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ABSTRACT

This paper uses a fully coupled general circulation model (CGCM) to study the leading averaged coupled

covariance (LACC) method in a strongly coupled data assimilation (SCDA) system. The previous study in a

simple coupled climate model has shown that, by calculating the coupled covariance using the leading

averaged atmospheric states, the LACCmethod enhances the signal-to-noise ratio and improves the analysis

quality of the slow model component compared to both the traditional weakly coupled data assimilation

without cross-component adjustments (WCDA) and the regular SCDA using the simultaneous coupled

covariance (SimCC).

Here in Part II, the LACC method is tested with a CGCM in a perfect-model framework. By adding the

observational adjustments from the low-level atmosphere temperature to the sea surface temperature

(SST), the SCDA using LACC significantly reduces the SST error compared to WCDA over the globe; it

also improves from the SCDA using SimCC, which performs better than the WCDA only in the deep

tropics. The improvement in SST analysis is a result of the enhanced signal-to-noise ratio in the LACC

method, especially in the extratropical regions. The improved SST analysis also benefits the subsurface

ocean temperature and low-level atmosphere temperature analyses through dynamic and statistical

processes.

1. Introduction

Coupled data assimilation (CDA) has shown great

promise as a capable and comprehensive strategy for

generating climate reanalyses and initial conditions for

prediction in the coupled climate system (Zhang et al.

* Center for Climatic Research Contribution Number 1211.

Corresponding author address: Feiyu Lu, Center for Climatic

Research, 1225W. Dayton St., Madison, WI 53706.

E-mail: flu7@wisc.edu

NOVEMBER 2015 LU ET AL . 4645

DOI: 10.1175/MWR-D-15-0088.1

� 2015 American Meteorological Society

mailto:flu7@wisc.edu


2007; Sugiura et al. 2008; Saha et al. 2010; Dee et al.

2011). A CDA system assimilates observations into one

or more model components and allows the exchange of

information among different components, either dynam-

ically through model fluxes or statistically through the

updating algorithm. Recently, a coupled forecast model

has been implemented into the reanalysis process at the

National Centers for Environmental Prediction (NCEP;

Saha et al. 2010). The exchange of information in a CDA

system has been suggested to produce more balanced in-

terfaces and better adjusted fluxes between model com-

ponents, resulting in improved coupled state estimates

as well as initialization for coupled model predictions

(Zhang et al. 2005, 2007; Sugiura et al. 2008; Zhang 2011).

Most CDA systems so far, however, have been using

the ‘‘weakly’’ coupled data assimilation (WCDA), in

which the first-guess forecast states come from the

coupled model, but the observation innovations are

applied in each component separately. Therefore, the

exchange of information is accomplished only dynamically

through cross-component fluxes during the forecast stage.

In contrast, ‘‘strongly’’ coupled data assimilation (SCDA)

uses the coupled error covariance between variables from

different model components (hereafter cross covariance

for short) and applies cross-component analysis increments

(Liu et al. 2013; Han et al. 2013). As a result, the coupling

process is achieved not only dynamically during the fore-

cast stage, but also statistically during the analysis stage.

Since the observational information is directly projected

from one model component to another in SCDA, the

coupled adjustments are instantaneous, more comprehen-

sive, and, therefore, could producemore balanced analyses

than inWCDA. The additional cross-component update in

the SCDA will be referred to as cross update for short.

So far, exploration of the SCDA has been limited to

conceptual models (e.g., Liu et al. 2013; Han et al. 2013)

with conflicting results. In a simple coupled model

consisting of a chaotic atmosphere and a slow ocean,

Liu et al. (2013) reported that the SCDA improves the

analysis quality in a perfect-model framework com-

pared to theWCDAwith a modest ensemble size of 20.

In contrast, in a biased climate model of similar com-

plexity, Han et al. (2013) found that the cross update

may introduce greater noise than signal and, therefore,

deteriorate the quality of model analyses unless the

ensemble size increases to about 104. In these previous

studies of the SCDA, the simultaneous coupled co-

variance (SimCC) is always used for the cross update.

Because ofthe great mismatch of time scales between

different components, it tends to be difficult to estimate

the simultaneous cross covariance, which is usually

small and dominated by the noise from the fast variable

(Frankignoul et al. 1998; Han et al. 2013).

In Part I of this study (Lu et al. 2015, hereafter Part I),

we proposed the leading averaged coupled covariance

(LACC) method for the SCDA. In a typical extratropical

coupled ocean–atmosphere system, the cross correlation

shows a strong asymmetry with the maximum correlation

occurring when the atmosphere leads the ocean by about

the decorrelation time of the atmosphere (Hasselmann

1976; Barsugli and Battisti 1998). The LACC method

utilizes this asymmetric coupling dynamics by using the

leading forecasts and observations of the fast atmospheric

variables. This leads to increased cross correlation and

enhanced signal-to-noise ratio during cross update (Part I).

