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ABSTRACT

This paper studies a new leading averaged coupled covariance (LACC)method for the strongly coupled data

assimilation (SCDA). The SCDA not only uses the coupled model to generate the forecast and assimilate

observations intomultiplemodel components like the weakly coupled version (WCDA), but also applies a cross

update using the coupled covariance between variables from different model components. The cross update

could potentially improve the balance and quality of the analysis, but its implementation has remained a great

challenge in practice because of different time scales between model components. In a typical extratropical

coupled system, the ocean–atmosphere correlation shows a strong asymmetry with the maximum correlation

occurring when the atmosphere leads the ocean by about the decorrelation time of the atmosphere. The LACC

method utilizes such asymmetric structure by using the leading forecasts and observations of the fast atmo-

spheric variable for cross update, therefore, increasing the coupled correlation and enhancing the signal-to-

noise ratio in calculating the coupled covariance. Here it is applied to a simple coupledmodel with the ensemble

Kalman filter (EnKF).With the LACCmethod, the SCDA reduces the analysis error of the oceanic variable by

over 20% compared to the WCDA and 10% compared to the SCDA using simultaneous coupled covariance.

The advantage of the LACCmethod ismore notable when the system contains larger errors, such as in the cases

with smaller ensemble size, bigger time-scale difference, or model biases.

1. Introduction

Coupled data assimilation (CDA) shows great promise

as a capable and comprehensive method for generating

climate analysis and providing initial conditions for cli-

mate prediction (Zhang et al. 2007; Sugiura et al. 2008;

Saha et al. 2010; Dee et al. 2011). In CDA systems, ob-

servations are assimilated into one or more model com-

ponents, and information is exchanged between different

components dynamically and statistically. Zhang et al.

(2007) developed the first CDA system in a fully coupled

general circulation model, the Geophysical Fluid Dy-

namics Laboratory’s Coupled Model, version 2 (CM2).

The National Centers for Environmental Prediction
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(NCEP) also started using coupled models to generate

first-guess forecasts for their Climate Forecast System

Reanalysis (CFSR; Saha et al. 2010). Compared with

traditional single-component data assimilation (DA)

systems, CDA is expected to produce self-consistent

state estimates as well as optimal initialization for cou-

pled model predictions (Zhang et al. 2007; Sugiura et al.

2008; Singleton 2011).

There are two levels of coupling in regards to the

exchange of information in the analysis stage (Liu et al.

2013; Han et al. 2013). In the weakly coupled data

assimilation (WCDA), the analysis increments are

calculated and applied separately in each model com-

ponent such that the coupling between different

components is accomplished only dynamically through

cross-component fluxes in the forecast stage. Atmo-

sphere data assimilation (ADA) and ocean data assim-

ilation (ODA) are the two most common components

of a WCDA system. In contrast, the strongly coupled

data assimilation (SCDA) applies the analysis in-

crements using the fully coupled error covariance, es-

pecially the coupled covariance between variables

from different model components (hereafter ‘‘cross

covariance’’ and ‘‘cross correlation,’’ respectively).

As a result, the coupling between different components

is accomplished not only dynamically in the forecast

stage, but also statistically through the coupled co-

variance in the analysis stage. In an SCDA system, the

observed information in one model component can be

directly projected onto another, resulting in in-

stantaneous adjustment and balanced analysis in-

crements. In this paper, the update process between

model components will be called ‘‘cross update.’’ The

WCDA has been adopted in previous researches

(Zhang et al. 2007; Sugiura et al. 2008; Saha et al. 2010),

however, the study of the SCDA has remained in the

exploration stage.

In principle, the use of cross covariance should add

additional information and improve the analysis. This

has been recognized, for example, in a simple coupled

model study (Liu et al. 2013). However, the im-

plementation of the SCDA in CDA systems faces many

challenges, such as time-scale differences, different

analysis schemes among components, cost of compu-

tation, etc. The mismatch of time scales of variability

between different components, in particular, causes the

coupled covariance to be dominated by noise of the

variables from the fast component. Therefore, in an

ensemble-based filter with a finite sample size, it is

difficult to estimate the coupled covariance accurately,

and sampling the coupled covariance may introduce

more noise than signal and deteriorate the analysis. For

instance, a recent study by Han et al. (2013) used the

biased-model framework and a simple coupled model

that consists of the chaotic Lorenz-63 atmospheric

equations, a two-layer ocean, and a simple sea ice

model. Although their model is of similar complexity to

the one in Liu et al. (2013), they found that the SCDA

does not improve the analysis quality compared to the

WCDA unless a very large ensemble size (104) is used.

In addition, it is more difficult to improve the quality of

analysis in the fast component through cross update,

since observations from the slow component do not

contain enough information about the high-frequency

variability.

The physical characteristics of a coupled climate

system could provide ways to improve the accuracy

of sampling the cross covariance. In a typical midlati-

tude ocean–atmosphere coupled system, the ocean–

atmosphere interaction is dominated by the stochastic

forcing of the atmospheric internal variability on the

slow ocean, such that the ocean–atmosphere lead–lag

correlation shows a strong asymmetry. More specifi-

cally, the cross correlation is small at the zero lag and

reaches maximum when the atmosphere leads the

ocean by about the decorrelation time of the atmo-

sphere (Hasselmann 1976; Barsugli and Battisti 1998).

This asymmetry could potentially benefit the cross

update if the high correlation between the ocean and

the preceding atmosphere could be used to enhance

the signal-to-noise ratio when calculating the corre-

sponding cross covariance. To further boost the

accuracy of sampling the covariance, the leading cor-

relations could be combined with the use of time-

averaged observations (Huntley and Hakim 2010),

which leads to even higher correlation with the oceanic

state. Some recent studies (Tardif et al. 2014, 2015)

utilized the high correlations between time-averaged

atmospheric and oceanic variables. In their cases

without ocean observations and ODA, the slow me-

ridional overturning circulation (MOC) benefits from

the cross update using time-averaged atmospheric

observations.

In this paper we will develop a new method called the

leading averaged coupled covariance (LACC) method.

