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ABSTRACT

T}lermocline variability forced by zonally uniform Ekman pumping with annual to decadal periods is in-
vestigated. Both analytical and numerical solutions are obtained by the method of characteristics. As found in
Part I, there is little thermocline variability in the ventilated zone or pool zone. In contrast, strong variability

may exist in the shadow zone.

For annual forcings, nonlinearity is negligible. However, the linear solution is influenced substantially by the
basic-state thermocline structure. As a result, local responses dominate for a shallow interface, while remote

Rossby waves dominate for a deep interface.

Under a strong decadal forcing, nonlinearity may become important. The time-mean thermocline in the
shadow zone is shallower than the steady thermocline under the mean Ekman pumping, particularly in the
western part of a shadow zone where the mean deviation may reach the order of ten meters. This shallower
mean thermocline is caused by the nonlinear Rossby wave.

1. Introduction

In a previous paper (Liu 1993a, hereafter referred
to as LIU), a two-layer planetary geostrophic model is
used to investigate the evolution of a ventilated ther-
mocline in response to a sudden change of Ekman
pumping. This spinup problem is particularly success-
ful in highlighting the physics behind the evolution. It
is found that the dynamics differs dramatically between
a shadow zone and a ventilated zone. In a shadow zone,
the local Ekman pumping is mainly balanced by the
Rossby wave propagation, whereas in a ventilated zone
the Ekman pumping is mainly opposed by cold ad-
vection from the north. As a result of the different dy-
namics, thermocline variability also varies substantially
between the two zones. After a sudden change in Ek-
man pumping, the shadow zone exhibits strong ther-
mocline variability, while the ventilated zone has little
thermocline variation.

However, some important issues cannot be under-
stood in the spinup case. For example, observations
clearly show that the variation amplitude of isopycnal
surfaces differs dramatically for different time scales.
Therefore, as a further step, several other issues will be
addressed in this paper. First, how does a thermocline
evolve under an annual or a decadal wind forcing? Most
previous works, whether theoretical, numerical, or ob-
servational, have concentrated on annual variability.
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On the other hand, recent interest in climate change
also requires understanding of decadal variability.
Therefore, the decadal forcing needs particular atten-
tion. Physically, on an annual time scale, a midlatitude
Rossby wave crosses only a fraction of the width of the
basin, while on a decadal time scale, a Rossby wave is
able to cross an entire ocean basin. Therefore, decadal
variability may have different features from those of
annual variability.

Second: what is the effect of the two-dimensional
thermocline structure and flow on the propagation of
planetary waves? Most previous works have investi-
gated the local response or the linear Rossby wave in
the absence of a mean thermocline circulation. How-
ever, the wave speed of a baroclinic planetary wave in
the midlatitudes is comparable to that of the mean
wind-driven flow. In addition, the observed mean
thermocline structure varies significantly in space.
Thus, we may expect significant influence arising from
the mean flow and thermocline. Indeed, preliminary
studies on waves in the presence of a zonal baroclinic
flow have shown that the Rossby wave propagation
could be changed substantially (e.g., Anderson and
Killworth 1979; Cheng and Philander 1989). Here, we
will further explore the thermocline variability in the
presence of a two-dimensional flow and thermocline
structure. In particular, as a recent concern, we are
interested in the relative importance of the local Ekman
pumping and the Rossby waves radiating from the
eastern boundary. Classical works claimed the local
Ekman pumping to be the main driving mechanism
for the variability (e.g., Gill and Niiler 1973; Roden
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1976). However, recent studies show that the local Ek-
man pumping produces a poor phase correlation with
the observation, and underestimates the amplitude of
the variability badly (e.g., White and Saur 1983; Kessler
1989). Instead, a model incorporating Rossby waves
improves the results substantially in the southern part
of the subtropical North Pacific. Here, we will explore
this problem from a theoretical viewpoint with an em-
phasis on the role of the thermocline structure.

Finally, how strong is the nonlinearity? The nonlin-
earity of Rossby waves'and the interaction between the
barotropic and baroclinic flows ! have not been studied
extensively, On the other hand, observations have
shown that isopycnal variation can often reach =50 m
in the midlatitude main thermocline, with equivalent
steric sea-level changes of about +5 cm (White and
Tabara 1987; Tabara et al. 1986; White 1983; Talley
and White 1987; Roemmich and Wunsch 1984). If
we choose a decorrelation space scale of L = 1000 km
and a reduced gravity of 1 cm s, this thermocline
variability corresponds to a disturbance geostrophic
velocity (y/f)(8h/L) ~ 1 cms™'. This velocity is
comparable to the wave speed of planetary waves in
the midlatitudes. Therefore, the nonlinear evolution
of the thermocline may be important. One concern
closely relevant to the nonlinearity is the structure of
a time-mean thermocline. This has recently been stud-
ied by Dewar (1989), who found that under an annual
forcing, the time-mean thermocline has a residual cir-
culation that consists of microgyres in the otherwise
motionless shadow zone. However, his model is a
quasigeostrophic model, in which the only nonlinearity
comes from the barotropic-baroclinic interaction.
Here, his work will be extended in two directions: the
inclusion of nonlinear Rossby waves and the consid-
eration of decadal time scales.

The paper is arranged as follows. In section 2, we
will find that under an annual Ekman pumping with
a deviation of, say, 50% from the mean as observed by
Levitus (1988), linear waves superimposed on a steady
ventilated thermocline approximate the fully nonlinear
solution excellently. Even for a decadal forcing, linear
wave theory still predicts the thermocline variability
very well in the eastern part of a shadow zone. A more
comprehensive comparison between linear and non-
linear solutions will be presented in section 3. The lin-
ear theory also shows that the basic thermocline struc-
ture plays an essential role in determining the relative
importance of local responses and eastern boundary
planetary waves. Because of different thermocline
structures for different depths of interfaces, on shal-

!'In this paper, the barotropic-baroclinic interaction refers to the
density advection vz- V/ term. More precisely, this term is not a
nonlinear effect because it is induced by the known barotropic velocity
interacting with the unknown baroclinic field. This term isa variable
coefficient term. Nevertheless, since this term can produce a time-
mean thermocline different from the steady thermocline with the
time-mean forcing, we will call this term a nonlinear effect.
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lower interfaces, local responses dominate, while for
middle and deep interfaces, remove waves dominate.

In section 3, we investigate the fully nonlinear so-
lution. At an annual frequency, it will be seen that the
time-mean thermocline is close to the steady thermo-
cline forced by the time-mean forcing. However, with
a strong decadal forcing, the time-mean thermocline
could be significantly shallower than the corresponding
steady thermocline, particularly in the western part of
the shadow zone. Some possible physical mechanisms
are also explored.

To further explore the dependence of the thermo-
cline variability on the frequency and amplitude, in
section 4, a detailed calculation is carried out. The cal-
culation demonstrates that for annual and weak de-
cadal forcings, the solution is essentially linear. At de-
cadal or even lower frequencies, if the perturbation
Ekman pumping is stronger than 1/10 or 1/5 of that
of the time-mean Ekman pumping, the nonlinearity is
no longer negligible. Finally in section 5, we summarize
our results.

2. Linear theory

In this section, we study the linear theory. Later, it
will be shown that with an annual forcing or a weak
decadal forcing, the linear solution approximates the
fully nonlinear solution very well. The linear theory
here highlights the physics of planetary wave propa-
gation in the presence of a basic ventilated thermocline.
One issue we are particularly interested in is the relative
importance of the local Ekman pumping and remote
eastern boundary waves.

a. The model

The model is the same as in LIU. It is a two-layer
planetary geostrophic model with a flat and rigid bot-
tom at z = —H. The upper- and lower-layer densities
are p; and p,, respectively; the interface is at depth 4.
The equation governing the interface can be derived
as (Rhines 1986; Dewar 1987; Liu 1993a)

h, + vgh, + [ug + C(h)1he = —(1 — h/H)w..

Here, ug, vy, and C(h) are barotropic velocity com-
ponents and the speed of the nondispersive Rossby
wave C(h) = —Bvh(H — h)/f*H. Here w, is the Ek-
man pumping imposed on the surface; vy = g(p2 — p1)/
p, is the reduced gravity. Other notations are standard.

