations,
rather than the Fofonoff-like penetrating recirculation.
The increased zonal penetration scale is caused by the
increased advection of the Q anomaly—a forcing ex-
ternal to the recirculation cells, rather than by the tran-
sition from a more modonlike solution to a more Fo-
fonoff-like solution, or by the internal dynamics of the
modonlike recirculation itself.

One implication of our results is that the barotropic
recirculation can be strongly affected by diabatic forc-
ings. This diabatic forcing can be either the local buoy-
ancy forcing (Cushman-Roisin 1987; Huang 1990) or
the basinwide entrainment due to the thermohaline cir-
culation. The latter has been confirmed in our prelim-
inary studies. It is found that a basinwide entrainment
upwelling can produce a baroclinic flow field that feeds
back nonlinearly on the barotropic circulation. The re-
sulted recirculation cell in the subtropical gyre expands
toward the subpolar gyre, but with a reduced transport.
The opposite occurs for the subpolar gyre.

Although our weakly nonlinear theory is useful for
understanding the physical mechanism, it fails to ex-
plain some important features in the strongly nonlinear
cases, especially in the northern part of the WBC. So
far, we have been unable to form a strongly nonlinear
theory. Nevertheless, we feel it useful to end the article
with comments on some strongly nonlinear features of
the recirculation.

First, the analysis at the end of appendix A shows
that the advection of relative vorticity has the opposite
effect between the strongly nonlinear and weakly non-
linear cases. In the former (latter) case, the nonlinear
advection accelerates (decelerates) the southern part but
decelerates (accelerates) the northern part of the WBC.
Therefore, it is conceivable that something fundamental
to the recirculation can change from the weakly non-
linear to the strongly nonlinear case.

Second, three questions regarding Fig. 5c are note-
worthy.

(i) Why does the nonlinear advection change its sign
from the weakly nonlinear case? For the strongly non-
linear case, a strong recirculation cell appears at the
northern end of the WBC. This double-center structure
of relative vorticity along the WBC can be inferred from
streamfunctions in Fig. 2 or WBC speed in Fig. 5a.
Therefore, the WBC still advects less anticyclonic rel-

ative vorticity northward in the region south of the re-
circulation maximum. This region occupies most of the
region B in Fig. 5c.

(i) Why is dissipation reduced so rapidly even if the
current amplitude is increased? This is caused by the
widening of the WBC. Indeed, with the appearance of
the recirculation, the zonal width of the WBC increases
rapidly and becomes comparable to or even larger than
the meridional scale. This creates a dramatic reduction
of dissipation, which is inversely proportional to the
Fourth power of the boundary layer width.

(ii) Why does the barotropic–barotropic interaction
remain strong even with a small h1? This seems to be
related to the nature of the recirculation, which is dom-
inated by a barotropic core. An intensified recirculation
is usually accompanied by a stronger barotropic current
and in turn the barotropic relative vorticity advection.
Thus, in Fig. 5c, while the baroclinic vorticity advection
increases when h1 decreases, the barotropic vorticity ad-
vection also increases.

Furthermore, special attention should be paid to the
dynamic linkage between the recirculation and the west-
ern boundary current. As shown in both the vorticity
dynamics and the Q-field analysis, the strength of the
recirculation is determined critically by the strength of
the advection of Q anomaly. This Q anomaly cannot be
determined in regional models, such as those of C88
and MM. C88 shows that for a given Q anomaly the
barotropic transport of the recirculation decreases with
the intensity of the stratification.3 This is the opposite
to our results if we do not take into account the variation
of the Q-anomaly forcing. It seems likely that a strongly
nonlinear theory should include the dynamic linkage
between the WBC and the recirculation, which is crucial
in determining the Q anomaly. This poses a challenging
problem.

Finally, if we accept the concept of Greatbatch (1988)
and MM, the modonlike solution may differ signifi-
cantly between ours and theirs. Their prototype modon
type has a motionless background flow field. In our case,
the background flow is strong, especially along the mid-
latitude jet and the western boundary. It is likely that
the strong source of Q can change the dynamics of the
free modon significantly to some type of boundary-
forced modon.
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3 In C88’s notation, an increased reduced gravity leads to the de-
crease of the parameter a1. Her Fig. 5 then shows the lower-layer
recirculation width l2 will decrease. Then, her Eq. (4.5) shows that
the barotropic transport decreases.
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APPENDIX A

Barotropic–Barotropic Interaction on
Barotropic Flow

We only discuss the free-slip boundary condition case
since the no-slip case is similar. In order to avoid secular
terms, we define a slow boundary layer variable s 5 ej
(J. Pedlosky 1993, personal communication). Then, we
use the following multiple scale method to expand Eq.
(3.3a) in the absence of cC. Using the expansion in (3.8)
and ]j 5 ]j 1 e]s at the lowest order, Eq. (3.3a) becomes

(2]jjj 1 1)]jcB0 5 0. (A.1)

