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ABSTRACT

A two-layer thermocline model is modified by adding an essentially passive mixed layer above it. The surface
temperature variation is simulated by a moving outcrop line, It is found that, in contrast to a surface wind
stress, a surface temperature variation causes strong variability in the ventilated zone through subducted water,
while it affects the shadow zone little.

Two types of buoyancy-forced solution are found. When the outcrop line moves slowly, the solutions are
nonentrainment solutions. For these solutions, the surface heat flux is mainly balanced by the horizontal advection
in the permanent thermocline. The mixed layer never entrains. The time-mean thermocline is close to the
steady thermocline with the time-mean outcrop line.

When the outcrop line moves southward rapidly during the cooling season, the solutions become entrainment
solutions. Now, deep vertical convection must occur because the horizontal advection in the permanent ther-
mocline is no longer strong enough to balance the surface cooling. The time-mean thermocline resembles the
steady thermocline with the early spring mixed layer, as suggested by Stommel. The local variability in the
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permanent thermocline is most efficiently produced by decadal forcings.

1. Introduction

Previous work on thermocline variability has em-
phasized the forcing of variable wind stress and the
planetary waves excited at the oceanic eastern bound-
ary (e.g., Anderson and Gill 1975). However, the sur-
face buoyancy flux also exhibits strong variability at
annual and decadal time scales, which is manifested
by strong variability of surface temperature (or density
if we assume a definite 7-S relation ) and mixed-layer
depth. For instance, the annual surface temperature
variation can be seen clearly in Figs. 1a,b (from Levitus
1982), which present the surface density of the World
QOcean in spring and fall, respectively. The dot-con-
nected lines mark the 24¢, in the North Pacific and the
260, in the North Atlantic. Both isolines vary from
about 25° to 50° from spring to fall. This north-south
migration distance is about the width of the subtropical
gyres in both oceans. At the same time, the mixed-
layer depth in the northern part of a subtropical gyre
varies from 25 m in summer to more than 200 m in
winter (Levitus 1982). These observations imply a
strong variation of annual surface heat flux.

To date, few theories have been proposed to study
the effect of a variable surface heat flux on the ther-
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mocline. One difficulty arises from the fact that the
surface buoyancy flux influences the permanent ther-
mocline through a mixed layer. Therefore, it is equally
crucial to consider the dynamics of both the mixed
layer and the thermocline on annual and decadal time
scales. A deeper mixed layer can store more heat and
therefore reduces the anomalous heat flux affecting the
permanent thermocline. Hence, with a given surface
buoyancy flux, the vanability in the permanent ther-
mocline depends heavily on the coupling between the
mixed layer and the thermocline. Recently, the study
of the coupling between the mixed layer and thermo-
cline has concentrated on steady cases. Either the mixed
layer is essentially passive (i.e., with the density and
depth specified) (e.g., Pedlosky et al. 1984; Huang
1989; Wang 1990; Pedlosky and Robbins 1991) or the
thermocline is somewhat specified (e.g., Marshall and
Nurser 1991). The effect of a sloping mixed-layer depth
has been emphasized as important in enhancing the
ventilation effect. However, so far, no theory has been
presented for time-dependent coupling.

This paper is an attempt toward understanding the
coupling between a time-varying mixed layer and the
permanent thermocline. The major issue addressed
here is, How does the thermocline respond to a varying
surface heat flux at annual and decadal time scales? As
a first step, the surface buoyancy flux variation is rep-
resented by a variable surface temperature or density,
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FIG. 1. The sea surface density [sigma-¢ (10> g cm™>)] for (a) the mean of February, March, and April and (b) the mean
of August, September, and October. The dot-connected lines represent the 24 and 26 sigma-¢ lines in the North Pacific and

North Atlantic, respectively (after Levitus 1982).

which in a layered model is equivalent to moving out-
crop lines. To account for vertical convection, in sec-
tion 2, a two-layer planetary geostrophic model is
modified by adding a mixed layer on the top. The
mixed layer is essentially passive in that the outcrop
line and the mixed-layer depth are specified. Neverthe-
less, the velocity in the mixed layer is coupled with
that in the thermocline through pressure. Section 3
considers the case with a slow outcrop line, which is
produced by a weak surface heat flux. In the absence
of a mixed layer, all solutions will be found gravita-
tionally stable. For these solutions, the surface buoy-
ancy flux anomaly is balanced by the horizontal tem-
perature advection alone. Thus, no convection will de-
velop. All the water subducts from the mixed layer

into the thermocline, and there is no entrainment.
Thus, these solutions will be called “nonentrainment
solutions.” However, if the surface cooling is very
strong, the outcrop line may move southward faster
than the particles near the surface. In that case, all so-
lutions without a mixed layer become gravitationally
unstable, implying the occurrence of deep convection.
This is studied in section 4. In that case, it will be shown
that stable solutions must have entrainment into the
mixed layer. Thus, these solutions will be called “en
trainment solutions.” A convective scheme is devel-
oped to entrain waters into the mixed layer. In this
way, stable solutions can be obtained. We will also dis-
cuss some features of the entrainment solution, which
will be seen differing significantly from those of the
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nonentrainment solution. Our major issue about ther-
mocline variability is discussed in section 5. It is seen
that the thermocline variability is determined by the
subduction potential vorticities. For interannual and
decadal flux anomalies, the variability increases its
amplitude dramatically with period, implying that a
decadal buoyancy forcing is efficient in forcing vari-
ability in the permanent thermocline.

Finally, the mixed layer deserves a further remark
in its own right. Traditionally, the seasonal ther-
mocline has been investigated with a 1D model
(Turner and Kraus 1967; Kraus and Turner 1967,
Warren 1972; Gill and Turner 1976; Niiler and
Kraus 1977). However, in the area where the net
annual buoyancy flux is large, a 1D model is likely
to be no longer valid. Particularly in regions with net
surface cooling, in a 1D model either the convection
has to penetrate deeper and deeper or the surface
temperature has to get colder and colder, because
there is no other mechanism to balance this net
buoyancy loss on the surface. Thus, on climate time
scales, the locally unbalanced net heat flux should
be balanced by horizontal advection (Woods 1985).
Accordingly, in order to study the surface buoyancy
effect on the basin-scale circulation at interannual
time scales, it is essential to include horizontal ad-
vection as has been noted by Woods (1985). Since
this paper concentrates on climate-scale variation, it
is crucial to include the horizontal advection. This
is indeed the case in our model, although the mixed
layer in our model is crude and essentially passive.
Our results thus may have important implications
for the dynamics of the mixed layer.

2. A thermocline model with a time-dependent
mixed-layer depth

To account for vertical convection in a subtropical
gyre, one proper way is to add a mixed layer onto the
thermocline. As shown in Fig. 2, our improved model
has a mixed layer above the two-layer ideal fluid ther-
mocline. The density and thickness of the upper layer
are represented by p, and A,, respectively. The density
and thickness of the bottom layer are represented by
prand A, = H — h,, — h,, respectively. The total depth
of the model thermocline is H, which is chosen to be
rigid and flat. The outcrop line is located at the latitude
with the Coriolis parameter fy. The density p,,(x, f, )
in the mixed layer satisfies gravitational stability and
equals the upper-layer density at the outcrop line;
that is, p,, < p, for f > fo, pm < py for f < f;, and
(X, 13 Ol =iy = P13 Bm(x, f, ) is the mixed-layer
depth.

To derive the equations, we first integrate a hydro-
dynamic equation in each layer to obtain the dynamic
pressures
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FIG. 2. Schematic figure of the model with one mixed layer and
two ideal fluid layers. The model takes the thickness of the Ekman
layer zero.

P B o+ vz (2.1a)
Pm Po
L (2.1b)
P1 Po
222 = h) =~ Yohmy  (210)
P2 Po
where pg is the mean density and
h=hm+h1,h+h2:H:
= Pm\X, ,Z
0<7m(x,ﬁt)=&__wg,
Po
v = £ P £ = const; (2.2)
Po

7 is the scaled surface elevation equivalent to the upper-
layer pressure such that yn = po(Psurface + &) Where £
1s the surface elevation. In the mixed-layer pressure
(2.1a), the first term is due to the pressure near the
surface, while the second term is due to the variable
density in the mixed layer. The outcropping condition
is h1|f=ﬁ) =0, or

sy = Pim. (2.3)

As a first step to study the effect of a variable surface
heat flux, we specify the mixed-layer density (~+,,)
and depth (£,,), while we leave the mixed-layer velocity
coupled with the thermocline through dynamic pres-
sure. For basin-scale motions, the momentum equation
in each layer reduces to the geostrophic balance

1
(Up, V) = ]E (—Dmys Dmx)

1
(u, v) = ﬁ(—ply,plx)

1

(42, 1) = }% (= D2y, D2x).- (2.4)
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The remaining unknowns are n and A, which can be
derived from the Sverdrup relation and potential vor-
ticity conservation in the bottom layer. Now, the baro-
tropic velocity is

0
f deZ + l’llvl + h2V2
B

1
% =vg= }% k X Vpg. (2.5a)

Then, the barotropic pressure can be found from (2.1),
(2.4), and (2.5a) as

Po
=~ [2H(Y1 = Ymhm
Ds 2H7[ (Y1 = Ymhim)

+ Ymh2, + y(H — h)?*].  (2.5b)

The Sverdrup relation is §( f?,,m Vmdz + hyv; + hyvy)
= fw,. Using (2.1), (2.4), and (2.5b) and assuming a
flat bottom H = const, the Sverdrup relation can be
integrated explicitly as

pp = poYD?/2H + pgg, (2.62)

where

D* = ZfZJ; wedx/BY, Dee = Dal,,» (2.6b)

where the eastern boundary has been set at x = 0.
Hereafter, the barotropic transport into the eastern
boundary is assumed zero, or equivalently,

PBE = 0. (26C)

The potential vorticity conservation in the bottom layer
is (8, + v, VY[ f/(H — h)] = 0. Substitution of (2.4)
and (2.6) into this equation yields the equation for the
depth h = h,, + h; as

1

. 1 2

h,+ vg-Vh JHT J(¥mhtin, h)
_ _‘8_ _ﬁ 2 2

2f2 (1 H)('Ymhm + vh* )

h
= —-(1 - E)we. (2.7)

Hereafter, the y coordinate will be changed to an f
coordinate with the aid of df = Bdy.

