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ABSTRACT

This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when
setting up a coupled data assimilation system. The paper focuses on the quantification of the effects on
the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such
a substitution. A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted. The
atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality
is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.
Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed
observation ensemble and the representation of the error covariance matrix. The results show that when the
reanalysis is assimilated directly as independent observations, the root-mean-square error increase of oceanic
analysis relative to the benchmark is less than 16% in the perfect model framework; in the biased model case,
the increase is less than 22%. This result is robust with sufficient ensemble size and reasonable atmospheric
observation quality (e.g., frequency, noisiness, and density). If the observation is overly noisy, infrequent,
sparse, or the ensemble size is insufficiently small, the analysis deterioration caused by the substitution is less
severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations
and undersampling. The results from different assimilation schemes highlight the importance of two factors:
accurate representation of the error covariance of the reanalysis and the temporal coherence along each
ensemble member, which are crucial for the analysis quality of the substitution experiment.
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1. Introduction

Coupled data assimilation (CDA) uses a coupled

model to extract information from observations that

are available in one or more media, and produces con-

tinuous time series of the climate states. Compared to

single component assimilation, CDA incorporates the

full impact of observations across the air–sea interface

and allows the covariability of the atmospheric and

oceanic states, and thus it can provide consistent state

estimation of the coupled system for further study of

the climate variability and the initialization of coupled

general circulation models (CGCM) (Chen et al., 1995;

Kitoh and Arakawa, 1999; Arakawa and Kitoh, 2004;

Zhang et al., 2005, 2007; Luo et al., 2008; Sugiura et

al., 2008; Zhang, 2011; Liu et al., 2013; Tardif et al.,

2015). Despite the huge benefits and demand for CDA,

the implementation of CDA has both theoretical and

technical challenges, for example, the estimation of the

coupled error covariance matrix (e.g., Han et al., 2013;

Lu et al., 2015) and the huge computational costs of

CDA experiments in fully-coupled models. The NCEP
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Climate Forecast System Reanalysis (CFSR) was com-

pleted for the period 1979–2009 (Saha et al., 2010).

It is a weak CDA system where the atmospheric and

oceanic data assimilation is performed independently

and the coupling is only through model dynamics.

In this paper, we want to explore the idea of as-

similating atmospheric reanalysis data in a CDA sys-

tem and its resultant consequences. This idea is mo-

tivated to find an efficient way to get ocean analysis

from a CDA process that incorporates both the atmo-

spheric and oceanic observations. The atmospheric

observations include hundreds of types, with differ-

ent format, coverage, frequency, etc., which makes it

nearly impossible for an individual or a small group to

collect and assimilate all these observations to set up

the CDA system independently.

Reanalysis datasets incorporate millions of obser-

vations, which include, but are not limited to, ra-

diosonde, satellite, buoy, aircraft, and ship reports,

into a stable data assimilation system (e.g., Kalnay

et al., 1996; Kistler et al., 2001; Kanamitsu et al.,

2002; Uppala et al., 2005; Saha et al., 2010; Dee et

al., 2011; Kobayashi et al., 2015). In addition, these

datasets provide global coverage with constant spatial

and temporal resolution over three or more decades

for hundreds of variables (e.g., Kalnay et al., 1996;

Kistler et al., 2001; Kanamitsu et al., 2002; Uppala et

al., 2005; Saha et al., 2010; Dee et al., 2011; Kobayashi

et al., 2015), which makes them relatively straightfor-

ward to handle from a processing standpoint.

If it is feasible to substitute the atmospheric re-

analysis datasets for actual observational data, we can

set up CDA systems using different models much more

easily and expect reasonable output of model analysis,

especially oceanic analysis. Zhang et al. (2007) has

assimilated atmospheric reanalysis directly as obser-

vations in a fully coupled climate model with a CDA

system, without the examination of the possible effects

brought out by the substitution. Yet, their results are

still promising and their assimilation successfully re-

constructs the 20th-century ocean heat content vari-

ability and trend in most locations. This indicates

that it is feasible to substitute the atmospheric obser-

vations with reanalysis in a CDA process. However,

the resultant effects on the analysis from the substitu-

tion are never carefully studied. In this paper, we will

test this idea with an emphasis on the quantification

of the resultant effects from the substitution, and in-

vestigate the assimilation schemes associated with this

substitution.

