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Indian Ocean had the opposite effect. This implies that 
the strengthened EASM in the post-Niño year is attribut-
able mainly to warming of the northern Indian Ocean. The 
corresponding physical links between these SST anomaly 
patterns and ASM precipitation were also discussed. The 
relevance of sensitivity maps was justified by the high cor-
relation between sensitivity-map-based reconstructed time 
series using observed SST anomaly patterns and actual pre-
cipitation series derived from ensemble-mean atmospheric 
GCM runs with time-varying global SST prescriptions dur-
ing the same period. The correlation results indicated that 
sensitivity maps derived from patch experiments were far 
superior to those based on regression methods.

Keywords  Sensitivity · Indian Summer Monsoon · East 
Asian Summer Monsoon · Precipitation · Tropical SST 
anomalies

1  Introduction

The Asian Summer Monsoon (ASM) is one of the most 
important monsoonal systems in the world and its vari-
ability can have profound socioeconomic consequences for 
over 40 % of the world’s population (Tao and Chen 1987; 
Wang et al. 2001; Wang and LinHo 2002; Ding and Chan 
2005; Gadgil and Kumar 2006). There have been numer-
ous studies concerning its variability and predictability 
(Rasmusson and Carpenter 1983; Webster and Yang 1992; 
Webster et  al. 1998; Lau and Nath 2000; Ding and Chan 
2005), which have established that long-term monsoonal 
variability is most likely controlled by slowly varying trop-
ical sea surface temperature (SST) anomalies rather than by 
rapidly varying synoptic-scale instabilities (Charney and 
Shukla 1981; Yang and Lau 1998; Chang et al. 2000). Thus, 

Abstract  Sensitivity of Asian Summer Monsoon (ASM) 
precipitation to tropical sea surface temperature (SST) 
anomalies was estimated from ensemble simulations of two 
atmospheric general circulation models (GCMs) with an 
array of idealized SST anomaly patch prescriptions. Con-
sistent sensitivity patterns were obtained in both models. 
Sensitivity of Indian Summer Monsoon (ISM) precipita-
tion to cooling in the East Pacific was much weaker than 
to that of the same magnitude in the local Indian–western 
Pacific, over which a meridional pattern of warm north and 
cold south was most instrumental in increasing ISM pre-
cipitation. This indicates that the strength of the ENSO–
ISM relationship is due to the large-amplitude East Pacific 
SST anomaly rather than its sensitivity value. Sensitivity 
of the East Asian Summer Monsoon (EASM), represented 
by the Yangtze–Huai River Valley (YHRV, also known as 
the meiyu–baiu front) precipitation, is non-uniform across 
the Indian Ocean basin. YHRV precipitation was most 
sensitive to warm SST anomalies over the northern Indian 
Ocean and the South China Sea, whereas the southern 
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the climate research community is interested in addressing 
some remaining basic (but important) questions, such as 
the extent to which ASM variability is explained by tropical 
SST anomalies, and establishing which patterns of tropical 
SST anomalies are most instrumental in enhancing ASM 
precipitation.

Some ideas can be obtained by estimating the potential 
predictability of the ASM when provided with SST forc-
ing. Figure  1 shows the predictability of 200-hPa height 
and precipitation, estimated by applying the analysis of 
variance (ANOVA; Rowell et  al. 1995; Rowell 1998) to 
ensemble simulations of atmospheric general circulation 
models (GCMs) with a prescription of observed global 
SST (1950–2004; also known as GOGA runs). Ensemble 
simulations of two atmospheric GCMs were used for cross 
validation. These two models were the Max Planck Insti-
tute for Meteorology (MPIM) ECHAM5 (Roeckner et al. 
2003) and the National Center for Atmospheric Research 
Community Climate Model version 3 (NCAR-CCM3; 
Kiehl et  al. 1998), and their ensemble sizes were 24 and 
16, respectively (see Sect. 2 for further description of the 
models). In Fig.  1, the ratio of SST-forced atmospheric 
variability to the total (shading) and the correlation skills 
(contours) during boreal summer is shown to highlight the 
potential predictability. In general, predictability is bet-
ter in the tropics than in the extratropics. The correlation 
skills in the tropics are >0.8 for 200-hPa height (Fig. 1a, 
b), indicating that its predictability is dominated by SST. 
The correlation skills for precipitation over the ocean, 
maritime continent, India, and Indochina Peninsula are 
>0.6, indicating that the predictability of precipitation over 
these regions is also determined largely by SST anomalies 
(Fig.  1c, d). In the extratropics, the SST-forced variabil-
ity of precipitation explains about 15–30  % of the total, 

providing an upper bound for the predictability of SST-
forced precipitation.

This significant role of the tropical SST anomalies in 
tropical climates and their variability has inspired many 
studies of the relationship between the tropical SST anom-
alies and ASM variability. It has been established that the 
ASM comprises two subcomponents: the Indian Summer 
Monsoon (ISM; also referred to as the South Asian Sum-
mer Monsoon in the literature) and the East Asian Summer 
Monsoon (EASM) (Tao and Chen 1987; Wang and LinHo 
2002; Ding and Chan 2005), which are relatively independ-
ent while interacting. The ISM, represented by all Indian 
rainfall (Parthasarathy et al. 1992), has been recognized as 
correlating negatively with remote SST anomalies over the 
eastern tropical Pacific associated with ENSO (Rasmus-
son and Carpenter 1983; Webster and Yang 1992; Zhou 
et al. 2009). This teleconnection is established through the 
displacement of the Walker circulation and the associated 
changes in convection over India (Webster and Yang 1992; 
Wu et  al. 2012). For EASM precipitation, it is acknowl-
edged that variability of the low-level circulation, i.e., the 
anomalous anticyclone/cyclone over the western tropical 
North Pacific (Wang et al. 2000, 2008; Li and Wang 2005), 
is the main cause of increased/decreased precipitation over 
the subtropical monsoon front (or meiyu–baiu front), which 
is also known as the Yangtze–Huai River Valley (YHRV) 
area. The abnormal anticyclonic circulation in summer is 
maintained by basin-wide warming of the Indian Ocean in 
response to El Niño (Yang et al. 2007; Li et al. 2008; Xie 
et  al. 2009), local cooling in the western North Pacific in 
early summer (Nitta 1987; Huang and Sun 1992; Lu 2001; 
Wu et al. 2010), and cooling in the central tropical Pacific 
in late summer (Weng et al. 2011; Fan et al. 2013; Xiang 
et al. 2013).