Now, we nondimensionalize equation (2.7). Super-
scripting a dimensional quantity by an asterisk, we have
the nondimensional quantities

f* '8* l* x* h*
:—, =——, t:———, x:——’ h=——’
4 Jn B Bo w L H
w* T h
=-— m = Hp=—. 2.8
W Tm T h 1 (2.8)

In (2.8), W, f,, B, H represent, respectively, the typical
Ekman pumping velocity, the Coriolis parameter at
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the northern boundary of the subtropical gyre, the
mean 3 value in a subtropical gyre, and the total depth.
In addition, Tw = H/W, vy = 2 ecms 2, L = Cgy
X Tw, and Ceyr = Bo X Lb = yH/[f2%, where L and
Csp are the deformation radius and the typical mid-
latitude Rossby wave speed; Ty is then the advective
time scale for a particle to sink to the bottom of the
main thermocline. By Sverdrup relation, one can show
that Ty is also the time scale for a particle driven by
the wind to cross the basin; L is the zonal scale across
which a midlatitude planetary wave travels in one ad-
vective time scale. If we choose the parameters as W
=10"%cm s, £, =2Qsin(45°) = 10"*s~!, H = 600
m, and By = (2Q/a) cos(35°) = 1.87 X 107 B3 s~ cm™!,
it follows that Ty = 20 years, L =~ 8400 km, Cgy
~ 1.6cms™}, and Lp ~ 33 km.

In the light of (2.8), (2.7) can be put in the dimen-
sionless form:

1
h+ vg-Vh — 57 J(¥mh, h)

1
- Eﬁ(l ~ B)(Ymhb + h*)x = ~(1 — h)w,, (2.92)
where by virtue of (2.5) and (2.6) the barotropic ve-
locities are found to be

up = —fo (f*we)dx/ f, ”B(E ‘Z{’) = fwe.  (2.9b)

Thus, the barotropic velocity is determined by the
Sverdrup relation. Furthermore, for our essentially
passive mixed layer A,,, v, will be specified. Thus,
(2.9a) is a quasi-linear equation. For simplicity, we
will adopt a special mixed layer whose density and
depth are zonally independent; that is, dxvy,, = 9/,
= (). Equation (2.9a) then reduces to

1 h(1 =),
2f r? )
= —(1-h)w.. (2.10)

In particular, if the mixed layer vanishes, #,, = 0 (2.10)
[or (2.9a)] degenerates to (for 4 = A,)

h+vpgVh+ C(h)he=—(1 - h)w,, (2.11)

where C(h) = —h(1 — h)/f? is the planetary wave
speed. This is the equation for a two-layer model, which
has been used by Liu (1993a,b) to study the effect of
a variable Ekman pumping. Finally, we should point
out that in (2.9) we have used the §-plane approxi-
mation (or a constant 3).

h+vg-Vh + (Ymho)r—

3. Slow outcrop line case: Nonentrainment solutions
a. The solution
1) CHARACTERISTIC EQUATIONS

We start with the case of a slowly moving outcrop
line. Now the surface cooling is weak, so one may ex-
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pect that the convection is not strong. Therefore, we
use the model without a mixed layer 4,, = 0, that is, a
two-layer planetary geostrophic model (2.11). The
characteristic equations for (2.11) are

dt

! (3.12)
d

;j:= vp = fw, (3.1b)
dh

g=—(1—h)we(x,f,t) (3.1¢)
dx _

75 - w0 —h(1 = h)/f?

=—(f2fxwedx) /f— h(1=h)/f*  (3.1d)
0 7

Here s is the distance from the initial time along a
characteristic curve, It is linearly proportional to time.
The initial conditions for characteristics are

(taf; h;x)|s=0:(ti>ﬁ’hi5 xi)- (3'2)

Division of (3.1b) and (3.1¢) recovers the potential
vorticity conservation along the characteristics

d(_f \_ S f
ds(l—h) O o T TR

Since our main interest is the surface buoyancy flux,
the Ekman pumping will be set steady. For simplicity,
the Ekman pumping is also taken to be zonally inde-
pendent, or w, = w,(f). Equation (3.1) can then be
simplified as follows. First, (3.1a,b) are solved directly
as

(3.3)

t=t+s (343)

i .
5= ff dufpwe(), orimplicitly £ =F(f, 5).

(3.4b)

Then, using potential vorticity conservation (3.3) to
replace the 4 equation (3.1c) and noting the initial
conditions in (3.2), we have the 4 solution in char-
acteristic coordinates as

h=1-(-h)flf, (3.4¢)

where fis given in (3.4b). Finally, for the x equation,
we use the differential form of (3.4b) ds = df/fw.(f)
to replace the characteristic variable s by fin (3.1d).
Then, noting (3.3), (3.1d) can be rearranged as
d 1—h

— [xf*w()] = ———h.

df Ji
Substituting (3.4¢) into the 4 on the right-hand side,
the preceding equation can be integrated along the
characteristics ( thus, ¢;, f;, 4;, X; are constants) to yield
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212w (f)x = 2f Fwel f)x: + h* — hi. (3.4d)

The fand 4 are determined in (3.4b,c). Equations
(3.4a-d) are the simplified version of characteristic
equations. With proper initial conditions in (3.2), (3.4)
will give the solution over the entire gyre.

2) VENTILATED ZONE

Since we will study periodically forced solutions after
the initial adjustment, characteristics for the solution
in the gyre start either from the outcrop line or the
eastern boundary. [For a complete discussion of the
solution of (3.1) including the initial adjustment pe-
riod, the reader should refer to Liu (1991, 1993a).]
The variation of sea surface density is simulated by the
motion of an outcrop line. For simplicity, we adopt a
zonal outcrop line varying with time; that is, Ay
=0 and

Jo = fo(2). (3.5)

This motion of the outcrop line can be thought of as
caused by the net buoyancy effect or the combined
surface and bottom buoyance effect on the mixed layer.
If we want to derive a solution at a time ¢, all charac-
teristics must start before this time; that is, #; < ¢. Thus,
with (3.5), characteristics originating from the outcrop
line have the initial conditions

fi=f(t), hi=0. (3.6)

Substitution of (3.6) into (3.4a,b,c) yields the char-
acteristic solution in its parametric form

F=flft), t— 1= f*(1, 1), (3.7a)
h=1—f*t, ) fo(t:)=h*(t, t;). (3.7b)

In the special case when the outcrop line in (3.5) is
steady, (3.7b) alone gives an explicit solution 4 = 1
— f1 /o, which is the solution for a steady ventilated
zone in the two-layer model (see section 3 of Liu
1993a). For convenience, the solution (3.7) will be
called the ventilated zone solution even with a moving
outcrop line (3.5).

The physics of the parametric solutions f*(¢, ¢;) and
h*(t, t;) in (3.7) can be made clear as follows. At a
time ¢, a lower-layer water column at a latitude fwas
subducted from the outcrop line at a previous time ¢;:

u=1(f, 1)<t f=re (0l (37¢)

The interface depth at this latitude is A = 2*[t, 7(f,
t)] = h(J, t). Therefore, this water column always re-
members its subduction time 7(f, ¢). It is important
to notice that the subduction time is independent of
the thermocline structure 4 in (3.7b). In fact, 7 is de-
termined by the f in (3.7a), which is derived from the
f characteristic equation df/ds = fw,. This equation
is solely determined by the Ekman pumping and in-
dependent of /. Hence, during the evolution, each wa-

L<t.

for <1t

where
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ter column in the lower layer remembers its subduction
time and then can be labeled by the time according to
(3.7a) or (3.7c) [independent of (3.7b)!]. In particular,
at the latitude of the outcrop line f = f,(¢), the water
column is subducted at the present time ¢ = ¢. In
(3.7¢), this suggests the identity ¢ = 7[ fp(¢), ¢].
Figures 3a,b demonstrate schematically how the pa-
rameters for a water column are determined at latitude
f = F and time ¢. Since all subduction occurs before
the present time ¢, the subduction time 7 terminates
at 7 = tin Fig. 3a. In this case, the outcrop line moves
so slowly that its southward velocity is never faster than
the particle velocity or 0 > f, > vg(fy). Therefore, no
water column will be overtaken by a water column
subducted later. In other words, at any time, the more
north a water column is located, the later will be its
subduction time, or equivalently, 7(f, ¢) increases
monotonically with latitude as shown in Fig. 3a.
Therefore, at each latitude F, the water column has a
single subduction time 7(F, ). The labeling is done
as follows. First, we find the subduction time for the
water at latitude F from (3.7c) or (3.7a) as 7 = 7(F),
t) as shown in Fig. 3a. Then, at latitude F, we find the

a
T Ve [fo(t) I < fo(t)
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depth of the interface from (3.7b) as A = h*[¢, 7(F,
¢)]. Thus, at F, the water column has an interface at
A* and can be labeled by 7(F, ¢) as shown in Fig. 3b.

