1768

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 24

The Intergyre Chaotic Transport

ZHENGYU LU

UCAR Visiting Scientist Program, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

HUIUN YANG
Department of Geophysical Sciences, University of Chicago, Chicago, Hlinois
(Manuscript received 2 August 1993, in final form 30 November 1993)

ABSTRACT

The effect of the annual migration of the wind field on the intergyre transport is investigated in a double-
gyre circulation. It is found that the trajectories of the water columns advected by the gyre-scale dyculauon
exhibit a strongly chaotic behavior. The resulted cross-gyre chaotic transport amounts to about one-third of the

Sverdrup transport.

The chaotic intergyre transport causes strong mixing between the two gyres. The study with a passive tracer
shows that the equivalent diffusivity of the chaotic mixing is at the order of 107 cm® s™!, comparable to that
estimated for strong synoptical eddies in the region of the Gulf Stream. It is suggested that the chaotic transport

may contribute significantly to the intergyre exchange.

Further parameter sensitivity studies show that the chaotic transport is the strongest under the migration with
frequencies from interannual to decadal, and with the migration distance about 1000 km. Some possible ap-
plications of the chaotic transport to the general oceanic circulation are also discussed.

1, Introduction

The intergyre water exchange between a subtropical
gyre and a subpolar gyre has remained one important
issue in the study of the general oceanic circulation. In
a steady ocean, the Sverdrup relation prohibits a ver-
tically integrated cross-gyre mass transport in the in-
terior of the ocean. On the other hand, if the vertical
structure of the ocean is taken into account, theoretical
studies suggest that a substantial baroclinic intergyre
transport may occur (Pedlosky 1984; Schopp and Ar-
han 1986; Schopp 1988; Chen and Dewar 1993). The
temporal variability in the ocean may also excite a sub-
stantial Lagrangian cross-gyre transport. Along this
line, however, only the pinching off of synoptic eddies
in the exit region of the western boundary current has
been considered important for the intergyre exchange.

One fundamental question closely related to the in-
tergyre water mass exchange is the cross-gyre exchange
of water properties such as the temperature, salinity
and other oceanic tracers. The intergyre mass exchange
will undoubtedly enhance the exchange of water prop-
erties and therefore has a great impact on the property
distribution and budget within the entire basin. In the
absence of large-scale mass exchange, the cross-gyre
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exchange of water properties will be solely determined
by the diffusive fluxes caused by small-scale eddy mix-
ing. On the other hand, the mass exchange due to the
pinching off of synoptic eddies creates a direct cross-
gyre flux of water properties and therefore can enhance
the water property exchange significantly. This view-
point seems to be supported by observations and nu-
merical modelings, as well as theories in the region of
the Gulf Stream (e.g., Bower et al. 1985; Bower and
Rossby 1989; Lozier and Riser 1990; Bower 1991).

For the intergyre exchange of both water mass and
properties, little attention has been given to the effect
of the temporal variability of the gyre-scale circulation
on the exchange of water mass and properties. We pro-
pose the chaotic transport of water (see explanation
soon) due to a varying gyre-scale circulation as one of
the fundamental transport processes in the general
oceanic circulation. Based on an idealized barotropic
ocean of Liu (1993), we will demonstrate that a sig-
nificant cross-gyre mass transport occurs in a tempo-
rally varying double-gyre circulation that is forced by
an annual wind field migrating north and south. It is
also suggested that this strong intergyre chaotic- mass
transport will enhance the exchange of water properties
significantly.

The concept of chaotic transport originates from the
chaotic advection. In the mid-1980s, it was discovered
that the trajectories of particles advected by a simple
Eulerian flow, such as a smooth, 2D time-periodic flow,
will depart from each other exponentially and even-
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tually lose the information about their initial positions;
that is, the trajectories become chaotic. The chaotic
trajectories produce a transport of water mass—the so-
called chaotic transport. One distinct feature of the
chaotic transport is that the particles will be eventually
randomly distributed within the domain, that is, com-
pletely mixed. Thus, chaotic transport results in strong
mixing of water properties—the so-called chaotic mix-
ing. Recently, the chaotic transport and mixing has
been applied to the atmospheric general circulation
(Pierrehumbert 1991; Yang 1993a,b) and is found to
be able to explain some fundamental features of the
isotropic mixing in the global troposphere and the
global distribution of moisture and clouds (Pierre-
humbert and Yang 1993). In the ocean, Samelson
(1992) has also applied the chaotic advection to the
water exchange across a meandering jet.

Observations have shown that the wind field migrates
about 1000 km meridionally over the extratropical
oceans at the annual period. In this paper, we will ex-
amine the effect of this wind field on the Lagrangian
transport field of the ocean. We will investigate the
chaotic nature of the Lagrangian transport field with
the focus on the intergyre transport between a sub-
tropical and a subpolar gyre. The effect of the chaotic
transport on the distribution of water properties will
also be studied. In particular, the relative importance
between the intergyre chaotic transport and the eddy
mixing is estimated. Our results suggest that the chaotic
transport may result in an intergyre transport com-
parable to that due to a strong eddy mixing (with an
equivalent eddy diffusivity at the order of 10’
cm? s7Y).