To further reduce the sampling error, the leading atmo-

spheric states are averaged over time to produce even

higher correlations (Dirren and Hakim 2005; Huntley and

Hakim 2010; Tardif et al. 2014). In the simple coupled

model of Part I, the LACC method significantly increases

the cross correlation for the cross update and reduces the

analysis error of the slowmodel variable compared to both

the WCDA and the regular SCDA using SimCC.

As an extension of Part I, here we will test SCDAwith

the LACC method in a CGCM and a perfect-model

framework, and compare the results with the WCDA

and the SCDAusing SimCC. The SCDA in aCGCMhas

been uncharted territory so far, and to date, we are

aware of no publications of successful SCDA in a

CGCM.Our study shows that LACC can be successfully

applied to a CGCM, and significantly improve the ocean

temperature analysis using atmospheric observations

compared to WCDA and SimCC. This paper is orga-

nized as follows. Section 2 describes the CGCM [Fast

Ocean Atmosphere Model, version 1.5 (FOAM)], our

SCDA system, and the LACCmethod. The experiments

and results are reported in section 3. More specifically,

section 3a shows the benchmark WCDA experiments,

section 3b shows the SCDAexperiments with the LACC

method, and section 3c shows a detailed comparison

between the SCDA using SimCC and LACC. Section 4

discusses the results and summarizes the paper.

2. Model and methodology

a. FOAM

The CGCM we used is FOAM (version 1.5). FOAM

is a fully coupled global atmosphere–ocean model with

parallel implementation (Jacob 1997). The atmosphere

component [Parallel Community Climate Model, ver-

sion 3–University of Wisconsin model (PCCM3-UW;

Drake et al. (1995)] is a spectral model with a R15

horizontal resolution (equivalent to 7.58 3 4.58) and 18

vertical levels. The ocean component (OM3) is based on

the Modular Ocean Model (MOM; Cox 1984) created

by theGeophysical FluidDynamics Laboratory (GFDL).
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It has a horizontal resolution of 2.88 3 1.48 and a z co-

ordinate with 24 vertical levels. The land surface and sea

ice models are based on those of Community Climate

Model, version 2 (CCM2; Hack et al. 1993). Without flux

adjustment, a 6000-model-yr simulation of FOAM shows

no apparent drift in tropical climate (Liu et al. 2007a).

FOAM is able to capture most major features of the

observed global climatology as in some more advanced

CGCMs. It also shows reasonable climate variability in

regions such as the tropics (Liu et al. 2000, 2004), the

North Pacific (Wu et al. 2003; Liu et al. 2007b), and the

North Atlantic (Wu and Liu 2005).

b. Data assimilation scheme

Ensemble-based analysis techniques such as the

ensemble Kalman filter (EnKF; Evensen 1994;

Houtekamer and Mitchell 1998) and the ensemble ad-

justment Kalman filter (EAKF; Anderson 2001, 2003)

have emerged as viable options for CDA systems in

complex systems such as a CGCM. EAKF, in particular,

was used by Zhang et al. (2007) to develop the first

ensemble-based CDA system in a fully coupled general

circulation model. Recently with our collaborators, we

have set up a CDA system in FOAM using EAKF and

completed the first parameter estimation experiment

through ensemble-based data assimilation in a CGCM

(Liu et al. 2014a,b). Although EnKF is used in Part I for

better illustration of the algorithm of LACC, in Part II

here, we will use the existing EAKF scheme in FOAM.

A detailed description of the EAKF algorithm can be

found in Anderson (2003) or Zhang et al. (2007).

c. The observing system

The output of a 20-yr control simulation is considered

the ‘‘truth.’’ The observations are constructed by adding

Gaussian white noise onto the truth. The available ob-

servations are monthly mean sea surface temperature

(SST) with an error scale (standard deviation) of 1K,1

and daily mean atmosphere temperature (T) and wind

components (U, V) with error scales of 1K and 1m s21,

respectively. These arbitrary observational errors and

frequencies represent typical conditions for such ob-

served variables (Liu et al. 2014a). Observations are

taken at all grid points of their corresponding compo-

nent, so the projection between observation and model

spaces is not required. The experiments are repeated

with multiple 20-yr control simulations starting from

different initial conditions and the results prove to be

consistent. In section 3, we only show one set of the

experiments.