With (3.7b,¢), one may note that the potential vor-
ticity g = f/(1 — h)y=f/ {1 — h*[¢, 7(f, )]} is constant
on a latitude in the ventilated zone. This occurs be-
cause, first, the flat bottom and zonal outcrop line pro-
duce a constant subduction potential vorticity g, = f/
(1 — h)| =4 = fo, which is uniform along the outcrop
line, and second, the meridional velocity in (3.2b) is
also zonally independent [with w, = w,(f)]. The uni-
form subduction potential vorticity is advected south-
ward. This produces a ventilated zone with a potential
vorticity field, which is zonally uniform.

3) SHADOW ZONE

The solution (3.7) occupies only part of the basin.
In the other part of the gyre, the solution is established
by characteristics starting from the castern boundary.
For an eastern boundary interface depth A.(/, ) at x
= (, the initial conditions for these characteristics are
xi=0,h =h(fi,t;) =0, whenf < f(t;)and t; < t.

C
Ve[ f(t) ] > fot)

a

F1G. 3. The schematic figure showing how the interface solution is determined and labeled by the subduction
time 7(, ¢) at a given time . (a) and (b) Slow outcrop line case. Panel (a) shows 7 as a monotonic function
of fbecause later water cannot catch up with an earlier subducted water; 7 is single valued. Panel (b) shows
the A* profile, which is labeled by the subduction time according to (a). The 4 profile is stable. (¢) and (d):
Fast outcrop line case (during entraining stage). Now, because a later subducted water catches up with an
earlier subducted water in (d), 7 is double valued in (c), with the later branch 7+ and the early branch 7~.
Corresponding to the double value 7 function, the solution is unstable. Also shown schematically is the 7,(¢)
function mapping, which gives the corresponding seasonally subducting time and determines the convective

scheme used in (4.9a).
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Here, for convenience, the depth of the eastern bound-
ary interface has been set to zero. Thus, (3.4d) gives
the solution

h =21%w.(f)x, (3.8)

The thermocline structure is independent of the out-
crop line. Indeed, (3.8) is the same as the steady shadow
zone solution in a two-layer model (Liu 1991, 1993a)
except now the shadow zone boundary x;, varies with
time. Therefore, the solution will still be called the
shadow zone solution. The resemblance between (3.8)
and the steady shadow zone is not surprising because
the shadow zone does not feel the motion of the outcrop
Iine except 1n the most western part where the char-
acteristics starting from the outcrop line along the east-
ern boundary can arrive. The varying shadow zone
boundary has the initial condition for characteristics
as x; = 0, fi = fo(t;), h; = 0. Thus, (3.4) gives the
parametric form of x;,

when x> x,(/f, t).

(h*)?
2(/* we(S*)’

where f*, h* are given in (3.7a,b).

Xp(t, )= (3.9)

b. Nonentrainment solutions

Equations (3.7), (3.8), and (3.9) form the solution
in the entire gyre. As an example, we take a spatially
uniform Ekman pumping

w.(f) = W,y = const < 0. (3.10)

(This Ekman pumping function will be used for all
the calculations.) With (3.10), (3.4b) gives the fchar-
acteristic solution

f=re"™ =11, 5). (3.11)

With an outcrop line fp(7), the parametric solution in
the ventilated zone is derived from (3.11),(3.7a), and
(3.7b) as

f= 142, 4) = folg;)eVo= (3.12a)
h=h*t)=1-e""% (3.12b)

Since observations show that the annual surface
temperature varies nearly harmonically, the outcrop
line will be assumed harmonically oscillating as

Jo(2) = f;(1 + a coswi), (3.13a)

where f; is the mean position of fy(¢), and af, is the
amplitude of the oscillation. The most northern and
southern latitudes of the outcrop line are, respectively,

Jomax = fe(1 + @) and fomin = fe(1 — a), (3.13b)
which are reached by the outcrop line f; at the times

(3.13c)

O<as<l,

t=p,=2nw/w and t=p,+7/w,
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where n is an integer. In the case of an annual period,
these two times correspond to about September and
March (since the sea surface temperature lags the sur-
face heat flux about 90° in phase). For a thermocline
depth of about 600 m, the scaling in (2.8) suggests that
the time scale is T, = H/W, ~ 20 years. Therefore, a
nondimensional annual frequency is about w =~ 100,
while a decadal frequency is about @ =~ 10. Without
confusion, the 12 months will still be used to refer to
relative times in the oscillation even for periods other
than the annual period.

Figure 4 displays an example of weak decadal forc-
ing, with Wy, = —1in (3.10) and f, = 0.7, w = 5, a
=(.191in (3.13a). Along x = —1, the meridional pro-
files at wz = 0, w/2, w and 3w /2, corresponding to
September, December, March, and June, are presented
in Figs. 4a-d. The northern part that deepens south-
ward is the ventilated zone in (3.7a,b), while the
southern part that shallows southward is the shadow
zone in (3.8). Several features are interesting. First,
the interface slope near the surface is small at Septem-
ber (Fig. 4a), implying a strong stratification. As the
outcrop line moves southward due to cooling, the slope
steepens but remains stable (Fig. 4b) with the maxi-
mum slope (or a minimum stratification ) achieved a
little before March. Later, the outcrop line returns
northward due to heating. The thermocline responds
with a quick decrease in the slope or a rapid buildup
of the stratification (Figs. 4c,d). The second feature is
the relation between the time-mean thermocline profile
and some steady thermocline profiles. In Fig. 4e, the
time-mean interface (/) is depicted as the dot-con-
nected line, while the short and long dashed lines, re-
spectively, draw the steady LPS solutions with the out-
crop line at the time-mean position ( f;) and southern-
most position (fymin) (March). It is seen that the
time-mean profile is very close to the steady thermo-
cline with the mean outcrop line (except for the very
northern part). Third, the variability in the permanent
thermocline is strong as shown by a local time series
of h in Fig. 4f. Although the outcrop line (3.13a) is
harmonic, the interface variation is not! It has a rela-
tively slow deepening and a rapid rise and therefore
possesses strong superharmonics in the power spectrum
(or Fourier series) of the 4 time series as presented in
Fig. 4g. This power spectrum differs significantly from
that produced by a wind forcing. In the wind forcing
case, discussed by Liu (1993b), the time-mean com-
ponent is comparable to the second superharmonic
while other higher superharmonics are negligible. In
contrast, now, the time-mean component is smaller
than most superharmonics (Fig. 4g).

These features are also observed clearly in Fig. Sa,
where the zonal profiles are displayed. Furthermore,
the shadow zone boundary x, at the four seasons is
drawn in Fig. 5b. In the region swept through by x,,
the shadow zone and ventilated zone dominate alter-
nately. [A similar phenomenon has been seen with a
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FIG. 4. The nonentrainment solution in the absence of a mixed layer; w.(f) = —1, /o(2) = [l + a cos(wt)], w =5, a = 0.19, f, = 0.7.
(a)-(d) The meridional sections along x = —1 in September (wt = 0), December (wt = w/2), March (wt = 0), and June (wt = 0),
respectively. (e) The time-mean profile (dot connected line), the steady LPS thermocline with the time-mean outcrop line (short dash line),
and the steady LPS thermocline with the outcrop line in March. (f) Local time series of interface during one period. (g) Fourier components

of the local time series in (f).

variable wind forcing in an alternative zone (Liu
1993a,b).]

The solution above is an example of nonentrainment
solution, which remains stable without a variable
mixed-layer depth. It is so named because of the ab-
sence of entrainment, as will be shown later. However,
if the amplitude or frequency increases further (so that
dfo/ dt increases), the solution may exhibit gravitational
instability. Figures 6a—d show a solution with the same
frequency as that in Fig. 4 and Fig. 5 but with a larger
amplitude of a = 0.4 (the shadow zone part of the
solution is not shown in Fig. 6). During winter, when
the outcrop line moves southward rapidly, the solution
becomes gravitationally unstable. Later, a bulb of un-
stable water is advected downward and southward. An
annual frequency case is shown in Figs. 6e-h. The pro-
file has many more unstable pulses of waters because
of the higher frequency. These two solutions are not
physically valid because of the instability. Before find-

ing stable solutions under fast outcrop lines such as
those in Fig. 6, we first study the criterion for the
breakdown of the nonentrainment solution.