The paper is arranged as follows. The model will be
described briefly in section 2. In section 3, we will study
the chaotic cross-gyre transport of water masses forced
by an annual migration of surface wind. The associated
water property exchange is investigated in section 4 by
using a passive tracer satisfying an advective-diffusive
equation. In section 5, we will further discuss the effect
of forcing at frequencies from interannual to interde-
cadal. Some general applications of the chaotic trans-
port will be further discussed in section 6.

2. The model

Following Liu (1993), we adopt a homogeneous
ocean with a flat bottom. Since we are interested in the
wind variation of annual to interdecadal frequencies,
barotropic Rossby waves will be filtered out. Thus, the
streamfunction ¢ is governed by the quasigeostrophic
barotropic vorticity equation as

HBow = curl7(x, y, 1) + A(0xx + .  (2.1)

Here, H is the depth of the ocean and A4 is the coefficient
of bottom friction. The wind curl is curl7 = —3,7* with
the meridional wind stress being assumed zero. The
ocean basin occupies 0 < x < x,, —L < y < L. Equation
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(2.1) states that the ocean has a Sverdrup flow in the
interior and a Stommel’s boundary layer along the
western boundary.

Denoting a dimensional variable with a star, the
nondimensional variables are

(x, y, xo) = (x*, y*, x})/L, t = t*/t3,,

Here, 7, is the magnitude of the zonal wind stress and
¥, = 1o/(BH) is the advective timescale for the Sver-
drup flow. In the nondimensional quantities, the so-
lution satisfying the boundary-layer approximation can
be derived easily as

v=01-e")x—x)curtlr(y, 1), (2.2)

where 6 = 6*/L (6* = A/Bis the width of the Stommel’s
boundary layer). For simplicity, the wind is assumed
independent of longitudes. The varying zonal wind
stress takes the form

7 = cos[x(y — yo(£)]. (2.3)

Thus, the wind forces a double-gyre circulation with
an instantaneous intergyre boundary at )y, a subpolar
gyre, and a subtropical gyre, to the north and south,
respectively. The intergyre boundary oscillates around
the mean position y = 0 at the frequency w and am-
plitude a:

7 = 7/70.

2.4

The parameters will be chosen as 8 = 1.5 X 107!3
(cms)™, 7o =15dyn (cm)3, 4 = 1.5 X 107657, L
= 2000 km, and x* = 4000 km. Since we focus on the
upper-ocean wind-driven circulation, the depth will be
taken as H = 1 km. Thus, the meridional extent of
each gyre is 2000 km (y = x1) and the zonal width
will be 4000 km (x, = 2). The width of the Stommel’s
boundary layer is 6* = 100 km (& = 0.05), and the
advective timescale is about 1%, = 12.5 yr. The annual
frequency corresponds to about w = 50.

It will be seen that particle trajectories are extremely
effective in illustrating the chaotic transport. At each
time, trajectories will be calculated using the fourth-
order Runge-Kutta method according to

vo(t) = a sin{w?).

dx

E =U= axlll (2.53)
@ _ e

~ m =0y (2.5b)

Outside the instantaneous double-gyre yo(f) —a < y
< yo(#) + a; for simplicity, the flow will be assumed at
rest. (Our experiments with other boundary conditions
show that this meridional boundary condition does not
alter our conclusion in any substantial way.) Obviously,
in the case of a steady circulation, there will be no
transport across the time-mean intergyre boundary y
=0.

For a steady wind, the circulation represents a clas-
sical steady double-gyre circulation. Part of the circu-
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lation can be seen from the particle trajectories in Fig.
1a. In the figure, 25 particles are initiated in the south-
ern part of the western boundary current in the sub-
tropical gyre. Each streamline coincides with a trajec-
tory. Each particle remains on the same streamline for-
ever. In particular, there is no water crossing the
intergyre boundary y = 0.

For a migrating wind, at any instant ¢, the Eulerian
ocean circulation still has the same pattern as in the
steady case, but the pattern is shifted a y(f) distance
in latitude, with the instantaneous intergyre boundary
at yo(?). The Eulerian time-mean circulation pattern
remains the same as in the steady case with a mean
intergyre boundary at y = 0. (Without confusion, the
adjective “mean” will be neglected in the rest of the
paper.) Therefore, the flow pattern is extremely simple.
Synoptic eddies are completely absent and so is the
associated eddy mixing. Here, rather than simulating
the western part of an intergyre current such as the
Gulf Stream, the model intergyre current is intended
to simulate the central and eastern part of an intergyre
current such as the North Atlantic Current. Therefore,
the lack of eddies may not be a too serious defect. In-
deed, the absence of eddies is even better in highlighting
our point in the remainder of the paper. That is, even
for such a simple gyre flow, the trajectories in the cir-
culation exhibit strongly chaotic behavior.

3. Exchange of water mass

We will study in detail the case with an annual wind
migrating about 800 km in latitude (w = 50, a = 0.2).
Figure 1b presents the trajectories after t = 1.2 for 25
particles with the same initial positions as in Fig. la.
The particle trajectories exhibit strikingly different be-
haviors between the two cases. In particular, all particles
in the steady case (Fig. 1a) remain within the subtrop-
ical gyre, while a substantial part of particles in the
migrating wind case (Fig. 1b) penetrate deep into the
subpolar gyre. In Fig. 1b, the trajectories in the interior
consist of small wiggles, each produced by the wind
migration in one year. The trajectories in the interior
ocean resemble those derived by Liu (1993) in an open
ocean.