Superscripting a dimensional quantity by a star, we
have the nondimensional quantities:

f* 6* t*
:——" =——9 t=—,

s Jn 8 Bo Tw
x* h* w¥
X——E, h—_ﬁ’ W—W‘.

Here W, f,, and B, represent respectively the typical
Ekman pumping velocity, the Coriolis parameter at
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the northern boundary of the subtropical gyre, and the
mean S value in a subtropical gyre; Ty = H/W is the
time for a particle to move to the bottom of the ther-
mocline with the Ekman pumping vertical velocity;
and L = (BoyH/ f %) X Ty is the zonal spatial scale for
a Rossby wave to travel in the time 7. The above
equation for the interface has the nondimensional form

o+ vghy+ (up + CYhe = —(1 — h)w,, (2.1a)

where C(h) = —h(1 — h)/f?. With the Sverdrup re-
lation, one can show that the barotropic velocity (ug,
vp)=[—(f? [y wedx)s/ f, fw.]. Here, we have assumed
a vanishing barotropic transport into the eastern
boundary. In addition, we have used f = f + By to
replace the y coordinate and the nondimensional
= | is chosen, With the aid of continuity equation V - vy
= w,, (2.1a) can be rewritten as the conservation form

h+ Ve(vgh)+ C(hh, = —w,. (2.1b)

For simplicity, we choose our Ekman pumping inde-
pendent of longitude. Furthermore, the periodic Ek-
man pumping is assumed to be of the form

we(f, 1) = wo(f) + awi (. 1)
with  w, = wo(f)g(?). (2.2a)

In the remainder of the paper, we will choose g(t)
= sinwt. Therefore, a represents the strength of the
perturbation forcing. The total Ekman pumping w,
= wo(f)(1 + a sinwt) varies only in its amplitude but
not its position. In reality, the wind field may also mi-
grate north—south substantially, as in the case of annual
wind. This effect is not included in (2.2a). Here w is
the nondimensional frequency of the forcing. For a
mean thermocline depth H = 600 m and a mean Ek-
man pumping velocity of W ~ 107 cm s™', the di-
mensional time scale T, = H/W is about 20 years.
This gives the dimensionless frequencies: annual w
~ 100 and decadal » ~ 10. In physical terms, at an
annual frequency, it takes a planetary wave several pe-
riods to cross the ocean basin, while at a decadal fre-
quency it takes a planetary wave less than or about
one period to reach the western boundary. In addition,
Wy can be seen to be the time-mean Ekman pumping

wo(f) = (we(f, 1)) ~ O(1), (2.2b)
2w fw

where () = (w/27) dr.
o

b. The linear solution

With weak perturbation a < 1, 4 can be expanded
as

h=ho+ah,+a2h2+--- (23)

If the barotropic velocity is decomposed into the time-
mean component vz, and the perturbation component
vz, the Ekman pumping (2.2a) and continuity equa-
tion require that

vg=vgot+ avg; V-vge=—wy, V-.vg = —w,

(2.4)
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1) THE BASIC STATE

Substituting (2.2a), (2.3), and (2.4) into (2.1), at
the leading order, we obtain the basic-state equation:

V- (vgoho) + C(hg)hox = —wo. (2.5)

This gives the steady LPS (Luyten, Pedlosky, and
Stommel) thermocline in our two-layer model (Luyten
et al. 1983). The thermocline structure can be solved
following their method, but, for later convenience, we
solve it by the method of characteristics. Choosing s
as the variable along a characteristic, the characteristic
equations for (2.5a) can be written as

‘*Z,f = vgo = fwo(f),

s

‘Zﬁ =—(1— ho)wo(S),
s

% = ygo+ C= _[fzwo(f)x]f/f_ ho(1 — hO)/fz‘

This set of equations can be solved as

,
s=ff AN/ Mo(N) or  f=f(s,f), (2.6a)

SICE = ho) = fi/(1 = hy), (2.6b)
2wo()x = 21 Fwo(f)x; + h§ — hi. (2.6¢c)

Here, (2.6b) is the recovery of the conservation of po-
tential vorticity of the basic state along a characteristic
line, which is derived by the division of the fand 4
characteristic equations.

To solve the basic state from (2.6), for simplicity,
we will adopt a zonal outcrop line at /= f,, a meridional
eastern boundary at x = 0, and a flat interface at the
eastern boundary 4.(f) = H,. The solution over a sub-
tropical gyre generally has a shadow zone adjacent to
the eastern boundary, within which all characteristics
start from the eastern boundary. The initial conditions
for characteristics, subscribed by i, are then x; = 0, A;
= H,. Equation (2.6¢) immediately yields the solution

he = H? + 2 wo(f)x for x> xpo(f). (2.7a)

Here x,, is the shadow zone boundary of the basic
thermocline and is formed by the characteristics ini-
tiating from the corner x; = 0, f; = fo.

To the west of the shadow zone, two solutions are
possible depending on whether H, vanishes or not. If
H; = 0, there will be a ventilated zone. For H; > 0,
there will be no outcrop line within the subtropical
gyre, so there is no ventilated zone. Pedlosky and
Young (1983) proposed a pool (Rhines and Young
1982) west of the shadow zone. One common feature
of the pool zone (as defined by Pedlosky and Young)
and the ventilated zone is that their characteristics do
not trace back to the eastern boundary. Instead, the
characteristics start from the north. More specifically,
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for the outcropping case, the northern boundary is
simply the outcrop line f;, where A = 0 = H,, corre-
sponding to a ventilated zone. For the case without
outcropping, following Pedlosky and Young (1983),
the northern boundary is the gyre boundary f, = 1,
where 2 = H,, corresponding to a pool zone. Hence,
the initial condition for fis f; = , for the ventilated
zone and f; = 1 for the pool zone. For both cases, the
A initial condition is #; = H,. The solution is derived
from (2.6b) directly as

ho=1~(1~H)f/fo x < xpo(f). (2.7b)

Equations (2.7a,b) give solutions for the steady ther-
mocline for any A.(f) = H, = const. Finally, we discuss
the characteristics. This turns out to be necessary in
deriving explicit solutions at higher orders. Through
any point (x, f), we can trace the characteristic curve
back to its initial position (x;, f;) (on the outcrop line
or eastern boundary). By virtue of (2.6b,c), the initial
position can be calculated explicitly as

for

| —H,
Ji = Fi(x,f) E_fm’ (2.8a)
3 2 *wo()x — h§(x, ) + H?
XK ) T R G Dwe Py

(2.8b)

where A is determined in (2.7). Between (x, /) and

its initial position (x;, f;), the distance along the char-

acteristic coordinate can be derived from (2.6a) and
(2.8a) explicitly as

g

s=8S(x,f)= f

Filx./)

dN/Awo(X).  (2.8¢c)

Indeed, for the steady basic thermocline, the charac-
teristics are isolines of potential vorticity. In the ven-
tilated zone, they are also the streamlines.

2)' THE EQUATION FOR LINEAR DISTURBANCES: A
DECAYING EFFECT

To obtain the linear solution, we first derive its gov-
erning equation at the next order from (2.1) and (2.3),

hi+ vpo Vi + C(ho)hix — uhy

= —(1 — ho)w; —vg,+Vhy, (2.9a)

where

B=pigt+ pr, pe=—V-vgy, pr=-V-C(hy)

= —8:C(ho) = (1 = 2ho)hox/ 1. (2.9b)

The two terms on the right-hand side of (2.9a) are the
perturbation Ekman pumping and the advection of
the mean thermocline by the velocity perturbation, re-
spectively. The right-hand side of (2.9a) is a partial
linear equation, whose characteristic equations are
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dt

— = 2.10

= 1, (2.10a)

d

d—{: = VUgo, (2.10b)

dx

g = upo + C, (2.10c)
%f;_l = phy — (1 — ho)wy — vg - Vhy, (2.10d)

where Ag(x, f) is given in (2.7a,b). Notice that the f°
and x equations (2.10b,c) are the same as those of the
basic state [ following (2.5)]. In other words, the wave
rays for linear disturbances (dx/df’) are the same as
the characteristics of the basic state, which have been
solved in (2.6a,c) or (2.8). Hence, linear waves prop-
agate along the basic-state characteristics. This occurs
because for weak perturbations, the change in the
characteristics due to nonlinearity is small. However,
if the perturbation becomes strong, the characteristics
might be changed substantially by either the barotro-
pic-baroclinic interaction (vg-V#4) or nonlinear
Rossby wave velocity (C(/)). These nonlinear effects
will be discussed in the next section.