¢. The criterion for the breakdown of nonentrainment
solutions

Obviously, a gravitationally stable solution must
have a stable slope of interface

dh <0 (3.142)

Inside the ventilated zone of our two-layer model, when
the potential vorticity does not vary along a latitude it
holds that .4 = 0 or Ch, = 0 in (3.7) south of the
outcrop line. Thus, there is no Rossby wave effect and
the associated nonlinear steepening term vanishes.
Then, we speculate that gravitational instability can
only be caused on the outcrop line. (This has been
seen as true in all the numerical experiments, but we

everywhere.
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nected line is the time-mean profile. The short dash line is the steady
LPS thermocline with the time-mean outcrop line. (b) Similar to (a)
but for the shadow zone boundary.

are unable to prove it mathematically.) Thus, (3. 14a)
is equivalent to

afhb':ﬁ)(,)SO for all . (3.14b)

This slope can be derived from the mass balance of the
upper layer near the outcrop line. Let us take a small
volume near the outcrop line in the upper layer with
a §f length on its top and a 64 thickness on its southern
side; —w,df is the downward mass flux from the top
and (vs — fo)oh is the southward mass flux through
the southern side (since the outcrop line is moving
with the speed fo, the mass flux through the southern
side is caused by the relative velocity vz — fy). Noting
the absence of mass flux across the interface on the
northern and bottom side, the mass balance for the
small volume is then
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—wedf = [va(fo) — fo]6h nmearfy, (3.15a)

where fo= df(¢)/dt. Equation (3.15a) is equivalent to
oh  TWe
-— 3.15b
af = fo vB(ﬁ) ﬁ) ( )

This slope can also be derived mathematically as in
appendix A. With the aid of (3.15b), (3.14b) becomes

_—we(fo)
vs(fo) — fo

In a subtropical gyre, w, < 0. Thus, when the outcrop
line remains slower than the southward barotropic flow
— fo < 0, the slope (3.16) is always stable, implying
the absence of convection or entrainment. Thus, these
solutions will be called nonentrainment solutions:

6fhlf=f0 <0. (3.16)

nonentrainment solution:
velfo()] —fo(1) <0 forallz.  (3.17)

For a nonentrainment solution, a subducted water
column will never be caught by water subducted later.
Thus, the farther north a water column is located, the
later is its subduction time. In other words, the water
column of layer 2 at a latitude f consists solely of the
water injected from the outcrop line at a single time
7(f, t) (see Fig. 3b). This suggests that the subduction
time 7 is single valued with respect to f, as depicted
schematically in Fig. 3a. This can also be proven math-
ematically. With the aid of (3.7a) and (3.4a,b), we
have

f*(Lt1)
1~ = f du/vp(u).

Joty)
Differentiating this equation with respect to ¢; yields

vp(S™*) _ 7
o a0 — 1.

If vy — f < 0 always holds as in (3.17), 3, /* > 0
is always true. From (3.7c) we then have 8fr
= 1/0,f* > 0. Thus, the subduction time increases
monotonically with latitude. Condition (3.17) is mar-
ginally satisfied by the solution in Fig. 4 and Fig. S.

If (3.17) is violated, the solution will exhibit an un-
stable slope as shown in examples of Fig. 6, implying
the occurrence of cold convection or entrainment. The
solutions will then be called an entrainment solution;
that is,

O f* | thinea = —

(3.18)

entrainment solution:

vsl fo()] — fo(£) >0 atsomers. (3.19)

The two examples in Fig. 6 can be checked to satisfy
(3.19). For an entrainment solution, at a time when
the southward speed of the outcrop line is faster than
the particle speed, newly injected waters will catch up
with previously injected waters left behind (north of)
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Only the ventilated zone solution is drawn. (e-h) Same as in (a-d) except for w = 50.

the outcrop line. Equation (3.18) shows that now
9, f* <0ordrr <O0. Thus, d,7 changes sign and 7 has
a double value at latitudes north of the outcrop line.
This case is shown schematically in Figs. 3c,d. We will
denote the later and earlier branches of 7 as 7* and
7, respectively (Fig. 3c). Correspondingly in Fig. 3d,
a water column subducted at 7*(F, t) now overlies
the water column subducted at an earlier time 7~ (F,
t), implying a gravitationally unstable solution as
shown in (3.16).

The unstable structure suggests the occurrence of
cold convection near the surface. The physics can be
understood as follows. Intuitively, one may think that
a slow outcrop line in (3.17) is produced by a weak
surface cooling (in the cooling period ) while a fast out-
crop line in ( 3.19) is forced by a strong surface cooling.
[ This can be proven as in appendix A of chapter 4 in
Liu (1991).] Now, we consider an ideal fluid ther-
mocline. If we impose a temporal surface cooling uni-
formly over the surface of the whole gyre, the surface
temperature, and then the temperature of the whole
water column, should decrease. If the stratification is

stable, in a subtropical gyre, the downward vertical ve-
locity always tends to warm the water column. Thus,
the only mechanism to balance the surface cooling is
a cold horizontal advection. This is the case of a non-
entrainment solution. However, since the meridional
velocity v is largely determined by the Sverdrup rela-
tion, there is no frontogenesis mechanism under the
uniform surface cooling. As a result, the horizontal
cold advection cannot grow very strong. Therefore, if
the surface cooling is too strong, the horizontal cold
advection may not be able to balance the cooling. On
the other hand, the downward vertical velocity is still
forced by the surface Ekman pumping in the subtrop-
ical gyre. Thus, the only way to balance the strong
surface cooling is to have an unstable stratification near
the surface that, together with the downward velocity,
tends to cool the water column. This is the case of
entrainment solution (see examples in Figs. 3c,d and
Fig. 6). Of course, these unstable solutions are not
physically valid. Indeed, the unstable stratification im-
plies a cold convection near the surface, which produces
a near-neutral stratification or a mixed layer.
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4. Fast outcrop line case: Entrainment solutions
a. The solution

As seen above, when the outcrop line moves south-
ward rapidly, a two-layer model gives gravitationally
unstable solutions. This suggests the occurrence of deep
convection. For these cases, one may expect that the
mixed layer becomes crucial. Therefore, model (2.10)
will be used. Comparing (2.10) with (2.11), we see
that their characteristic equations are the same in
(3.1a,b,c) except the x characteristic equation (3.1d).
The x equation is changed by the zonal thermal wind,
which is produced by the meridional variation of the
mixed layer. Therefore, the simplified equations
(3.4a,b,c) are also characteristic equations for (2.10)
[although one should note that in (2.10), 2 = h,
+ h,,, while in (2.11) A = hy due to A, = 0].

Hereafter, we will focus on the solution in the ven-
tilated zone, which is established by characteristics
originating from the outcrop line. Thus, the charac-
teristic solutions are determined in (3.4a,b,c) and the
x characteristic equation of (3.4d). Then, from (2.3),
the initial conditions for characteristics are

Si=h(t), hi=hdfo(ti), )= Hu(t;). (4.1)

Here H,, is the depth of the mixed layer under the
outcrop line. Substituting (4.1) into (3.4a,b,c) yields
the solution in the ventilated zone as

=76, t— 1= [, 1)  (4.2a)

h=1—[1=H,(t)1f*, )/ folt;) = h¥(t, 1;).
(4.2b)

Equation (4.2) is the generalized solution of (3.7). Its
physics can also be explained similarly to that of (3.7).
That is, each water column remembers its subduction
time

t, =7(f,t)<t, where [f=f*t,7(f,1)]. (4.2¢)

Since (4.2a) is exactly the same as (3.7a), the subduc-
tion (4.2¢) is the same as (3.7¢). Because (4.2) deter-
mines the solution in the ventilated zone completely,
we do not need to resort to the x characteristic equation.

Similar to (3.7b,c), (4.2b,c) show that the / solution
or potential vorticity is independent of x if the mixed-
layer depth is zonally independent {h = h*[¢t, 7(/,
)]}. The physical reason is similar to the case of
(3.7b,c). Then, in the ventilated zone, (2.10) becomes

h 4 vghy= —(1 — h)w,, [f<folt).

With the outcropping condition (4.1), this gives per-
haps the simplest model accounting for subduction
under a variable mixed-layer depth. We see that the
horizontal buoyancy advection in the thermocline is
simple. The flow field is known from the Sverdrup re-
lation and therefore is independent of the buoyancy
effect. As a result, our problem is greatly simplified.
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Equations (4.2a,b) give the parameteric solution (for
the ventilated zone) of (2.10). However, the solution
may not be gravitationally stable for an arbitrarily
specified fo(z) and H,,(¢). One example we have seen
is the case with a vanishing mixed-layer depth H,,(t)
= (. For this case, if the outcrop line moves southward
faster than the particle velocity fy < vz < 0, the solution
becomes unstable as shown by examples in Fig. 6 and
in equation (3.16). Therefore, we need to find some
constraints on the depth of the mixed layer, under
which solution (4.2) remains stable. The necessity for
these constraints is not totally surprising. This is be-
cause the mixed layer here is partially coupled with
the thermocline through pressure. Consequently, the
behavior and structure of the mixed layer can not be
specified completely arbitrarily.

1) A STABLE SLOPE: RESTRAINING THE
PENETRATION OF THE MIXED LAYER

First of all, it is obvious that a stable solution must
have a stable slope all the time in the gyre; that is, d,h
< 0 everywhere asin (3.14a). With an argument similar
to that for (3.14b), this seems to be equivalent to a
stable slope at the outcrop line d%] - ; < 0. Similar to
(3.16), this slope can also be derived by the mass bal-
ance of layer 1| near the outcrop line as

—whof = [vs(fo) — foloh, (4.3a)
or
—wk

Srhli—so = RO~ Ao

where w#, is the mass entrainment velocity at the bot-
tom of the mixed layer near the outcrop line. From
the continuity equation, we have w¥,,

(4.3b)

m
wk=——+w,,

dt

where w,, = w| .-_y_ is the vertical velocity at the bot-
tom of the mixed layer at the outcrop line and can be
proven to be (see appendix A)

Wy = (1 - Hm)we(f(-))- (44b)

With a vanishing H,, = 0, (4.4a,b) show that w},
= w,. Thus, (4.3a,b) degenerate to (3.15a,b).