In physical oceanography, the study of particles is
usually based on trajectories. However, in the study of
chaotic advection, it is more illuminating to study the
evolution of the particle distribution, that is, the particle
dispersion diagram. One example is presented in Fig.
2, corresponding to the annual wind case in Fig. 1b.
In Fig. 2, 10 000 particles are started in the southern
part of the western boundary in the subtropical gyre,
as indicated by the position at £ = 0 in Fig. 2a. The
particle distribution at the following times ¢ = 0.1 and

= 0.3 are also presented in Fig. 2a. It is seen that
some particles penetrate the intergyre boundary into
the subpolar gyre, whereas others remain in the sub-
tropical gyre. The patch of water stretches in the me-

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 24

Start +, end o

1.0 T

() E

0.8 +

T T T ¥ T T T T T T

0.6 - 7
04r
0.2 ~ h

Yy oo
-0.2 4

FIG. 1. Trajectories of 25 particles starting from the southern part
of the western boundary current in the subtropical gyre after = 1.2.
The starting and ending positions are marked by + and O, respectively.
(a) The case with a steady or time-mean wind forcing; there is no
cross-gyre transport. (b) The case with the annual wind migration of
w = 50, a = 0.2; cross-gyre transport is obvious.

ridional direction while being advected eastward by
the intergyre current. Later at ¢ = 0.6, the patch is
stretched dramatically into a new moon structure (Fig.
2b), indicating an intensified intergyre water exchange.

The reason for particles to cross the intergyre
boundary has been discussed in a similar case by Liu
(1993). When the instantaneous intergyre boundary
yo(?) migrates to the north of the intergyre boundary y
= (), two things happen. First, the instantaneous west-
ern boundary current in the instantaneous subtropical
gyre advects waters northward across y = 0 into the
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(b) t=0.6
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FIG. 2. Particle dispersion diagram showing the distributions of a patch (10 000) of particles at different times. The annual
forcingisw = 50,2 = 0.2: (a)t = 0,0.1,and 0.3; (b) = 0.6; (c) ¢ = 1.2; (d) ¢ = 1.8. The cross-gyre transport is clear. In addition,

the chaotic behavior emerges in later times (c) and (d).

subpolar gyre; second, the interior Sverdrup flow in
the instantaneous subtropical gyre transports waters
southward across y = ( into the subtropical gyre. After
half a period, when yy() moves south of y = 0, the
opposite occurs. Now, the western boundary current
transports waters into the subtropical gyre while the
interior flow advects waters into the subpolar gyre.
Thus, the exchange of water occurs through both the
western boundary and the interior of the ocean.

Figure 2¢ shows a later time at ¢ = 1.2 (after about
one advective timescale). The patch of water hits the
eastern boundary, drifting away and penetrating deeply
into both the subtropical and subpolar gyre. Part of
the particles are advected by the western boundary
currents again, converging toward the intergyre
boundary. These particles have completed about one
cycle of the circulation.

After one cycle of circulation at ¢ = 1.8, Fig. 2d sug-
gests that the particles begin to exhibit chaotic behavior.
Due to the chaotic transport, particles penetrate the
intergyre boundary back and forth. (Indeed, they pen-
etrate through each steady streamline back and forth.
The intergyre boundary is only a special one. The cha-
otic transport seems to occur first along this streamline.)
Eventually, the particles will be distributed uniformly
within the entire double-gyre basin, producing the cha-
otic mixing.

The chaotic transport across the intergyre boundary
is not surprising for one who is familiar with the chaotic
advection. Indeed, the chaotic behavior can be spec-
ulated from the structure of the basic flow field. In the
basic flow, the intergyre boundary y = 0 is connected
by two saddle points (at the eastern and western
boundaries, respectively). This is a typical orbit that
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results in chaotic advection, as studied in other cases
of chaotic advection (Yang 1993a).

To further examine the chaotic transport and chaotic
mixing, Fig. 3 shows the same annual wind case as in
Fig. 2, but with the 10 000 particles initially distributed
uniformly within the entire subtropical gyre (as shown
in Fig. 3a). At ¢ = 0.6, Fig. 3b shows that several pulses
of particles are transported across the intergyre bound-
ary. Each pulse corresponds to the cross-gyre transport
from the western boundary current during a single year,
as is obvious compared with Fig. 2b. Later, the particles
penetrate deep into the subpolar gyre (¢ = 1.2 in Fig.
3c) and start to exhibit chaotic behavior ( = 1.8 in
Fig. 3d).

As time evolves, more and more particles penetrate
into the subpolar gyre. Figure 4a presents the particle
number distribution in each latitudinal belt for Fig. 3.
Initially, all the particles are distributed in the sub-

(a) t=0

“

X

(c) t=1.2
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tropical gyre (¢ = O curve). Later at ¢ = 0.6, some par-
ticles have penetrated into the subpolar gyre, but none
have reached the northern part of the subpolar gyre
(also see Fig. 3b). Even later at ¢ = 1.8, the particles
have penetrated into the entire subpolar gyre (also see
Fig. 3d). Eventually, the chaotic mixing will result in
an equilibrium state, with particles distributed uni-
formly within the entire basin. Thus, half of the par-
ticles (5000) will stay in the subpolar gyre. This can be
seen more clearly in Fig. 4b, which plots the total par-
ticle number in the subpolar gyre with time. At about
t = 4 ~ 5, the particle number almost reaches the
equilibrium state.