In the real world, time-averaged observations are

usually generated by averaging instantaneous observa-

tions rather than independently observed. However, the

history file (output) of FOAM is limited to time-averaged

model states, so our constructed observations are also

time-averaged quantities. All the major conclusions of

this paper, we believe, would remain valid if each daily

mean atmospheric observation is replaced by the average

of four 6-h instantaneous observations and each monthly

mean SST observation is replaced by the average of 30

daily instantaneous observations.

d. The WCDA system

To test the impact of the cross update, we will use a

WCDA system as the benchmark. In the WCDA sys-

tem, SST observations are assimilated into the ocean for

ocean data assimilation (ODA) and (T, U, V) observa-

tions into the atmosphere for atmosphere data assimila-

tion (ADA). TheWCDAsystem uses certain covariances

within each component, such as that between tempera-

ture and salinity in the ocean, and those between T and

(U, V) in the atmosphere. The update between T and

(U, V) is only one way, using the observation innovations

of T to update (U, V). This type of CDA is still consid-

ered weakly coupled because no cross covariance is

used. Previous research showed that these in-component

covariances could improve the quality of model estimates

significantly (Zhang et al. 2007). Different from the

cross covariance, simultaneous in-component covari-

ances usually work well because the variables in the same

component have comparable time scales and high si-

multaneous correlations.

Covariance localization is applied in both ADA and

ODAwith the widely used filter fromGaspari and Cohn

(1999), and the horizontal influence radius is set at

1000km for both. Vertically, each SST observation af-

fects the ocean temperature and salinity down to the

depth of 300m (eight levels) and each cluster of

(T, U, V) observations affects three levels both above

and below the observed level. For simplicity, the ODA

is restricted between 608S and 608N and ADA is re-

stricted between 708S and 708N. The ADA is also lim-

ited to the troposphere.

e. Ensemble configuration

All experiments in this paper use an ensemble size of

16, typical for a CGCM in practice (Zhang et al. 2007;

Liu et al. 2014a). Ensemble spread is well maintained

1 To test the robustness as well as the sensitivity of the LACC

method to the quality of ODA, all experiments are also executed

with a smaller SST error of 0.2K. The LACC method is still su-

perior to the WCDA and SimCC, while the optimal averaging

length does decreases from 7 to 3–5 days. A similar relation is also

found in Part I, where better ODA reduces the optimal averaging

length of the LACC method.
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and comparable to analysis error in the perfect-model

WCDA experiments, so covariance inflation is not ap-

plied to ADA and ODA. However, considering the

greater noise from sampling the cross covariance, a

relax-to-prior scheme (Zhang et al. 2004) is used for the

cross update with a relaxation factor of 0.5. In our sen-

sitivity tests, the results are insensitive to the relaxation

factor in the range of 0.3–0.8 (not shown).

The initial ensemble consists of the restart files within

eight years before and after the start of the truth. For

example, if the 20-yr truth starts from model year 10,

the initial ensemble for the data assimilation experi-

ments consists of initial conditions at the start of model

years 2–9 and 11–18, a total of 16.

f. Cross update and the LACC method

To establish SCDA, cross update between the at-

mosphere and ocean is added into the WCDA system.

As a first attempt of SCDA in a CGCM, we use the

coupled covariance between low-level atmosphere

temperatures and the SST. More specifically, observa-

tions of atmosphere temperature in the bottom four

levels (from the surface to about 850 hPa) are used to

directly adjust the SST. The cross update is applied at

all atmospheric grid points between 508S and 508N that

have underlying ocean grid points. To simplify the

notation, we will use the atmosphere surface temper-

ature (Ts) as a representative in the following de-

scription of the cross update.

In Part I, the LACC method was applied to a simple

coupled model with the EnKF scheme (Burgers et al.

1998). A WCDA system, including both ADA and

ODA, is set up in the simple model. By adding the cross

update from the atmosphere to the ocean, the SCDA

with both simultaneous observations (SimCC) and time-

averaged leading observations (LACC) were found to

perform better than the WCDA. However, the LACC

method increases the cross correlations by using leading

averaged atmospheric states, which further improves the

analysis of the variables from the slow component

compared to the SimCC method.

The observation and the forecast are usually assumed

independent in data assimilation systems. In an SCDA

system with the LACC method, however, the atmo-

spheric observations used for cross update have been

assimilated into the coupled model at previous ADA

steps. As a result, the current model forecast inherits the

observed information from previous analysis and,

therefore, will be correlated with the leading observa-

tions. There are two ways to deal with the additional

covariances caused by the LACC method in the

framework of EnKF. The first (complete LACC) is to

use the general formula of the Kalman gain function

that is derived without the assumption of independence

between any pair of variables (see the appendix in

Part I). The additional covariances can be explicitly es-

timated from a previously perturbed observation en-

semble and the current forecast ensemble. The second

way (reperturbed LACC) is to neglect such covariances

by implementing a reperturbation on the leading aver-

aged atmospheric observations. Both approaches work

well in the simple model, but the reperturbed LACC is

preferred because of its simpler implementation and

faster computing time (Part I).

Here, LACC is applied to the EAKF. Unlike the

EnKF with perturbed observations, there is no per-

turbed observation ensemble in the EAKF, so the co-

variance between observation and forecast cannot be

calculated explicitly as the complete LACC in Part I.

