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ABSTRACT

The observed local and nonlocal influences of vegetation on the atmosphere across North America are quan-

tified after first removing the oceanic impact. The interaction between vegetation and the atmosphere is dominated

by forcing from the atmosphere, making it difficult to extract the forcing from vegetation. Furthermore, the at-

mosphere is not only influenced by vegetation but also the oceans, so in order to extract the vegetation impact, the

oceanic forcing must first be excluded. This study identified significant vegetation impact in two climatically and

ecologically unique regions: theNorthAmericanmonsoon region (NAMR) and theNorthAmerican boreal forest

(NABF). A multivariate statistical method, a generalized equilibrium feedback assessment, is applied to extract

vegetation influence on the atmosphere. The statistical method is validated using a dynamical experiment for the

NAMR in a fully coupled climate model, the Community Climate System Model, version 3.5 (CCSM3.5).

The observed influence of NAMR vegetation on the atmosphere peaks in June–August and is primarily at-

tributed to both roughness and hydrological feedbacks. Elevated vegetation amount increases evapotranspira-

tion and surface roughness, which leads to a local decline in sea level pressure and generates an atmospheric

teleconnection response. This atmospheric response leads to moister and cooler (drier and warmer) conditions

over thewestern and centralUnited States (Gulf states). The observed influenceof theNABFon the atmosphere

peaks in March–May, related to a thermal feedback. Enhanced vegetation greenness increases the air temper-

ature locally. The atmosphere tends to form a positive Pacific–North American (PNA)-like pattern, and this

anomalous atmospheric circulation and associated moisture advection lead to moister (drier) conditions in the

western (eastern) United States.

1. Introduction

The atmosphere and vegetation interact in a com-

plex way. The atmosphere exerts a dominant control

on vegetation through variations in air temperature, pre-

cipitation, solar radiation, wind, and CO2 concentration

(Budyko 1974; Woodward 1987; Nemani et al. 2003;

Woodward et al. 2004). As a result, the spatial distribution

of major vegetation types is consistent with climate zones

on a global scale (Bryson 1966). Although this two-way

interaction is dominated by the atmosphere, vegetation

does induce feedbacks on the atmosphere. Generally,

vegetation can affect the atmosphere through either

biogeophysical or biogeochemical processes (Pielke

et al. 1998; Brovkin 2002; Bonan 2008a). Biogeophysical

processes refer to vegetation forcing on the atmosphere
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directly through altered surface albedo, roughness, and

plant transpiration, which affect the exchange of energy,

momentum, and moisture with the atmosphere. Bio-

geochemical processes refer to vegetation influence on

the atmosphere indirectly through altered atmospheric

concentrations of CO2, CH4, and biogenic volatile or-

ganic compounds (BVOC) (Laothawornkitkul et al.

2009). This paper focuses on biogeophysical feedbacks. In

the subsequent text, previous studies on vegetation

feedbacks from the boreal (related to land surface albedo

and plant transpiration) and tropical forests (related to

roughness and plant transpiration) will be reviewed. In

this paper, the two primary study regions are the Cana-

dian boreal forest and the subtropical North American

monsoon region, the latter of which potentially behaves

similarly to a tropical forest in terms of vegetation feed-

backs (Notaro et al. 2011).

The boreal forests extend in broad bands across North

America and Eurasia, accounting for about 33% of

global forests. It is generally accepted that the boreal

forests increase the surface air temperature by lowering

the surface albedo particularly during spring, but their

impact on precipitation is seldom discussed. The boreal

forests significantly reduce the surface albedo, based on

both field measurements and satellite data. The typical

albedo of a conifer forest is 0.08 in summer and slightly

higher, 0.13, in winter as the canopy can mask under-

lying snow. In contrast, the surface albedo across grassland

is 0.20 in summer and substantially higher, 0.75 in winter,

as the snow covers the grass (Betts and Ball 1997). The

huge difference in albedo between grasslands and forests

in winter can be attributed to snow covering the grass but

not persisting long on the forest canopy, especially when

solar radiation or wind is strong (Betts and Ball 1997). It

is noteworthy that not only evergreen forests, but also

deciduous forests, can significantly reduce the surface

albedo, even though during winter only their branches

exist (Swann et al. 2010). The boreal forest induces a pos-

itive feedback on surface air temperature. An increase

in tree fraction lowers the surface albedo, especially during

the snow season, with the surface receiving more solar

radiation, which increases the surface air temperature,

producing a further increase in tree fraction (Brovkin

2002). Many pure modeling studies (Otterman et al. 1984;

Harvey 1988; Bonan et al. 1992; Thomas and Rowntree

1992; Snyder et al. 2004; Jeong et al. 2012) have demon-

strated this positive feedback in boreal forests. For ex-

ample, Bonan et al. (1992) found that boreal forests can

increase both winter and summer air temperatures based

on experiments that either included or excluded the boreal

forests. The summertime warming is mainly caused by the

thermal lag of the oceans and sea ice. Snyder et al. (2004)

performed a series of experiments to study the individual

global impacts of six vegetation biomes on climate by

completely removing a particular biome each time and

then comparing with the control run. They concluded that

boreal deforestation produces the largest global tempera-

ture signal due to a vegetation–snow albedo feedback.

The influence of tropical forests on climate is still

debated, although most studies argue that the tropical

forests generate an increase in precipitation and de-

crease in temperature. Tropical forests act as a conduit,

transferring moisture from the soil to the air through

their stomata. A single well-watered tree can easily

consume 100–150L of water per day (Bonan 2008a).