Further study shows that initially the particles cross
the intergyre boundary mainly in the western boundary
layer. Later, more and more particles cross the intergyre
boundary in the interior. At any time, the penetration
through the western boundary is always in the opposite

(b) t=0.6

FIG. 3. As in Fig. 2 but the particles are initialized uniformly in the subtropical gyre as shown in (a).
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direction to that in the interior, as discussed before.
Eventually the numbers of crossing particles become
comparable between in the western boundary and the
interior (not shown). A statistically equilibrium state
is reached.

The curve of the total particle number in Fig. 4b
exhibits an exponential growth, a characteristic of cha-
otic transport. We can define the e-folding time, or the
equilibrium time .q,, as the time when the total particle
number N reaches (1 — € ')N.qu. In this case, Fig. 4b
shows that

foqu = 3.

By virtue of the equilibrium time, we can estimate the
average chaotic transport across the intergyre bound-
ary. In dimensional variables, the mean velocity due
to the chaotic transport across the intergyre boundary
18 Vaos = L/t The Sverdrup velocity in the middle
of the gyre is Verarup = L/t. Thus, the ratio between
the averaged cross-gyre chaotic transport 7 na.0s and the
Sverdrup transport Tsyerdrup 18

Viias _ tho

1
= o
TSverdrup VSverdrup

lequ

Tchaos

= 3.1
Ik
In this case, fequ =~ 3, so the averaged intergyre chaotic
transport is about one-third of the interior Sverdrup
transport. This is several times larger than that esti-
mated by Liu (1993). Since Liu’s result is based on the
calculation in an open ocean (without a western
boundary layer), it seems improper for the net cross-
gyre transport. Indeed, in a closed gyre, the intergyre
transport in the interior is the opposite to that in the
western boundary. Therefore, any reasonable estimate
of the net transport has to take into account both the
interior and the western boundary layer.

4. Exchange of water properties

The varying gyre-scale circulation produces chaotic
transport and chaotic mixing of water particles. This
will inevitably affect the distribution of the water prop-
erties. In particular, in addition to the eddy mixing due
to synoptic eddies, the chaotic mixing provides a new
mixing mechanism. The next question is which mixing
is more important.

In the ocean, the diffusivity due to the synoptic ed-
dies is at the order of 10° cm? s™! to 107 cm? s™'. A
crude estimate of the mixing coefficient is

— 72
de”(‘ldy - Leddy/ te*::ldy-

Using a typical Leagy = 50 km and %4, = 3 months,
we have dg, ~ 3 X 10° cm® s™'. This is at the same
order as those obtained from observations. Using ob-
servations of oxygen distribution, Bower and Rossby
(1989) estimated an eddy diffusivity of 2.5 X 10°
cm? 57! in the region of the Gulf Stream. For eddies

of the scale of 100 km, Georgi and Schmitt (1983) es-

LIU AND YANG

1773

300
(a)
2206
1
@
a 20
E
=)
Z
2
2
1
5 00
[«
z=1(.8
_ 30y
0 “'\,.v..v.'\.\ s
-1 0 1
y
o 4000
O 3300 }
Q
E 3co00
Zz 2300
@ 29000
0 1sca
o
a 1000 f
A soe

FIG. 4. (a) Histogram showing the latitudinal distribution of par-
ticles for the case in Fig. 3 at three times. (b) The evolution of the
number of total particles in the subpolar gyre for the case in Fig. 3.

timated eddy diffusivities on the order of 10" cm?s™".

In the following, we will see that the chaotic mixing
due to the gyre-scale circulation is comparable to the
eddy mixing.

For simplicity, we will use an idealized passive tracer
that is governed by an advective~diffusive equation.
The nondimensional equation for the tracer S can be
written as

3,5 + (Udy + 19)S = g + d(d: + 9,,)S,

where u and v are the velocities given in (2.5) and g is
a source term. The nondimensional diffusivity is d
= d*/D, where the dimensional diffusivity is * and
the unit diffusivity is chosen as

D = L%th, ~ 108 cm?s™\.

4.1)

4.2)

So d is actually the inverse of the Peclet number. The
tracer equation is solved by using a finite-differencing
scheme in a C grid, in which the flux conservation is
used for both the advection and diffusion terms. The
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time stepping is leapfrog for the advection and Euler
forward for the diffusion. Euler forward is used every
20 time steps to suppress the numerical instability due
to the leapfrog. The no-flux boundary condition is ap-
plied at the lateral boundary. The horizontal resolution
is 300 X 200 for weak diffusivity, cases (d = 0.01) and
150 X 100 for strong diffusivity cases (d = 0.1).