(4.4a)

Hence, a stable slope requires dh| ) = —Wi/
[vs(fo) — fo]1 <0, forall t, or

0> w% when vs(fo) —f <0, (4.53)

0<wk when vp(f5)—/f>0. (4.5b)

Equation (4.5a) states that, when the outcrop line moves
southward less rapidly than the particle, water mass
subducts from the mixed layer into the thermocline. On
the other hand, (4.5b) says that during the time interval
when the outcrop line moves southward more rapidly
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than the particle, the mixed layer must be entrained
from the thermocline below. The time interval during
which (4.5b) is satisfied is therefore called the entraining
stage. For a periodically moving outcrop line in (3.13),
the entraining stage is

entraining stage:

Ti<t< 73,

(4.6a)

where p, < 77, 75 < p,4; With p, = 2nw/w [see (3.13¢)].
Here n refers to the entraining stage during the nth pe-
riod; 77 is the initial entraining time when the outcrop
line migration speed just catches up to the barotropic
velocity; 73 is the final entraining time when the outcrop
line is overtaken by the barotropic velocity; that is,

sl fo()] = o) e=rnn = 0;

and

d .
Zi [DB(j(‘)) —jbllt=f? > O,

d_ .
7 [vs(fo) — folli=y < 0. (4.6b)

It is important to remember that the entraining stage
defined here is independent of the structure of the so-
lution because the subduction time in (3.7¢) [or (4.2¢)]
is only determined by the fequation (3.7a)[or (4.2a)].
Now the physics for nonentrainment solution and en-
trainment solution as defined in (3.17) and (3.19) be-
comes clear. As stated in (4.5a,b), an entrainment so-
lution has an entraining stage during which water is
entrained into the mixed layer; a nonentrainment so-
lution has no entraining stage and therefore water always
subducts from the mixed layer into the thermocline.

Equation (4.5) can be written as constraints on the
mixed-layer depth. Noticing (4.4a,b), we can rewrite
(4.5a,b) as

dH,,

——> W,

7 when

vB(f(‘)) —jé < O>

(nonentraining) (4.7a)

vs(fo) = o> 0, (4.7b)

With w,, = (1 — H,,)w, < 0, (4.7a) says that outside
the entraining stage the mixed-layer depth either de-
scends slowly or ascends at an arbitrary speed. Equation
(4.7b) states that during the entraining stage the mixed
layer must penetrate rapidly (faster than the downward
particle speed). Considering that the dynamics of the
present mixed layer differs significantly from that of a
1D model (e.g., Kraus and Turner 1967; Turner and
Kraus 1967), it is interesting to see that the behavior of
the mixed layer required by (4.7) is qualitatively con-

(entraining).
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sistent with that of a seasonal thermocline predicted
from a 1D model. For example, a sharp rise of the mixed
layer during the heating season is allowed in (4.7a); a
strong penetration during the cooling season is required
by (4.7b).

2) A CONVECTION SCHEME: DETERMINING THE
MIXED-LAYER DEPTH DURING THE
ENTRAINING STAGE

At first sight, the stable slope (3.14a) [or (4.5) or
(4.7)] appears to guarantee a physical solution, but it
does not! The problem arises during an entraining stage
(4.6a). The outcrop line then moves southward faster
than the particle. The waters subducted during this
stage [with ¢ = 7 satisfying (4.6a)] are always left behind
the outcrop line, no matter if (3.14a) is satisfied or not.
[Note that (4.6) is independent of the solution struc-
ture.] This water mass would create gravitational in-
stability in the water column north of the outcrop line
(see the schematic example in Fig. 3d). To overcome
the instability, physically, we should have a scheme to
allow the unstable part of water to be entrained into
the mixed layer. Here, we adopt a convective scheme
that simply cuts off this part of unstable water. This
scheme is illustrated schematically in Fig. 7, where the
adjustment time interval At is assumed to be finite.
After each time step, an unstable “bulb” is produced
if the mixed-layer depth is not proper (say, if it were
to remain unchanged). Then, we lower the mixed layer
to the stable part of the thermocline at the latitude of
the outcrop line. The unstable “bulb” is then cut off
and is no longer a part of our solution. Physically, after
this “bulb” is entrained into the mixed layer, it is well
mixed within the mixed layer and can no longer be

The Convection Scheme

r{e=——
N O
h -\\1 i
——— ) L
\179}
\{315“

f

FIG. 7. The schematic figure of the convective scheme with a finite
adjustment time interval. After each time, if the mixed layer remains
unchanged, a bulb of unstable water is produced. Our convection
scheme will allow the mixed layer to descend under the outcrop line
such that the bulb is cut off.
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identified as an entity. In other words, after the en-
trainment, the unstable part of water loses memory of
its subduction time because it is well mixed with waters
subducted at other times. If the time step becomes in-
finitesimal, these unstable bulbs will be squeezed, each
having a zero volume. Consequently, our solution will
have no unstable volume at any time. One should no-
tice that this convective scheme is somewhat artificial.
It says that the mixed layer entrains from below without
changing its density (or the outcrop line). In our model,
we are forced to do so because our outcrop line is spec-
ified and therefore cannot be altered.

The key for the scheme is, at any entrainment time
t, to find the stable thermocline depth below the out-
crop line. Then, we lower the new mixed layer to this
depth. The water column under this thermocline must
have subducted at a previous time, say, denoted by
7,(¢)(<t). From the subduction time r(f, ¢) [in (3.7¢)
or (4.2c¢)], this corresponding 7,(¢) can be found as
follows. During an entraining stage, north of the out-
crop line, 7(f, t) has double values: a later subduction
time at the branch 77 (f, t) and an earlier one at the
branch 77 (f, t) [see Figs. 3c,d and discussion after
(3.18) and (3.19)]. In particular, at the outcrop line
Jo(t), 77 (fy, 1) = t gives the present subduction time,
while

(1) = 17 [fo(2), 1] (4.8)

yields the corresponding previous subduction time, at
which the injected water now arrives at fo(¢). This 7,
mapping is shown schematically in Fig. 3c. By virtue
of (4.8), the stable thermocline depth with the sub-
duction time 7,(¢) is found from (4.2b) as 2* [7, 7,(1)]
(see Fig. 3d). Hence, our convective scheme requires
a mixed-layer depth:

H,(t) = h*[t, T,,(t)]] during entraining stages.
(4.92)

Outside the entraining stage, this convection scheme
does not impose any constraint on the mixed-layer
depth. Thus, the stable slope (3.14a) still needs to be
satisfied, or

[Hm(t) = ﬂm(t)J outside entraining stages. (4.9b)

Here H,, satisfies (4.7a). All the corresponding previous
subduction times 7,(¢) such that ¢ is during an entrain-
ing stage (7] <t < 73) form a new stage during which
all the subducted waters will be reentrained in the fol-
lowing entraining stage (77, 75). In other words, waters
subducted during the new stage only establish the sea-
sonal thermocline and can never enter the permanent
thermocline as an identifiable entity. This stage is
therefore called the seasonally subducting stage. The
first entraining time 77 entrains the water just sub-
ducted or 7,(77) = 71, while the last entraining time
7% entrains the earliest seasonally subducting water at
the time
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T =T1,(75%). (4.10)

Hence, we have
seasonally subducting stage: t§<t<rti. (4.11)

In contrast, waters subducted earlier than the seasonally
subducting stage will never be entrained by the mixed
layer and therefore enter the permanent thermocline.
This stage is called the permanently subducting stage
or simply subducting stage, which is represented as

(4.12)

It is the waters subducted during this stage that create
the permanent thermocline. Consequently, the vari-
ability in the permanent thermocline is completely de-
termined by waters subducted during the subducting
stage. Like the entraining stage, the subducting and
seasonally subducting stages are also independent of
the solution % because they are ultimately determined
only by the f'solution (4.2a).

As a result, one period can be divided into three
stages: the seasonally subducting stage, the entraining
stage, and the subducting stage. The waters injected
during the seasonally subducting stage will be reen-
trained during the following entraining stage. In con-
trast, the waters subducted during the subducting stage
provide water mass for the permanent thermocline.
The mixed-layer depth during both the subducting and
seasonally subducting stages must satisfy the stable
slope condition (4.7a), which then, together with the
convective scheme (4.9a), yields the mixed-layer depth
during the following entraining stage.

subducting stage: 5 ' <t<r§.