Fig. 1   Percentage of SST-
forced variance (shading) and 
“ensemble mean perfect model 
correlation skill” (contours) 
between the observations and 
the simulated ensemble mean 
[see Rowell (1998) for details] 
for 200-hPa height (upper 
panels) and precipitation 
(lower panels) anomalies in 
boreal summer (JJA), derived 
from a, c 16-member ensem-
ble of NCAR-CCM3 and b, d 
24-member ensemble of MPIM-
ECHAM5 simulations with 
global SST prescription during 
1950–2004
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Over recent decades, seasonal climate prediction has 
advanced based on an improved understanding of the role 
of ENSO-related SSTs in global and regional climates 
(Latif et al. 1994; Kumar et al. 2005). However, consider-
ing that ENSO-related SST anomalies explain only about 
50 % of the total tropical SST variability,1 it is necessary to 
establish comprehensively the sensitivity of ASM precipita-
tion to general SST anomalies in the tropics to improve its 
predictability further. To this end, one may consider the 
observed correlation between monsoonal precipitation and 
SST anomalies, as shown in Fig. 2a, b for ISM and EASM 
precipitation, respectively (see Sect.  2 for details of the 
dataset used). Interestingly, the 95  % confidence test was 
failed in most parts of the tropical oceans. In addition to the 
well-established negative correlation between ISM precipi-
tation and ENSO, ISM precipitation is also correlated with 
warm SST anomalies over the Western Pacific Warm Pool 
(Fig. 2a). Moreover, YHRV precipitation is associated more 

1  This is based on the leading EOF of SSTs in the tropical Pacific 
(entire tropical oceans) explaining about 50  % (30  %) of the total 
variability.

closely with non-ENSO SST anomalies rather than with 
those of ENSO (Fig. 2b).

Caution should be exercised when interpreting the maps 
presented in Fig.  2a, b because correlation merely indi-
cates statistical association rather than an actual dynamic 
link between monsoonal precipitation and tropical SST 
anomalies. A quantitative description of the sensitivity of 
monsoonal precipitation to SST anomalies across the entire 
tropical ocean has not been achieved. It is very difficult, if 
even possible, to estimate a “true atmospheric response” 
to SST anomalies in a particular region from observations 
because of the issue of the signal-to-noise ratio. This is 
because an observation has only a single realization with 
limited length; hence, SST anomalies over some regions 
might be too weak to generate sufficiently strong signals 
that could be separated from larger internal atmospheric 
noise. Moreover, SST anomalies over different regions are 
often inter-correlated (Klein et al. 1999) and thus, similarly, 
their corresponding atmospheric responses might be diffi-
cult to separate easily using observational data.

In this regard, the ensemble simulations using atmos-
pheric GCMs provide a means with which to mitigate these 
restrictions. For a given ensemble size N, the ensemble 
mean can reduce the atmospheric internal variability by the 

Fig. 2   Correlation map 
between a ISM precipita-
tion and SSTs and b YHRV 
precipitation and SSTs. Results 
are calculated for summertime 
based on the observational data 
from 1948–2011. The values 
of 0.25 and 0.32 on the color 
bar denote the critical correla-
tion value at the 90 and 95 % 
confidence level, respectively. 
The target monsoon regions for 
ISM and YHRV are represented 
as red rectangles in (a) and (b), 
respectively. c Standard devia-
tion of observed SSTs (Had-
ISST; Rayner et al. 2003) and 
the center of 43 SST anomaly 
patches. For reference, the 
typical SST anomaly patterns 
of patches over the Indo-Pacific 
and the Atlantic are shown as 
contours. The contours are 
0.1–1.7 °C with 0.4 °C intervals
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factor of 1√
N

; thereby, robust SST-forced signals may be esti-
mated. Additionally, in atmospheric GCM simulations, ide-
alized SST anomalies can be prescribed over the region of 
interest only, to detect the separate influences in that region. 
Therefore, it is possible to obtain robust and comprehensive 
sensitivity maps using model ensemble simulations.

It has been reported previously that atmospheric GCMs 
have limited skill in rainfall prediction in the Asian monsoon 
region (Wang et al. 2005; Wu and Kirtman 2005); however, 
that limitation has been attributed more to their inherent lack 
of atmosphere–ocean coupling than to deficiencies within 
the models themselves (Wang et  al. 2005). The purpose of 
this study was to diagnose the sensitivity of monsoonal rain-
fall to SST anomalies over each patch of the tropical region 
instead of performing a two-tier prediction. Moreover, to dis-
cern the climate sensitivity to an SST anomaly over a certain 
region, a determined steady SST anomaly over that region is 
required; however, current coupled GCMs are unable to cap-
ture the correct and steady SST anomaly patterns (Shin and 
Sardeshmukh 2010). Therefore, we used atmospheric GCMs 
despite their inherent limitations.