The LACC method aims to improve the performance

of the SCDA by combining the coupling dynamics with

the use of time-averaged observations. Different from

Huntley and Hakim (2010), the LACC method retains

the higher-frequency data assimilation in the fast com-

ponent. In this proof-of-concept Part I, we will test the

LACC method with a simple coupled model. In Part II

of this series (Lu et al. 2015, manuscript submitted to

Mon. Wea. Rev., hereafter Part II), we will apply the

LACC method to the SCDA system in a fully coupled

GCM, the Fast Ocean Atmosphere Model (Jacob
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1997). When applied to the cross update from the low-

level atmosphere temperature to the sea surface tem-

perature (SST), the LACCmethod significantly reduces

the analysis error of monthly SST compared to the

WCDA and the regular SCDA with the cross update

with simultaneous coupled covariance and observation

(SimCC) method.

The paper is arranged as follows. Section 2 describes

our model and the LACC method, including its appli-

cation to the ensemble Kalman filter (EnKF). In section

3, the performance of the SCDA with the LACC

method is tested in regards to ensemble size, DA fre-

quency, and time-scale difference. Section 4 discusses

the results of different updating algorithms and schemes,

as well as results within a biased-model framework.

Conclusions are presented in section 5.

2. Model and methods

a. The simple coupled model

The simple model is the stochastically forced, one-

dimensional, linear, coupled model of Barsugli and

Battisti (1998) and Bretherton and Battisti (2000):

dTa

dt
52aTa1 bTo 1F(t) ,

m
dTo

dt
5 cTa2 dTo ,

where Ta and To are the atmosphere and ocean tem-

perature anomalies, respectively. The atmospheric

component is forced by its internal variability, which is

represented as the stochastic forcing of a white noise

F(t). The oceanic variability is driven by the atmosphere

through ocean–atmosphere heat exchange. The default

nondimensional parameters are a5 1.12, b5 0.1, c5 1,

and d 5 1.08. For illustration purposes in this study, a

shallower (;25m) ocean mixing layer is used (m5 10)

such that the time-scale mismatch is not too strong. The

sensitivity to m will be discussed in section 3f. The au-

tocorrelations of Ta and To are shown in Figs. 1a and 1b,

respectively. With 1 day corresponding to a non-

dimensional time of 0.1, the autocorrelation of Ta de-

creases to 0.5 in 7 days, while it is much longer at about

80 days for To. Since the slower To stores the cumulative

effect of atmospheric forcing, the lead–lag cross corre-

lation between Ta and To shows a strong asymmetry in

Fig. 1c. The simultaneous correlation is only 0.3, and the

correlation gradually increases as the leading time be-

comes longer until the peak coefficient of 0.5 is reached

when Ta leads To by about 18 days. Since the atmo-

spheric variability is dominated by its own random

forcing, the correlation is small when the ocean leads the

atmosphere (Frankignoul et al. 1998). We will only

study the effect of cross update on the slow variable To,

which is more likely to be improved by the coupled

analysis (Han et al. 2013).

b. Ensemble Kalman filter with LACC

We will apply the LACC method with the sequential

EnKF in this study (Houtekamer and Mitchell 2001).

Hereafter, Tobs
a (t) denotes the instantaneous atmo-

sphere observation at time t, and has an error of sa. All

the variables except Tobs
a represent their ensemble

forms. Here Tf
a(t) is the atmosphere forecast ensemble

at time t, and To
a (t) is the observation ensemble, gener-

ated by adding a Gaussian white noiseN(0, sa) onto the

observation Tobs
a (t) (Burgers et al. 1998; Houtekamer

and Mitchell 1998). The terms Tf
o(t) and Ta

o(t) are ocean

forecast and analysis ensembles, respectively. A time-

averaged variable from the time t2 to t1 includes all the

instantaneous states at analysis steps between t2 and t1,

and is indicated by an overbar �(t2, t1). The observation
operator is not required because the observations and

model states are in the same space.

FIG. 1. (a)Ta autocorrelation, (b)To autocorrelation, and (c) cross correlation based on the output of a single-member control simulation.
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In addition to the ADA and ODA, the straightfor-

ward cross update also assimilates Tobs
a (t) to update

Tf
o(t) directly through the coupled covariance:

Ta
o(t)5Tf

o(t)1K3 [To
a(t)2Tf

a(t)], (1a)

where To
a (t)5Tobs

a (t)1N(0,sa) , (1b)

K5
covhTf

o(t),T
f
a(t)i

varhTf
a(t)i1s2

a

, (1c)

and covh�, �i and varh�i represent the sample covariance

and sample variance, respectively. The Kalman gain K

in Eq. (1c) is derived byminimizing the error variance of

Ta
o(t), assuming independence between the observation

[To
a (t)] and model forecast [Tf

a(t) and Tf
o(t)]. This as-

sumption usually holds, since the observational error

originates from some external source other than the

model, and the ensemble is perturbed by random

Gaussian white noise. Equation (1) shows the SimCC

method. The SimCC method is the straightforward way

to implement cross update, and the SCDA systems of

previous studies all use the SimCC method (Liu et al.

2013; Han et al. 2013). It should be remarked that even

though the covariance covhTf
o(t), T

f
a(t)i shows up in the

numerator of the Kalman gain K, the corresponding

correlation determines the signal-to-noise ratio when

using the sample covariance from forecast ensembles

(Buehner 2005; Houtekamer et al. 2005).

Inspired by the higher cross correlation when the at-

mosphere leads the ocean (Fig. 1c), the atmosphere

forecast Tf
a(t) in Eq. (1) is replaced by the leading av-

eraged forecast T
f
a(t2, t1), where t2 and t1 satisfy

t2 # t1 # t. The observation To
a (t) is also replaced by the

corresponding leading averaged observation To
a (t2, t1).

The analysis Ta
o(t) becomes

Ta
o(t)5Tf

o(t)1K3 [To
a (t2, t1)2T

f
a(t2, t1)] , (2a)

where To
a (t2, t1)5Tobs

a (t2, t1)1N(0,sa

� ffiffiffi
t

p
) (2b)

and

K5
covhTf

o(t),T
f
a(t2, t1)i

varhTf
a(t2, t1)i1s2

a

�
t
. (2c)

If a single observation Tobs
a (t) has an error of sa and

the errors are independent white noise, the error of the

time-averaged observation Tobs
a (t2, t1) is sa/

ffiffiffi
t

p
, where

t is the number of observations between t1 and t2 in-

clusive. Therefore, the averaged observation To
a (t) in

Eq. (2b) is perturbed by N(0, sa/
ffiffiffi
t

p
), and its variance is

reduced accordingly to s2
a/t in Eq. (2c).