Figure 5 presents the evolution of a patch of tracer
advected by the annually varying flow in Figs. 2-4.
The diffusivity is at the lower limit of the eddy diffu-
sivity, d = 0.01 (or d* = 10° cm? s7!). Initially, the
tracer patch is located in the southern part of the west-
ern boundary layer in the subtropical gyre (see Fig. 5a).
The evolution at subsequent times is shown in Figs.
Sb-e. Compared with the particle dispersion diagram
in Fig. 2, the signature of the chaotic advection can be
easily identified. The cross-gyre tracer transport is also
salient.

For comparison, Fig. 6 plots the tracer evolution
due to two other diffusive processes: the pure diffusive
process and the shear dispersion process. In Figs. 6a,b,
the evolution is caused by the pure diffusive equation
[i.e., u, v = 0 in (4.1)] with the same diffusivity as in
Fig. 5. A comparison of Figs. 6a,b with the correspond-
ing snapshots due to the chaotic mixing (Figs. 5c,e)
shows that the chaotic mixing is much more efficient
than the pure diffusion. In particular, the cross-gyre
tracer transport is much weaker in the case of the pure
diffusion.

Figures 6c¢,d depict the tracer evolution due to the
same diffusion, but advected by the time-mean flow
(as in Fig. 1a) [derived by setting @ = 0 in (2.4)]. Since
the basic steady flow has a strong shear and strain along
the intergyre boundary, even in the absence of intergyre
water mass exchange one would expect the mixing of
tracer to be enhanced substantially by the shear dis-
persion effect (Young et al. 1982; Rhines and Young
1983). Figures 6¢,d show clearly that this is indeed the
case. The tracer is mixed much faster than in the case
of the pure diffusion. Part of the tracer is diffused across
the intergyre boundary into the subpolar gyre. How-
ever, compared with the chaotic mixing case of Figs.
Sc,e, the cross-gyre tracer transport is still weaker. The
message is that at the lower limit of eddy mixing, the
chaotic mixing is stronger than the eddy mixing aug-
mented by the shear dispersion. We will return to this
point later.

With a diffusivity at the stronger limit of the eddy
mixing, d = 0.1 (or d* = 107 cm? s™'), the evolution
of a tracer patch is also calculated similar to Figs. 5
and 6. The results show that the chaotic mixing is still
stronger than the pure diffusion but is comparable to
the shear dispersion mixing (not shown).

To obtain a quantitative comparison between the
chaotic mixing and other diffusive processes, the evo-
lution of the tracer density averaged in the subpolar
gyre will be calculated. In the absence of sources, the
tracer density eventually should reach an equilibrium
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state with a uniform distribution. The plot is therefore
similar to in the particle dispersion of Fig. 4b, which
can be thought as the case of the chaotic mixing with
a zero explicit diffusivity d = 0. Initially, the tracer has
a Gaussian distribution within the subtropical gyre that
is centered in the center of the subtropical gyre (see the
figure caption of Fig. 7). The evolution of the average
tracer density in the subpolar gyre is presented in Fig.
7 for various diffusivities and advections. In each panel,
the solid, dashed, and dotted lines represent, respec-
tively, the annual wind case with chaotic mixing, the
time-mean wind case with shear dispersion, and the
pure diffusion case. In Fig. 7a, the diffusivity is taken
as the lower limit of the eddy mixing d = 0.01. Ob-
viously, the fastest growth occurs in the case of the
chaotic mixing. At the time of { ~ f.qy = 3, the tracer
density has reached about the e-folding level of the
equilibrium. This is similar to the particle dispersion
in Fig. 4b, suggesting that the diffusion level d = 0.01
has little impact on the chaotic mixing. In contrast,
both the pure diffusive case and the shear dispersion
case exhibit much slower accumulation of tracer in the
subpolar gyre.

Figure 7b is the same as Fig. 7a but at the upper
limit of the eddy mixing diffusivity d = 0.1. The chaotic
mixing case is almost the same as the time-mean wind
case, both being much faster than the pure diffusion.
This suggests that the chaotic mixing is still stronger
than the pure diffusion. However, the chaotic mixing
is no longer effective in the presence of the shear dis-
persion and a strong diffusivity of d = 0.1.

Furthermore, compare Fig. 7b with Fig. 7a. The
chaotic mixing in Fig. 7a is stronger than the pure dif-
fusion case but comparable with the shear dispersion
case in Fig. 7b. This suggests that chaotic mixing with
a weak eddy mixing (d = 0.01) is stronger than pure
diffusion but comparable with shear dispersion at the
upper limit of eddy mixing (d = 0.1).

If diffusivity is increased further to d = 0.3, the evo-
lution of tracer density is shown in Fig. 7c. Now the
diffusion becomes dominant. The evolution differs little
for the three cases. Thus, neither shear dispersion nor
chaotic mixing is effective. The diminished effect of
shear dispersion is expected at large diffusivity with the
Peclet number close to 1 (Young et al. 1982; Rhines
and Young 1983).