In this study, based on two atmospheric GCM models, 
we estimated quantitatively the sensitivity of ASM pre-
cipitation to tropical SST anomalies by analyzing a large 
ensemble of simulations where an array of idealized SST 
anomalies located over the entire tropical ocean was pre-
scribed. The paper is organized as follows. The atmos-
pheric GCMs, datasets, and an introduction to the methods 
used for sensitivity estimations are outlined in Sect. 2. The 
sensitivity maps as well as the associated physical links 
with ISM precipitation and YHRV precipitation are dis-
cussed in Sects. 3 and 4, respectively. Finally, a summary 
and concluding remarks are given in Sect. 5.

2 � Models, datasets, and methodology

To obtain a comprehensive sensitivity analysis of ASM pre-
cipitation to tropical SST anomalies, we performed a series 
of atmospheric GCM simulations forced by tropical SSTs. 
In those simulations, an array of steady localized SST 
anomaly patches in 43 locations was superimposed on the 
climatological annual cycle of global SSTs. The SSTs were 
obtained from the Hadley Centre Sea Ice and Sea Surface 
Temperature dataset (HadISST; Rayner et  al. 2003). The 
locations and structures of these SST patches are shown in 
Fig. 2c, and the average magnitude of the prescribed SST 
anomalies at each patch location was 0.66  °C. For each 
patch of SST anomalies, 20-ensemble member integrations 
of warm and an additional 20 of cold were performed for 
25 months starting from October. The integration span of 
25  months was sufficient to encompass the spin-up time 

and all four seasons. In this study, the linear part of the 
response to each patch was diagnosed as half the differ-
ence between the ensemble-mean atmospheric response 
to the warm and cold patch anomalies. For the measure of 
robustness, this study used two atmospheric GCMs: MPIM 
ECHAM5 (Roeckner et al. 2003) and NCAR CCM3 (Kiehl 
et  al. 1998). Both models have T42 horizontal resolution 
(about 2.8° longitude and latitude). The MPIM-ECHAM5 
(NCAR-CCM3) is formulated in hybrid sigma-pressure 
coordinates with 19 (18) vertical levels.

Observational datasets were also used to assess the real-
ism of the atmospheric GCMs in simulating the ASM cir-
culation and precipitation. These comprised monthly 850-
hPa winds from the National Centers for Environmental 
Prediction (NCEP)/NCAR Reanalysis dataset (Kistler et al. 
2001), monthly precipitation from the Climate Prediction 
Center (CPC) Merged Analysis of Precipitation (CMAP; 
Xie and Arkin 1997) datasets (1979–2011), and the CPC 
Precipitation Reconstruction over Land (PRECL) dataset 
(1948–2011).

To estimate the sensitivity (represented as r) of the mon-
soonal precipitation p over a certain target region in a cer-
tain season to tropical SST forcing at M locations, it is sim-
plest to derive the multiple linear regression between the 
N-year precipitation time series P (e.g., an N-component 
row vector) and the N time series of M forcings, i.e., an 
M× N matrix TδA. The matrix T represents SST anomalies 
and the scalar δA is the area element of each SST forcing. 
In this case, the target precipitation response p (a scalar) to 
tropical SST forcing at a certain time can be represented as

where r is an M-component column vector representing 
the precipitation sensitivity to M forcings; the superscript 
‘T’ represents the transpose (same as below) and e is the 
error due to the linear approximation and the limited length 
of samples. In regression analysis, error e is minimized in 
the least square sense. This is the statistical way to esti-
mate atmospheric sensitivity to SST anomalies. In practi-
cal applications, we usually perform univariate regres-
sion to diagnose the sensitivity pattern, and use stepwise 
regression to obtain the optimal regression equation for the 
reconstruction (or prediction) of precipitation.

Alternatively, as explained in previous studies (Barsugli 
and Sardeshmukh 2002; Barsugli et  al. 2006; Shin et  al. 
2010), our patch experiments provided a dynamical means 
for the estimation of sensitivity under a linear assumption. 
The scalar area-averaged precipitation response (p) to any 
single tropical SST anomaly pattern, represented as the 
43-component vector TδA, can be expressed as

(1)p = r
T (TδA)+ e,

(2)p = s
T(TδA) + ε,
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where vector s is a 43-component sensitivity and ε is the 
error due to the linear approximation and the finite ensem-
ble size of the patch experiments. To estimate sensitivity s, 
we followed the procedures outlined in Barsugli and Sard-
eshmukh (2002). First, the raw precipitation sensitivity sk to 
the kth patch (k = 1, 2,…, 43) was estimated by normalizing 
the area-averaged precipitation response pk with the inten-
sity of the SST forcing over this patch. In discrete form,

where Tk,j indicates the SST anomalies on the jth grid 
within the kth patch, δAk,j represents the area elements for 
the jth grid point associated with the kth patch, and pk can 
be obtained from the ensemble simulations of the kth patch. 
The estimated raw sensitivity values were assigned to the 
geographical centers of the corresponding patches, and then 
thin-plate smoothing spline procedures (Bookstein 1989), 
based on the signal-to-noise ratio, were applied to mini-
mize error ε. Here, we treated the error as SST-independent 
Gaussian random noise (Barsugli and Sardeshmukh 2002; 
Barsugli et  al. 2006; Shin et  al. 2010). For the display of 
the sensitivity maps, the values were scaled such that they 
represented the precipitation responses to a uniformly dis-
tributed +1 °C SST anomaly over a relatively large ocean 
area of 106 km2.

The sensitivity vector may also be viewed as the opti-
mal SST forcing for inducing ASM precipitation. This is 
because, among all possible SST forcing patterns that have 
the same root mean square (r.m.s.) amplitude, the pattern 
proportional to the sensitivity vector can maximize the pre-
cipitation response. In this sense, any of the observed SST 
EOF patterns could be considered possible subset realiza-
tions, but none of them need necessarily be the optimal 
pattern.