The process described by Eq. (2) varies with the

choice of t1 and t2.

d t2 5 t1 5 t: Eq. (2) reduces to Eq. (1) and K5K.
d t2 5 t1 , t: A single leading atmosphere forecast

Tf
a(t2) and the corresponding observation Tobs

a (t2)

are used to update the current ocean state. According

to the correlation structure in Fig. 1c, the covariance in

the numerator ofK could have smaller sampling error

with a proper t2.
d t2 , t1 # t: Multiple leading forecasts and observa-

tions are averaged for cross update. The averaging

further increases the correlation between Tf
o(t) and

T
f
a(t2, t1) and reduces the sampling error.

When t2 , t1 # t, Eq. (2) describes the LACC

method: the cross update uses the leading averaged fast

variable to calculate the coupled covariance and assim-

ilates the corresponding leading averaged observation.

More specifically, Eq. (2) will be referred to as the re-

perturbed LACC method due to the reperturbation of

the averaged observation in Eq. (2b). Equation (2b) uses

the instantaneous ocean forecast Tf
o(t) instead of the

averaged T
f
o(t2, t1) because averaging the much slower

ocean does not change the cross correlation signifi-

cantly. In this study, t1 is always set to t to include the

most current observation, while t2 varies to change the

number of averaged forecasts and observations. The rea-

son for t1 5 t will be discussed in section 3d.

c. Correlated observation and forecast

The change from Eq. (1) to (2) raises an important

issue: the correlation between the observation and the

forecast. In an SCDA system, each model component

has its own data assimilation besides the cross update.

For example, if t2 5 t1 5 t2 1 in Eq. (2), the ADA has

assimilated the observation Tobs
a (t2), or more specifi-

cally the perturbed ensemble To
a (t2), to update Tf

a(t2) at

time t2. When the next forecast [Tf
a(t) and Tf

o(t)] is

generated by the coupled model, the observed in-

formation is transferred from the analyzed Ta
a (t2) to the

ocean through dynamic coupling. Later the cross update

assimilates the previous observation Tobs
a (t2), which is

now correlated with both atmosphere and ocean fore-

casts. The correlations can be sampled from the obser-

vation ensemble To
a (t2) and the forecast ensemble Tf

a(t)

or Tf
o(t). Similarly for the case of t2 , t1 # t, the time-

averaged observation To
a (t2, t1) is no longer indepen-

dent from either the time-averaged atmosphere forecast

T
f
a(t2, t1) or the ocean forecast Tf

o(t). This issue is not

relevant with the SimCCmethod because all observations

are new to the system when they are assimilated.

The correlation between the observation and forecast

is artificially neglected in the reperturbed LACCmethod.
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In Eq. (2), every observation Tobs
a (t), t5 t2, . . . , t1 has

been independently perturbed by white noiseN(0, sa) to

form the observation ensemble To
a (t), t5 t2, . . . , t1 for

the ADA. Later at the time of the cross update, the av-

eraged observation Tobs
a (t2, t1) is perturbed again by a

new white noise N(0, sa/
ffiffiffi
t

p
) that is independent from

the previous perturbations used by the ADA. Even

though Tobs
a (t2, t1) inherits the information and errors

from Tobs
a (t), t5 t2, . . . , t1, its perturbed ensemble

To
a (t2, t1) is statistically uncorrelated with the forecasts

Tf
a(t2, t1) and Tf

o(t). In other words, the implicit corre-

lation cannot be sampled when the available observation

is only a single value Tobs
a (t2, t1).

Alternatively, the correlation between the observa-

tion and forecast can be explicitly estimated and

included with a generalized EnKF formula. The ocean

analysis is still written as

Ta
o(t)5Tf

o(t)1 K̂3 [bTo
a (t2, t1)2T

f
a(t2, t1)] , (3a)

but the new observation ensemble is the average of

previously perturbed ensembles:

bTo
a (t2, t1)5

1

t
�
t
2

t5t
1

[To
a (t)]5

1

t
�
t
2

t5t
1

[Tobs
a (t)1Nt(0,sa)] ,

(3b)

whereNt(0, sa) is the perturbation at time t, and the new

Kalman gain is

K̂5
covhTf

o(t),T
f
a(t2, t1)2
bTo
a (t2, t1)i

varhTf
a(t2, t1)2
bTo
a (t2, t1)i

5
covhTf

o(t),T
f
a(t2, t1)i2 covhTf

o(t),
bTo
a (t2, t1)i

varhTf
a(t2, t1)i2 23 covhTf

a(t2, t1),
bTo
a (t2, t1)i1s2

a/t
. (3c)

Here K̂ is derived by minimizing the error variance of

Ta
o(t) without the assumption of independence between

the observation and forecast (see appendix). Unlike

Eq. (2b), Eq. (3b) requires that previous observation

ensembles To
a (t), t5 t2, . . . , t1 be stored and averaged

to generatebTo
a (t2, t1). By inheriting the perturbations

from previous observation ensembles,bTo
a (t2, t1) is ex-

plicitly correlated with the forecast ensemblesT
f
a(t2, t1)

and Tf
o(t).

The method outlined by Eq. (3) will be referred to as

the complete LACC method because it includes all the

covariances during the derivation. The reperturbed

LACC is chosen as our default method in section 3. Its

performance will be compared with the WCDA and the

SCDA with the SimCC method. The complete LACC

method will be discussed in section 4a.

d. Cross localization

Spatial localization has been widely used to address

sampling errors when small ensembles are used to

sample the covariance between two separate locations

(Hamill et al. 2001; Houtekamer and Mitchell 1998).

When a state variable is physically located far from an

observation, the error covariance tends to be small and

noisy. The same problem exists for cross covariance,

which is usually small and noisy because of the time-

scale difference. The idea of spatial localization can

also be applied between different model variables that

have small and noisy correlations. For example, Kang

et al. (2011) used ‘‘variable localization’’ to remove the

spurious correlations between uncorrelated variables.

Instead of completely removing the cross covariance,

which would result in the WCDA, we apply a ‘‘cross-

component localization’’ (cross localization for short) by

multiplying a (weight factor) onto the analysis in-

crements. The ocean analysis in Eq. (2a) becomes

Ta
o(t)5Tf

o(t)1a3K3 [To
a (t2, t1)2T

f
a(t2, t1)] . (4)

Mathematically, the cross localization works as co-

variance inflation and optimizes the filter performance.