With the boundary conditions

cB0 zj50 5 0, ]jjcB0 zj50 5 0, cB0 zj→` 5 cBI(0,y),
(A.2)

we have the solution

cB0 5 cBI(x, y) 2 A(s, y)p(j), (A.3)

where

Ï3 Ï31
2j/2p(j) 5 cos j 2 sin j e .1 2 1 2[ ]2 2Ï3

The amplitude A will be determined at the next order
with the boundary condition

A(0, y) 5 cBI(0, y). (A.4)

At the next order, using the first-order solution above,
we have the equation

2(2] 1 1)] c 5 2J(c , ¹ c )jjj j B1 B0 B0

2j5 2(3] A 2 u A)p(j) 1 A] Ae ,s BI y

(A.5)

where uBI 5 2]ycBI. The conditions for the removal of
secular terms give 3]sA 2 uBIA 5 0. With the boundary
condition (A.4), we have A 5 cBI(0, y)exp(uBIs/3). One
can verify that the boundary layer width is modified to
d 5 dM/[1 2 3(dI/dM)2uBI(y)]. The boundary layer width
is wider than the linear model in the northern part of
the subtropical gyre, but narrower in the southern part.
(This modification to the width is opposite to Stommel’s
boundary layer case!)

Now, we solve the second-order barotropic solution
forced by the nonsecular terms on the rhs of (A.5). The
solution that satisfies the boundary conditions

c (j 5 0) 5 0,B1

dp
] c (j 5 0) 5 22] A (j 5 0, s 5 0), (A.6)jj B1 s dj

and the interior matching condition is

2 Ï3] Ay 2j/2c 5 e cos jB1 5 1 2[4 2

Ï3
2j2 17Ï3sin j /9 2e . (A.7)1 2 6]2

At the western boundary j 5 s 5 0, notice (A.4), we
have

2y z 5 [2p] A 1 ] c] z 5 25] (c )/12.B1 j50 s B1j j50,s50 y BI

(A.8)

For a subtropical gyre, this means that the WBC is de-
celerated (accelerated) in the south (north) of the max-
imum interior streamfunction. In other words, the max-
imum WBC is shifted toward the intergyre boundary.

Physically, the variation of the WBC intensity with
the nonlinear advection term can be understood in the
following. In the southern (northern) part of the WBC,
less (more) anticyclonic relative vorticity is advected
northward, that is, 2J(cB, ¹2cB) . 0 (2J(cB, ¹2cB) ,
0). This tends to reduce (enhance) the local anticyclonic
vorticity and therefore reduces (enhances) the diffusion
of anticyclonic vorticity toward the interior. Thus, at
lowest order, the linear vorticity balance (A.1) requires
weaker (stronger) planetary vorticity advection, imply-
ing a weaker (stronger) boundary current.

The above discussion is under the assumption of weak
nonlinearity. Is the conclusion still valid when nonlin-
earity becomes dominant? With the inertial balance

]xcB ; 2J(cB, ¹n2cB), (A.9)

we find that y B 5 ]xcB ; 2J(cB, ¹2cB) . 0, south of
the maximum relative vorticity, and y B 5 ]xcB ; 2J(cB,
¹2cB) , 0 north of the maximum relative vorticity.
Thus, the effect of nonlinear advection of relative vor-
ticity is to accelerate (decelerate) the WBC in the south-
ern (northern) part. Physically, in the southern (north-
ern) part where the relative vorticity becomes more neg-
ative (decreases) toward the north, Q conservation re-
quires an increase (decrease) of planetary vorticity,
implying a northward (southward) current. This analysis
agrees with the numerical experiments in the northern
part of the western boundary current as shown in Eqs.
(4.4) and (4.5).4 Thus, the nonlinear advection effect on
the WBC speed is exactly the opposite between the
strongly nonlinear case and the weakly nonlinear case
in (A.8)!

This difference is caused by the fact that the nonlin-
earity is mainly balanced by the diffusion in the weakly
nonlinear case. Indeed, with the solution in (A.7), one
can easily show that at the western boundary, 2]jjjjcB1

zj50 5 3]j /4, ]jcB1 zj50 5 2]j /4. On the other hand,2 2c cBI BI

after the removal of secular terms, the nonlinear inter-
action term is 2J(cB0, ]jjcB0) zj505 ]j /2. The full2cBI

vorticity balance at the western boundary is then

2]jjjjcB1 1 ]jcB1 5 2J(cB0, ]jjcB0) at j 5 0.

Notice that the planetary advection term has the opposite

4 Here we have not considered the matching with the interior flow.
Only the northward WBC in the southern part can match the interior
flow and therefore is physically plausible (e.g., Pedlosky 1987).



JUNE 1997 939L I U

FIG. B1. (a) The function G(b) as defined in Eq. (B.8) as a function
of the stratification parameter b. (b) The eigenvalues for the Munk
problem of the baroclinic mode [see (B.3) for definitions of the
curves.]

sign to the local nonlinear advection. The dominant bal-
ance for the nonlinear term is the lateral dissipation term

2]jjjjcB1 ; 2J(cB0, ]jjcB0). (A.10)

The speed of the WBC is then determined by the Munk-
type dissipation balance between the advection of plan-
etary vorticity and lateral mixing as

]jcB1 ; ]jjjjcB1 2 J(cB0, ]jjcB0) ; ]jjjjcB1. (A.11)

This analysis agrees with the numerical experiments in
the southern part of the western boundary current as
shown in Eqs. (4.1), (4.2), and (4.3).