A coupled Lorenz96 model (Lorenz, 1996) repre-

senting the atmosphere and ocean is constructed to

test the idea of assimilating atmospheric reanalysis

data as observations in a CDA system. The results will

be compared to the best-case scenario (benchmark)

where both the atmospheric and oceanic observations

are assimilated. The paper is organized as follows.

The methodology is shown in Section 2, experiments

and results are presented in Section 3, tests on differ-

ent assimilation schemes are shown in Section 4, and

Section 5 provides a concluding summary.

2. Methodology

2.1 Model

A dynamical system is set up by coupling two 40-

variable (nv = 40) Lorenz96 systems (Lorenz, 1996),

one representing the atmosphere (Eq. (1)) and the

other representing the ocean (Eq. (2)).

dXj

dt
= (Xj+1 −Xj−2)Xj−1 − (1− Ca)Xj

+Fa + Ca(Y j −Xj), (1)

M
dY j

dt
= (Y j+1 − Y j−2)Y j−1 − Y j

+Fo + Co(Xj − Y j). (2)

The atmosphere and ocean are coupled through the

flux terms Ca(Y j −Xj) and Co(Xj −Y j), where Ca

= 2.0 and Co = 0.1 are the coupling coefficients for

the atmosphere and ocean, respectively. Fa and Fo

represent the external forcing, and in this case, Fa =

8, Fo = 0, such that the ocean is only forced by the

atmosphere. The oceanic timescale is controlled by

coefficient M , which is chosen to be 20.

Figure 1 shows the typical time evolution of vari-

ables X1 and Y 1. The climatological standard devia-

tions averaged over 40 variables for X and Y are 3.86

and 0.47, respectively. Therefore, the observational

errors are arbitrarily set at 1.0 for the atmosphere and

0.1 for the ocean. In all experiments, the integration
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Fig. 1. Typical time evolution of X1 (red) and Y 1 (blue).

time step is 0.005, and 1 time unit is roughly 5 days.

We forward the model for 2 × 105 time steps (1000

time units). The first 20000 spin-up steps are dis-

carded when we evaluate the analysis quality.

2.2 Assimilation procedure and diagnostics

We employ the ensemble Kalman filter (EnKF)

with perturbed observation (Evensen, 1994; Burgers

et al., 1998; Houtekamer and Mitchell, 1998). Eighty

ensemble members are used (ens = 80). Covariance

localization used here is the same as Hamill et al.

(2001). It is performed by applying a Schur product

(an element by element multiplication) to the forecast

error covariance matrix and a correlation matrix. The

correlation matrix is a fifth order function of Gaspari

and Cohn (1999). Covariance inflation is also applied

with the relaxation method by Zhang et al. (2004).

The root-mean-square error (RMSE) from all analysis

steps is calculated to evaluate the data assimilation

performance, which is given by

RMSE =

√

1

nt

1

nv

∑

t

∑

i

(

Xi,t −XT
i,t

)2

, (3)

where Xi,t and XT
i,t are analysis and truth, respec-

tively, at gridpoint i and time step t; nt is the total

time steps and nv is the variable number. In reality,

the benchmark experiment would be the best-case sce-

nario for a CDA system and should produce the best

analysis possible. Therefore, it is used to evaluate the

performance of our proposed schemes. The RMSEs of

different experiments that assimilate the reanalysis are

then normalized by that of the benchmark experiment

as in Eq. (4)

Ratio =
R−Rb

Rb

× 100%, (4)

where R represents the RMSE of the experiment in

which the atmospheric reanalysis is assimilated as ob-

servation, and Rb represents the RMSE of the bench-

mark experiment. We repeat 90 simulations for each

experiment and the results are displayed via boxplots

(Fig. 4).