Besides, even if the EnKF is used in our CDA system,

the complete LACC method requires the storage of the

perturbed ensemble of every observation that will be

averaged by the LACC method. Such requirements

would command prohibitively large memory space for a

CGCM. Therefore, we will use the EAKF and treat the

observation and forecast as independent quantities,

equivalent to the reperturbed LACC method in the

EnKF. The incremental analysis update (IAU) pro-

cedure (Bloom et al. 1996) is also used in ADA, ODA,

and the cross update to minimize initial shocks (e.g.,

Sugiura et al. 2008; Yin et al. 2011; Rienecker et al.

2011). For example, the analysis increments in ADA

are divided by the number of atmosphere steps in each

ADA cycle, and then evenly added onto the atmo-

spheric states at every step in the next ADA cycle. As-

suming an averaging length of t days in this study,

our SCDA system with the LACC method is executed

as follows:

(i) ADA is performed at the end of every day based

on the observation and forecast of daily mean

(T, U, V) states.

(ii) The forecast of daily mean Ts (T
f
s ) is accumulated

for every ensemble member.

(iii) At the end of every t days, the t-day-averaged

forecast of Ts (T
f
s ) is calculated from the accumu-

lations and its data are transferred to the ocean

model. The accumulations are then reset to zero

for the next cross-update cycle.

(iv) The ocean component reads in the atmospheric

observations of daily meanTs (T
o
s ) for the previous

t days and calculates the t-day-averaged observa-

tion To
s .

(v) The observation innovations for the cross update

are calculated based on To
s and the ensemble ofTf

s .

According to the EAKF algorithm fromAnderson
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(2003), the innovations from the ensemble mean

and perturbations are calculated separately [e.g.,

Eqs. (2)–(5) in Zhang et al. (2007)].

(vi) The observation innovations are then distributed

to the SST field through the covariance between

the ensemble of Tf
s and the ensemble of instanta-

neous SST states.

(vii) ODA assimilates monthly mean SST observations

and is performed at the end of every month. When

ODA and the cross update happen at the same

time, they calculate and apply their increments

separately using the same SST forecast (prior).

These steps follow the so-called chunk scheme in Part I,

that is, the cross update is executed every t days for an

averaging length of t days. In calculating the cross co-

variance for the cross update, the instantaneous SST

state, instead of the averaged one, is used because av-

eraging the slow SST does not significantly change the

cross correlation in FOAM. It may be helpful to use

the time-averaged SST states in models with diurnal

cycles or other high-frequency variability.

3. Experiments and results

a. Benchmark experiment and cross correlation

We start with the WCDA system to provide the

benchmark. The experiments are evaluated by the root-

mean-square error (RMSE) of the monthly ensemble

mean from the truth:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

(X
i
2Xt

i )
2

s
,

whereXi is the ensemble mean of monthly mean output

of the ith month,Xt
i is the true monthly mean value, and

N is the number of months. The monthly output aver-

ages the model states at all time steps, and they are

analyses because the IAU adds small increments on

the model states at every time step. Similar to Part I,

the monthly values are used to conduct a fair compari-

son between the WCDA, the SimCC, and the LACC

method with different averaging lengths. In real-world

situations, the truth is unknown and is usually substituted

for by observations.

Figure 1 shows the RMSE of SST and Ts from the

WCDA experiment. Both SST and Ts are well con-

strained by the WCDA system across the globe. Larger

RMSE of SST is found in a few midlatitude regions with

high natural variability, such as the North Atlantic

and the Southern Ocean. Over the ocean, RMSE of Ts

is comparable to that of the underlying SST. There is

no data assimilation for any variables in the land model,

so Ts over the land is affected by poor boundary con-

ditions from the land model and the RMSE is relatively

large. A detailed figure of Ts analysis as Fig. 1b is im-

portant because the performance of the WCDA system

provides a baseline before the addition of the cross up-

date. Compared with an ensemble of control simulations

without data assimilation, RMSEs of both SST and Ts at

every grid point are greatly reduced. For example, in the

FIG. 1. RMSE of monthly (a) SST and (b) Ts from the WCDA experiment.
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ensemble of control simulations, the RMSE of both SST

and Ts over the ocean ranges from about 1K in the

tropics to 2–3K in the midlatitudes.

Before implementing cross update, we will first ex-

amine the cross correlation between daily mean SST

and Ts in FOAM.We should note that the cross update

uses instantaneous SST instead of daily mean SST.