The patch-experiments method is based on the linear 
assumption that the influence of any large SST anomaly 
pattern on the atmosphere is equal to the linear combination 
of the influences of individual SST patches. To investigate 
the validity of this assumption, we linearly reconstructed 
the historical series of ASM precipitation anomaly based 
on the sensitivity map and SST observation, and compared 
the reconstructed series with the fully nonlinear time series 
of precipitation derived from the GOGA runs. The histori-
cal precipitation anomaly series was reconstructed as the 
weighted sum of 43 prescribed anomalies; in this process, 
the kth precipitation anomaly was the response to the kth 
patch of idealized SST anomaly, and its weight (i.e., the kth 
weight) was determined by projecting the observed SST 
anomaly pattern on the kth patch of SST anomaly. Obvi-
ously, the weighted sum could only be taken as the recon-
structed precipitation anomaly if the superposition of all 
43 ideal SST anomaly patches constituted a uniform SST 

(3)sk =
pk

∑
j (Tk,j · δAk,j)

,

anomaly pattern with 1  °C amplitude that spanned the 
entire tropical basin. However, that prerequisite was not 
met. Because of the superimposition of adjacent patches, 
the weighted sum was finally divided by an overlap factor 
to represent the reconstructed precipitation anomaly value 
(Barsugli and Sardeshmukh 2002).

The correlation value between the linearly reconstructed 
and the GOGA series is indicative of the degree to which 
the precipitation response was determined by tropical 
SSTs, and the degree to of the linearity of SST influencing 
ASM precipitation. If the sensitivity maps derived from the 
patch experiments adequately matched the GOGA results, 
the linear assumption would be proven acceptable, and the 
accuracy and robustness of the maps validated.

It was interesting to establish which of the two afore-
mentioned methods (statistical regression analysis and 
dynamical patch experiments) provided the more accurate 
sensitivity of ASM precipitation to tropical SST forcings. 
Despite their formal equivalence, the sensitivities derived 
from the two methods could be different (Shin et al. 2010). 
Therefore, we also linearly reconstructed the precipitation 
series using the observed tropical SST patterns and the sen-
sitivity pattern derived by the regression method, and com-
pared the reconstructed series with the GOGA results, to 
test the validity of the regression-derived sensitivity maps. 
In building the regression model, we used stepwise regres-
sion, which can achieve the best precipitation reconstruc-
tion in the linear sense. In the stepwise regression, the 
selection of predictive variables (regions of SST) was per-
formed using an automatic procedure based on the precipi-
tation–SST correlations, taking the form of a sequence of 
F-tests. As the regression model should be assessed against 
a dataset not used to build the model (Bariffa et al. 1983; 
Jonathan and Goldberg 2001), we divided the data into a 
training period and a hindcast period, and calculated the 
correlation values (denoted in Fig.  5) over the hindcast 
period only. Better performance of the sensitivity maps 
derived from the patch experiments, in comparison with the 
regression-derived sensitivity maps, would imply that the 
sensitivity results derived from the patch experiments of 
this study were important.

3 � Sensitivity of ISM precipitation

We derived maps of the sensitivity of the ISM and YHRV 
precipitation to tropical SST anomalies using both the sta-
tistical and the dynamical methods, within the limits of 
atmospheric GCM realism in simulating monsoonal pre-
cipitation and circulations. In general, models that simu-
late climatology more realistically tend to capture better 
interannual variability (Sperber and Palmer 1996; Sper-
ber 1999). Therefore, we examined the realism of the 
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atmospheric GCMs in simulating the climatological lower-
level circulations and precipitation, as well as their interan-
nual variability, over our domain of interest. In Fig. 3, the 
simulated summer (JJA) averages of the 850-hPa winds and 

precipitation (Fig. 3b, c; shading) and standard deviations 
of precipitation (Fig.  3b, c; contours) are compared with 
the observational datasets (Fig. 3a). The model biases are 
also shown in Fig.  3d, e. The observational datasets used 

Fig. 3   Summer averages 
(1979–2011) of 850-hPa winds 
(vectors, m s−1), precipita-
tion (shading; mm day−1), and 
standard deviation of precipita-
tion (contours, mm day−1) for a 
observations, b ensemble mean 
of NCAR-CCM3, and c ensem-
ble mean of MPIM-ECHAM5. 
d, e The differences between 
the simulation and observa-
tions for CCM3 and ECHAM5, 
respectively. In (d) and (e), 
the red (blue) contours (CI: 
1 mm day−1) denote positive 
(negative) values and zero lines 
are omitted
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here were the CMAP (Xie and Arkin 1997) for precipita-
tion, during 1979–2011, and NCEP-NCAR Reanalysis 
(Kistler et al. 2001; Fig. 3a, b) for the 850-hPa winds dur-
ing the same period.

As shown in Fig.  3, both the NCAR-CCM3 and the 
MPIM-ECHAM5 generally captured the essence of the 
ASM circulation system, except for a slight underestima-
tion of the South China Sea–western Pacific convergence 
zone. Over the Indian Peninsula and nearby regions, both 
models produced a realistic simulation of the precipita-
tion as well as its standard deviation. For the EASM, the 
simulated subtropical high was reasonable in terms of its 
strength and position, although the subtropical monsoon 
frontal precipitation (meiyu belt) was slightly underesti-
mated (Fig. 3d, e) because of the weak southwesterly winds 
over the South China Sea (and hence the weak water vapor 
transport to the meiyu belt). The correlations between the 
patterns of simulated precipitation and the observations 
were 0.65 for MPIM-ECHAM5 and 0.73 for NCAR-
CCM3. Overall, the monsoon climatology and its interan-
nual variability were simulated reasonably well, providing 
assurance of our sensitivity maps derived dynamically from 
the patch experiments using the two models.