2.3 Model framework

In this section, we will introduce three models

that are used to generate the true state, reanalysis,
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and conduct the experiments, respectively. The pur-

pose is to allow for model bias to test the robustness

of the quantified effects. If these three models are the

same, it is a perfect model framework with no model

bias.

Model 1: Generate the true state and observa-

tion. The true state is a control run of this model and

the observations are generated by adding a Gaussian

white noise N(0, σo) to the true state, where σo is the

observational error.

Model 2: Generate reanalysis by assimilating ob-

servations from model 1. This mimics the fact that dif-

ferent research centers generate the reanalysis through

their own GCMs (e.g., Kalnay et al., 1996; Kistler

et al., 2001; Uppala et al., 2005; Saha et al., 2010;

Kobayashi et al., 2015) and these GCMs are biased

with regard to the model used to generate the true

state.

Model 3: Conduct the benchmark and substitu-

tion experiments. Model 3 differs from model 2 in that

the model where the CDA system is set up can be dif-

ferent from the model used to generate reanalysis.

The relationship among the three models is il-

lustrated in Fig. 2. In the perfect model frame-

work, three models are the same and they use the de-

fault parameter values with Runge-Kutta 4 integration

scheme (Iseries, 1996). In the biased model framework,

model bias is mimicked by different integration scheme

(Runge-Kutta 2; Iseries, 1996) and slight variations on

model parameters. The detailed setup is summarized

in Table 1.

2.4 The benchmark and substitution experi-

ment

In the benchmark experiment conducted in model

3, atmospheric and oceanic observations generated in

model 1 are assimilated. Variables X1, X3, X5, · · · ,

X39 are observed every 20 integration time steps and

variables Y 1,Y 3,Y 5, · · · ,Y 39 are observed every 40

integration time steps, unless specified otherwise. This

Fig. 2. Illustration of model setup. Truth and observa-

tions (obs) are generated in model 1. Reanalysis is gen-

erated in model 2. Experiments are conducted in model

3. In perfect model case, the three models are the same,

while in biased model case all three are different.

is the best-case scenario where all observations that

are available are assimilated.

The atmospheric reanalysis data used for the sub-

stitution experiments are generated in model 2. The

observations are the same as that in the benchmark

experiment except that no oceanic observations are

assimilated since the effects of the ocean data assim-

ilation on the atmosphere are small in this coupled

Lorenz96 system. The reanalysis is the ensemble mean

output. We also preserve the reanalysis ensemble for

the assimilation scheme design later.

In the substitution experiments, the atmospheric

reanalysis and oceanic observations are assimilated

into model 3. The reanalysis is assimilated with the

same frequency as the benchmark experiment, while

oceanic observations stay unchanged. Although the

atmospheric observations are not available at every

gridpoint, the reanalysis will provide additional ob-

servations at unobserved locations.

2.5 Assimilating the reanalysis

The most straightforward way to assimilate the

Table 1. Model setup in the biased model framework

Model Integration scheme Model parameter

Model 1 Runge-Kutta 2 Standard parameters

Model 2 Runge-Kutta 2 5% increase from standard parameters

Model 3 Runge-Kutta 4 Standard parameters



576 JOURNAL OF METEOROLOGICAL RESEARCH VOL.30

reanalysis is to simply treat the reanalysis as indepen-

dent observations. First, the error covariance matrix

of the reanalysis is calculated, and then the reanal-

ysis is independently perturbed according to the di-

agonal values of the matrix, namely, the variances of

the observations. The error covariance matrix of the

reanalysis can be calculated as:

Rt = cov < X − X
T

>

=













cov < X1 − XT

1 , X1 − XT

1 > cov < X1 − XT

1 , X2 − XT

2 > · · · cov < X1 − XT

1 , X40 − XT

40 >

cov < X2 − XT

2 , X1 − XT

1 > cov < X2 − XT

2 , X2 − XT

2 > · · · cov < X2 − XT

2 , X40 − XT

40 >

...