However, the correlations should be very close be-

cause of the slow time scale of the model ocean. Both

lead–lag and leading averaged correlations will be esti-

mated. As in Part I, the cross correlations can be obtained

from two types of experiments. The first type is single-

member control simulations, which show the correlation

between SST and Ts associated with their natural vari-

ability. The second type is a multiple-member WCDA

experiment, which captures the spinup correlation be-

tween SST and Ts during the initial error growth. Every

correlation from the WCDA experiment is the time av-

erage of the instantaneous sample correlation between

daily mean SST and Ts ensembles. The first approach is

simpler and straightforward using the output of model

control simulations. In comparison, the second approach

requires the setup of a WCDA system. However, as

shown both here and in Part I, the WCDA substantially

alters the structure of the cross correlations, and more

importantly, the cross correlations from WCDA are

FIG. 2. Zonal-mean lead–lag correlations between daily mean SST and Ts from (a) single-

member control simulations and (b) a 16-member WCDA experiment. The control correla-

tions in (a) are the average of correlations calculated from 16 single-member 5-yr control

simulations. The WCDA correlations in (b) are calculated from a 16-member 5-yr WCDA

experiment.
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direct estimations of those used in the cross update of

the SCDA.

The zonal-mean lead–lag correlations from both the

control simulation and the WCDA experiment are plotted

in Fig. 2. The correlation at ocean grid point (i, j) is esti-

mated between the local SST and the spatial average of

Ts at atmosphere grid points within 500km of the location

of (i, j). This accounts for the coarser horizontal resolution

of the atmosphere component, as well as the covariance

localization used by the cross update. Because of the huge

size of daily output files, the correlations inFigs. 2 and 3 are

estimated from 5-yr outputs, and the results in each plot

are validated by additional experiments with different

initial conditions or observations.

The different structures of the ocean–atmosphere

cross correlation at different latitudes are shown by

the control simulation in Fig. 2a. In the deep tropics

(58S and 58N), the simultaneous correlation (black) is

the greatest, while both the leading (solid lines) and

lagging (dashed lines) correlations decrease slowly

and almost symmetrically with the leading and lagging

times. This symmetric structure reflects the dominant

role of ocean dynamics on SST and a strong oceanic

feedback on the atmospheric temperature in the tropical

system in addition to the atmospheric forcing on the

ocean. In comparison, the lead–lag structure is strongly

asymmetric outside of 58S–58N: the maximum correla-

tion occurs when Ts leads SST by 3–4 days for 58–308N

FIG. 3. Zonal-mean correlations between daily mean SST and leading averaged Ts from

(a) single-member control simulations and (b) a 16-memberWCDA experiment. Figure 3 uses

the same model data as in Fig. 2.

NOVEMBER 2015 LU ET AL . 4651



and 58–258S, or by 1–2 days for 308–508N and 258–508S;
the leading correlation up to 10 days exceeds the si-

multaneous value for some latitudes; and the correlation

declines rapidly once Ts lags SST. This asymmetric

structure reflects the dominant influence of atmospheric

internal variability on not only atmospheric temperature

variability, but also the SST variability through forcing,

as typical in extratropical atmosphere-driven coupled

system (Hasselmann 1976; Frankignoul et al. 1998;

Barsugli and Battisti 1998).

The asymmetry in the lead–lag correlation is quali-

tatively maintained in the WCDA experiment in

Fig. 2b, although the magnitude is reduced and the

structure is altered. The assimilation in the WCDA

experiment reduces the ensemble spread and alters the

ensemble deviations at every analysis step, so Fig. 2b

displays the correlations that result from the initial

error growth. Compared to Fig. 2a, the correlations at

all latitudes are significantly smaller in Fig. 2b, and the

maximum leading correlations occur exclusively when

Ts leads SST by 1–2 days (solid blue line). The changes

of the correlations from the control in Fig. 2a to the

WCDA in Fig. 2b are consistent with those in Part I.

Figure 2 may suggest that the optimal averaging length

of the LACC method should include the leading days

that show significant correlations, or more specifically,

those that have correlations higher than the simulta-

neous correlation. This seems to be the case for many

latitudes in this study, since, as will be seen later, the

optimal length is 7 days, which uses the average from

simultaneous to 6-day leading atmosphere states.

However, this criterion for the optimal average may

FIG. 4. Time average of the sample ensemble correlation between (a) daily mean SST and same-day Ts and (b) daily

mean SST and 7-day-averaged leading Ts. (c) The difference between (b) and (a).
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not be applicable to more general cases. Further stud-

ies are needed with different system configurations or

even other CGCMs.

To apply the LACC method, the cross correlations be-

tween SST and time-averaged leading Ts are also esti-

mated from the output of the control simulation (Fig. 3a)

and the WCDA experiment (Fig. 3b). ‘‘Simultaneous’’

indicates the same-day cross correlation as in Fig. 2, and

‘‘AveX’’ means that cross correlation is calculated be-

tween SST and the average ofX dailymeanTs fromX2 1

days ago to the current one. Same as Fig. 2, all the

time-averaged leadingTs states are also spatial averages in

order to account for the coarser atmospheric resolution

and the covariance localization. The leading averaged

correlations initially increase with the averaging length for

all latitudes, and the increases are more noteworthy out-

side the tropics because of the higher correlations when Ts

leads SST in Fig. 2. The correlations plateau when the

averaging length reaches 10 days in the deep tropics and

20–30 days in the midlatitudes. As in Fig. 2, the correla-

tions from the WCDA experiment are smaller than those

from the control simulation across all latitudes and aver-

aging lengths. Together, Figs. 2 and 3 show that the simple

coupled model in Part I captures some important physical

and statistical features of the coupled ocean–atmosphere

system in a complex CGCM like FOAM, demonstrating

the potential application of LACC method to a SCDA

system in a CGCM.