The initial conditions for x and fare also similar to
the basic-state case. Since we only consider the forced
response after the initial adjustment, the initial con-
ditions for characteristics start either from the outcrop
line f; = fy for the ventilated zone (or the northern
boundary f; = f, = 1 for the pool zone), or from the
eastern boundary x; = 0 for the shadow zone. The
initial disturbance A, is set to zero for all cases, that is,
h;; = 0. Since (2.10b,c) are solved as in (2.6a,c) or
(2.8), and (2.10a) is simply ¢ = ¢; + s, with ¢; being
the initial time when the characteristics starts from the
outcrop line or shadow zone, the linear wave can be
obtained from the linear ordinary differential equation
(2.104d) alone.

Before solving the equation, let us investigate an in-
teresting feature in (2.9a) that comes from the term
—uhy. This term is caused by the divergence of the
characteristic velocity as shown in (2.9b). In the ven-
tilated zone (VZ) [or pool zone (PZ)] with (2.7b),
(2.9b) yields ug = 0. This leads to

w=ps=—Vevgo=wy <0 inVZorPZ (2.11a)

where we have used the continuity equation for the
basic state in (2.4). In the shadow zone, noting (2.7a)
and (2.9b), we have ug = wo(1/hy — 2). Combining
this with (2.11a), we obtain

B = pat pr = wo + wo(1/hy — 2)

Therefore, u < 0 holds over the entire gyre. This, as
suggested by (2.9a), will make a disturbance decay
along a characteristic line. Physically, this occurs be-



DECEMBER 1993

cause, with an approximate energy flux conservation,
a divergent group velocity field u = =V« (vp+ C) <0
[see (2.9b)] implies a downstream decrease of wave
energy. Equations (2.11a,b) show that this divergent
group velocity is mainly caused by the divergent baro-
tropic flow field. On shallow interfaces (4, — 0), the
divergence is strongest (ug ~ 1/hy = c0), predomi-
nantly arising from the Rossby wave velocity field. This
produces a strong decay effect on disturbances. This
phenomenon occurs because of the rapid deepening of
the basic thermocline near the eastern boundary on
shallow interfaces.

A

3) THE LINEAR SOLUTION

In the absence of a mean Ekman pumping, the basic
state is at rest over the whole gyre. With a mean Ekman
pumping, the first significant change is the creation of
a ventilated zone in the basic thermocline structure.
In this zone, the advection of the subducted waters
dominates while Rossby wave activity is weak. Indeed,
using the Sverdrup relation vy, = fw; and (2.7b), the
perturbation forcing on the right-hand side of (2.9a)
becomes —(1 — hg)w; — vg,+Vhy = 0 for x < Xpo.
This zero perturbation forcing, together with the zero
boundary condition in (2.9¢), yields no thermocline
variability in the ventilated zone, that is, 2, = 0 for x
< Xpo. This reflects that in the ventilated zone the per-
turbation Ekman pumping is mainly balanced by the
perturbation density advection. It should be noted that
the conclusion also applies to the pool zone on an un-
ventilated interface because of the dominant advection
there.

In the following, we will focus on the variability in
the shadow zone. In the shadow zone, if the Ekman
pumping (2.2a) is adopted, we find that the pertur-
bation density advection vanishes, that is, vz, VA
= g(t)vgo- Vhy = 0, where we have used (2.7a). [ This
is true only for the form of Ekman pumping in (2.2a).]
The remaining perturbation forcing is the perturbation
Ekman pumping

—(1 = ho)wi = —(1 = ho)wo(/)g(1).

To solve (2.10d), we first notice the following integral
along a characteristic
—, (2.12
5i Awp(A) )

exp[—fo uds] = exp[— P

where ds = df/ fwy(f) in (2.10b) has been used. Be-
sides, the basic-state potential vorticity conservation
(2.6b) is used to simplify the calculation because f/( 1
— hy) = f; /(1 — h;) is constant along a characteristic.
Then, (2.10d) can be integrated in the characteristic
coordinate as

ill = ill(S, 4, )= —(}‘lio)(l }ho) J:g(ti +5)
X M3, Fywo(Nho(3, £)d3, (2.13)

where f is given in (2.6a) and /g is the / solution in

S/ u()\)d)\] _ ho
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the characteristic coordinate, which can be derived
from (2.6a,b) as

ho(s, fi) = 1= (1 — H)f(s, )/ fis  (2.14)

where h, = Hghas been used. If (2.8a,¢) are used, (2.13)
can be expressed explicitly in (x, /) coordinate as

n-sisin=-(2)5)

S(x,1) .
Xfo et — S, f) + 5175, Fy)

X wo( Nho(§, F;)ds, (2.15)

wheret; =t~ s =t — S(x,f)hasbeen used. In (2.15),
the second factor remains unchanged along a charac-
teristic line because of potential vorticity conservation
(2.6b). On the other hand, the first factor 1/ 4, is caused
by the decaying effect due to the divergent characteristic
velocity field. Indeed, integration of the damping term
along a wave ray can be seen from (2.12) as

5 hi
exp[ J; uds] .
Along a characteristic, #; is fixed while %, deepens as
dhy/ds ~ —wy > 0 [see the characteristic equation of
ho following (2.5)]. Therefore, (2.16) represents the
decaying factor due to the divergent group velocity
field.

The linear solution (2.15) [or (2.13)] is derived for
weak perturbations a < 1. However, we will find that
for an annual frequency, (2.15) agrees with the fully
nonlinear solution excellently even with a strong forc-
ing a ~ 1 (the perturbation forcing is comparable to
the mean forcing). This point will be elaborated in
later sections. Figure 1 displays an example of instan-
taneous zonal sections under a strong annual forcing
(w = 50, a = 0.5). [The amplitude a = 0.5 has been
observed for a real annual Ekman pumping field (Lev-
itus 1988). In Fig. la, two instantaneous / profiles
(solid lines) in September (wf = 0) and March (wt
= ) are shown on the interface with H, = 0. It is seen
that the variability is weak. In Fig. 1b, the perturbations
Dh = h — hy of Fig. 1a are shown (/4 is the basic state
in (2.7).] The linear solutions (in dotted lines) ap-
proximate the nonlinear solution (in solid lines) ex-
cellently. (The nonlinear solutions will be derived in
the next section.) Figures 1c,d give another example
for a deeper interface with H, = 0.6.

(2.16)

¢. Thermocline evolution: Local or remote response?

Now we analyze the thermocline evolution. To have
a better understanding of the linear response, we first
derive an approximate expression for the linear wave
in (2.15). Integrating the characteristic form of solution
in (2.13) by parts and using (2.8) (see appendix A),
we obtain an approximate solution to (2.15) at 1/w
order as (for w > 1)
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FIG. 1. Synoptic zonal sections of interfaces (a), (¢) and deviations DA = & — Rgeaqy (b), (d) under a strong annual Ekman pumping
=50, a = 0.5. The Ekman pumping function is wy(f) = Wy/f, the latitude is = 0.3 and wo(f) = —2: (a), (b) H; = 0;(c), (d) H, = 0.6.
The solid lines are the nonlinear solutions. The dotted lines are linear solutions. The dashed lines are steady LPS solutions. The dot-connected
lines are time-mean disturbances { D ). One sees that the linear solution approximates the fully nonlinear solution excellently. In addition,
the difference between the time-mean nonlinear solution and the steady solution forced by the time-mean Ekman pumping is very small
(order 1 m), even the forcing amplitude changes half from its mean.

(1 = hy)wo()) Here F;, hy, and S are given in (2.8b), (2.7a), and
hy = T [coswt — A cos(wt — ®)] (2.8c), respectively. The solution is good for high fre-
quency when the interface is not very close to the sur-
1 face (see appendix A for discussion). The first term in
+ O(E) » (2.17a) (2.17a) is the local response, which can be obtained
by setting the advection and Rossby wave terms to zero
where 4 and ® are functions of x and f: in (2.9a), and which lags the perturbation forcing in
(2.2a) by 90° in phase. The amplitude is
_ HsFi WO(Fi)

A=
ho fwo(f) ’ Al . a(l = ho)wo(f)
(2.17b) focal = w '

d = ot — 4;) = wS(x, f).
(2.18)
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This means that the local response decreases westward
because the basic-state thermocline deepens westward.
This in turn weakens the effective Ekman pumping.
In comparison, the special case without a mean Ekman
pumping has a flat basic thermocline interface and
therefore the local response does not vary along a lat-
itude circle.