cov < X40 − XT

40, X1 − XT

1 > cov < X40 − XT

40, X2 − XT

2 > · · · cov < X40 − XT

40, X40 − XT

40 >













, (5)

where X and XT are the time series of the reanalysis

and truth, respectively (note that the superscript T

means the truth, does not represent the transpose of

X), and they are of size nv × nt; X1 and XT
1 denote

the 1 × nt time series of reanalysis and truth of vari-

able 1, and same interpretation for the other elements

in Eq. (5). cov< > calculates the covariance. Rt is

shown in Fig. 3. The reanalysis at any given location

is perturbed with Gaussian noise that has the same

standard deviation as the square root of the corre-

sponding diagonal element in X t. Consequently, the

error matrix used in calculating the Kalman gain is

the Rt matrix with its off-diagonal elements set to

zero due to the assumption of independence among

different observations. In the real world, however, XT

is unknown. We can either use observation to replace

XT in Eq. (5), or use the averaged sample covariance

of the original reanalysis ensemble (see R in Eq. (7)),

which will be introduced later in Section 4.

3. Experiments and results

Following the procedure in Section 2, the first ty-

pe of experiments is denoted as UNCORR in Fig. 4,

which stands for “uncorrelated observation ensemble”

since the observation ensemble is the reanalysis plus

independent Gaussian white noise. Compared to the

benchmark, the increase of the average RMSE of the

Fig. 3. (a) The time average of flow-independent ensemble covariance matrix R and (b) the temporal covariance matrix

Rt. Point (i, j) indicates the covariance between the ith and jth atmospheric variables.
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Fig. 4. Boxplots of 90 simulations for benchmark and the 4 different schemes named ORIG, SHUFF, UNCORR, and

CORR. ORIG, SHUFF, and CORR are subsequent sensitivity tests which will be introduced in later section. (a, b)

The RMSE and (c, d) the RMSE ratio which is normalized by the benchmark experiment for (a, c) the perfect model

case and (b, d) the biased model case. The whiskers below and above the box show minimum and maximum values.

The upper and lower bounds of the box are the first and third quartiles. The red line is the median and the red crosses

indicate the outliers.

ocean variables over 90 simulations is 11.41% in the

perfect model framework and 16.93% in the biased

model framework. For the 90 simulations in the per-

fect model framework (Fig. 4b), the maximum and

minimum RMSE increases are 15.46% and 7.42%. In

the biased model framework (Fig. 4d), the maximum

and minimum non-outlier RMSE increases are 21.79%

and 11.81%. If only ocean data assimilation is carried

out in this coupled Lorenz96 model, the ocean compo-

nent will not be constrained by the oceanic observa-

tions alone and the oceanic RMSE can reach the cli-

matological standard deviation. This is because in this

simple coupled model, the ocean component is purely

driven by the atmosphere and the feedback from the

ocean to the atmosphere is small, hence we are not

able to get a reasonable oceanic analysis if the atmo-

sphere is not well constrained. In this sense, substitut-

ing the atmospheric observations with the atmospheric

reanalysis in a CDA process is better than assimilat-

ing oceanic observations alone in a coupled system.

The performance of assimilating reanalysis is further

tested with varied atmospheric observation frequency,

atmospheric observation error, atmospheric observa-

tion density, and ensemble size.

The performance of UNCORR is tested for dif-

ferent atmospheric observation frequencies and the re-

sults are shown in Fig. 5. The analysis cycle increases

from 20 to 120 time steps as the atmosphere obser-

vations become infrequent. The RMSEs of both UN-

CORR and the benchmark increase due to decreased

observational information (figure omitted). The ratios

in Fig. 5 show no significant trend when the analysis
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Fig. 5. Sensitivity of ocean RMSE ratio to atmosphere (ATM) observation frequency for the UNCORR scheme over 90

simulations.

cycle increases from 20 to 80 steps. However, as the

atmospheric observation frequency becomes unrealis-

tically infrequent (every 80 steps and beyond, this

frequency is less than 1 observation every 2 days),

the ratios tend to decrease. This means that as the

analysis quality gets worse for both the benchmark

and the substitution experiment due to less available

observational information, the difference between the

benchmark and the substitution experiment becomes

small. That is to say, the resultant analysis deteriora-

tion from the substitution is less severe.