3) A SCHEMATIC EXAMPLE: HOW TO DETERMINE
THE SOLUTION

To have a better understanding of the physics of the
three stages and the convective scheme, we investigate
the thermocline evolution during one period as shown
schematically in Fig. 8. Outside the entraining stage in
(4.9b), we take

H,,(t) = Hpin = const,
subducting and seasonally subducting stages, (4.13)

which obviously satisfies a stable slope or (4.7a). Figure
8a shows some snapshots of the subduction time 7 in
(4.2¢) as a function of f(similar to Fig. 3a), while the
corresponding sections of 4* are depicted in Fig. 8b.
The dashed lines, dotted lines, and solid lines, respec-
tively, represent the part of 7 and A* for waters sub-
ducting during the seasonally subducting stage, the en-
training stage, and the subducting stage. These stages
are marked on the time axis in Figs. 8a,c,e. Since we
concentrate on the nth period, only the part after
747! will be considered as drawn in Figs. 8a,c.e. We
start with Figs. 8a,b. Curve 1 occurs at September and
consists of waters from the (# — 1 )th subducting stage
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F1G. 8. The schematic figure of showing how to determine an entrainment solution in one cycle. The seasonally subducting stage,
entraining stage, and subducting stage are drawn in dashed lines, dotted lines, and solid lines, respectively. (a), (c), and (&) The subduction
time 7 as a function of latitude fat different times in three stages. The times for different stages are also marked on the 7 axis in (a), (c),
and (e). (b), (d), and (f). The A* profiles corresponding to (a), (¢), and (e). After one cycle, a big pulse of water is subducted into the
thermocline, part of which will be reentrained during the next entraining stage. (See the text for a full discussion.)

and part of the (n — 1)th seasonally subducting stage.
Similar to Figs. 3a,b, 7 increases monotonically north-
ward. This reflects the fact that during the seasonally
subducting stage and subducting stage no water column
will be overtaken by later subducting waters. Corre-
spondingly, the #* profile is stable. Curve 2 is at the
last moment of the seasonally subducting stage and is
qualitatively the same as curve 1 except that curve 2
is south of curve 1 at each subduction time 7, reflecting
the southward advection due to v < 0. Since the mixed
layer remains at H,, = Hp,;, according to (4.13), (4.7a)
or (4.5a) says that there is no entrainment so far.
Figures 8c,d show time sections during the following
entraining stage and therefore are similar to Figs. 3c,d.
Curve 3 is at a time during the entraining stage. Part
of the 7 profile has been left north of the outcrop line,

because during the (# — 1)th entraining stage the out-
crop line advances southward faster than the particles.
According to our convective scheme (4.9a), the mixed-
layer depth is deepened to the thermocline depth, which
has developed from the water subducted at the corre-
sponding seasonally subducting water at 7,(¢). Since
this convection scheme is carried out from the first
entraining time with an infinitesimal time interval, the
unstable “bulb” is squeezed such that the unstable
“bulb” has a zero volume, as opposed to a finite volume
in Fig. 7. Curve 4 occurs at the last entraining moment
73, and the mixed layer has captured all the water in-
jected during the entire previous seasonally subducting
stage. The mixed layer now achieves its deepest depth.

In the following time, the subducting stage starts as
shown in Figs. 8e, f. Curve 5 is at the time when the
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outcrop line reaches the southernmost position. South
of the outcrop line, a small pulse of water (the water
column shaded in Fig. 8f) is seen subducted south of
the outcrop line and under the mixed layer. This occurs
because these waters are subducted after the last en-
training time and thus move southward faster than the
outcrop line. This pulse of waters will not be captured
during the following entraining stage because the out-
crop line now is moving northward and it will return
after another period. The mixed layer suddenly (or
discontinuously) rises from its deepest depth to its
shallowest depth H.,;, due to (4.13). This abrupt ascent
of H,, in turn produces a sharp jump of the interface
in front of the subducted water pulse. Curves 6 and 7
occur, respectively, at the last subducting time and the
next September with more waters subducted while the
mixed layer remains unchanged due to (4.13). One
cycle is completed.

b. Entrainment solutions

To see how the convective scheme overcomes insta-
bility, we present two examples of entrainment solu-
tions with the outcrop lines used in the two unstable
examples in Fig. 6. To simulate the rapid rise of a mixed
layer during early spring more realistically, instead of
using (4.13), we will adopt a parabolicaily ascending
mixed layer during the subducting stage. Thus,

H,(t) = Hyn = const  seasonally subducting stage

(4.14a)
- t — n 1/2
Fp(t) = Hp(r8) = [Ho(}) Hmml(—,;,—ﬁ—n)
T0 — T2
subducting stage. (4.14b)

The minimum mixed-layer depth is set to be Hpp
= (.1—that is, one-tenth of the total depth. The mixed
layer is then determined by (4.9a,b) and (4.14). Figure
9 presents an example under a strong decadal forcing
w =5, a = 0.4 (the same as in Figs. 6a-d). Figures 9a—
d show the meridional sections in four “seasons.” Solid
lines are the physical solutions, while dotted lines are
the unstable part (with zero volume) of the solution
after the use of the convection scheme (4.9a). In Sep-
tember (Fig. 9a), the mixed-layer depth is at its min-
imum. During the following cooling season, the out-
crop line accelerates southward and soon catches up
with fluid particles. In December (Fig. 9b), the en-
training stage has occurred for a rather long time and
part of the seasonally subducted waters have been
reentrained into the mixed layer (the newly formed
dotted line). In March (Fig. 9¢), the outcrop line ar-
rives at the southernmost position. The entraining stage
has finished and the subducting stage has started for a
while. More waters have been reentrained into the
mixed layer. In addition, a small amount of water
(barely seen in the figure; the counterpart in the sche-
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matic example of Fig. 8 is the water column shaded in
Fig. 8f) has subducted south of f; below the mixed
layer and will never be caught by the outcrop line. In
June (Fig. 9d), a big pulse of subducted water is formed
partly because of the subduction left behind by the
northward-moving outcrop line and partly because of
the southward advection of the already subducted wa-
ter. In this way a big pulse of water, which is mainly
formed during the rather long subducting stage, is in-
jected into the permanent thermocline. This big pulse
of water is advected southward and downward. Later,
part of the water will be reentrained in the next en-
training stage (77!, 74"') (not drawn in the figure).

The evolution of the mixed-layer depth and sub-
duction potential vorticity g, = fo/[1 — H,,(1)] are
shown in Fig. 9f. In the figure, the H,, in the subducting
stage is given by (4.14b); the H,, in the seasonally sub-
ducting stage (later than 7§*' and before 77) is taken
from (4.14a); and the H,, in the entraining stage is
given by the convection scheme (4.9a). The potential
vorticity shown in Fig. 9f indicates that the water sub-
ducted during the subducting stage has a lower potential
vorticity while the water entrained into the mixed layer
has a higher potential vorticity. Physically, this occurs
because the subducted water comes from the mixed
layer where water mass is well mixed and has a small
potential vorticity. In contrast, the entrained water
comes from the water that was heated during the sea-
sonally subducting season with a strong stratification.
Therefore, the seasonal thermocline acts as a source of
low potential vorticity to the permanent thermocline
in the subducting stage but as a sink of higher potential
vorticity waters during the entraining stage (Woods
1985).

Figure 9¢ compares the time-mean solution (dot-
connected lines) with two steady LPS thermocline so-
lutions. The first steady thermocline is obtained by the
time-mean outcrop line and mixed-layer depth (short
dash line ), while the second steady thermocline has its
outcrop line and mixed layer at earlier “spring” [ more
precisely, at the time 75 when the mixed layer reaches
the deepest (long dash line)]. It is seen that the time-
mean profile is close to the steady thermocline with
the early “spring” outcrop line and mixed-layer depth.
This phenomenon has been suggested by Stommel
(1979). This is in sharp contrast to the nonentrainment
solution if one compares the present Fig. 9¢ with Fig.
4e, where the time-mean theremocline is close to the
steady thermocline with the time-mean outcrop line.

A local variation of the interface in the permanent
thermocline (south of fy min) is shown in Fig. 9g. Similar
to the nonentrainment solution in Fig. 4f, the interface
deepens slowly and rises abruptly, although the outcrop
line (3.13) is harmonic. The oscillation is somewhat
close to the local depth of the steady thermocline with
the “winter” mixed layer (long dashed line).

If the forcing frequency is increased, the speed of fo
increases. But v is still the same. Thus, f; catches up
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0.4 (the same as in Figs. 6a~-d), and Hyi, = 0.1. (a~-d) Instantaneous

sections at four seasons. (¢} The time-mean profile (dot-connected line), the steady thermocline with the time-mean outcrop line and mixed-
layer depth (short dashed line), and the steady thermocline with the outcrop line and mixed layer at winter (actually the last entraining

time 7,), when the mixed layer reaches the deepest. (f) Time series

of the mixed-layer depth according to (4.14) outside the entraining

stage and (4.9a) during the entraining stage. Subduction potential vorticity ¢ = f5(¢)/(1 ~ H,,(1)) is also shown with a relative scale. (g)
The local interface time series with the short and long dashed line being the steady thermocline with the time-mean and later winter (actually
73) fo, Hn, respectively. In (f) and (g), the entraining and subducting stages are marked on the time axis.

with vg sooner after September, and the entraining stage
is elongated. As a result, more subducted water will be
entrained into the thermocline and less water is left to
subduct into the permanent thermocline. This is shown
in Fig. 10 with an annual frequency forcing [w = 50,
a = 0.41in(3.13)] (same as Figs. 6e~h). Qualitatively,
Fig. 10 is similar to the lower frequency case in Fig. 9.
However, there are some important quantitative dif-
ferences. First, as we expect, with a much higher fre-
quency, much more subducted water is reentrained
into the mixed layer (the dotted lines in Figs. 10a-d).
Each year, only a small pulse of water subducts into
the permanent thermocline, resulting in a very wavy
permanent thermocline structure. Each wave pattern
represents waters subducted during one subducting
stage of one year. The smaller amount of subducted

water than that in Fig. 9 is consistent with a much
shorter subducting stage (about 1 month) (Fig. 10f)
than that in Fig. 9f (about 5 months). (Here we com-
pare the relative time normalized by the period.) Sec-
ond, Fig. 10e shows that the time-mean thermocline
almost coincides with the steady thermocline with the
winter fo and H,, (actually at 74, which is almost
March). In Fig. 10g, we also see that the thermocline
oscillates very closely around the steady thermocline
with the winter fy and H,,. All these suggest that for a
higher frequency Stommel’s (1979) conjecture be-
comes more correct. Last, Fig. 10g shows that the ther-
mocline variability in this annual forcing case is much
weaker than that in the decadal forcing case in Fig. 9g.
Finally, it should be pointed out that the shadow
zone thermocline behavior should be similar to that
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FiG. 10. Entrainment solution with a strong annual forcing w = 50, a = 0.4 (as in Figs. 6e-h). Other aspects ar¢ the same as Fig. 9.
Compared with the decadal forcing case in Fig. 9. The synoptical profiles in (a-d) are much more wavy, implying a much smalier pulse of
waters subducted into the permanent thermocline each year. The subducting stage (77, 75) seen from Fig. 10f is much shorter than the
decadal forcing case in Fig. 9f. The time-mean thermocline in (&) almost coincides with the steady thermocline with the winter mixed layer.