The second term in (2.17a) is the Rossby wave,
which is forced mainly along the eastern boundary
where 4 = 1 (because F; = f, h; = H,), and thus the
eastern boundary condition A;; = 0 is satisfied. Equa-
tion (2.17) is valid only in the shadow zone because
the mean flow creates a ventilated zone that inhibits
the invasion of waves from the eastern boundary.

Furthermore, the presence of a mean Ekman pump-
ing and thermocline changes the boundary wave sig-
nificantly in both its amplitude and phase. The wave
amplitude decreases along a wave ray due to the di-
vergent group velocity field. In fact, in (2.17a,b), we
have the wave amplitude

w ho f WO(f)
- men) o [, @a9)

w 0

where we have used #; = H,and (2.16). Equation (2.19)
illustrates the physics of the boundary wave elegantly.
The boundary wave is excited locally at the eastern
boundary by the perturbation forcing (1 — A; )awe(F;)
= (1 — h;)w, [see (2.12)]. This forcing produces a
local response with the amplitude (1 — 4; )awo(F;)/ w,
which decays according to exp([f, uds) = hi/ho
along a characteristic line due to the divergent group
velocity field. For a shallow interface (H; < 1), the
decaying effect is especially strong near the eastern
boundary [see discussion after (2.11b)].

The phase ® of the free wave, represented by the
second term in (2.17a), is also changed substantially.
For example, without an Ekman pumping, the phase
is always in a 8 dispersion orientation ® ~ 1/x /2 (in
the northeast-southwest orientation) (Schopf et al.
1981). But, with an Ekman pumping, near the south-
ern boundary of a subtropical gyre, the wave front may
vary from a @ dispersion (northeast-southwest) to a
northwest-southeast orientation. More details about
the wave front propagation are given in Liu (1991,
1993b). Here, we only need to remember that (2.17b)
implies that the ® is approximated at the leading order
by S(x, f).

1) LOCAL OR REMOTE RESPONSES?

We now turn to our fundamental question of ther-
mocline variability: whether the disturbance is caused
by a local response or a remote response. Under a local
response, an interface is simply forced by the pertur-
bation Ekman pumping to move up and down with a
phase lag of 90° to the forcing. On the other hand,
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remote responses have two mechanisms: the advection
due to remotely subducted waters at the outcrop line
and the eastern boundary Rossby waves.

In a ventilated zone, we have seen that the local
response is as important as the remote advection and
both tend to balance each other. This cancellation re-
sults in the absence of baroclinic variability.

In a shadow zone, the density advection is weak.
The question then becomes the classical question:
which is more important, the local response or the
eastern boundary wave? Solution (2.17a) consists of a
local response and a remote response. The remote re-
sponse is mainly caused by the eastern boundary waves.
Here A4 represents the relative magnitude of the
boundary wave with respect to the local response; 4
< 1 gives a local response domination, while 4 > 1
gives a boundary wave domination. In the absence of
a mean Ekman pumping, (2.9a) reduces to

alhl + C(Hs)h]x =

where C(H,) = —H,(1 — H,)/f* is independent of x.
The solution satisfying the boundary condition in
(2.9¢) is easily solved as

_ (L= Hyw(f)

w

—Wi,

h

X [cos(wz) - cos(wt - C(ZS) x)] .

A comparison with (2.17a) suggests that 4 = 1. [ This
can also be obtained at the limit of wp — 01in (2.17b).]
Thus, the local response has the same magnitude as
the boundary wave, that is, both are equally important.

However, with a mean circulation, it will be seen
that the above conclusion no longer holds. Figures 2a,b
display two examples of 4 (solid lines) and the bound-
ary wave phase ® (dashed lines) with an annual fre-
quency w = 50. The Ekman pumping takes the form
we(f) = Wo(1 — f)(f— f;). The solution accurate to
1/w? in appendix A is used. Figure 2a is on a shallow
interface (H, = 0.1), while Fig. 2b is on a deep interface
(H, = 0.5). Two features are salient. First, local re-
sponses tend to dominate on the shallow interface,
while boundary waves dominate on the deep interface.
Secondly, local responses are stronger in the northern
part of an interface, while boundary waves are stronger
in the southern part. These two features are also clear
for decadal forcings. In fact, at the leading order, the
relative amplitude 4 in (2.17b) is independent of fre-
quency.

To understand the physics of these two features, we
rewrite the relative amplitude 4 in (2.17b) as

e [EH (1 — Hy)wo(F)
ho || (1 — ho)wo(f)
Toward the interior, the divergent group velocity pro-

duces the eastern boundary Rossby waves decaying to-
ward the interior (the first factor), resulting in a weaker

] >0. (2.20)
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FIG. 2. Here, A is the relative amplitude of the eastern boundary
Rossby to that of the local response; @ is the phase of the boundary
waves of linear solutions of second-order approximation O(1/w?)
in (A.1). The Ekman pumping has the form wo(f) = Wo(1 — f)(f
— f5) and its amplitude is such that wy( /)| s=0.5014+5 = —1. The outcrop
line is at fy = 0.9, (but the figure does not show all the interface).
The frequency is annual, w = 50. Panel (a) is on a shallow interface
with the eastern boundary interface H; = 0.1. A large area of 4 < 1
is present and thus local response dominates. Panel (b) is on a deep
interface with H; = 0.5. The 4 > | area occupies most of the domain.
Thus, remote Rossby waves are more important.

boundary wave response. In contrast, a westward-
deepening basic thermocline produces a smaller effec-
tive Ekman pumping (the second factor), in favor of
a weaker local response. Therefore, which effect is im-
portant depends on the competition between the two
mechanisms. On a shallow interface, the divergent
Rossby wave velocity is extremely strong [see discus-
sion following (2.11b)], suppressing the eastern
boundary wave significantly. Therefore, the local re-
sponse is dominant. The opposite occurs for a deeper
interface, where the boundary wave tends to dominate.

In addition, a Rossby wave is produced at latitude
F; and then propagates southward, requiring F; > f.
In the northern part of a subtropical gyre, |wo(f)|
decreases poleward. Thus, wo(F;)/wo(f) < 1, implying
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a relative weak boundary wave. Physically, in the
northern part, the local Ekman pumping wy(f) is
stronger than the Ekman pumping wy(F;) that gen-
erates boundary waves along the eastern boundary.
Therefore, the local response tends to be stronger. The
opposite occurs in the southern part of the gyre. In
particular, near the southern boundary, where local
Ekman pumping vanishes, wp(f) — 0, the boundary
waves are forced in the middle of the gyre where wy(F;)
is finite. Thus, wy(F;)/wo(f) = oo, implying a dom-
inant boundary wave effect.

2) VARIABILITY OF THERMOCLINE STRUCTURE
AND CIRCULATION

Figure 3a depicts the disturbance af,; under a strong
annual forcing a = 0.5, w = 50 in September (wt = 0),
December (wf = 90°), March (wt = 180°), and June
(wt = 270°). The eastern boundary depth is H,; = 0.1
(as in Fig. 2a). It is seen that the disturbance reaches
about maximum in March and reaches the negative
maximum in September, which is typical for local re-
sponse dominance. The maximum amplitude is about
0.01, corresponding to a dimensional depth of about
6 m (if the total depth H = 600 m). Figure 4 displays
ah, with a weak decadal forcing w = 5, a = 0.05. A
positive (negative) Rossby wave anomaly is formed
near the eastern boundary during winter (summer).
Then, the anomaly propagates and intensifies westward
to occupy the interior during fall (spring).