The sensitivity of UNCORR to varied atmo-

spheric observation error is shown in Fig. 6. The

absolute RMSEs of both UNCORR and benchmark

increase as the observations become more and more

noisier (figure omitted), while the ratios in Fig. 6

show small fluctuations when the atmospheric obser-

vation error increases from 0.2 to 2.0, and eventually

decreases as the error gets unrealistically large (be-

yond 2.0, more than half of the climatological standard

deviation). This indicates that the oceanic analysis

deterioration in UNCORR is fairly insensitive to the

atmospheric observation error when it is in a reason-

able range. In addition, the deterioration is lessened

if the oceanic analyses of both the benchmark and the

substitution experiment get worse due to the overly

noisy observations.

The results of experiments with varied observa-

tion density but still evenly distributed observations

are shown in Fig. 7. The RMSEs for both experi-

ments are larger with sparser observations and smaller

with denser observation (figure omitted). The ratios

in Fig. 7 show a consistent decreasing trend as the ob-

servations get denser. This suggests that the difference

between the substitution and benchmark experiments

is less significant if the analyses of both experiments

Fig. 6. As in Fig. 5, but for different atmopsheric observation errors.
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Fig. 7. As in Fig. 5, but for different observation densi-

ties.

get worse due to less observations, which is similar

to the previous sensitivity tests. In contrast, if ev-

ery variable is observed, the increase of RMSE in the

substitution experiment relative to the benchmark is

the most significant. In reality, the number of atmo-

spheric observations is more or less fixed, and the den-

sity change will not be so extreme as in this simple

sensitivity test. It is notable that as the observations

get intermediately sparse, the data assimilation pro-

cess gets less stable: the variance of ratios among the

90 simulations is noticeably bigger when there are only

10 or 20 observations. This can be explained by the

numerical instabilities developed in a sparse observa-

tion network with finite ensemble size (Gottwald and

Majda, 2013).

The results in Figs. 5, 6, and 7 collectively indi-

cate that the decrease in analysis quality due to the

substitution is insensitive to the observation quality

(frequency, noisiness, and density) within a reason-

able range. Meanwhile, when the quality of observa-

tion declines too much, the decrease in analysis quality

caused by substitution becomes less severe compared

to the benchmark because the analysis quality of the

benchmark also decreases significantly due to poor ob-

servational quality.

Ensemble size is an important factor in the esti-

mation of error covariance and correlation. Additional

experiments with ensemble size 20, 40, and 200 are

shown in Fig. 8. The RMSEs of both experiments de-

crease with increasing ensemble size (figure omitted).

The ratios in Fig. 8 increase with ensemble size and

eventually level off. This suggests that with smaller

sample size, the bad analysis quality for both exper-

iments will lead to smaller RMSE contrast between

the substitution and the benchmark experiments, thus

smaller ratios; and vice versa for sufficiently large sam-

ple size.

4. Tests on assimilating schemes

In the last section, the UNCORR experiments as-

sume that the analysis has independent errors at dif-

ferent locations, which, however, is not the case in

reality. When reanalysis is generated, different model

locations are connected through both model dynamics

and the use of localization schemes. Thus, the analy-

sis errors will be spatially correlated between nearby

or even far-apart locations. In addition, the analy-

sis errors can also persist through time; hence, there

is also temporal correlation in the time series of the

analysis. The previous UNCORR experiments neglect

both the spatial and temporal correlations, which may

affect the performance of the CDA scheme. To deal

with these correlations and investigate how they affect

the CDA, we tested three other schemes for treating

the reanalysis error covariance, which are named as

CORR, ORIG, and SHUFF.