Figure 4 shows the spatial distribution of two leading

averaged cross correlations from the WCDA experiment,

the simultaneous and the Ave7, along with the difference

between the two distributions. In Fig. 4a, the simultaneous

correlation is small except in the eastern tropical Pacific,

which reflects the slow ENSO variability and its strong

impact on the atmosphere above. By averaging the 7-day

leading Ts (Fig. 4b), the cross correlation is significantly

enhanced across the displayed domain. The increases

from simultaneous to Ave7 (Fig. 4c) are the most notable

in the extratropics, while most tropical locations show

much less increase. We should note that, on purpose, all

the correlations shown in Figs. 2, 3, and 4 are estimations

of the coupled correlations from the control simulation or

the WCDA experiment instead of the exact correlations

calculated during the cross update of the SCDA experi-

ment. The ability to estimate these correlations from the

control or WCDA provides valuable information about

howmuch the SCDA and LACCmethod would improve

the analysis before their implementation.

b. LACC experiments

Now we apply the LACCmethod to the cross update

that assimilates the observations of low-level atmo-

sphere temperature into the SST. We will show that,

although the direct SCDA using simultaneous cross

covariance (SimCC) fails to improve upon the WCDA,

the SCDAwith the LACCmethod can indeed improve

upon the WCDA significantly. Figure 5 shows a sum-

mary of the performance of the SimCC and the LACC

method with different averaging lengths, normalized

by the WCDA. Following the notation of Fig. 3,

‘‘AveX’’ means that cross update is done every X days

with the X-day-averaged leading Ts. The SimCCmethod

performs poorly across all latitudes except for the deep

tropics between 108S and 108N, where the simultaneous

FIG. 5. Zonal-mean RMSE of monthly SST from the SimCC experiment and the LACC ex-

periments with different averaging lengths, normalized by the WCDA experiment.
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correlations are the largest and the SimCC can indeed

reduce the RMSE of monthly SST by up to 10%.

Nevertheless, the SCDA using SimCC is far from an

acceptable scheme because of its much poorer anal-

ysis outside the equatorial region. In particular, the

RSME increases by up to 70% over WCDA in the

midlatitude in both hemispheres. As the averaging

length becomes longer, the cross update begins to

have a consistently positive impact on the system. The

optimal case, the Ave7 experiment, notably out-

performs the benchmark WCDA experiment: its

RMSE of SST is reduced by 10%–20% between 248S
and 338N, and remains smaller than the WCDA

across the entire domain, except for the very north

part (.408N).

As shown in Fig. 5, the averaging length is a critical

parameter governing the performance of the LACC

method (Part I; Tardif et al. 2014). As discussed in

Part I, in a given SCDA system with fixed observations,

ensemble size, ADA/ODA frequencies, and analysis

schemes, there are two competing factors that de-

termine the optimal averaging length. The first is the

magnitude of the leading averaged cross correlation,

which controls the signal-to-noise ratio when estimating

the sample covariance for the cross update. This corre-

lation usually increases rapidly with the averaging length

starting from 1, peaks at a certain length, and eventually

declines. The other is the frequency of cross update,

since a longer averaging length implies less frequent

assimilation through coupled covariance and, therefore,

FIG. 6. Spatial distribution of the RMSE of monthly SST from (a) the SimCC experiment (normalized by the

WCDA), (b) the Ave7 experiment (normalized by the WCDA), and (c) the Ave7 experiment (normalized by

the SimCC).
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less constraint by atmospheric observations on the

ocean. The competing effects of these two factors

usually result in an optimal length, which tends to be

longer in the case of a system with larger noise (Part I).

In a CGCM like FOAM, these factors are not spatially

homogeneous, as shown by the spatially varied leading

averaged correlation in Fig. 4. Yet, the length of 7 days,

which is close to the decorrelation time of the atmo-

sphere surface temperature, seems to be the optimal

choice for most latitudes. A longer 10 days is slightly

better south of 408S and north of 408N, which also

agrees with Part I, since the higher latitudes have

smaller correlations. Changes in the observations, en-

semble size, configuration of ADA/ODA, and analysis

schemes could all lead to different optimal averaging

lengths, as shown by the sensitivity tests in Part I. The

sensitivity of the optimal average length in a complex

CGCM like FOAM, however, remains to be studied in

the future.

c. SimCC versus Ave7

A detailed comparison is made between the under-

performing SimCC and the optimal Ave7. The en-

hancement in cross correlation from simultaneous to

Ave7 is already displayed in Fig. 4. Figure 6 shows the

spatial distribution of the RMSE of SST from the

SimCC experiment normalized by theWCDA, theAve7

experiment normalized by the WCDA, and the Ave7

experiment normalized by the SimCC. The zonal aver-

age of Figs. 6a and 6b will produce the curves of SimCC

and Ave7 in Fig. 5, respectively.