Last, we observe the circulation. Figures 3b,c illus-
trate the upper- and lower-layer circulation for the
thermocline disturbance in Fig. 3a. The upper-layer
circulation remains to be an anticyclonic gyre. This
gyre reaches its maximum strength in the winter and
its minimum in the summer. The lower layer is more
interesting. A penetration of water toward the shadow
zone appears in the winter when the wind is strong
(similar to a spinup process in LIU Fig. 6). In contrast,
in the summer when the wind is weak, the lower layer
exhibits a northward flow and a cyclonic gyre in the
shadow zone, while the anticyclonic gyre is confined
in the nothern part of the ventilated zone. ( This agrees
with the circulation during a spindown process in LIU
Fig. 7.) Physically, the changing of flow is caused by
the barotropic response to the changing wind (see LIU
for details). This seasonal reversal of flow direction has
been observed in some numerical modelings of the
southeastern part of the North Pacific (Spall 1991, per-
sonal communication). The wavy structure is barely
seen, consistent with the weak thermocline variability.

To summarize, the mean thermocline structure in-
fluences disturbances significantly. First, the divergent
group velocity results in a decay of Rossby waves. Sec-
ond, a ventilated zone is created where Rossby waves
from the eastern boundary are prohibited. Third, in a
shadow zone, the thermocline variability is dominated
by local response on shallow interfaces but is domi-
nated by Rossby waves on deeper interfaces.
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FIG. 3. The two-dimensional structures of the linear solution of a shallow interface H; = 0.1 with a strong annual forcing w = 50, a2 = 0.5
(corresponding to Fig. 2); w, is parabolic as in Fig. 2. (a) Disturbance D in September (w? = 0), December (wt = x/2), March (wt = 7),
and June (w? = 37 /2), consecutively. (b) Upper-layer pressures for four seasons. (¢) Lower-layer pressures for four seasons with arrows
representing flow direction. In (c), the contours only draw pressure with p, < 0.2. As a result, the flow in most of the ventilated zone is not
shown. The seasonal reversal of flow in the shadow zone is obvious.

3. Nonlinear theory Similar to the approach of obtaining (2.6) from the

Now we investigate the nonlinear thermocline. A
comparison between linear and nonlinear solutions will
also be carried out. It will be seen that under a strong
decadal forcing, linear solutions fail to capture some
important features of the nonlinear solution. Finally,
we analyze the time-mean structure of the nonlinear
thermocline.

a. The nonlinear solution
We seek solutions of the nonlinear equation (2.1a).
The characteristic equations are
dt
—_— = 1,
ds

af
ZS: - fwe(f; l),

dh
-a;— = —'(1 - h)WE(.f: t)’
d
T = LS 0XY1 S~ h(L = WIS,

basic-state characteristic equations of (2.5), with the
Ekman pumping in (2.2a), the characteristic equations
of (2.1) can be solved to yield parametric solutions:

t=t+s, (3.1a)

f(f/ff)dk/Rwo(k) =5— % (coswt — coswt; ),

orimplicitty  f= f(s, t;, ), (3.1b)
fI(L=h)y=fi/(1 = h) or h=h(s, t,f),
(3.1¢c)

szwo(f) = Xifz2 wo( /i)

— b [* o
- [Tt = (= BT e s,

or x=X(s,t,fi,x). (3.1d)

Again, here the quantities with carets represent the so-
lution in the characteristic coordinate. Similar to the
basic-state case, for forced solutions, the initial con-
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FIG. 4. The 2D structure of the disturbance D/ during four seasons for linear solutions under a weak decadal forcing with w = 5, a = 0.05.
The Ekman pumping is parabolic as in Fig. 2. The interface is a shallow interface with H, = 0.1. One sees that the disturbance propagates

westward and deforms.

ditions for characteristics in the ventilated (or pool)
zone and shadow zone, respectively, come from the
outcrop line and the eastern boundary; that is,

fi=fo, hi=H;inthe VZ(fy < 1)
or PZ(fo=1), (3.2a)
x; =0, h; = H,in the SZ. (3.2b)

An example is the case with wy(f) = W,/ f. All non-
linear solutions in this paper have this Ekman pumping
(except for Fig. 7)? because this Ekman pumping en-
ables us to integrate (3.1b,d) explicitly as

f=f+ Wo[s - -3 (coswt — coswti)], (3.3a)

a /’l,l_ i - ,‘2W

2
X [S— + “ coswt; — -% (sinwt — sinwti)] . (3.3b)
2 w w

In principle, from (3.1) and (3.2), one should be able
to obtain an explicit solution of the form

h=h(x,f1). (3.4)

It can be shown that the general solution (3.4) possesses
the primary period T = 27/ w. This periodicity ensures
that the primary frequency w is the lowest nonzero
frequency of the forced thermocline. In other words,
no subharmonics will be produced except for, perhaps,
the time-mean component. Mathematically, the peri-
odicity enables a Fourier series to be used to decompose
the time series of the nonlinear thermocline solution.

2 This Ekman pumping resembles the middle part of a subtropic
gyre fairly well, although it obviously fails to represent the region
near the southern and northern boundaries because the boundaries
are absent. This Ekman pumping is used in this paper to study the
variability along zonal sections resembling those in the middle part
of a subtropical gyre.

We now derive solutions in the ventilated (or pool)
zone and shadow zone. In the ventilated (or pool) zone,
(3.1c) and (3.2a) yield the solution

h=1—--H)flfh, x<x(f,1). (3.5)

The ventilated (or pool) zone is a uniform potential
vorticity pool with the constant potential vorticity fg/
(1 — H). Therefore, no matter how strong and what
pattern the Ekman pumping is, there is no thermocline
variability. (This has been discussed in the previous
section for linear waves.) This is so because only the
potential vorticity conservation is used in (3.5). Under
a zonal outcrop line (or a constant interface depth H,
> 0 at the northern boundary when f, = f,), the po-
tential vorticity is always uniform, and hence there is
no variability.
In the shadow zone, (3.1) and (3.2b) yield

t=1t +s, (363)
f=As,ti, 1), (3.6b)
h=1-(1-H)fIf, (3.6¢)
. 5 1 - H, (¢ .
o f) = =1 [ u=a=mpmm
X fwo( Nds, x> xy(f, ). (3.6d)

In (3.5) and (3.6), x, is the shadow zone boundary
that is formed by characteristics initiating from (0, /)
at successive times; x, varies with time and is deter-
mined parametrically from (3.6b,d) as

1 - H,

o=t —ti, i, ), Xp= _m

X fo_i [ = (1 = H)fI ol /wo(Hds. (3.7)

This shadow zone boundary will sweep back and forth
as the Ekman pumping varies (also see LIU for the
wave front B). Two examples of (3.7) are presented
in Fig. 5. Following LIU, we call the region through
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F1G. 5. The instantaneous shadow zone boundaries at four seasons
(labeled by the phase wt; corresponding to the alternative zone in
the text). The Ekman pumping takes the form of Fig. 1 and H; = 0.
The dashed lines are the shadow zone boundary xpq of the steady
thermocline under the mean Ekman pumping. (a) Under a strong
annual forcing w = 50 and a = 0.5. The boundary moves little. (b)
Same as (a) except for w = 5. Now, the migration of the boundary
is much larger than the annual case, but it still occupies a small
portion of the basin.

which x;, passes the “alternative zone” because this re-
gion is alternately occupied by an instantaneous ven-
tilated zone and shadow zone. Figure 5a shows that
the annual forcing case has a very narrow alternative
zone, even with a strong perturbation (g = 0.5). This
occurs because the shadow zone boundary is mainly
controlled by the baroclinic Rossby waves, which de-
velop very little within one annual period. Even with
a strong decadal forcing in Fig. 5b, the alternative zone
is not large, although it could occupy a fairly large por-
tion of a zonal section in the southern part of a gyre.
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However, it is interesting to point out that the wave
rays (or the characteristics) starting at different times
vary much more strongly than the x; itself. This implies
that the wave energy path under a varying Ekman
pumping can deviate significantly from the steady ray
calculated in a steady model with the time-mean Ek-
man pumping.

b. Time-mean thermocline

The thermocline equation (2.1a) includes two non-
linear effects: the interaction between the barotropic
and baroclinic flows (vg+ V /) and the nonlinear Rossby
wave effect [C(4)]. The former has been studied by
Dewar (1989) in a QG model under an annual forcing,
while the latter was first explored by Anderson and
Killworth (1979) in a 11/>-layer model. With this non-
linearity under a periodic Ekman pumping, one should
expect a time-mean thermocline (/) differing from
the steady thermocline 4, that is forced by the time-
mean Ekman pumping {(w.) = wy. (Without confu-
sion, hereafter, this steady thermocline is simply called
the steady thermocline.) Here, we will investigate the
time-mean thermocline.