First, in the CORR scheme, the off-diagonal cor-

relation among different variables of the reanalysis is

taken into consideration. Instead of being set to zero

as in UNCORR, the off-diagonal elements in the re-

analysis error covariance matrix are retained. In cor-

respondence, a spatially correlated observation ensem-

ble is attained by perturbing the reanalysis with cor-

related noise. The spatial correlation among different

variables can be calculated in a similar way as Rt in

Eq. (5):

C = corr < X −XT > . (6)

The average RMSE increases of ocean variables

over 90 simulations in CORR are 11.79% for the per-

Fig. 8. As in Fig. 5, but for different ensemble members.
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fect model framework and 18.13% for the biased model

framework. The maximum and minimum non-outlier

RMSE increases are 15.76% and 6.96% for 90 simu-

lations in the perfect model framework (Fig. 4a) and

22.45% and 12.55% in the biased model framework

(Fig. 4b). Although CORR includes the off-diagonal

correlation among different variables, it does not out-

perform UNCORR and is also less stable. This is

mainly caused by the additional sampling errors. Be-

cause of the chaotic nature of the model, the correla-

tion among different locations in Lorenz96 decreases

below 0.2 within 5 gridpoints. Thus, CORR is subject

to significant sampling error in two processes, firstly

when the correlation matrix is calculated in Eq. (6)

and secondly when the correlated observation ensem-

ble is artificially generated based on the correlation

matrix. With a finite sample size, the error in the

covariance or correlation estimates increases greatly

when the true correlation becomes smaller. There-

fore, although including the spatial correlation may

improve the performance theoretically, the additional

sampling error overwhelms the possible improvement.

Second, the ORIG scheme uses the original re-

analysis ensemble as the “perturbed” observation en-

semble during CDA. The original reanalysis ensemble

is the byproduct of the ensemble-based data assim-

ilation filter during the generation of the reanalysis;

therefore, they could accurately capture not only the

flow-dependent correlation information among differ-

ent locations, but also the temporal coherence of each

ensemble member at every location. The error covari-

ance matrix in this scheme is calculated as the time

average of the error covariance matrix of the reanalysis

ensemble over each analysis step, as follows

R = mean < cov < Xre
t (nv, ens) >>, (7)

where cov< > and mean< > represent sample covari-

ance and the average of the error covariance matrices

at each time step of the covariance over time, respec-

tively; and Xre
t represents the original reanalysis en-

semble at analysis time step t. R is quantitively sim-

ilar to Rt and is also diagonally dominant (Fig. 3).

The performance of ORIG is noticeably better than

UNCORR and CORR (Fig. 4) and is fairly close to

the benchmark. The average oceanic RMSE increases

over 90 simulations are 2.02% in the perfect model

framework and 4.64% in the biased model framework.

The ratios range from –1.81% to 4.33% in the perfect

model framework over 90 simulations (Fig. 4a), and

from 0.58% to 8.31% in the biased model framework.

Third, the SHUFF scheme is used to test the rel-

ative importance of accurate spatial correlation and

temporal coherence in the improvement from CORR

to ORIG. SHUFF is the same as ORIG except that the

original reanalysis ensemble is shuffled at each analy-

sis step before it is assimilated. Hence, the temporal

coherence carried along each ensemble member is re-

moved in SHUFF while the off-diagonal spatial corre-

lation is still preserved. The performance of SHUFF

is slightly worse than ORIG in both perfect and bi-

ased model cases (Fig. 4), which indicates that the

temporal coherence of the reanalysis ensemble is less

important for the ocean analysis. Meanwhile, SHUFF,

similar to ORIG, outperforms UNCORR and CORR

significantly: the highest RMSE increase in SHUFF

(7.22%) almost approaches the lowest ones in CORR

(6.96%) and UNCORR (7.42%). SHUFF and CORR

both have the off-diagonal correlation and do not have

the temporal coherence, and they primarily differ in

generating the perturbations for the reanalysis (Eqs.