3.1 � Sensitivity maps

Maps of the quantitative sensitivity of ISM precipitation 
to tropical SST anomalies, derived from the patch experi-
ments using the NCAR-CCM3 and MPIM-ECHAM5 
atmospheric GCMs, are shown in Fig. 4a, b, respectively. 
The two models yielded very similar sensitivity patterns 
(pattern correlation 0.77), although some discrepancies 
exist in their magnitudes and the detailed patterns over 
the tropical Atlantic basin. Both models were consistent 
in indicating that ISM precipitation is most sensitive to a 
meridional dipole pattern in the Indian–western Pacific 
Ocean; the warm (cold) SST anomalies in the north and 
cold (warm) SST anomalies in the south are favorable for 
increased (decreased) ISM precipitation. As regards the 
magnitude of the sensitivity value, unit SST forcing with a 
1 °C anomaly distributed uniformly over a 106 km2 area in 
the Indian Ocean caused an ISM precipitation rate of about 
0.2 mm/day. This meridional pattern helps explain why the 
decrease of the observed meridional SST gradient over the 
Indian Ocean has weakened ISM precipitation since the 
1950s (Chung and Ramanathan 2006). By contrast, the 
map of the correlation between ISM precipitation and SST 
(Fig. 2a) shows much less information in the Indian Ocean 
because the correlation coefficients over most of the area 
were not significant.

Over the eastern tropical Pacific, both sensitivity maps 
in Fig.  4 indicate a negative relationship between ISM 
precipitation and SST anomalies, which agrees with the 

well-known observed ENSO–ISM relationship (Rasmus-
son and Carpenter 1983; Wu et al. 2012). This connection 
operates through the modulation of the Walker circulation, 
which leads to suppressed convection and reduced precipi-
tation over the Indian Peninsula (see Sect. 3b). It is note-
worthy that both models (Fig. 4a, b) show sensitivity val-
ues over the eastern Pacific that are smaller than over the 
Indian–western Pacific Ocean. This means the ISM precipi-
tation response to local SST anomalies is larger compared 
with the remote SST anomaly in the eastern Pacific of the 
same magnitude. To interpret this, it is important to distin-
guish between the sensitivity of precipitation and the actual 
precipitation response to tropical SST anomalies. Note 
that the regions of large forcing (large amplitude of SST 
anomaly) are not always regions of large “sensitivity.” The 
actual ISM precipitation response is the “product” of these 
sensitivities and forcing, where the forcing is represented 
as the surface integral of SST anomalies over a certain area. 
Figure  5 shows the map of such sensitivity multiplied by 
the SST standard deviation shown in Fig.  2c. We can see 
that the equatorial eastern Pacific SSTs for both models 
are more remarkable than shown in Fig.  4, which occurs 
because of the large magnitude of the eastern Pacific SST. 
Hence, the strength of the ENSO–ISM relationship may 
be attributed to the large ENSO amplitude rather than to 
the sensitivity. Considering the largest SST variability, the 
eastern tropical Pacific remains an important contributor to 
ISM precipitation changes.

The sensitivity patterns derived from the patch experi-
ments (Fig.  4) differ from those derived using the simple 
linear regression or correlation methods with simulated 
precipitation and SST data from the GOGA ensemble mean 
(see Fig. 6a). The correlation map presented in Fig. 6a is 
similar to the correlation map (Fig. 2a) of the observations; 
it also failed to capture the dominant role of the north–
south SST gradient in forcing ISM precipitation. Thus, 
one may wonder whether the map of Fig. 6a or Fig. 4a is 
most representative of the sensitivity of ISM precipitation 
to tropical SST anomalies. As mentioned before, one way 
to measure the accuracy of the sensitivity map is to linearly 
reconstruct the historical series of ISM precipitation anom-
alies, based on the observational SSTs and the two kinds 
of sensitivity maps, and then to compare the reconstructed 
precipitation series with the actual time series of precipita-
tion responses from GOGA. The two reconstructed series 
are shown in Fig.  7, where the blue line indicates the 
reconstruction based on the sensitivity map derived from 
the patch experiments (Fig. 4a) and the yellow line repre-
sents the reconstruction based on the regression-derived 
sensitivity map (Fig.  6a). Both reconstructions are com-
pared with the standard series (red line) from a 24-member 
GOGA ensemble mean. The correlation between the stand-
ard series from GOGA and the reconstructed series using 
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the patch experiments indicates the extent to which ISM 
precipitation is determined by the tropical SST anomalies 
and the extent to which the linear assumption is applica-
ble. Furthermore, the comparison of the correlations of the 
standard series with both reconstructions can reveal which 
method produces the most reliable sensitivity results. For 
a fair comparison, the correlation values were calculated 
in both cases for the test period of 1856–1978, because the 
training period of the regression was 1979–2011. 