With a strong annual forcing (as used in Fig. 1),
one has seen that the instantaneous disturbance Dh
= h — hy is at the order of a/w, that is,

Dh<0(g).

The nondimensional maximum is about 0.01, which
corresponds to a dimensional depth of about 6 m (if
the total depth is about 600 m). In addition, the time-
mean disturbance ( Dh) = (h— hyy = (h) — hy (dot-
connected lines in Fig. 1: b,d,f) is not zero. The mean
disturbance is no larger than a2/w, or

<Dh><o(%2).

The nondimensional maximum is less than 0.001 or
a dimensional depth of less than about 0.6 m. Thus,
(Dh’) is small compared with the instantaneous dis-
turbance Dh for either a high frequency or a weak de-
cadal frequency forcing a <€ 1. Nevertheless, it is in-
teresting to observe a slightly negative (Dh) compo-
nent along the whole section, implying a shallower
mean thermocline than the steady one. At a decadal
frequency, if the forcing amplitude becomes strong,
(3.8) and (3.9) suggest that { DA ) may increase rapidly
compared with DA. This phenomenon is seen clearly
in Fig. 6, which plots an example at the latitude /= 0.3
with a strong decadal forcing w = 5, a = (.5; the Ekman
pumping w, = W,/ fis used. Figure 6b shows a ven-
tilated case (H, = 0). One sees that (Dh) can reach
about one-third of DA. In addition, a salient feature is
the strong negative ( D/ ) along the whole zonal section,
implying a time-mean interface shallower than the
steady one. We will return to this mechanism later. A

(3.8)

(3.9)
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FIG. 6. Zonal sections, time series of local interfaces, and their Fourier components of nonlinear solutions under a strong decadal Ekman
pumping w = 5, a = 0.5. The Ekman pumping has the same form as in Fig. 1. (a), (b), (f), and (g) Same as in Figs. 1a-d, respectively,
except for w = 5, a = 0.5. (¢), (d), and (e) The local time series of DA and their Fourier components at three locations in (a) and (b). For
the Fourier components, the abscissa 7 refers to the frequency nw. (h) and (i) Two time series of DA and Fourier components at two points
in (f) and (g). Compared with Fig. 1, the linear solution differs from the nonlinear solution significantly in the western part of the shadow
zone, where the time-mean solution is shallower than the steady solution under the time-mean Ekman pumping on the order of 10 m.
There, the time series show that the nonlinearity mainly creates the zero and second harmonics. In other parts, the linear solution is still

fairly good.
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common character of ventilated interfaces (in Fig. 1b
and Fig. 6b) is that { DA ) achieves its maximum am-
plitude in the alternative zone, which is located in the
western flank of the shadow zone. Figure 6g shows an
unventilated interface with H; = 0.6. One sees that
even on this interface, <Dh> still reaches its maximum
in the western shadow zone. In Fig. 6, the nondimen-
sional maximum (DA ranges from —0.02 to —0.04
at different depths, corresponding to a dimensional
mean deviation of —12 to —24 m. In addition, in the
region where (Dh) is strong, the linear solution de-
viates from the nonlinear solution significantly. In
contrast, in the eastern part of the shadow zone where
(Dh’) is always weak, it is surprising to see how well
the linear solution resembles its nonlinear solution in
all the cases.

Some time series of local interface variations and
their Fourier components are also shown. Figure 6e
is located in the eastern part of the shadow zone of
the ventilated interface in Figs. 6a,b. The number on
the abscissa, #, corresponds to the frequency nw. The
primary component (with the primary frequency w)
dominates, while other components are negligible.
Figure 6i gives another example in the eastern shadow
zone. The Fourier components are similar to Fig. 6e.
A strikingly different behavior appears in the alter-
native zone on a ventilated interface (Figs. 6¢,d) and
(somewhat less strikingly ) in the western part of the
shadow zone (Fig. 6h). Now, both the time-mean
component and the second superharmonics (with
frequency 2w) become rather strong. In addition, ob-
serving all the Fourier components of these time series,
one sees that the time-mean component is about the
same magnitude as the second superharmonic com-
ponent, while other higher superharmonics are neg-
ligible. We will return to this point later.

With a strong decadal forcing (w = 5, a = 0.5),
Fig. 7a displays the horizontal structure of the time-
mean thermocline disturbance { D/ ) for a parabolic
form wo(f) = Wy(1 — f)(f~ f;) of Ekman pumping
on a ventilated interface. The solution is found by
first solving the characteristic equations in (2.1a) using
the fourth-order Runge-Kutta method at each time.
Then the solution is mapped objectively onto regular
grids. Finally, the time mean is carried out at each
grid point. One sees that { Dk ) has a negative com-
ponent within the entire shadow zone. The strongest
mean deviation occurs within the alternative zone.
The nondimensional maximum mean deviation is
about —0.03 or dimensionally —18 m. The instanta-
neous patterns in four seasons (not shown ) are similar
to that in Fig. 4 except now the alternative zone is
much larger. Using this time-mean thermocline, the
corresponding lower-layer pressure (or streamfunc-
tion) is shown in Fig. 7b. There is a strong southward
flow in the alternative zone, which weakens toward
the east. This southward mean flow corresponds to a
mean vertical downwelling inside the shadow zone
(not shown). As a result, in the time-mean thermo-
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cline, the lower-layer fluid in the shadow zone is no
longer motionless. Instead, it has a mean southward
flow.

In comparison, an annual forcing produces a very
different {( Dh) as shown in Fig. 7c. The mean dis-
turbance is much weaker (note the different contour
intervals) than the decadal case in Fig. 7a. The di-
mensional maximum value is about £1 m. In ad-
dition, the pattern exhibits alternative highs and lows.
In the mean lower-layer pressure field of Fig. 7d, these
highs and lows correspond to some microgyres, as
found by Dewar (1989). In the previous example in
Fig. 1a, these alternate highs and lows are also ob-
vious in the mean zonal profile (dot-connected line).

¢. Mechanisms for the mean thermocline

Now we analyze the mechanism for the time-mean
thermocline structure. It turns out that in different re-
gions and for different frequencies, the mechanisms
are different. Here, we concentrate on the shadow zone
for low-frequency cases and the shallower mean ther-
mocline structure.

In the shadow zone (east of the alternative zone on
a ventilated interface, or the whole unventilated zone),
the main mechanism is the nonlinearity of the Rossby
wave that is to be explained in the following. Consider
an even simpler model—a 11A-layer model. The upper-
layer depth is determined by

h + C(h)he = —w.(f, 1), (3.10)

where C(h) = —h/f?. The only nonlinear effect in this
model is the nonlinear Rossby wave. It can be proven
that the solution in (3.10) is periodic if w,.(f, t) is pe-
riodic in time. Thus, averaging (3.10) over one period
and then integrating it along the x direction, we obtain
the energy equation:

(h*y = h} =2f*wo(f)x + H?,  (3.11)

where A is the steady thermocline [as in (2.7a)]
forced by the time-mean Ekman pumping {w,(f, t))
= wo(f). Decomposing the thermocline into the
time-mean and perturbation parts as & = (h) + I,
(3.11) becomes

(hY* + (WY*=h3, or
(hY? = h3 = —(h')?<0. (3.12)

This states that the mean thermocline is always shal-
lower than the steady thermocline. Physically, (3.11)
and (3.12) suggest that part of the input mean avail-
able potential energy leaks away as disturbance
potential energy due to the nonlinear Rossby
wave.