A smaller a indicates less adjustment to the forecast

(prior) ensemble and a larger analysis (posterior) en-

semble spread. The optimal weight factors are selected

by trial-and-error experiments. Cross localization is not

the only way to optimize the performance of cross up-

date. For example, in Part II of this series, the more

robust relax-to-prior (RTP) scheme (Zhang et al. 2004)

is used and satisfactory results are achieved without

much tuning of the RTP factor.

e. Cross-update frequency

Another issue related to the LACC method is the

frequency of cross update. There are two approaches to

this issue. As in Eq. (2), the number of averaged ob-

servations is t.

1) Chunk scheme: The cross update is done every

t ADA cycles, and every time t atmosphere obser-

vations are averaged. No observation is used bymore

than one cross update.
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2) Running scheme: The cross update is done every

ADA cycle, and every time previous t atmosphere

observations are averaged in a running-mean

fashion.

Both schemes have some disadvantages. With the

chunk scheme, the ocean states are updated less fre-

quently if t. 1. With the running scheme, the observa-

tions are repeatedly used by the cross update. Since the

error variance of the time-averaged observation is al-

ready reduced to s2
a/t [denominator of Eqs. (2c) and

(3c)], the information from each observation is utilized

t times in the running scheme, thus, underestimating the

uncertainty of the observations. In section 3, the chunk

scheme is used as default, while the two schemes are

compared in section 4b.

3. Experiments and results

a. Experiment design

A perfect-model framework is used unless otherwise

specified. A 101-yr integration of the model is per-

formed starting from an initial vector of zeros, and the

first year for spinning up is removed. The observations

are generated at the end of each day (also the time of

analysis in the experiments) by adding randomGaussian

errors onto the instantaneous model states. The stan-

dard deviations of the observational errors are 0.05 for

Ta and 0.02 for To, which are 15% and 20% of their

climatological standard deviations, respectively. An

ensemble size of 20, similar to previous studies (Liu et al.

2013; Han et al. 2013), is used for all experiments except

section 3e.

The benchmark experiments use a WCDA system, in

which observations ofTa orTo are only allowed to update

their observed variable. The assimilation is performed

every day for ADA and every 5 days for ODA unless

otherwise specified. The benchmark experiments with

the WCDA are performed for every experiment config-

uration, and the results are shown as the horizontal dash–

dot lines in all applicable figures. Each experiment lasts

100 years, and it usually reaches equilibrium in a couple

of months because of the assimilation of high-frequency

Ta observations. All statistics are computed using the

final 90 years of the output. Every experiment configu-

ration in this study is repeated 10 times with different

observational errors to verify the statistical significance.

The difference between different trials of the same con-

figuration ismuch smaller than themean value, usually by

two orders of magnitude, so only the mean results are

shown in sections 3 and 4.

To evaluate the assimilation results, we use the

mean absolute error (MAE) of the ensemble mean To

compared to the ‘‘truth’’ at every ADA step. There are

two important remarks about this evaluation. First, only

To is evaluated because the one-way cross update only

affects To, so hereafter any mention of the MAE rep-

resents the MAE of the ensemble-mean To compared to

the truth. In a CDA system, the improved quality of

ocean analysis could potentially improve the atmo-

sphere through dynamic coupling, however, the Ta

analysis is dominated by its own ADA, and all experi-

ments have almost identical quality of atmosphere

analysis. Second, the errors are calculated at everyADA

step from a mix of To forecasts (prior) and analyses

(posterior). In the SCDA system with the LACC

method, To analyses are generated at ODA steps and

cross-update steps. When the averaging length of the

LACC method is different, the frequency of cross up-

date changes and so do the steps when To analyses are

available. To conduct a fair comparison, the ensemble

mean To at every ADA step, no matter if it is forecast or

analysis, is included for the evaluation.

b. Cross correlation from the WCDA

The cross correlation between Ta and To is further

examined here based on the ensemble output of the

WCDA system. Different from the control correlation

in Fig. 1c, the ensemble correlation in Fig. 2 captures the

correlation caused by the initial error growth, and is

directly used by the cross update in the SCDA system.

The addition of ADA and ODA significantly trans-

forms the lead–lag correlation structure. Figure 2a shows

the mean value of the lead–lag ensemble correla-

tion (corrhTf
o(t), T

f
a(t1)i, t1 5 t2 40, t2 39, . . . , t1 10).

Compared to Fig. 1c, the correlations are smaller at

all leads and lags, and the peak correlation occurs when

Ta leads To by only 1 day. Because the update with

perturbed observations alters the ensemble structure

and reduces the ensemble spread (uncertainty) at every

ADA (ODA) step, the forecast stage of every ADA

(ODA) cycle starts with a different Ta (To) ensemble

that has a relatively small spread. As a result, the largest

leading correlation is limited within the first few days,

and the magnitude of the correlations also differs from

Fig. 1c.

The ensemble correlation between To and leading aver-

aged Ta (corrhTf
o(t), T

f
a(t2, t)i, t2 5 t2 80, t2 79, . . . , t)

is shown in Fig. 2b. The correlation climbs rapidly at

first, peaks at about 50 days, and eventually declines

when the averaging length becomes longer. The corre-

lation in Fig. 2b is directly involved in the LACC

method because it determines the signal-to-noise ratio

when calculating the covariance covhTf
o(t), T

f
a(t2, t1)i

in the numerator of Eq. (2c). Figures like Figs. 2a and 2b

can be easily produced from the output of an existing
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WCDA system and serve as a guideline to apply the

LACC method to an SCDA system.

c. The SCDA experiments with the LACC method

Based on the WCDA system, cross update with the

LACCmethod is added to set up the SCDA system. The

cross update is executed independently from the ADA

and ODA. Figure 2d shows the performance of the re-

perturbed LACC method with the chunk scheme.

SimCC indicates the regular SCDA using the simulta-

neous coupled covariance. ‘‘Ave3’’ [t2 5 t2 2, t1 5 t in

Eq. (2)] uses the average of three atmosphere forecasts,

including the simultaneous one and previous two. The

same goes for ‘‘Ave5’’ and beyond.A few representative

averaging lengths are selected for each graph.

In Fig. 2d, the best SimCC experiment (a5 0:7) re-

duces the MAE by about 13% from the benchmark

experiment (dash–dot line). This result is similar to Liu

et al. (2013), but different from Han et al. (2013). The

latter found no improvement in the analysis unless the

ensemble size increases to ;104, indicating that model

biases could diminish the effectiveness of the SimCC

method.