(5) and (7)), or simply the magnitude of sampling er-

rors for the correlation matrix. The comparisons be-

tween SHUFF and CORR and between SHUFF and

ORIG therefore suggest that accurate representation

of the spatial correlation is relatively more important

than the temporal coherence for the ocean analysis.

However, for the atmosphere component, the perfor-

mance of SHUFF is closer to CORR than to ORIG

(figure omitted), which suggests a relatively more im-

portant role of temporal coherence for the atmospheric

analysis. All the assimilation schemes are summarized

in Table 2.

5. Summary and conclusions

We substituted the atmospheric observations with

reanalysis data to set up a CDA system in coupled

Lorenz96 models and quantified the resultant effects
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Table 2. Assimilation scheme design

Scheme Covariance matrix Observation ensemble

ORIG Eq. (7) Original reanalysis ensemble

SHUFF Eq. (7) Shuffled original reanalysis ensemble

UNCORR Eq. (5), off-diagonal elements set to zero Perturbed ensemble (uncorrelated)

CORR Eq. (5) Perturbed ensemble based on correlation matrix

on the oceanic analysis. We compared the oceanic

RMSE of the substitution experiment where atmo-

spheric reanalysis and oceanic observations are assim-

ilated to a benchmark experiment where both atmo-

spheric and oceanic observations are assimilated. It

is found that the substitution results in the deterio-

ration of oceanic analysis quality. The magnitude of

this deterioration depends on how the reanalysis is as-

similated. When the reanalysis is assimilated directly

as independent observations (UNCORR) as in Zhang

et al. (2007), the oceanic RMSE increases due to the

substitution are about 16% in the perfect model frame-

work and about 22% in the biased model framework

compared to the benchmark or best-case scenario.

Additional sensitivity tests show that this result is

robust with sufficient ensemble size and reasonable

atmospheric observation quality (density, frequency,

and noisiness). If the ensemble size is smaller, or the

observation quality is worse (less frequent, sparser,

and noisier), the deterioration will become less severe

because the analysis quality of the benchmark also

decreases significantly.

In addition to the direct method, three supple-

mentary schemes (CORR, ORIG, and SHUFF) are

tested with a focus on the representation of the back-

ground error covariance matrix and the generation of

the perturbed observations in EnKF. We found that

both the spatial correlation among the reanalysis data

points and the coherence along each original reanalysis

ensemble member are crucial to the analysis quality

of the substitution experiments. The oceanic RMSE

increase is significantly reduced when the temporal

coherence along each member of the original reanaly-

sis ensemble is preserved (ORIG); the removal of such

ensemble member coherence (SHUFF and CORR)

and inaccurate capture of the off-diagonal correla-

tion (CORR, UNCORR) will result in the increase

of RMSE. However, the relative importance between

the off-diagonal correlation and temporal coherence

on analysis quality is different for the atmosphere

and ocean components. For the ocean component,

the RMSE of SHUFF is closer to ORIG than CORR,

indicating a relative more important influence from

the accurate representation of spatial correlation than

temporal coherence, while for the atmosphere, it is

the other way round.

This study demonstrates that substituting the at-

mospheric observations with atmospheric reanalysis is

a potentially efficient approach to implementing CDA

systems at the cost of moderate degradation of anal-

ysis quality. Despite the fact that this degradation

cannot be eliminated, the CDA products can still pro-

vide state-estimation of the coupled variability in the

atmosphere–ocean system, which incorporates both

the observational and model information, and the dy-

namical balance between the atmosphere and ocean

components can reduce the initial shock in the initial-

ization of the coupled GCM. There are still remaining

issues regarding assimilating atmospheric reanalysis

data. First, different schemes, in particular ORIG,

UNCORR, and CORR, should be tested on models

that have higher spatial correlations, and the impact

on the oceanic analysis quality should be evaluated.

Second, different ensemble filters such as ensemble ad-

justment filter (Anderson, 2001; Zhang et al., 2007),

can be employed to assess robustness of assimilating

the reanalysis. Finally, this idea should be further

tested in a coupled model of higher complexity.
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