Aside from the zonal-mean features already demon-

strated in Fig. 5, Fig. 6a shows that the improved SST in

the SimCC experiment expands into higher latitudes in

the Atlantic and the eastern Pacific where the simulta-

neous correlations are relatively large (Fig. 4a).

Figure 6b shows that the inferior analysis quality of

Ave7 north of 408N is the result of larger RMSE in the

northwestern Pacific and northwesternAtlantic than the

WCDA. These inferior analyses, we speculate, are

caused by two reasons. First, they could be attributed to

the small ensemble correlations north of 408N (Figs. 2b

and 3b) as well as the small correlations in those specific

areas (Fig. 4b). Second, they could also be caused by the

large Ts errors over land and their westward extension

(Fig. 1b). Since the observation innovations for the cross

update are calculated from the observation and forecast

of Ts, the poor quality of Ts analysis leads to less accu-

rate observation innovations and less effective cross

update. Directly comparing Ave7 to SimCC (Fig. 6c),

the RMSE ratio in the tropics is very close to 1, while the

analysis quality is improved across most grid points in

the extratropics.

The dependence of the effectiveness of the cross up-

date on the cross correlation is shown in Fig. 7. Here, the

RMSE ratio at every grid point in Figs. 6a–c is plotted

against the corresponding cross correlation in Figs. 4a–c.

The regression coefficients in all three plots are negative

with confidence levels over 99:9%. Admittedly, the

negative coefficient in Fig. 7a might be distorted by the

FIG. 7. (a) Scatterplot of the RMSE of the SimCC experiment

(normalized by the WCDA) against simultaneous correlations

between SST and Ts for all grid points between 508S and 508N.

(b) As in (a), but for Ave7 experiment and 7-day-averaged leading

correlations. (c) As in (b), but with RMSE of Ave7 (normalized by

the SimCC) against the differences between the cross correlation of

Ave7 and SimCC. The color scale indicates the absolute value of

the latitude of each point.
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dramatically different performances at different lati-

tudes. However, the coefficient of Ave7 (Fig. 7b) is more

significant not only for all grid points, but also for any

latitude band or any specific ocean basin (not shown).

The global coefficient of20.26 indicates that an increase

of 0.1 in cross correlation results in a 2.6% reduction in

the RMSE of SST on average. A more direct comparison

between Ave7 and SimCC is made in Fig. 7c, where the

ratio of RMSE between Ave7 and SimCC is plotted

against the increase in cross correlation from SimCC to

Ave7. The coefficient of 20.47 in Fig. 7c shows that the

enhancement in cross correlation by the LACC method

has a significant impact on the performance of the cross

update in an SCDA system, especially for the extratropics.

The low computational cost is also an advantage of

the LACC method. For example, the SimCC experi-

ment costs 16.9% more computational time than the

WCDA experiment due to the additional cross update,

while the Ave7 experiment costs only 3.3% more than

the WCDA because its frequency of cross update is 1/7

of that of SimCC.

d. Atmosphere surface temperature

Although the cross update works only one way from

the atmosphere to the ocean, the atmospheric analysis

could also be improved due to the nature of the CDA

system. When the SST analysis is improved, it pro-

vides better boundary conditions and surface fluxes

for the atmospheric component, thus improving the

atmospheric analysis through coupled dynamics.

Figure 8 shows the zonal-mean RMSE of Ts analysis

over the ocean, normalized by the WCDA. Similar to

Fig. 5, the LACC method outperforms the SimCC

method across all latitudes. The optimal averaging

length of 5 days is slightly different from Fig. 5, but the

reduction in the zonal-mean RMSE consistently ex-

ceeds 5% from 408S to 408N for averaging lengths of 5,

7, and 10 days.

e. Subsurface ocean temperature

In addition to the SST analysis, the subsurface tem-

perature analysis is also an important product of CDA

systems, because the subsurface ocean states contain the

critical ‘‘memory’’ information for seasonal and longer

climate prediction (Rosati et al. 1997). The zonal-mean

RMSE of monthly ocean temperature analysis down to

1300m is displayed in Fig. 9 for SimCC and Ave7 ex-

periments, again normalized by the WCDA results. The

upper 1300m include the top 14 levels of the ocean

component. The upper eight levels (down to 200m)

are updated by monthly SST observations through

ODA, while only the top level (SST) is updated by at-

mospheric observations through the cross update. For

‘‘SimCC’’ (Fig. 9a), the zonal-mean RMSE ratios dem-

onstrate the different effects of cross update on subsurface

temperature analysis at different latitudes and depths.One

noteworthy feature is the huge increase of RMSE north

of 408N, which is probably caused by the poor SST analysis

of SimCC and strong convection. In contrast, the Ave7

experiment shows reduced RMSE across most latitudes

and depths compared to the WCDA.