The LACC method further improves the quality of

the To analysis. The minimal MAE, ‘‘Ave7’’ at a5 1, is

11% smaller than the SimCC method and 24% smaller

than the WCDA. Figure 2b shows that the leading av-

eraged correlation increases rapidly from 0.16 for si-

multaneous (black dot) to 0.41 for 7 days (blue square),

and larger correlations boost the signal-to-noise ratio in

the calculation of the coupled covariance. According to

statistics theory, the standard deviation of the sample

correlation coefficient becomes smaller when sample

size is larger or the ‘‘true’’ correlation coefficient in-

creases (Fisher 1915).

Although the leading averaged correlation continues

to rise beyond 7 days, the MAE increases when the

averaging length exceeds 7 days (e.g., ‘‘Ave15’’ and

FIG. 2. (a) Lead–lag ensemble correlation and (b) leading averaged ensemble correlation based on the output of

a 20-member WCDA experiment. The MAEs of SCDA experiments with (c) leading single observation and

(d) leading averaged observation. The markers in (a) and (b) indicate the cross correlations used by the experiments

in (c) and (d), respectively.
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‘‘Ave20’’). For the LACC method, the optimal aver-

aging length is primarily determined by two factors: the

magnitude of the leading averaged cross correlation

and the frequency of the cross update. On one hand, the

correlation increases with the averaging length, for the

first 50 days in this case, but the rate of increasing slows

down gradually. On the other hand, a longer averaging

length implies less frequent assimilation through cou-

pled covariance and, therefore, less constraint by at-

mospheric observations on the ocean. When the

frequency of cross update is as low as every 15 or

20 days, a majority of the To states are unanalyzed

model forecasts, whose errors are mostly larger than

analyzed model states. The competing effects of these

two factors result in the optimal length of 7 days in

Fig. 2d. Despite that only 30% of the To states are

analyzed (ODA and cross update combined), the per-

formance of Ave7 is still significantly better than the

SimCC method and the WCDA, indicating the great

benefits of large cross correlation and high signal-to-

nose ratio using the LACC method.

The LACCmethod could also reduce the additional

computational cost of cross update compared to the

SimCC method, although the necessary sensitivity

tests to tune the LACC method may offset this ad-

vantage. Figure 3 shows the computing time of a

single experiment. The SimCC experiment more than

doubles the computing time of the WCDA experi-

ment, while the costs of the LACC experiments de-

crease in reverse proportion to the averaging length,

and Ave7 only costs 15% more than the WCDA

experiment.

The optimal a values also have a trend in relation to

the averaging length. The minimum MAE of the

SimCC method occurs when a5 0:7, and the best

a increases to 0.8 for Ave3, 0.9 for Ave5, and finally 1.0

for Ave7, Ave15, and Ave20. In sum, the optimal a is

larger when the corresponding cross correlation is

higher (Fig. 2b). This relation also holds in spatial lo-

calization. Larger weights are usually prescribed for

physically closer locations because of higher correla-

tions and smaller sampling error (Mitchell and

Houtekamer 2000; Hamill et al. 2001).

d. The SCDA experiments with single leading
observation

As shown in Fig. 2d, the choice of averaging length is

critical to the performance of the LACC method. To

understand the mechanism of the LACC method bet-

ter, we conduct the SCDA experiments using a single

leading atmosphere forecast and observation for cross

update and present the results in Fig. 2c. This set of

experiments corresponds to the case of t2 5 t1 # t in

Eq. (2). The SimCC (t2 5 t1 5 t) method is the same

between Figs. 2c and 2d. ‘‘Lead2’’ (t2 5 t1 5 t2 2) uses

the 2-day leading forecast and observation of Ta for

every cross update, and the same goes for ‘‘Lead4’’

and beyond.

Figure 2c shows that all experiments up to ‘‘Lead19’’

could be better than the benchmarkWCDA experiment

at their optimal a values. The SimCC method produces

the best analysis, which is the reason that the simulta-

neous observation is always included in the LACC

method. The improvement from the LACC method in

Fig. 2d could be seen as the combined effects of assim-

ilating several leading observations, though it is not a

simple linear combination. Considering that experi-

ments from SimCC to ‘‘Lead6’’ consistently improve the

analysis compared to the WCDA regardless of a, it is

reasonable to expect that the optimal To analysis can be

obtained by using atmospheric information from the

simultaneous step up to 6 days before. This seems to be

the case of Ave7 in Fig. 2d.

The MAE is also dependent on a in Fig. 2c. For

example, the best To analysis is achieved with a5 0:7

for SimCC, 0.6 for Lead2, 0.5 for Lead4, and 0.4 for

Lead6. The optimal a decreases as the assimilated

observation is further removed from the time of the

cross update.

e. Sensitivity to ensemble size

Ensemble size is an important factor for the estima-

tion of coupled covariance (Han et al. 2013), as well as

localization and model errors (Mitchell et al. 2002).

Additional LACC experiments with ensemble sizes of

10, 50, 200, and 1000 are shown in Fig. 4. Several features

are noteworthy.

FIG. 3. Computing time of a single experiment with different

methods, including the WCDA, SimCC, and LACC with different

averaging lengths.
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1) The LACCmethod consistently improves the SCDA

compared to theWCDA, reducing the MAE by over

20% for all ensemble sizes.

2) The advantage of the LACCmethod over the SimCC

method diminishes for larger ensembles, since larger

sample sizes can reduce the sampling error of the

estimated correlation (Fisher 1915) and improve the

effectiveness of the straightforward cross update

(Han et al. 2013). The SimCC method surpasses the

LACC method when the ensemble size reaches

;103.

3) The optimal averaging length shortens as the ensem-

ble size becomes larger. The experiment is Ave9 for

an ensemble size of 10, Ave7 for 20, and Ave3 for 50

and 200.

4) The optimal a is mostly 1 for large ensemble sizes of

200 and 1000, showing that less covariance inflation is

necessary for larger ensembles (Hamill et al. 2001).

Figure 4 shows that a sufficiently large ensemble size

can significantly improve the effectiveness of the SimCC

method (e.g., Han et al. 2013), while also diminish the

benefits of the LACCmethod. However, ensemble sizes

of;103–104 are usually not practical for state-of-the-art

CGCMs. Therefore, the LACC method is an effective

and efficient way to implement SCDA with moderate

ensemble sizes.

f. Sensitivity to time-scale difference

The LACC method is also tested with different ocean

time scales. The parameter m represents the depth of

ocean mixing layer, which controls the time scale of To

compared to Ta. Figure 5 shows the effects of different

values ofm on the cross correlation from single-member

control simulations. A larger m of 20 increases the time

scale of the ocean compared to the atmosphere, reduces

the cross correlation at shorter leading times, and raises

the correlation at longer leading times. A smallerm of 6

has the opposite effect.