It can be seen from Fig. 7 that the correlation between 
the patch-experiment-based linear reconstruction and 

the standard series is 0.7. The reasonably good agree-
ment between the two series implies that ISM precipita-
tion is determined mainly by tropical SSTs. Furthermore, 
it suggests that the ISM precipitation response to tropical 
SST anomalies is approximately linear, since the linear 
combination of tropical patch responses largely explains 
the fully nonlinear response to global SST anomalies. 
This high correlation also indicates the sensitivity map in 
Fig. 4a is an accurate measure of ISM sensitivity to tropi-
cal SST forcings. In contrast, the correlation between the 
regression-based reconstruction and the actual series is 
0.49, indicating the sensitivity pattern in Fig. 6a is not as 
accurate as in Fig.  4a, i.e., the patch-experiment method 
is superior to the regression method. We suspect that the 
poorer performance of the regression method was mainly 
due to the weak observed SST variability over the Indian 
Ocean. In general, it is more difficult to determine the true 
sensitivity from observation (which is a single realiza-
tion) over the regions of weak SST variability because of 
the small signal-to-noise ratio. However, our atmospheric 
GCM integrations used a large number of ensemble mem-
bers and relatively large SST forcing, which allowed the 
discerning of those weak influences of small-amplitude 
SSTs. When such weak but correct influences are incor-
porated in the construction of the ISM rainfall anomalies 
series (blue line in Fig.  7), the results can be improved 
noticeably. In the stepwise regression model, however, 
those factors may easily be rejected because of their low 
correlation values. This could be the reason why the patch-
sensitivity-based reconstruction outperformed the regres-
sion method in Fig. 7.
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Fig. 7   Linearly reconstructed ISM precipitation series using patch-
experiment (blue line) and step-wise-regression models (yellow line; 
see text for details). Both reconstructed series are compared with the 
standard series (red line), i.e., the precipitation anomaly series from 
the ensemble mean of the NCAR-CCM3 GOGA simulations. The 
training period of the regression model was 1979–2011, and the cor-
relation coefficients were calculated only for the test period 1856–
1978. The dashed gray line denotes the boundary separating the test 
and training periods
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3.2 � Physical links

As mentioned in Sect.  2, among all possible SST forcing 
patterns that have the same r.m.s. amplitude, the one that 
is proportional to the sensitivity pattern can maximize the 
precipitation response, so it can be viewed as the theoreti-
cally optimal SST pattern for causing intense ISM pre-
cipitation. To understand how the optimal SST pattern (as 
in Fig. 4) enhances ISM precipitation, we constructed the 
atmospheric responses (precipitation, 200-hPa geopoten-
tial height, and 850-hPa winds) to the SST anomaly of the 
same pattern as the sensitivity map, but normalized with 
an r.m.s. amplitude of 1  °C. These atmospheric responses 
were determined as the weighted sum of the responses to 
individual patch results, where the weight was proportional 
to the integrated SST anomaly within each patch. Here, we 
chose two tropical ocean basins: the tropical Indian–west-
ern Pacific Ocean and the eastern tropical Pacific Ocean 
separated by the dateline, because they not only represent 
the epicenters of sensitivity shown in Fig.  4, but are also 
the regions where the two models produce consistent sen-
sitivity patterns. The same procedures were applied for 
both the NCAR-CCM3 and the MPIM-ECHAM5 GCMs 
and virtually similar results were obtained. Thus, in Fig. 8, 
we show only the atmospheric responses determined from 
MPIM-ECHAM5.

The physical mechanism for the response of ISM pre-
cipitation to Indian Ocean SST anomalies is reasonably 
straightforward (Fig.  8a). The SST pattern of a warm 
north and a cold south (see Fig.  4b for the SST pattern) 

intensifies the cross-equatorial summer monsoonal flow, 
and enhances the moisture transport to cause heavy rainfall 
over the Arabian Sea, Bay of Bengal, and Indian Peninsula. 
The atmospheric responses over the Indian Ocean can be 
explained as a Gill-type response to an antisymmetric heat-
ing anomaly about the equator (Gill 1980). In general, a 
warm (cold) SST anomaly in the tropics causes in situ posi-
tive (negative) geopotential height anomalies at upper lev-
els. However, the joint effect of warm north and cold south 
Indian Ocean SST anomalies on the 200-hPa geopotential 
height is all positive over the Indian Ocean (Fig. 8a). This 
is because the climatological SSTs over the Indian Ocean 
during boreal summer are much warmer in the north than in 
the south. Thus, the resultant convection anomaly, depend-
ing upon the total SSTs, is dominated by the warming in 
the northern Indian Ocean.

As for the atmospheric responses (Fig. 8b) to the east-
ern tropical Pacific parts (to the east of the dateline) of the 
optimal SST pattern (see Fig. 4b for the SST pattern), the 
negative SST anomalies over the eastern tropical Pacific 
intensify the Walker circulation. Consequently, subsidence 
is intensified over the eastern tropical Pacific, while the 
convection is intensified over the Indo-Pacific Warm Pool, 
which causes surface westerly anomalies over the South 
China Sea and the northern Indian Ocean. These westerly 
anomalies bring enhanced moisture transport that increases 
ISM precipitation.

4 � Sensitivity of EASM precipitation

4.1 � Sensitivity maps

The sensitivity of YHRV precipitation to tropical SSTs is 
shown in Fig.  9. The two models yielded consistent pat-
terns of sensitivity over the Indian Ocean and the South 
China Sea. The positive SST anomalies in the northern 
Indian Ocean and the South China Sea are particularly 
effective in bringing above-normal YHRV precipitation. It 
is noteworthy that the southern Indian Ocean, though with 
comparatively small magnitude in strength, has an opposite 
effect to that of the northern Indian Ocean. This implies the 
significant role of the northern Indian Ocean in the capaci-
tor effect of the basin-wide warming of the Indian Ocean 
on the EASM (Yang et al. 2007; Li et al. 2008; Xie et al. 
2009). It should be borne in mind that the theoretically 
optimal forcing pattern is not necessarily one of the com-
mon SST EOF patterns, while the identified optimal forc-
ing pattern can help improve our understanding of the basic 
questions and provide some hints regarding precipitation 
prediction.