The preceding argument also applies to our two-
layer model if the forcing frequency is low. Indeed,
when the forcing frequency approaches zero, both the
local variability (4,) and density advection (vz*Vh)
should diminish (when « = 0, both of them vanish
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FIG. 7. The 2D time-mean structures of nonlinear solutions under the Ekman pumping wo(/) = Wo(1 — f)(f — £) with wo(f)] F=0.5(1+1)
= —2. The solution is obtained by integrating the characteristic equations of ( 1.7a) using a fourth-order Runge-Kutta method at each time. Then
the values are objectively mapped onto regular grids and averaged. (a), (b) Shows (Dh) and the corresponding lower-layer pressure p, (or
streamline) for a strong decadal forcing w = 5, @ = 0.5. (c) and (d) The same as (a) and (b) except for an annual forcing » = 50. The mean lower-
layer pressure contours are chosen such that the flow field in the shadow zone can be seen clearly. As a result, the flow within most of the ventilated
zone is not shown. In the annual case, the time-mean solution is weak in the shadow zone and the deviation from the steady solution alternates
in space to form microgyres (Dewar 1989). In the decadal case, however, the mean solution is always shallower than the steady solution.

exactly in the shadow zone). Thus, the major dynamic
balance of (3.1) degenerates to C(h)h, =~ —(1
— h)we(f, t), where C(h) = —h(1 — h)/f?. This dy-
namic balance leads to the energy equation similar to
(3.12):

h? =~ 2f*w.(f, )x + H? (3.13)

for very low frequency. This is the Sverdrup relation
with time as a parameter. Averaging (3.13) will give
rise to the same relation as (3.11) or (3.12). With the



DECEMBER 1993

Ekman pumping in (2.2a), we can estimate the mean
deviation { Dh):

(DhY={(h) — hy

<V2f2w0(f)(1 + a sinwt)x + H?)

— V2 2wo(f)x + H?

—ho{1 — V1 + a(1 — H?/h}) sinwt ) < 0
(3.14a)

For a weak forcing a < 1, (3.14a) can be approximated
as

for O0<a<l.

2

(Dh) ~ — f—6 (1 — H%/h})*hy. (3.14b)

Quantitatively, in Fig. 6 or Fig. 7a (a = 0.5, A; ~ 500
m, and H,/hy < 1), this gives about 10 m (or a non-
dimensional value 0.017), agreeing with the maximum
{ Dh’y in the shadow zone (not in the alternative zone!).
In fact, calculations show that (3.14b) gives a good
approximation to (3.14a) until a = 1. Therefore, in a
shadow zone, the time-mean disturbance seems to have
the upper bound at low frequency (by letting ¢ — 1

and H; = 0)
(Dhy _ (L
7 <O Ik

(3.15)

In addition, since /4, deepens westward, (3.14b) sug-
gests that ( Dh ) also increases westward. In the eastern
part of the shadow zone, this westward increasing mean
deviation can be observed clearly in Figs. 6b,g. How-
ever, { D’y increases toward the west only to about a
quarter of the wavelength as seen in Figs. 6b,g. This
differs from (3.14) because (3.14) is valid only when
w —> 0 (and the wavelength goes to infinity).

With a high frequency, the advection term becomes
dominate, a response for the microgyres in the mean
thermocline (appendix B). In the alternative zone, the
alternate of the Rossby wave and cold advection is very
efficient in producing a very shallow mean thermocline.
[See appendix B, chapter 3, of Liu (1991).]

Last, we point out that (3.13) [or (B.1) for a high-
frequency case] shows that the time-mean component
has the same amplitude as the second harmonics, which
has been seen in the previous examples in Fig. 6. This
spectrum 1is characterized by both a rapid rise and a
rapid decrease of the local interface variability. This is
different from that forced by a periodic surface tem-
perature (Liu and Pedlosky 1993).

4. Thermocline variability under a variable Ekman
pumping

Finally, we investigate the variability with different
frequency and amplitude of forcing. In particular, we
are interested in how important the nonlinear effect is.
Visually, the examples in Fig. 1 indicate that the linear
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solutions are able to represent the nonlinear solutions
excellently along the whole zonal section with a strong
annual forcing. If the amplitude of the decadal forcing
becomes strong, Fig. 6 illustrates that the linear solution
still approximates the nonlinear solution well in the
eastern part of the shadow zone, but it fails in the west-
ern part of the shadow zone and the alternative zone.

As a further step to studying the variability and its
nonlinearity under different amplitude and frequency
of forcing, we examine the variability of the zonally
integrated interface disturbance

I O

— Dhdx,

(4.1)
Xp JO

where X, is the instantaneous shadow zone boundary
in (3.7). Subject to various forcing amplitudes a and
frequencies w, for the zonally averaged variability (4.1),
the amplitude of the primary component is depicted
in Fig. 8a. The Ekman pumping is chosen to be w,
= Wy/f. Qualitatively, the amplitudes of the primary
component agree with the linear solutions (2.17) or
(A.1). For high frequencies (higher than decadal), their
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FIG. 8. Thermocline variability of the zonally integrated disturbance
(4.1) subject to different forcing frequency w and amplitude a. The
Ekman pumping takes the same form as in Fig. 1. Here H; = 0 is
adopted. (a) The primary component 4, ; (b) ratio of the time-mean
component to the primary component 4o/ 4, . The line of ratio value
0.05 is darkened, which separates the parameter region where non-
linearity is negligible (toward higher frequency and smaller amplitude
direction) from those where nonlinearity is not negligible.
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amplitudes are proportional to a/w (straight lines in
the w—a plane passing through the origin). As fre-
quencies approach zero, the amplitudes approach finite
limits because of the finite width of the basin.

To analyze the nonlinearity quantitatively, we de-
compose the time series in (4.1) into a Fourier series
[ Dhdx/xy = 2o Apsin(nwt — ). Then, we can
judge the importance of the nonlinearity by the power
ratio between the sum of all sub- and superharmonics
(which are generated by nonlinearity ) and the primary
component, that is, P, = (Z,x1 A2/4%)"/?. Since
we have seen that the powers of the second superhar-
monics 4, and the time-mean component A4, are about
the same while other components are negligible, the
power ratio can be approximated as P, = 2A4/4,.
In Fig. 8a A4 has been shown; the ratio Ay/ A4, is shown
in Fig. 8b. The contour 4,/ A4, = 0.05 (heavy solid line
in Fig. 8d) can be taken as the criterion for P, = 0.1
in the w — a plane. Below this line the power ratio is
less than 0.1 and the total power of the nonlinearly
generated harmonics is one order less than that of the
primary component. In other words, nonlinearity is
negligible. This regime is the linear regime and mainly
consists of weak decadal forcing and strong annual
forcings (e.g., the examples in Fig. 1). Above the P,
= 0.1 line the nonlinearly generated components are
no longer negligible. The regime consists of strong de-
cadal forcing and is called the nonlinear regime. (It is
perhaps more proper to call it the weakly nonlinear
regime because the nonlinearity is not dominant. ) Fig-
ure 6 is an example of this nonlinear regime. For the
parameters in Fig. 6 (w = 5, a = 0.5), we find from
Fig. 8d that 49/ A, == 0.17. Equation (4.2) then suggests
that P, = 0.34. This means that about 30% of the
energy of this decadal forcing is transferred nonlinearly
to the time-mean and higher components. It should be
born in mind that the zonally averaged disturbance
(4.1) underestimates the maximum local nonlinearity
in the western shadow zone or the alternative zone.

5. Summary

As an extension of the spinup study of a ventilated
thermocline of LIU, the two-layer planetary geo-
strophic model is used to investigate the thermocline
variability under a variable Ekman pumping. The fea-
tures found in the spinup and spindown also exist in
the periodic Ekman pumping case, with the seasons of
an increasing and a decreasing Ekman pumping re-
sembling the spinup and spindown, respectively. This
is particularly true for annual forcings (i.e., with periods
comparable to one year). Therefore, under a varying
Ekman pumping, the thermocline variability is much
stronger in the shadow zone than in the ventilated zone.
The direction of the lower-layer circulation in the
shadow zone oscillates southward and northward.
During a season when w, intensifies, the lower-layer
circulation has a single anticyclonic gyre; during a sea-
son when w, weakens, the lower-layer circulation is
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composed of two counterrotating gyres with an anti-
cyclonic gyre to the north and a cyclonic gyre to the
south.