Furthermore, the pure diffusion curve in Fig. 7¢ is
comparable with the chaotic mixing curve in Fig. 7a,
implying that the chaotic mixing is comparable with
the pure diffusion with the diffusivity of d = 0.3 (d*
=3 X 107 cm?s™!). This can indeed be estimated from
the dimensional analysis according to

d* ~ L%, (4.3)

(Notice that f.q, =~ 3, so t&, =~ 3t =~ 40 yr.) The
strong mixing due to gyre-scale chaotic transport is not
surprising if one considers the dimensional argument
for diffusive timescale in (4.2). The mixing coefficient
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t=0

=

FiG. 5. Evolution of a patch of tracers from the initial distribution of § = exp[—(x/0.1* — ((v
+ 0.75)/0.1)*] for the annual forcing case in Figs. 2-4. The diffusivity is the lower limit of the eddy
mixing with d = 0.01: () 1 = 0, (b) 1 = 0.3, (c) £ = 0.6, (d) = 1.2, and (e) ¢ = 1.8. Contour interval
is 0.05. The unit for contour labeling is 0.01. Contour values larger than 0.2 are not drawn. The
resolution is 300 X 200.

is proportional to the scale of the circulation although slow gyre circulation corresponds to a decadal timescale
it is inversely proportional to the timescale. Compare that tends to reduce the mixing coefficient, but the large
the gyre-scale circulation with the synoptic eddies. The basin scale tends to increase the mixing coefficient.
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“t=1.2

FIG. 6. Evolution of a patch of tracers with the weak eddy mixing case as in Fig. 5. The initial distribution is as in
Fig. 5 but for the pure diffusive case (a) ¢ = 0.6 and (b) ¢ = 1.2, and the steady flow case (c) t = 0.6 and (d) ¢ = 1.2.

It can also be expected that the chaotic mixing has
a great impact on the tracer distribution. Figure 8 pre-
sents the equilibrium state of the tracer distribution
forced by a steady source g = —y with an initial dis-
tribution of zero everywhere. In a very crude sense,
this can be thought of as the vertically averaged tem-
perature or salinity distribution in the thermocline
forced by a differential heat or freshwater flux. The
diffusivity is taken as the weak eddy mixing of d = 0.01
except in Fig. 8c, where the strong diffusivity 4 = 0.1
is used. Figure 8a shows the case with a steady circu-
lation, so only the shear dispersion mixing is present.
The weak meridional tracer flux results in a large me-
ridional tracer gradient. An intense frontal zone is
formed along the intergyre boundary in the western
part of the basin. When the wind migrates annually as
in the previous Figs. 2-4, the annual mean tracer dis-
tribution presented in Fig. 8b shows a much smoother
tracer distribution than in Fig. 8a. The meridional gra-
dient is reduced dramatically. This occurs because the
chaotic mixing enhances the meridional tracer flux sig-

nificantly. This tracer distribution bears much resem-
blance to the equilibrium state forced by a steady wind
but with strong diffusion, d = 0.1, as shown in Fig. 8c.
Therefore, once again, the experiments confirm that
chaotic mixing is able to intensify the diffusion signif-
icantly. The tracer flux resulting from the chaotic mix-
ing is comparable to that in the strong diffusivity case
enhanced by shear dispersion.

The snapshot under the annual wind forcing actually
differs from the annual mean dramatically. As shown
in Fig. 8d, the snapshot tracer distribution exhibits a
strong meandering near the intergyre boundary. The
meandering structure is obviously caused by the inter-
gyre chaotic transport. This can be recognized if one
compares Fig. 8c with the particle dispersion in Fig. 3.
The tracer gradient along the intergyre boundary is
much stronger than the annual mean in Fig. 8b, but
still much weaker than the steady wind case in Fig. 8a.

In short, chaotic mixing can enhance the weak dif-
fusivity of * = 10® cm? s~ ! significantly. The resultant
mixing is comparable to that in the pure diffusive pro-
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FIG. 7. Evolution of tracer density averaged in the subpolar gyre for various advection and eddy mixing coefficients. The initial distribution
is § = exp[—((x — 1)/1)* — ((y + 0.5)/2)*]. The final equilibrium density is indicated by diamonds. (a) The weak eddy mixing case with d
= 0.01. The solid line is the case with the annual wind forcing as in Figs. 2-5. The dashed line is the case with the time-mean wind forcing.
The dotted line is the case of pure diffusion. (b) As in (a) but for the strong eddy mixing case with 4 = 0.1. (c) As in (b) but for an even

stronger mixing of 4 = 0.3. In (a) the resolution is 300 X 200; in (b) and (c) the resolution is 150 X 100.

cess with a strong eddy mixing of about d* ~ 3 X 107
cm? 57!, or the mixing is comparable to that under a
shear dispersion process with strong diffusivity on the
order of d ~ 10" cm? s™!. But, under strong diffusivity

the chaotic mixing is no longer efficient.

5. Interannual and decadal frequency cases

In this section, we further examine the chaotic
transport forced by different frequencies and ampli-
tudes of wind migration. Figure 9 plots the distribution
of 10 000 particles at ¢ = 1.8, similar to that in Fig. 2d,
but with different frequencies and amplitudes of forc-
ings. Compared with the standard annual wind case in
Fig. 2d (w = 50, a = 0.2), the chaotic behavior is much
weaker for a much lower frequency (w = 5, a = 0.2,
Fig. 9a) or a higher frequency (v = 200, a = 0.2, Fig.
9b). The chaotic behavior becomes also weak if the
amplitude is too small (w = 50, a = 0.05, Fig. 9¢) or
too large (w = 50, a = 0.5, Fig. 9d). Thus, there seems
to exist an optimal forcing frequency and amplitude
for the chaotic transport.