The thermocline vanability is much smaller in (g) than in Fig. 9g.

in the nonentrainment solution case. That is, the ther-
mocline remains unchanged except in the western flank
of the shadow zone where xz(f, t) sweeps through (as
in Fig. 4 and Fig. 5).

5. Thermocline variability due to varying surface
temperature

Now we come to our central issue: What is the ther-
mocline variability in response to a varying surface
buoyancy flux or a moving outcrop line? Since our
model is not fully coupled, there are an infinite number
of solutions. We will choose the solution with the
mixed-layer depth specified by (4.14) because this
mixed-layer depth variation seems to resemble the ob-
servations well as seen in Fig. 9f and Fig. 10f (at least
for the annual frequency case—see, for instance, Kraus
and Turner 1967; Turner and Kraus 1967).

The magnitude of local variability can be easily de-
rived in terms of potential vorticity because of the fixed
bottom in our model. In fact, ¢ = f/(1 — h) imme-

diately gives h(f, t;) — h(f, ) = —f[1/q(f, ) — 1/
q(f, t;)]. Hereafter, we concentrate on the permanent
thermocline, ! which is located south of the southern-
most outcrop line latitude

Jomin = min[fo(2)]. (3.1)

! The permanent thermocline should be the region where the po-
tential vorticity of each water column is always conserved. This re-
quires that the water particle is not exposed to the mixed layer. Hence,
in our model, the permanent thermocline will refer to the region
south of the southernmost position of the outcrop line f < fomin
= min { fo } —that is, where the potential vorticity of a layer 2 water
column 1s conserved. In contrast, north of fy min, as a water column
moves, its potential vorticity will be changed by the variation of the
mixed-layer depth.
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FIG. 11. The maximum and minimum subduction potential vorticity during the subducting stage Gmaxs Qmin, the
upper bound of local variability in the permanent thermocline DA/ f= 1/¢in — @iax , and the maximum variability in
the permanent thermocline dhma, = fo(1 — a)(1/@hin — dinax ). We have chosen f; = 0.7, w.(f) = —1. The mixed layer

varies according to (4.9) and (4.14).

The potential vorticity is conserved in the permanent
thermocline and is therefore determined by waters
subducted during the subducting stage. Therefore, the
magnitude of variability in the permanent thermocline
is

dh < Dh Ef[ (5.2)

1 1 ]
q ?nin qfnax ’
where ghin and . are minimum and maximum
subduction potential vorticities ¢° = fo/(1 — H,,,) during
the subducting stage. Equation (5.2) suggests that the
variability decreases with latitude. This occurs because
at lower latitudes there is less planetary vorticity avail-
able to alter the stratification. In addition, the variability
depends on the difference of subducted potential vor-
ticities. Thus, a uniform potential vorticity in the per-
manent thermocline produces no thermocline vari-
ability.?

2 This conclusion holds exactly in the rigid and flat-bottom model
here. If the bottom varies with time, even with a uniform potential
vorticity, thermocline variability may exist.

Using the outcrop line in (3.13) and the mixed-layer
depth according to (4.9) and (4.14), with respect to
the forcing amplitude « and frequency w, we have cal-
culated Qinax ) q:nina and Dh/f: l/q%ln - l/q;vnax in
Figs. 11a-c, respectively. First of all, in the parametric
plane (w, a), one sees a-critical boundary separating
the slow outcrop line regime (small frequency or am-
plitude) from the fast outcrop line regime. This is the
criterton dividing the nonentrainment solution (3.17)
from the entrainment solution (3.19) (i.e., these w, @
make vg — fo just realizable at a single time). In the
nonentrainment regime, gmax , ginin, and DA/ fare in-
dependent of frequency because nonentrainment so-
lutions have neither an entraining stage nor a seasonally
subducting stage. Thus, the maximum and minimum
subduction potential vorticities during the subducting
stage are also those in the whole cycle; that is,

_ _Jomx _ Sl +a)

s —
Gmax = Gmax =

1 - Hmin 1 - Hmin ’
ﬁ)min fg(l - a)
s . — . = = e e——
Thin = Gmin = ~p = Fp . (53)
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where (3.13a,b) have been used. Therefore, both
Jmax and giin are independent of frequency. The vari-
ability, which results in (5.2), is also independent of
frequency. In contrast, the variability for most of the
entrainment solutions (in Fig. 11¢) decreases with an
increasing frequency. This gives another important dif-
ference between the thermocline variability of nonen-
trainment and entrainment solutions.

It can also be seen in Fig. 11b that, even in the en-
trainment regime, the minimum subduction potential
vorticity gmin depends very weakly on frequency. In
fact, if we use (4.13) in the subducting stage to replace
(4.14b), we can show easily that g3, is the same as in
(5.3) and is independent of frequency. Therefore, the
frequency dependency of the variability D4 is mainly
caused by giax . Roughly speaking, this is so because
for different frequency gi;, usually occurs during
March but g3,.x varies at very different times. Thus,
the planetary vorticity for gn.x changes greatly with
frequency.

Consider now the thermocline variability. The local
variability at a latitude fcan be derived by multiplying
the values in Fig. 11c by f. It is seen that toward both
high and low frequencies, the variability tends to be
independent of frequency. But, in the transition regime
between nonentrainment solutions and entrainment
solutions (actually, this is the part of entrainment so-
lutions near the nonentrainment solution), the vari-
ability (first increases slightly and then) decreases rap-
idly toward high frequencies. On the other hand, the
frequencies for this transition regime usually occur for
about decadal frequencies (w ~ 10) unless the forcing
amplitude a is very large (say, a > 0.5) or very small
(say, a < 0.05). Thus, we conclude that decadal forcing
is the most efficient in forcing variabilities in the ven-
tilated zone. This feature differs substantially from the
wind forcing case discussed by Liu (1993b), especially
at high frequencies. There, Liu showed that at high
frequencies the response tends to be linear; that is, Dh
~ a/w, where the strongest frequency dependency of
the variability also occurs.

Finally, one should be cautious in using Fig. lic
because at each different amplitude a the range of f
for the permanent thermocline is different. In fact,
the northern bound of the permanent thermocline is
the southernmost outcrop latitude (5.1) [noting
(3.13a,b)],

mein =fg(1 _a)- (54)

For a larger amplitude a, the possible f, min decreases.
As a = 1, the minimum potential vorticity in (5.3)
approaches zero. Thus, although the variability in Fig.
lic approaches infinity near a = 1, this infinity can
never be achieved because then there is no permanent
thermocline region; that is, f min = 0. We can calculate
the maximum variability within the whole permanent
thermocline [actually at latitude f = f,(1 — a)] with
different forcings as
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Ahpax = fo(1 — @) X Dh/ . (5.5)

The results are plotted in Fig. 11d. The most striking
feature is that at higher frequencies the maximum
variability approaches a finite value at strong amplitude
(a = 1). Above decadal frequency, the maximum
variability is almost amplitude independent and de-
creases with an increasing frequency. Therefore, toward
high frequency, no matter how strong the forcing is
the maximum variability tends to decrease rapidly. This
is in sharp contrast with the lower-frequency case when
the maximum variability is almost frequency indepen-
dent. Thus, DA, is insensitive to frequency at lower
frequency but decreases rapidly with frequency at high
frequency. Alternatively, this fact suggests that a de-
cadal buoyancy forcing (in the transition regime) is
the most efficient in producing variability in the per-
manent thermocline.

6. Summary and discussion

The effect of annual and decadal varying surface
temperature on the thermocline is examined in a simple
model including an essentially passive mixed layer and
two ideal fluid layers. The outcrop line is specified dur-
ing the whole cycle while the mixed-layer depth is
specified only during part of the cycle. Some important
results are found. First of all, the surface buoyancy flux
causes strong variability in the ventilated zone while
it affects the shadow zone very little. In addition, it
does not change the barotropic circulation. These are
in sharp contrast to the case in which the Ekman
pumping varies. In that case, it has been pointed out
(Liu 1993a,b) that isopycnals of the thermocline ex-
hibit strong variability in the shadow zone while they
have little variability in the ventilated zone. At the same
time, the circulation changes barotropically over the
entire basin. Physically, the shadow zone is mainly
controlled by the local Ekman pumping and Rossby
waves from the eastern boundary. They have different
response time scales and therefore produce an imbal-
ance after a changing wind. On the other hand, the
ventilated zone is mainly controlled by the density ad-
vection of the subducted waters, which tends to cancel
a varying Ekman pumping through a barotropic pro-
cess while it helps a varying surface heat flux to excite
thermocline variability.