To investigate the relevance of the sensitivity map 
shown in Fig.  9, we reconstructed the anomalous YHRV 
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Fig. 8   Linearly reconstructed responses of precipitation (shading; 
mm day−1), 850-hPa winds (vectors; m s−1), and 200-hPa geopoten-
tial height (contours; m) to the scaled optimal SST forcing for ISM 
precipitation (Fig.  4b) over the a Indian–western Pacific and the b 
eastern Pacific basins separated by the dateline. The results are based 
on the MPIM-ECHAM5 patch experiments. The contour interval is 
10 m and zero contours are suppressed. The red solid (blue dashed) 
lines indicate positive (negative) values
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precipitation time series using the sensitivity map derived 
from the patch experiments (blue line, Fig.  10) and the 
stepwise-regression-based sensitivity map (yellow line, 
Fig.  10), and compared both series with the actual series 
derived from the GOGA runs (red line, Fig.  10). Here, 
we assessed the accuracy of the sensitivity map using the 
NCAR-CCM3 simulations for which long-term (1856–
2011) GOGA simulations were available. The correlation 
coefficient between the patch-experiment-based reconstruc-
tion and the actual nonlinear precipitation series was 0.61. 
This value is passable but not as high as that achieved for 
the ISM precipitation in Fig. 7. This implies that the non-
linear or extratropical factors might have a greater effect on 
EASM precipitation than on ISM precipitation. Neverthe-
less, the value of 0.61 is much higher than the value of 0.29 
achieved for the regression-based sensitivity map (Fig. 6b), 
confirming the validity of the sensitivity maps derived from 
the patch experiments, shown in Fig. 9. The reason for this 
is similar to the ISM case elaborated in Sect. 3.1.

4.2 � Physical links

How the hypothetical SST anomaly pattern shown in Fig. 9 
was linked to the YHRV precipitation? To examine this, we 
linearly reconstructed the precipitation, 850-hPa winds, and 
200-hPa geopotential height responses to the SST anoma-
lies over the Indian–western Pacific Ocean region (west of 

150°E), where the two models yielded similar sensitivity 
patterns. Again, the pattern of the hypothetical SST anoma-
lies is the same as in the sensitivity maps shown in Fig. 9a, 
b but with the r.m.s. amplitude scaled to be 1 °C.

Figure 11 shows that the two models yielded very simi-
lar atmospheric responses to their respective SST anoma-
lies. Locally, the upper-level (200-hPa) ridge developed in 
response to the Indian–western Pacific Ocean warming. 
Over the Indian Ocean, this upper-level ridge was accom-
panied by strengthened westerly winds in the lower trop-
osphere. The intense warming over the northern Indian 
Ocean led to a lower-tropospheric anticyclonic anomaly 
over the northwestern Pacific (Xie et al. 2009). The anoma-
lous easterlies on the southern flank of the anticyclone and 

Fig. 9   As in Fig. 4 but for the 
summertime (JJ) sensitivity of 
YHRV precipitation to tropical 
SST anomalies derived from 
the patch experiments using a 
NCAR-CCM3 and b MPIM-
ECHAM5
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Fig. 11   Linearly reconstructed responses of precipitation (color 
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the scaled optimal SST pattern in the Indian–western Pacific (west 
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contour interval is 20 gpm, and zero lines are suppressed. The red 
solid (blue dashed) lines denote positive (negative) height anomalies
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the anomalous westerlies from the northern Indian Ocean 
converge over the Indochina Peninsula, which enhanced the 
precipitation over the northern Indian Ocean. Meanwhile, 
the strengthened southwesterly monsoonal winds on the 
northwest flank of the anticyclone increased the moisture 
transport from the western Pacific to the YHRV region, 
causing the intensified precipitation over the subtropical 
monsoon frontal region extending from the YHRV region 
to Korea and Japan. This is how the optimal forcing pat-
tern (in Fig. 9) enhanced YHRV rainfall via the anomalous 
monsoon circulation.

5 � Summary and concluding remarks

In this study, based on two atmospheric GCMs (NCAR-
CCM3 and MPIM-ECHAM5), we quantitatively estimated 
the comprehensive sensitivity of ASM precipitation to trop-
ical SST anomalies by performing ensemble simulations 
with the prescription of an array of 43 theoretically steady 
localized SST anomaly patches over the tropics. The results 
are summarized as follows.

Both models yielded reasonably consistent sensitivity 
patterns for ISM and YHRV precipitation. It was estab-
lished that ISM precipitation is most sensitive to a meridi-
onal dipole of SST anomalies over the Indian and western 
tropical Pacific oceans, with warming in the north and cool-
ing in the south being most favorable for ISM precipitation. 
This meridional gradient of SST anomalies intensifies the 
cross-equatorial monsoonal flows, thereby increasing mois-
ture transport to the Indian Peninsula. ISM precipitation is 
also sensitive to SST anomalies over the eastern tropical 
Pacific, but to a lesser extent; the cold (warm) SST anoma-
lies over the eastern tropical Pacific modulate the Walker 
circulation by causing convection (subsidence) over the 
ISM region, which increases (decreases) the precipitation. 
For the EASM, the above-normal YHRV precipitation is 
most sensitive to warm SST anomalies over the northern 
Indian Ocean and the South China Sea; it is also sensi-
tive to cold SST anomalies in the southern Indian Ocean 
but to a lesser degree. In response to these SST anomalies, 
an anomalous anticyclone develops over the northwestern 
Pacific, which increases moisture transport to the YHRV 
region.