The lead–lag and leading averaged ensemble corre-

lations from WCDA experiments are also examined in

FIG. 4. As in Fig. 2d, but for ensemble sizes of (a) 10, (b) 50, (c) 200, and (d) 1000.

SEPTEMBER 2015 LU ET AL . 3831



Figs. 6a and 6b. The effect ofm is similar in Figs. 6a and

5b: a largermmakes the shape of the correlation flatter.

Following the change in the lead–lag correlation, the

leading averaged ensemble correlation peaks at a longer

averaging length and declines slower after the peak

when m increases. Based on Fig. 6b, one would expect

the optimal averaging length to change in the same di-

rection as m.

Compared to the WCDA, the LACC experiments

with the optimal averaging length consistently reduce

the MAE by about 25% regardless of m in Figs. 6c and

6d. The optimal averaging length increases as m be-

comes larger (Ave3 for m5 6, Ave7 for m5 10, and

Ave11 for m5 20), which is consistent with the trend in

Fig. 6b. Physically speaking, more leading observations

should be used in the case of larger m because of the

longer persistence ofTo. Meanwhile, the effectiveness of

the SimCC method declines as m increases and the si-

multaneous cross correlation decreases. The best

SimCC experiments reduce the MAE by 17% when

m5 6, 13% when m5 10 (Fig. 2d), and 10% when

m5 20.

g. Sensitivity to ocean DA

Since all experiments are evaluated based on the

quality of To analysis, it is important to assess the per-

formance of the LACCmethod in relation to the quality

of ODA. Experiments with daily, monthly, and zero (no

ODA) ODA frequency are performed in this section.

As in section 3f, the ensemble correlations based the

output of the WCDA experiments are displayed in

Figs. 7a and 7b. The error of the ocean observation is

kept the same for all experiments. When the ODA fre-

quency decreases, the shape of the lead–lag correlation

becomes flatter. Similar to Figs. 6a and 6b, the averaged

correlation in Fig. 7b also follows the change in the lead–

lag correlation.

Figures 7c–e demonstrate that the LACC method

could significantly improve the analysis quality even if

the ocean states are well constrained by frequent ODA.

The benchmark WCDA system is increasingly better as

the ODA becomes more frequent. The MAE decreases

from 6:093 1023 for no ODA all the way to 3:553 1023

for daily ODA. Yet the improvement from the LACC

method is significant for all experiments. The change in

the optimal averaging length is consistent with the trend

of the averaged correlation in Fig. 7b: the optimal length

is shorter in the case of fast-increasing averaged corre-

lation and longer in the case of slow-increasing corre-

lation. Meanwhile, the advantage of the LACC method

over the SimCCmethod becomes more substantial from

Figs. 7e to 7c, showing the potential of applying the

LACC method in a well-constrained WCDA system.

4. Tests on schemes and model bias

a. Complete LACC

The reperturbed LACC method is used for all ex-

periments in section 3. Here the complete LACC

method is tested with the same configuration as in

Fig. 2d, and the results are reported in Fig. 8.

Figure 8 demonstrates that the complete LACC

method produces almost identical results to the re-

perturbed LACC method (Fig. 2d). The indistinguish-

able results can be attributed to the strong random

forcing in the model. Because of the strong forcing, ev-

ery new forecast contains less persistent information

from previous analysis than new information from the

FIG. 5. As in Figs. 1b and 1c, but with additional results from the control simulations of m5 20 and m5 6.
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random forcing, so those additional covariances be-

tween observations and forecasts [covhTf
o(t), T

o
a (t2, t1)i

and covhTf
a(t2, t1), To

a (t2, t1)i in Eq. (3c)] are signifi-

cantly smaller than the existing covariances in Eq. (2c),

usually by one order of magnitude or more (not shown).

As a result, the Kalman gain K̂ calculated by Eq. (3c) is

very close to the K by Eq. (2c).

To determine which method to use for the cross up-

date in an SCDA system, one could estimate each term

in Eq. (3c) based on the output of the WCDA system.

The only modification would be saving the perturbed

observation ensembles during ADA. If the covariances

between observations and forecasts are significantly

smaller than the other terms, namely

covhTf
o(t),
bTo
a (t2, t1)i � covhTf

o(t),T
f
a(t2, t1)i and covhTf

a(t2, t1),
bTo

a (t2, t1)i� varhTf
a(t2, t1)i or s2

a/t ,

the reperturbed LACC method should be acceptable.

Otherwise, one should try the complete LACC method

and compare the performances, since the complete

LACC method could perform better because of its

theoretical accuracy.

With comparable performances in this model, the

reperturbed LACC method is chosen as our default

because 1) the traditional EnKF formula is already used

for ADA and ODA in the WCDA system, 2) its com-

puting time for cross update is about 10% less than the

complete LACCmethod, and 3) no additional storage is

needed for previously perturbed observation ensembles.

The last reason makes it difficult to use the complete

LACC method in a CGCM because saving the per-

turbed ensemble of every assimilated observation would

require prohibitively large memory space.

FIG. 6. (a),(b) As in Figs. 2a,b, but with additional results of (a)m5 20 and (b)m5 6. (c),(d) As in Fig. 2d, but with

different model parameters (c) m5 20 and (d) m5 6.
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b. Running scheme

All experiments so far use the chunk scheme de-

scribed in section 2e. Figure 9 shows the results of the

reperturbed LACC method with the running scheme,

which performs the cross update at every ADA step.

We also tested the complete LACC method with the

running schemes and got similar results (not shown).

The SimCC experiments in Fig. 9 are the same as in

Fig. 2d. For Ave3, To is adjusted every time when Ta

observation is available, and the cross update still

uses the average of three leading Ta forecasts and

observations like the chunk scheme, so every Ta ob-

servation is used three times. The same goes for Ave5

and beyond.

With the running scheme, the weight factor a serves

the purpose of more than cross localization. As shown in

Fig. 9, the best analysis of LACC experiments is

achieved whena values are significantly smaller than the

corresponding values with the chunk scheme (Fig. 2d).