Second, there are two types of buoyancy forced so-
lutions: the nonentrainment solution and the entrain-
ment solution. A nonentrainment solution occurs
when the southward speed of an outcrop line is always
slower than near-surface particle velocity, which takes
place under a weak surface cooling. The surface cooling
is mainly balanced by the horizontal advection in the
permanent thermocline. The mixed-layer depth varies
little and the mixed layer is never entrained. The time-
mean profile is close to the steady thermocline with
the time-mean outcrop line. The variability in the per-
manent thermocline is independent of frequency.
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An entrainment solution occurs when the outcrop
line moves southward faster than the particle during
part of the period, when the horizontal advection in
the permanent thermocline is no longer strong enough
to balance the surface cooling. Deep cold convection
must occur. The mixed layer penetrates rapidly such
that water mass is entrained into the mixed layer
through the bottom. The local variability of the per-
manent thermocline is most efficiently produced by
decadal forcings. At annual frequency, there is very
little water subducted into the permanent thermocline
each year, causing weak variability. The time-mean
thermocline resembles the steady thermocline with the
early spring mixed layer.

Furthermore, for a nonentrainment solution, water
always subducts into the permanent thermocline.
However, for an entrainment solution, there are three
stages during each period: the seasonally subducting
stage, the entraining stage, and the subducting stage.
. Waters subducted during the seasonally subducting
stage will be reentrained in the following entraining
stage as high potential vorticity waters to form the sea-
sonal thermocline. The waters subducted during the
subducting stage have a lower potential vorticity and
establish the permanent thermocline.

Finally, for both entrainment and nonentrainment
solutions, under a harmonic surface temperature forc-
ing, the local interface variation always presents a rapid
rise and a slow descent, implying a fast destruction and
slow buildup of the stratification.

For a clear comparison, the above properties of non-
entrainment and entrainment solutions are listed in
Table 1.

So far, observations are too poor to allow a com-
prehensive comparison with the theory here. Nev-
ertheless, the observations available seem to be con-
sistent with the theory. One example is the 18°C mode
water. It is believed to be formed mainly by subduction
in response to strong surface cooling in the north-
western part of a subtropical gyre (McCartney 1982)
and, therefore, it is a good example to test the theory
about the effect of surface heat flux. Talley and Raymer
(1982) found that the 18°C mode water in the North
Atlantic does have small pulses of potential vorticity
at the annual period. In addition, the mode water has
been observed to be not very sensitive to the strong
surface annual heat flux variation. Relatively significant
changes arise at interannual time scales. These obser-
vations are in accordance with the theory here.

Perhaps an even more important phenomenon is
the thermocline variability in the northern part of a
subtropical gyre. Observations have indicated that the
annual response in the northern part of the subtropical
gyres in both the North Pacific and the North Atlantic
is mainly barotropic while in the southern part the re-
sponse is mainly baroclinic (Gill and Niiler 1973).
Later, observations (Price and Magaard 1980, 1986;
White and Saur 1983) found no signals and very weak
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TABLE 1. The comparison between nonentrainment
and entrainment solutions.

Nonentrainment
solutions Entrainment solutions
Forcing Weak cooling Strong cooling
Dynamics Advection ~ cooling  Advection + convection

~ cooling
Entraining (wy, < 0)
+ detraining (w},
>0
fo > vp sometimes
Strong variation
Mean structure  (h) ~ h (mean fo, h,) (h) ~ h(winter fo, hp)
Variability Independent of w Strongly dependent on
(6h(r)) w

Entrainment Detraining (w3 < 0)

Jo > vp all the time
Weak variation

pm(t) o1 (fol?))
Finl1)

signals of interannual baroclinic Rossby waves in the
northern part of the subtropic gyre in the North Pacific
and the North Atlantic, respectively. In contrast, in the
southern parts of the subtropical gyres in both oceans,
clear baroclinic Rossby wave signals are identified at
annual and interannual frequencies.

These observations are consistent with the theory
about the effect of a varying Ekman pumping as dis-
cussed by Liu (1993a,b). The thermocline in the
northern part of a subtropical gyre is mainly occupied
by a ventilated zone, where the advection from the
subducted water tends to balance the local Ekman
pumping. As a result, little baroclinic Rossby wave ac-
tivity exists. On the contrary, the thermocline in the
southern part of a subtropical gyre is mostly occupied
by a shadow zone, where advection plays little role.
Baroclinic Rossby waves and local Ekman pumping
dominate the response. Consequently, the activity of
baroclinic waves is strong. Therefore, the different dy-
namic balances in a ventilated zone and a shadow zone
may offer an explanation for the lack of baroclinic sig-
nals in the northern parts of the subtropical gyres.
When we consider the effect of a varying surface tem-
perature, we find that at interannual time scales the
variable surface heat flux is able to force strong baro-
clinic variability in the ventilated zone through the ad-
vection of the subducted waters from the mixed layer.
This may suggest that the variability in the northern
part of a subtropical gyre may be forced primarily by
the surface heat flux through subduction rather than
by the local Ekman pumping and Rossby waves.

In spite of the difficulty of observations, recent nu-
merical experiments have provided encouraging results.
Bleck et al. (1989) and Hu and Bleck (1992) studied
the thermocline-mixed layer system using a numerical
model in isopycnic coordinates. They have concen-
trated on annual periods so far. In general, their results
agree with the present theory. For example, with a
strong annual surface heat flux variation, the perma-
nent thermocline in their model changes little although
the seasonal thermocline varies dramatically. In ad-
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dition, although the annual surface forcing varies har-
monically, layer interfaces locally exhibit a faster shal-
lowing and a slower deepening. Furthermore, at the
annual time scale, the mixed-layer dynamics is deter-
mined mainly by local processes and therefore hori-
zontal advection is not important. Much more detailed
analysis is still needed to improve our understanding
and compare with the theory. In particular, it would
be important to examine results from numerical ex-
periments at decadal time scales.

Much can be done to improve our present model.
First, the mixed-layer model is not active. For a true
understanding of the effect of a variable surface buoy-
ancy flux on the thermocline, it is crucial to couple an
active mixed layer with the permanent thermocline.
Second, the vertical resolution needs to be improved.
The flat bottom used here is artificial, because the ther-
mocline bottom is neither rigid nor flat. The study of
a coupled mixed layer and a two-and-a-half-layer ideal
fluid thermocline model will be helpful in clarifying
some artificial features of our flat bottom. The two-
layer vertical resolution is too crude to resolve a pole-
ward deepening mixed-layer bottom [as shown in
(4.1)], which has been seen important in steady cases.
At least three thermocline layers are needed to inves-
tigate the effect of a tilting mixed-layer bottom (Wang
1990; Pedlosky and Robbins 1991 ). In addition, as the
layer number is increased, even with a zonal outcrop
line, the thermocline in the ventilated zone should be
dependent on Ekman pumping, while the thermocline
in the shadow zone should be related to the outcrop
line. [ This can be seen in the steady cases with layered
LPS model (Luyten et al. 1983) or the continuously
stratified model (Huang 1986).] Therefore, the ther-
mocline variability in both zones will be more com-
plicated.

Acknowledgments. This is part of ZL’s Ph.D. thesis
completed in the Joint Program of MIT/Woods Hole
Oceanographic Institution. ZL is grateful for many
discussions with Drs. R. X. Huang, G. Flierl, C.
Wunsch, and J. Price. ZL also thanks Drs. G. Flierl
and P. Rizzoli for generously letting him use their Sun
cluster computers. Useful suggestions and careful
reading of the manuscript of D. Marshall are greatly
appreciated. The suggestions of two reviewers were very
helpful in clarifying the paper. This work is supported
by the Division of Atmospheric Research, NSF.

APPENDIX

The Mathematical Derivation of dsh| /-
Differentiating (4.2b) with respect to ¢; yields
1
o h* =—
T

X [f*ﬁ)% - (1 =H)S*f —fo*)] , (A1)

where f¥ is given in (3.18). Thus, with (3.18) and
using fo = f* at t; = t and vg = fw,, we obtain
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o, h*
h| =y = a:'f*
i 1=t
=(de/dti)+ We(f(‘))(l _Hm) (AZ)

—[vs(fo) “fo]

The entrainment velocity at the bottom of the mixed
layer at the outcrop line is

dH,
wk = —;l,t—m + Wi,
where w,, = w| s .—_u, is the vertical velocity at the
bottom of the mixed layer under the outcrop line. This
vertical velocity can be proven to be

Wi = (1 = Hp)we(Jo)- (A.4)

Indeed, since in (2.10) we assumed that the density in
the mixed layer is zonally independent, the meridional
velocity in the mixed layer is barotropic. Moreover, in
(4.1) or the solution (4.2), we have adopted a zonal
outcrop line and a zonally independent mixed-layer
depth. Thus, in the ventilated zone, it holds that 9,4
= 0l = 9y = 0. Consequently, in all the layers,
the meridional velocities are barotropic; that is, v,
= p, = v, = vy. Integrating the vorticity equation of
the mixed layer v,, = fw, from the bottom to the top
of the mixed layer, we have H,vg = H,Um = W,
— fw(— H,,). Using the Sverdrup relation vy = fw,, we
obtain (A.4). Equations (A.3) and (A.4) then give

(A3)

dH,,
® — M —
wi, & + (1 — Hpy)w,. (A.5)
Thus, (A.2) becomes
W*
Oh| e = ———5r. A6
Rl = ooy = ol (A6
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