This conclusion can be seen more clearly in Fig. 10.
Similar to Fig. 4b, 2500 particles are initialized uni-
formly in the subtropical gyre (see Fig. 3a). The evo-
lution of total particle number in the subpolar gyre is
presented for five different frequencies (¢ = 0.2, w
= 0.5, 2, 10, 50, 200) in Fig. 10a and five different
amplitudes (w = 50, a = 0.05, 0.1, 0.3, 0.5, 0.7) in Fig.
10b. In Fig. 10a, the particle number with the frequency
w = 10 (about 5-yr period) reaches the equilibrium
(1250) the fastest. The e-folding level (1 — ¢ %1250
=~ 790 is indicated by an arrow. The equilibrium time
is then about t,, ~ 2.3. The annual frequency case w
= 50 is the second fastest with the z.q, =~ 3.3. For higher

or lower frequencies, the evolution becomes much
slower with f.q, > 10. In Fig. 10b, the particle number
with an amplitude of @ = 0.3 reaches the equilibrium
the fastest with #.q, =~ 2.8. The case with a = 0.5 is the
second fastest with zq, =~ 6. Other cases with higher
or lower amplitudes evolve much slowly with Z., > 10.

Figure 11 plots the equilibrium time .o, with respect
to different frequencies and amplitudes of forcing cal-
culated similar to in Fig. 10. Evidently, for each am-
plitude, there is a finite optimal frequency (the smallest
fequ), Tanging from interannual (v = 30) to decadal (w
= 2) if we choose 7.4, < 2. For very large amplitudes,
the optimal frequency is in the decadal timescale with
lequ < 1. For these optimal forcings, the estimate of the
chaotic intergyre transport in (3.1) implies that the
chaotic transport is more than half of the total Sverdrup
transport. The estimate of the mixing coefficient in (4.3)
then implies that the equivalent mixing coefficient is
more than 5 X 107

It is also evident that for each frequency, there is an
optimal forcing amplitude. For annual to decadal fre-
quency w > 5, the optimal amplitude is rather constant,
at about @ = 0.32. This corresponds to a migration of
about 1300 km and is similar to the annual forcing
case. For frequencies lower than decadal the optimal
amplitude seems to become larger, ranging from a
=05t0a=0.7.

Hence, for amplitudes not too large, the optimal fre-
quency is at interannual to decadal frequencies. Intu-
itively, this seems reasonable. For trajectories, these
forcing frequencies seem to be able to excite some sort
of resonance with the advection of the gyre circulation.
However, the existence of an optimal frequency is dif-
ferent from both the open ocean case of Liu (1993)
and the shear dispersion case (Young et al. 1982;
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FIG. 8. Near-equilibrium tracer distribution forced by a tracer source g(y) =

—- (a) The distribution at ¢ = 30 for a weak diffusion 4

= 0.01 and a steady wind. (b) The annual mean and (c) a snapshot of tracer distribution at # = 10 for the weak diffusion d = 0.01 and the

annually migrating wind. (d) The tracer distribution at ¢ =

10 for the strong diffusion d = 0.1 and the steady wind. The contour interval is

0.5. The annual mean distribution for the chaotic mixing case in (b) is similar to the strong diffusion case in (d), but is much smoother than
the weak diffusion case in (a). The snapshot in () illustrates strong meandering of the intergyre current, which is smeared out in the annual
mean plot in (b). The resolution is 300 X 200 except for (c), which has a resolution 150 X 100.

Rhines and Young 1983). In the latter two cases, the
intergyre transport or the enhanced diffusive flux is
inversely proportional to frequency. In both cases, the
flow field is not closed. Thus, we speculate that the
monotonic dependence on frequency is caused by the
lack of a closed system.

The dependence of the chaotic transport on am-
plitude is somewhat surprising. In an open ocean,

Liu (1993) suggests that the intergyre transport in-
creases with forcing amplitude. Intuitively, this seems
to be reasonable even in a closed basin. Here, with -
small amplitude forcings, the chaotic transport in-
creases with the forcing amplitude. However, at large
amplitudes, the chaotic transport decreases with the
forcing amplitude. The physical mechanism is un-
clear to us.
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FIG. 9. Particle distribution at ¢ = 1.8 with the initial position the same as in Fig. 2a: (a) w = 5, a = 0.2, (b) @ = 200, g
=0.2, (c) w = 50, a = 0.05, (d) @ = 50, a = 0.5. Compared with the standard annual forcing case in Fig. 2d, the chaotic

behavior is less for all cases.

6. Discussions

The effects of the annual migration of the wind stress
field on the intergyre transport in a double-gyre cir-
culation are investigated. It is found that the trajectories
of the water columns advected by the gyre-scale cir-
culation exhibit a strongly chaotic behavior. The re-
sulted cross-gyre chaotic transport amounts to about
one-third of the Sverdrup transport in a single gyre.

The chaotic intergyre transport causes strong mixing
between the two gyres. The study with a passive tracer
shows that the equivalent diffusivity of the chaotic
mixing is on the order of 10’ cm? s™!, comparable to
that estimated for strong synoptic eddies in the region
of the Gulf Stream.