APPENDIX B

Baroclinic–Baroclinic Interaction on
Barotropic Flow

At lowest order, Eqs. (3.3a,b) give the Munk layer
problem

[2] 1 1]] c 5 0 (B.1a)jjj j B0

[2(] 2 b)] 1 1]] c 5 0. (B.1b)jj j j C0

The boundary conditions are (A.3) and

cC0 zj50 5 0, ]jjcC0 zj50 5 0, cC0 zj→` 5 cCI(0, y).
(B.2)

The barotropic solution is the same as (A.3). To derive

the baroclinic solution, we substitute cC0 ; exp(lj) into
(B.1b) to derive the eigenvalue equation: l3 2 bl 5 1.
One root is real and positive. The other two roots have
negative real parts. They are real or complex depending
on whether b exceeds the critical value bc 5 3 3 222/3;

l 5 2g 1 im, 2g 2 im for b . b . 0,c

l 5 2g , 2g , for b $ b . (B.3)1 2 c

Here we have chosen g $ 0, m $ 0, and g1 $ g2 $ 0.
These eigenvalues are plotted in Fig. B1b. The baro-
clinic solution therefore is

2 2g 2 m
2gjc 5 c 1 2 e cos(mj) 1 sin(mj)C0 CI5 6[ ]2gm

for b . b . 0 (B.4a)c

1
2 2g j 2 2g j1 2c 5 c 1 1 (g e 2 g e ) for b . b .C0 CI 2 1 c2 2[ ]g 2 g1 2

(B.4b)

At the next order, the barotropic equation can be de-
rived from (3.3a) as

[2] 1 1]] c 5 2J(c ,] c )jjj j B1 B0 jj B0

2 h J(c ,] c ). (B.5)e C0 jj C0

The solution due to the first term has been discussed in
appendix A [see Eq. (A.7)]. For the part forced by the
second term, we substitute (B.4) into (B.5). With the
boundary condition

cC1(j 5 0) 5 0, ]jjcC1(j 5 0) 5 0,

the solution can be derived:

C 2 22gj 2gjc 5 2h ] (c )F a e 1 e [a cos(mj) 1 a sin(mj)]B1 e y CI 1 0 1 25
Ï3 Ï3

2j/21 e b cos j 1 b sin j1 21 2 1 2 6[ ]2 2

for b . b . 0 (B.6a)c

C 2 2(g 1g )j 2g j 2g j1 2 1 2c 5 h ] (c )F c e 1 c e 1 c eB1 e y CI 2 0 1 25
Ï3 Ï3

2j/21 e d cos j 1 d sin j1 21 2 1 2 6[ ]2 2

for b . b .c (B.6b)

Here the coefficients are
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2 2 2 3F 5 (g 1 m ) /4gm, a 5 m/2g(1 1 8g ),1 0

2 2 2 2a 5 m(3g 2 m )/N, a 5 [1 2 g(3m 2 g )]/N,1 2

2 2 2 2 2 2 2N 5 [1 2 g(3m 2 g )] 1 m (3g 2 m ) ,

b 5 2(a 1 a ),1 0 1

2 2 2b 5 {8g a 2 2[(m 2 g )a 1 2gma ] 2 b }/Ï3,2 0 1 2 1

2 2 2 2F 5 g g /2(g 2 g ),2 1 2 1 2

3c 5 2(g 2 g )/(g 1 g )[1 1 (g 1 g ) ],0 1 2 1 2 1 2

3 3c 5 1/(1 1 g ), c 5 21/(1 1 g ),1 1 2 2

d 5 2(c 1 c 1 c ),1 0 1 2

2 2 2d 5 2[(g 1 g ) c 1 g c 1 g c 2 d /2]/Ï3.2 1 2 0 1 1 2 2 1

The meridional velocity on the western boundary can
be derived as

(j 5 0) 5 ]j (j 5 0) 5 2he]y( )G.C C 2y c cB1 B1 CI (B.7)

Here G is a function of the eigenvalues, which are func-
tions of b, thus G 5 G(b). It is defined as

2 21 3 1 3
G 5 F 4a g 2 1 1 a g 2 1 2 m1 0 15 1 2 1 2[ ] [ ]4 16 2 4

1
1 2ma 2 g for b . b . 0 (B.8a)2 c1 262

2 2g g 11 2G 5 [2(g 1 g ) (g 1 g )(1 1 g 1 g )1 2 1 2 1 2

1
1 for b $ b . (B.8b)c](1 1 g )(1 1 g )1 2

The function G is plotted in Fig. B1a. It starts from a

positive value (about 0.45) at b 5 0 and decreases mono-
tonically to zero at b → `.
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