It is interesting that, even though atmospheric obser-

vations only directly affect SST through cross update,

the temperature analysis is also improved significantly

FIG. 8. Zonal-mean RMSE of monthly Ts over the ocean from the SimCC experiment and the

LACC experiments with different averaging lengths, normalized by the WCDA experiment.
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in the subsurface. The improvement of subsurface

temperature could be caused by several mechanisms.

First, statistically, the improved SST by the LACC

method further benefits the subsurface temperature

through ODA. Second, dynamically, the improved SST

provides better surface conditions and improves the

subsurface through convection and ventilation pro-

cesses. Furthermore, the improved SST also benefits the

atmosphere (Fig. 8), which could in turn improve the

response in the subsurface.

4. Summary and discussion

In this paper, we demonstrate the success of the

SCDA with the LACC method in a CGCM in the

perfect-model framework. To our knowledge, this is

the first successful application of a SCDA scheme in a

CGCM. The SCDA system implements cross update

from the atmosphere component to the ocean compo-

nent, utilizing the coupled covariance between atmo-

sphere temperature and SST. Using the LACC method,

the SCDA system could significantly reduce the RMSE

of monthly SST analysis over most regions compared

to the WCDA. The SCDA with the LACC method

also produces a significantly better analysis than the

regular SCDA using SimCC. The latter leads to de-

teriorating SST analysis compared to theWCDA system

except in the deep tropics where the cross correlation is

high, symmetric in lead and lag, and peaks at zero lag.

Compared to SimCC, the improvement from the

LACC method mainly comes from the increased cross

correlations, compared to the simultaneous correla-

tions, due to the use of leading averaged atmosphere

temperature, which enhances the signal-to-noise ratio

in calculating the coupled covariance for the cross up-

date. The success of the LACC method indicates the

potential to combine coupling dynamics with proper

statistical techniques to improve coupled data assimi-

lation systems.

The success of this study demonstrates the potential

to apply the SCDA with more coupled covariances,

especially those between different model components,

in state-of-the-art CGCMs. We have also experimented

expanding the cross update from atmosphere temper-

ature directly to subsurface ocean temperature, but

without significant further improvement. Because of

the longer memory of subsurface ocean temperature,

its correlation with atmosphere temperature is even

lower and more asymmetric; therefore, a longer aver-

aging length may be required for such cross update

(Tardif et al. 2014, 2015). We are also exploring other

possibilities such as the coupled covariance between

atmosphere wind stress and subsurface ocean tempera-

ture, which may be significant due to dynamic processes

such as Ekman transport and ventilation.

With an SCDA system, currently assimilated ob-

servations can be used more effectively, and in-

formation from a well-observed component like the

atmosphere can be directly projected to a less-

observed or unobserved component such as the

ocean or the land. Compared with theWCDA systems

that are currently being established for some major

reanalysis projects, SCDA systems, in principle,

would produce a more accurate and balanced analysis

of the coupled state and provide better initialization

for predictions.

This study is still very preliminary in the exploration

of the SCDA in CGCMs in several aspects. First, the

observing system is not very realistic. Second, the sen-

sitivities of the SCDA system to the observation net-

work and frequency and some parameters such as

localization radius and relaxation factor remain to be

further explored. Third, only a perfect model framework

is used, and the model biases that arise from a biased

model may deteriorate the results. Based on the above

concerns, we plan to develop the SCDA in several

directions.

(i) We will use a more realistic observing system with

nongridded data. Real-world instantaneous obser-

vations instead of time-averaged reanalysis-like

ones should be assimilated in the SCDA system.

FIG. 9. Zonal-mean RMSE of monthly ocean temperature

analysis from (a) the SimCC experiment and (b) the Ave7 exper-

iment, both normalized by the WCDA.
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(ii) We will perform more sensitivity experiments to

better assess the performance of the SCDA system

and the LACCmethod. Similar to Part I, the impact

of ensemble size, observation quality, ADA/ODA

frequency, etc., should be investigated in FOAM.

(iii) Ultimately, an SCDA system needs to assimilate

real-world observations and the model bias will be

another issue. There are at least two impacts of a

biased model. First, model biases could deteriorate

the analysis of the WCDA as well as the potential

observation innovations for the cross update. Sec-

ond, the coupled covariance in a biased model may

not represent the real-world covariance. The im-

pacts of model biases on the SCDA and the LACC

method remain to be studied.
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