The chaotic transport is the strongest under
the migration with frequencies from interannual to
decadal, and with the migration distance of about
1000 km.

We propose the chaotic transport due to the annually
migrating wind as an important mechanism for the
intergyre exchange for both the water mass and water
properties. In the middle and eastern part of the inter-
gyre current in the upper ocean, such as the North
Atlantic Current, observations and GCM studies show
that the intergyre current is not able to cause water
exchange because the strong intergyre current tends to
advect waters toward the eastern boundary (Bower and
Rossby 1989; Lozier and Riser 1990). For water prop-
erty exchange, even after taking into account the shear



1780

1300 —— e

1000}

t

so0f / /7 :

Particle Number

1300

1000 |

500f

Particle Number

F1G. 10. Evolution of the total number of particles in the subpolar
gyre similar to Fig. 4b. N; total number of particles is 2500: (a) a
= 0.2, and w varies as 0.5, 2, 10, 50, and 200. (b) w = 50 and a varies
as 0.05, 0.1, 0.3, 0.5, and 0.7. The level to calculate the equilibrium
time (e-folding level) is indicated by the arrow.

dispersion effect due to the gyre flow, the weak eddy
activity (with a diffusivity at the order of 106 cm? s™")
still produces a much weaker intergyre mixing than
that due to the chaotic mixing (Figs. 7, 8). In the western
part of the intergyre current such as the strongly mean-
dering Gulf Stream, or in the deeper thermocline where
the intergyre current is weak, the strong mixing caused
by synoptic eddies (d* is at the order of 10’ cm? s™!)
seems to be important, as suggested by Bower (1991).
In addition, the strong shear near the western boundary
may produce a strong shear dispersion, augmenting
the mixing significantly. Thus, the intergyre transport
and mixing due to the migrating wind is comparable
to the effect of these strong eddies.

The concept of the chaogtic transport and chaotic
mixing can be applied to the general oceanic circulation
of various spatial and timescales. In general, the chaotic
advection may exist in a 2D time-dependent flow or
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in a 3D flow (steady or unsteady). At the scale of syn-
optic eddies, for example, the meandering of the Gulf
Stream can also produce the chaotic transport across
the intergyre boundary at a timescale of months. In-
deed, the intergyre transport due to the meandering is
perhaps to a large extent caused by the resultant chaotic
mixing. In Bower’s study, she was able to explain the
capture of the particles by the meandering of the Gulf
Stream using a stationary wave pattern. However, with
the stationary meandering, there is no cross-stream
particle exchange at all. Samelson (1992) demonstrated
that with the amplitude of the meandering varying with
time, a cross-jet transport is produced due to chaotic
advection. Our preliminary results (not shown) also
demonstrate that the addition of another traveling wave
will result in chaotic transport across the jet. This in-
deed can be speculated from the previous works on
chaotic advection, which show (Yang 1993a,b) that
particles can cross the traveling Rossby waves due to
the chaotic advection. In either case, the chaotic cross-
jet transport offers an explanation for the cross-stream
particles observed in the real ocean and GCM exper-
iments.

Therefore, the cross-gyre mass transport can be pro-
duced by eddies in two ways. The first is the detachment
of eddies from the meandering current. This mecha-
nism can be observed directly from the Eulerian flow
field and has been used traditionally to explain the
crossing of the particle trajectories in observations and
GCM simulations. The other is the chaotic transport
produced by the meandering of the current. The chaotic
transport cannot be observed directly from the Eulerian
field. For example, Bower and Rossby (1989) observed
that in the Gulf Stream region some floats that escape
from the Gulf Stream are not accompanied by a de-
tached eddy. It is very likely that these floats are caused
by the chaotic advection. Thus, one should be cautious
in explaining the float trajectories in observations and
GCM experiments.

The intergyre chaotic transport discussed above can
be applied to other intergyre transport such as the sub-
tropical-tropical water exchange. Recent studies (Liu
1994; Liu et al. 1994) show that under a steady wind
the mass exchange between the subtropical and tropical
upper oceans are carried mainly by the poleward Ek-
man flow and the subsurface geostrophic flow. How-
ever, observations also show a large migration of wind
patterns in the adjacent region between the subtropics
and the Tropics. This migrating wind may also produce
an intergyre exchange between the subtropical gyre and
its equatorial neighboring gyre (including the North
Equatorial Counter Current) caused by a positive wind
curl. The cross-equator exchange also poses an inter-
esting topic (Ping Chang 1993, personal communica-
tion). The key element is that, in all the cases, the in-
tergyre boundary is an orbit connected by two saddle
points on the eastern and western boundaries (the so-
called heleroclinic orbit). Thus, the intergyre boundary
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F1G. 11. The equilibrium time ., calculated similar to in Fig. 10 for various frequencies and am-
plitudes. It shows that the optimal frequency occurs at about w =-30 to 2 (interannual to decadal),
while the amplitude is about a = 0.3 to a = 0.5. The contour values larger than 10 are not plotted.

is intrinsicly a chaotic orbit upon perturbation. Fur-
thermore, in principle, the three-dimensional steady
circulation may also exhibit chaotic transport.
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