It is somewhat surprising to see that for strong annual
forcings (with perturbation Ekman pumping compa-
rable to the mean Ekman pumping), the disturbance
is essentially linear. Even under a strong decadal forc-
ing, the linear solution still approximates the nonlinear
solution very well in the eastern part of the shadow
zone. Nevertheless, the linear perturbation is influenced
substantially by the basic-state thermocline structure.
The mean thermocline structure results in a divergent
group velocity field. This in turn produces a decay effect
on Rossby waves downstream. The basic Sverdrup flow
creates a ventilated zone where no Rossby waves from
the eastern boundary will be allowed to enter and where
the advection due to the subducted water is as impor-
tant as the local response; they tend to cancel each -
other. In the shadow zone, if the interface is shallower,
local responses dominate because the eastern boundary
Rossby waves decay rapidly due to the strongly diver-
gent Rossby wave velocity. On the other hand, if the
interface is deep, remote Rossby waves dominate be-
cause the effective Ekman pumping diminishes toward
the interior. For observations, the results here may im-
ply that the relative importance of the local or remote
response depends on the depth in the thermocline. In
the upper thermocline, local response may dominate,
while the opposite may occur for deeper thermocline.

For a strong decadal forcing, the nonlinearity is still
weak in the eastern part of the shadow zone but is no
longer negligible in the western part of the shadow zone.
The maximum nonlinearity occurs about one-quarter
wavelength from the eastern boundary. The time-mean
thermocline in the shadow zone is always shallower
than the steady thermocline under the time-mean Ek-
man pumping. The difference may be significant, es-
pecially in the western part of a shadow zone, where
the difference can reach more than O(10) m. This
shallower mean thermocline is mainly caused by the
nonlinear Rossby wave. The mean lower-layer flow in
the shadow zone is no longer at rest. Instead, it is
southward.

We should point out some limits of the above theory.
First, the eastern boundary interface depths are fixed
in this study. This is part of the reason why the non-
linearity is always weak in the eastern part of the
shadow zone. In fact, as discussed in Liu (1993c), if
we have a disturbance along the eastern boundary, the
nonlinearity may become very strong. The nonlinear
steepening of the Rossby wave will cause breaking of
interface waves.

Second, one should be cautious in applying the con-
clusion about the relative importance between the local
response and the eastern boundary Rossby waves to a
continuously stratified model. The two-layer model is
a very crude representation in the vertical direction. It
is unclear to me how exactly this representation cor-
responds to a continuously stratified thermocline. More
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specifically, we do not know if an interface at a depth
resembles the isopycnal with the same depth in a con-
tinuously stratified thermocline. Nevertheless, intu-
itively, it seems that this analogy should hold to some
extent. Therefore, the results here are still relevant to
more complicated models. Obviously, much work is
needed. Particularly, numerical modeling of thermo-
clines under annual and decadal Ekman pumping is
extremely important in verifying the theory here and
finding new phenomena.
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APPENDIX A
The Approximate Linear Solution at 1 w * Order

Here, we derive an approximate expression for the
linear wave in (2.15) [or (2.13)] accurate to 1/w?.
Noting the g in (2.2a), along characteristics (therefore
fi, t; are constants), we can integrate (2.13) by parts
to yield
() | Aot P ndtcos ot + )
b w ) Jo

Lt (_1 ){wa(f)Eo cosw(t; + $)13

@

5=

h

i

B
\5

%

' cosw(t; + s)d[fwo(f)ilo]]

(1}
L — o
/
= fiwo(fi) H; coswt; — ! fs[

w Jo

|-

(%)‘fwo(f)izo cosw(t; + §)
% Wo(f)ilo

. dar . - . dh
+fW()j’7£ ho + we(f) %{;ﬁ]d[sinw(tf + s)]] .

Here, we have used f, ho|s-0 = f;, Hs [see (2.6b,c)].
In the last equality, the first two terms give the O(1/
w) solution in (2.17) if we use ¢; = t — s and (2.8a,¢).
For the O(1/w?) solution, we first substitute the char-
acteristic equations for the basic state (2.5)

df dh
“‘E = fwy, d_so =—(1—=hy)wy ,

LI1U
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into the integral of the last equality. Then, we integrate
it by parts again. Using #; = ¢t — s and (2.8a,c), we
obtain

_ (1 = ho)wo(f)
w

hy [coswt — A cos(wt — P)]

1
+ O(—3) , (A.la)
w
where 4 and & are functions of x and /-

b 2
4 =a0[1 +(—‘—) +2
wdy way

a, . b‘ 1/2
X{———2sing + 2 —cos¢ , (A.1b)
wdy wdp

(®) = cosqb-'i-ﬂsinqb Go
cos ol 'k

sin(®) = (sin¢ - f—;—o - wb_(;o cos¢) % , (A.lc)
_ HiFiwo(F;) - iy =
Qo hOfWO(f) ) ¢ w(t tl) wS(x,f)a
(A.1d)

a= (2= 5w +wa/<f>] ,

— Fiwo(F;)
Jwo(f)

Here F;, hy, and S are given in (2.8a), (2.7a), and
(2.8¢), respectively. Equation (A.1) gives the approx-
imation of (2.15) accurate to O(1/w?). Neglecting the
second-order terms (by setting a;, = b; = 0), (A.1)
becomes (2.17). Equation (A.1) can be expected to be
valid for frequencies higher than decadal (w> 1). The
second-order correction (due to a, and b,) is very im-
portant for shallow interfaces (H; < 1). Indeed, when
1/why ~ 1/wH; = 1, the second-order correction be-
comes comparable to the first order. For the special
form of Ekman pumping wo(f) = Wy/ f, where W, is
a negative constant, the second-order solution in (A.1)
is the exact linear solution (2.15). On shallow inter-
faces, the failure of the first-order solution in (2.17) is
seen below. If H; = 0, we have 4 ~ gy = 0. The
solution is a purely forced response that fails to satisfy
the eastern boundary condition (2.9¢).

1
b [(2 ~k—0)wO<f) +wa/<f)]. (A.le)

APPENDIX B

The Mechanism for the Time-Mean Thermocline at
High Frequencies in the Shadow Zone

Compared with the decadal forcing case, the annual
case exhibits substiantially different time-mean ther-
mocline structure as shown in Fig. 1 and Figs. 7c¢,d.
This is because now the interaction between the baro-
tropic and baroclinic flows becomes the dominant
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nonlinear effect. We can analyze the high-frequency
case through the weakly nonlinear theory. Inserting
(2.3), (2.4) into (2.1b), at O(a?) order, we have

M+ veor Vi + Clho) i — ph
ac
= =V (vaihi) 3 (d—ho h%)x, (B.1)

where u is defined in (2.9b). On the right-hand side,
the first term is the barotropic-baroclinic interaction
and the second term is due to the nonlinear Rossby
wave. For simplicity, in the following analysis, the A,
solution is approximated to O(1/w) < 1 order in
(2.17); { Dhyy ) and { Dhgosspy y Will be used to denote
the part of the time mean /4, forced by the barotropic—
baroclinic interaction and nonlinear Rossby wave, re-
spectively. After some tedious algebra, and solving the
equation (B.1), at the leading order, we obtain

a’ (1 — Hy)H;

(Dhypy =~ —

2w ho [wo(f) — wo(F;)] sind

a

2
~ o( ) (B.2a)
w
2
(Dh)rossvy = (ﬂz(—ﬁ) [vicos® + v2]
2
~ o(a—z). (B.2b)
w

Here F;, hy, and & are determined in (2.8a), (2.7a),
and (2.17b); v, and v, are functions of F;, ho, and f.
Equation (B.2) shows that the barotropic~baroclinic
interaction is much stronger than the nonlinear Rossby
wave effect in producing the time-mean component.
In addition, since { DA, ) depends on sin®, we should
expect to see a wavy structure in ( D4 ) field as shown
in Figs. 1b,d,e and Figs. 7c,d. In the figures, the time-
mean deviation is very weak (about 1 m) for an annual
forcing. Dewar’s result seems to overestimate this mean
deviation.

It is noteworthy that in (B.2) { Dh ), depends heavily
on the meridional gradient of the Ekman pumping. If
the Ekman pumping is uniform in space, that is, wo(f)
= W, it holds that { Dhy,) = 0 at O(a*/w). [In the
QG model of Dewar (1989), for wp(f) = const, it can
be shown exactly that the mean disturbance (Dh)
= 0 for any amplitude and frequency of forcing.]
Hence, in a subtropical gyre, the time-mean deviation
{ Dh’) will be relatively weak in the middle of the gyre.
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