The patch-experiment method was based on the linear 
assumption that the influence of any large SST anomaly 
pattern on the atmospheric object of study is equal to the 
linear combination of the influences of individual SST 
patches. To validate this assumption and verify the degree 
of accuracy of the sensitivity maps, we reconstructed the 
historical series using the observed SST pattern and the 
sensitivity maps derived from the patch experiments, and 
compared the reconstruction with the standard precipitation 

anomaly series from the ensemble mean of the fully non-
linear GOGA simulations. The reasonably high correlation 
values between the two series demonstrated that the linear 
assumption was acceptable, especially for ISM precipita-
tion. The high correlation also validated the accuracy of the 
sensitivity maps. To support the superiority of these sensi-
tivity maps, we also estimated a formally equivalent sensi-
tivity with the regression method using the GOGA ensem-
ble mean data. Compelling evidence suggested that the 
sensitivity maps obtained from the patch experiments were 
accurate and superior to those obtained from the regression 
analysis. The poor skill of the regression might be attribut-
able to its inability to capture the effects of relatively weak 
but critical SST anomalies. Conversely, our ensemble patch 
runs, with a relatively large SST anomaly, are better able 
to resolve the correct atmospheric response to the SST 
forcings, especially over the tropical regions of weak SST 
variability.

Although some of the above results agree with earlier 
studies, our study highlighted a number of new findings:

1.	 This study derived quantitative maps of the sensitivity 
of ASM precipitation to tropical SST anomalies based 
on a series of patch experiments, alleviating the sig-
nal-to-noise ratio problem in observational study. The 
patch-experiments method with SST prescription could 
obtain the separate influences of each SST anomaly 
patch. SST anomaly patterns similar to the sensitivity 
patterns can be viewed as the optimal forcing patterns 
in inducing ASM precipitation. The optimal patterns 
were different from the common EOF patterns of SST 
and they might not occur sufficiently often in the real 
world to be of value.

2.	 Regions of large forcing are not always the regions of 
large sensitivity. The ISM is more sensitive to local 
SST anomalies than to the remote eastern Pacific SST 
anomaly of the same magnitude, indicating that the 
strength of the well-known ENSO–ISM relationship is 
attributable more to ENSO amplitude than to the sensi-
tivity.

3.	 For EASM precipitation, the present results revealed 
that its sensitivity to Indian Ocean SST is not uniform 
throughout the basin, but that the northern and southern 
parts of the Indian Ocean have contrasting effects on 
the EASM. This implies that the strengthened EASM, 
associated with basin-wide warming of the Indian 
Ocean in the post-Niño year, is attributable mainly to 
the northern Indian Ocean.

The high correlation skills of the monsoon hindcasts, 
shown in Figs. 7 and 10, raise the possibility that the sen-
sitivity maps, with a tropical SST forecast derived from 
other statistical and/or numerical modeling means, could 
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be used to obtain the seasonal monsoon outlook. Alterna-
tively, the patch-based sensitivity maps, although indicat-
ing a simultaneous relation, could still be used for monsoon 
predictions, if the persistence of the tropical SST anomalies 
provided sufficient prediction skill. In this case, the predic-
tion procedure would be the same as in the linear recon-
struction used in Figs.  7 and 10, except for the timing of 
the SST anomalies. For example, to predict the ISM pre-
cipitation anomalies in July, we would use the tropical SST 
anomalies from April (lag 3) to July (lag 0) and the ISM 
sensitivity maps in June–August. Some preliminary results 
are shown in Fig. 12 for the correlation between the actual 
(GOGA-derived), predicted for the ISM (Fig.  12a), and 
YHRV precipitation anomalies (Fig. 12b). The results are 
presented for both patch-experiment-based (blue lines) and 
regression-based (yellow lines) methods, and it is clear that 
the former displays better skill than the latter for almost 
all lags. For the patch-experiment-based method, the cor-
relation remains >0.6 for the 2-month lead ISM prediction, 
indicating that our prediction procedure does provide the 
first outlook of the ISM precipitation. The YHRV precipita-
tion is comparatively less predictable than ISM precipita-
tion. Another notable feature in Fig. 12 is that the predict-
ability of monsoonal precipitation by the patch experiments 
(blue lines) decreases gradually with increasing lag, while 
that of the regression method (yellow lines) is somewhat 
irregular. This demonstrates that the patch-experiment-
based method considers the dynamics and thus the reduc-
tion in skill is consistent with the persistence of the SSTs, 
while the skill of regression method is influenced by inher-
ent sampling uncertainties.

Despite the robust results, this study has some limita-
tions and further work is required to both understand 
fully and predict ASM precipitation variability. First, only 
the tropical SST-forced monsoon precipitation signal is 
addressed in the two models, but the SST-forced compo-
nent of monsoonal precipitation variability accounts for 

only about 60  % of the total precipitation variance over 
India and 40 % over East China (as shown in Fig. 1). Sec-
ond, the present results are all within the modeled world 
and therefore they suffer limitations related to the skill lev-
els of current climate models. This is why all the recon-
structions or predictions in this study were compared with 
the GOGA results instead of observations. The reality is 
that current climate models still cannot surpass the pre-
diction skill of some empirical methods based on obser-
vational data (Newman 2013). In addition, the inherent 
lack of air–sea interaction in atmospheric GCMs might 
also affect the present results, especially over the Indian 
Ocean where SST responds strongly to radiation, rather 
than being generated by ocean dynamics. Although the 
veracity of the present results is confined by the above 
limitations, the value of this study is that with the aid of 
two models, it explores ASM sensitivities to SSTs from 
model perspective with alleviated signal-to-noise ratio. We 
believe that with the advancement of model skills in simu-
lating the ASM, better understanding of ASM variability 
will be obtained by future studies using models that are 
more advanced.
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Fig. 12   Correlation between the predicted precipitation time series 
and the actual GOGA ensemble means using NCAR-CCM3. It is a 
similar reconstruction to Figs. 7 and 10 but the SST leads the sensi-
tivity pattern by 0–4 months. The blue (yellow) lines use the patch-

based (regression-based) sensitivity maps in the prediction. In the 
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diction period was 1856–1978. The correlations were calculated over 
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