The smaller a values reduce the cross-update adjust-

ments to counter the underestimation of observational

errors, which is caused by the repeated utilization

of observed information. Qualitatively, the optimal

a varies in reverse proportion to the averaging length,

but other factors such as sampling errors could also af-

fect the value of the optimal a.

In terms of analysis quality, the running scheme does

perform slightly better, as the MAEs are 2%–4%

smaller than the chunk scheme for most averaging

lengths. This small improvement is primarily achieved

by updating To more frequently, so that the MAE is

calculated only from To analysis (posterior). However,

the slight improvement from the running scheme re-

quires significantly more computing time, because the

running scheme costs as much as the SimCC method

regardless of the averaging length.

c. Biased-model experiments

The LACC method is also tested within a biased-

model framework. To set up the biased-model frame-

work, the observations still come from the model with

the default parameters, but all four parameters

(a, b, c, d) in the forecast model are set 15% smaller

than their default values arbitrarily. The reperturbed

and complete LACCmethods produce the same results,

so only the reperturbed results are shown in this section.

FIG. 7. (a),(b) As in Figs. 2a,b, but with additional results fromWCDA experiments of daily, monthly, and no ODA. (c)–(e) As in Fig. 2d,

but with different ODA frequencies of (c) daily, (d) monthly, and (e) zero (No ODA.)
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Figure 10 shows that both the chunk and running

schemes are effective with a biased model. With the

presence of model biases, the MAE of the benchmark

WCDA experiment increases from 4:93 1023 in Fig. 2d

to 8:83 1023 in Fig. 10. The SimCC method performs

worse than theWCDA except when 1,a, 1:6, and the

bestMAE (a5 1:4) is only 5% smaller than theWCDA.

Meanwhile, the effectiveness of the LACC method is

consistent. Compared to the WCDA, the chunk scheme

reduces the MAE by 12% with Ave20 and a5 1 and by

29% with Ave11 and a5 2:2. Like in the perfect-model

framework, the running scheme could outperform the

chunk scheme, but only by 2%–3% for any given aver-

aging length. The optimal a values are smaller in

Fig. 10b compared to Fig. 10a, because the observations

are already repeatedly used by the running scheme.

Regardless of the averaging length, the best results are

achieved by overweighting atmospheric observations

(a. 1). When the model parameters are biased, the

analysis quality of the ocean deteriorates faster than that

of the atmosphere because the higher-frequency ADA

constrains the atmospheric state better. As a result, the

analysis increments from the atmosphere are more ac-

curate and should be given more confidence.

5. Summary

We have presented a new LACCmethod to utilize the

coupled covariance in an SCDA system. By time aver-

aging the leading model forecasts of the fast-varying

variable, the LACC method significantly enhances the

cross correlation between model variables with con-

trasting time scales and boosts the signal-to-noise

ratio when calculating the coupled covariance. The

LACC method requires some modifications to the

traditional ensemble-based filters, especially in regard

to the additional covariances between observations

and model forecasts. We have shown two ways to apply

the LACC method to the EnKF—the reperturbed

LACC and the complete LACC—and both produce

equally improved analysis of the oceanic variable in

comparison to the WCDA and the SCDA with the

SimCC method.

In the simple coupled model, the SCDA system is set

up by adding the cross update from the atmospheric

variable to the oceanic variable. The reperturbed

LACC method, along with the regular SCDA that uses

the simultaneous coupled covariance, are tested with

different ensemble sizes, time-scale differences, and

ODA frequencies. Although the SimCC method could

improve the ocean analysis compared to the WCDA,

the LACC method holds a significant advantage over

both the WCDA and the SimCC method. The advan-

tage of the LACC method over the SimCC method is

more notable in the cases of 1) small ensemble size,

2) larger time-scale difference, 3) small simultaneous

cross correlation, and 4) more frequent ODA. In gen-

eral, the LACC method suits the cases where physical

correlation exists between two variables, but such

correlation is too difficult to sample because of the

time-scale difference.

The biased-model experiments are particularly in-

teresting, as the SimCC method with optimal cross lo-

calization barely outperforms the WCDA. In contrast,

the LACC method consistently improves the perfor-

mance of the SCDA system and reduces the MAE by

FIG. 9. As in Fig. 2d, but with the running scheme for cross update.FIG. 8. As in Fig. 2d, but with the complete LACC method.
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almost 30%. The effectiveness of the LACC method in

the biased-model framework points to potential appli-

cation in real world SCDA systems.

There are still unresolved issues with the LACC

method. For example, the optimal weight factor for

cross localization is determined by trial and error. The

idea of adaptive inflation (Anderson 2007, 2009) could

be useful to tune the weight factor and make it adaptive

in time. For future research, one could continue to test

the LACC method and related filtering techniques in

simple conceptual models, preferably nonlinear or

multidimensional like the ones used by Han et al. (2013)

or Luo and Hoteit (2014).
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APPENDIX

Derivation of Eq. (3)

The ocean analysis, as written in Eq. (3a), is

Ta
o(t)5Tf

o(t)1
~K3 [To

a (t2, t1)2T
f
a(t2, t1)] . (A1)

Assuming the terms in Eq. (A1) are deviations from

the truth, the error variance of Ta
o(t) is

varhTa
o(t)i5 varhTf

o(t)i1 23 ~K

3 covhTf
o(t),T

o
a (t2, t1)2T

f
a(t2, t1)i1 ~K2

3 varhTo
a (t2, t1)2T

f
a(t2, t1)i .

(A2)

The error variance varhTa
o(t)i can be minimized by

solving

›varhTa
o(t)i

› ~K
5 0. (A3)

Equation (A3) gives

23 covhTf
o(t),T

o
a (t2, t1)2T

f
a(t2, t1)i

1 23 ~K3 varhTo
a (t2, t1)2T

f
a(t2, t1) i5 0. (A4)

So the Kalman gain is

K̂5
covhTf

o(t),T
f
a(t2, t1)2To

a (t2, t1)i
varhTf

a(t2, t1)2To
a (t2, t1)

. (A5)

REFERENCES

Anderson, J. L., 2007: An adaptive covariance inflation error cor-

rection algorithm for ensemble filters. Tellus, 59A, 210–224,

doi:10.1111/j.1600-0870.2006.00216.x.

——, 2009: Spatially and temporally varying adaptive covariance

inflation for ensemble filters. Tellus, 61A, 72–83, doi:10.1111/

j.1600-0870.2008.00361.x.

Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of

atmosphere–ocean thermal coupling on midlatitude

variability. J. Atmos. Sci., 55, 477–493, doi:10.1175/

1520-0469(1998)055,0477:TBEOAO.2.0.CO;2.

Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the

results from atmospheric general circulation models forced by

the time history of the observed sea surface temperature dis-

tribution. Geophys. Res. Lett., 27, 767–770, doi:10.1029/

1999GL010910.

Buehner, M., 2005: Ensemble-derived stationary and flow-

dependent background-error covariances: Evaluation in a

quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc.,

131, 1013–1043, doi:10.1256/qj.04.15.

FIG. 10. As in Fig. 2d, but with (a) the chunk scheme and (b) the running scheme in a biased-model framework.

3836 MONTHLY WEATHER REV IEW VOLUME 143



Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis

scheme in the ensemble Kalman filter. Mon. Wea. Rev.,

126, 1719–1724, doi:10.1175/1520-0493(1998)126,1719:

ASITEK.2.0.CO;2.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation sys-

tem. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/

qj.828.

Fisher, R., 1915: Frequency distribution of the values of the cor-

relation coefficient in samples from an indefinitely large

population. Biometrika., 10, 507–521, doi:10.2307/2331838.

Frankignoul, C., A. Czaja, and B. L. Heveder, 1998: Air–sea

feedback in the North Atlantic and surface boundary condi-

tions for ocean models. J. Climate, 11, 2310–2324, doi:10.1175/

1520-0442(1998)011,2310:ASFITN.2.0.CO;2.

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-

dependent filtering of background error covariance estimates in

an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776–2790,

doi:10.1175/1520-0493(2001)129,2776:DDFOBE.2.0.CO;2.

Han, G. J., X. R. Wu, S. Q. Zhang, Z. Liu, and W. Li, 2013:

Error covariance estimation for coupled data assimilation

using a Lorenz atmosphere and a simple pycnocline

ocean model. J. Climate, 26, 10 218–10 231, doi:10.1175/

JCLI-D-13-00236.1.

Hasselmann, K., 1976: Stochastic climate models. Part I. Theory.

Tellus, 28A, 473–485, doi:10.1111/j.2153-3490.1976.tb00696.x.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation

using an ensemble Kalman filter technique. Mon. Wea.

Rev., 126, 796–811, doi:10.1175/1520-0493(1998)126,0796:

DAUAEK.2.0.CO;2.

——, and ——, 2001: A sequential ensemble Kalman filter for at-

mospheric data assimilation. Mon. Wea. Rev., 129, 123–137,

doi:10.1175/1520-0493(2001)129,0123:ASEKFF.2.0.CO;2.

——, ——, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and

M. Hansen, 2005: Atmospheric data assimilation with an en-

semble Kalman filter: Results with real observations. Mon.

Wea. Rev., 133, 604–620, doi:10.1175/MWR-2864.1.

Huntley, H. S., and G. J. Hakim, 2010: Assimilation of time-averaged

observations in a quasi-geostrophic atmospheric jetmodel.Climate

Dyn., 35, 995–1009, doi:10.1007/s00382-009-0714-5.

Jacob, R., 1997: Low frequency variability in a simulated atmo-

sphere ocean system. Ph.D. thesis, University of Wisconsin–

Madison, 159 pp.

Kang, J.-S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011:

‘‘Variable localization’’ in an ensemble Kalman filter: Application

to the carbon cycle data assimilation. J. Geophys. Res., 116,

D09110, doi:10.1029/2010JD014673.

Liu, Z., S. Wu, S. Q. Zhang, Y. Liu, and X. Y. Rong, 2013: En-

semble data assimilation in a simple coupled climate model:

The role of ocean-atmosphere interaction. Adv. Atmos. Sci.,

30, 1235–1248, doi:10.1007/s00376-013-2268-z.

Luo, X., and I. Hoteit, 2014: Ensemble Kalman filtering with a

divided state-space strategy for coupled data assimilation

problems. Mon. Wea. Rev., 142, 4542–4558, doi:10.1175/

MWR-D-13-00402.1.

Mitchell, H. L., and P. L.Houtekamer, 2000:An adaptive ensemble

Kalman filter. Mon. Wea. Rev., 128, 416–433, doi:10.1175/
1520-0493(2000)128,0416:AAEKF.2.0.CO;2.

——, ——, and G. Pellerin, 2002: Ensemble size, balance,

and model-error representation in an ensemble Kalman

filter. Mon. Wea. Rev., 130, 2791–2808, doi:10.1175/

1520-0493(2002)130,2791:ESBAME.2.0.CO;2.

Saha, S., and Coauthors, 2010: TheNCEPClimate Forecast System

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057,

doi:10.1175/2010BAMS3001.1.

Singleton, T., 2011: Data assimilation experiments with a simple

coupled ocean-atmosphere model. Ph.D. thesis, University of

Maryland, College Park, 116 pp.

Sugiura, N., T. Awaji, S. Masuda, T. Mochizuki, T. Toyoda,

T. Miyama, H. Igarashi, and Y. Ishikawa, 2008: Development

of a four-dimensional variational coupled data assimilation

system for enhanced analysis and prediction of seasonal to

interannual climate variations. J. Geophys. Res., 113, C10017,

doi:10.1029/2008JC004741.

Tardif, R., G. J. Hakim, and C. Snyder, 2014: Coupled atmosphere–

ocean data assimilation experiments with a low-order

climate model. Climate Dyn., 43, 1631–1643, doi:10.1007/

s00382-013-1989-0.

——, ——, and ——, 2015: Coupled atmosphere–ocean data assimi-

lation experiments with a low-order model and CMIP5 model

data. Climate Dyn., doi:10.1007/s00382-014-2390-3, in press.

Zhang, F. Q., C. Snyder, and J. Z. Sun, 2004: Impacts of initial

estimate and observation availability on convective-scale

data assimilation with an ensemble Kalman filter. Mon. Wea.

Rev., 132, 1238–1253, doi:10.1175/1520-0493(2004)132,1238:

IOIEAO.2.0.CO;2.

Zhang, S. Q., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007:

System design and evaluation of coupled ensemble data as-

similation for global oceanic climate studies.Mon. Wea. Rev.,

135, 3541–3564, doi:10.1175/MWR3466.1.

SEPTEMBER 2015 LU ET AL . 3837