The rate of evapotranspiration depends on available

energy at the surface. Both net radiation surplus and

evapotranspiration peak in the tropical regions (Bonan

2008a). Owing to human activity, tropical forests are

rapidly disappearing. Numerous modeling studies have

assessed the potential effects of tropical deforestation

(Shukla et al. 1990; Dickinson and Kennedy 1992;

Dirmeyer and Shukla 1994; Costa and Foley 2000;

Voldoire and Royer 2004). D’Almeida et al. (2007) re-

viewed previous modeling and observational studies,

considering a range of the spatial extent of deforestation

and model resolutions. In response to tropical defores-

tation, the majority of models produced an increase

in surface air temperature due to reduced vegetation

evapotranspiration (Dickinson and Henderson-Sellers

1988; Lean and Warrilow 1989; Shukla et al. 1990;

Dickinson and Kennedy 1992). The effects of tropical

deforestation on precipitation varied by study, with most

models producing a decrease in precipitation. If tropical

deforestation occurs on a small scale and in a heteroge-

neous manner, some models suggest that precipitation

may increase owing to resulting mesoscale circulations

(Bonan 2008b). The tropical deforestation studies also

disagree about whether the impacts on climate are purely

local or also remote (Hasler et al. 2009; Nobre et al. 2009).

The models applied in the aforementioned studies

range in complexity from simple energy balance mod-

els (Otterman et al. 1984; Harvey 1988) to coupled

atmosphere–biosphere models (Snyder et al. 2004; Xue

et al. 2010) to complexGCMs (Bonan et al. 1992; Thomas

and Rowntree 1992). These modeling studies are pri-

marily limited by four factors. First, their results are

model dependent, given that models differ in terms of

their dynamical cores, numerical schemes, parameteri-

zations, resolution, and simulation length. Second, nearly

all modeling studies involve extreme sensitivity experi-

ments, such as completely replacing a specific vegetation

type with bare ground or another vegetation type, either

locally or globally. Such extreme experiments are likely

to be unrealistic since vegetation changes usually are

heterogeneous and occur over time. Third, these studies
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are limited by model biases. Finally, most studies focus

on long-term climatic impacts, not monthly/seasonal

prediction. Therefore, owing to limitations in model-

ing studies, observational studies are critically needed

(O’Brien 1996).

In contrast to the plethora of modeling studies on

vegetation feedbacks, studies that examine vegetation

feedbacks through the use of observational data have

been rare (Gentry and Lopezparodi 1980; Kaufmann

et al. 2003; Liu et al. 2006; Notaro et al. 2006;Wang et al.

2006). Such observational studies must address certain

challenges. First, the observational record is short in

duration and contains measurement errors. Second, it is

difficult to distinguish the modest vegetation forcing to

the atmosphere from the large atmospheric internal

noise. Third, besides vegetation, the atmosphere is also

affected by sea surface temperature (SST), soil mois-

ture, and snow cover. Since there is only one realization

in the observations, only statistical methods can be ap-

plied. Wang et al. (2006), using a statistical technique

known as Granger causality, studied observed vegeta-

tion forcing on the atmosphere. Liu et al. (2006) and

Notaro et al. (2006) used a different statistical method,

equilibrium feedback assessment (EFA), to quantify

vegetation influence on the atmosphere, globally and

across the United States, respectively. They concluded

that in the northern mid to high latitudes, vegetation

exerts a strong positive feedback on temperature during

spring, while in the tropical and subtropical regions,

vegetation only weakly affects precipitation. While these

studies made critical strides in understanding vegetation

feedbacks using observations, the use of EFA limited the

results to local feedbacks and did not remove other

forcings, such as SST. Using EFA, Sun and Wang (2012)

studied the impact of soil moisture on precipitation and

concluded that, because of synchronous oceanic influ-

ences on precipitation, EFA cannot separate the influ-

ences of soil moisture from that of the oceans.

The present study focuses on North America (Fig. 1).

Across North America, the boreal forest extends from

Alaska to Newfoundland, with tundra to the north.

Across the western United States, shrublands and

grasslands dominate, with a fractional vegetation cover

of about 50% (Fig. 1); vegetation is sparse across re-

gional deserts. According to prior observational and

modeling studies, the North American boreal forest

(NABF; 458–608N, 1208–858W) and North American

monsoon region (NAMR; 228–378N, 1158–102.58W)

(Fig. 1) are characterized by thermal (Liu et al. 2006;

Notaro and Liu 2008) and hydrological feedbacks from

vegetation (Notaro et al. 2011; Notaro and Gutzler

2012), respectively. These two regions, with contrasting

feedbacks, will be the focus of the current study.

The purpose of this paper is to assess and quantify the

observed impacts of monthly vegetation variations on

atmosphere conditions across North America. In par-

ticular, this vegetation impact is obtained after exclud-

ing the influences from SST variability. The latter has

been studied in an accompanying paper (Wang et al.

2013). The current paper represents the first attempt to

systematically isolate vegetation impact from oceanic

forcings and to quantify both local and nonlocal feed-

backs from vegetation to the atmosphere. The data and

model are introduced in section 2. The statistical and

dynamical methods and their relationship are described

in section 3. The generalized equilibrium feedback as-

sessment (GEFA) method is validated in a fully coupled

model for the NAMR in section 4. Observational veg-

etation influences on the North American climate from

both NAMR and NABF regions are then assessed using

GEFA in section 5. The conclusions and further dis-

cussions are presented in section 6.

2. Data and model

a. Data

Monthly-mean remotely sensed normalized differen-

tial vegetation index (NDVI) (Pinz�on et al. 2005; Tucker

et al. 2004, 2005) from the Global Inventory Modeling

and Mapping Studies (GIMMS) is used to represent

vegetation greenness. Given that chlorophyll in plant

leaves strongly absorbs visible light (VIS) and strongly

reflects near-infrared light (NIR), NDVI is defined as

NDVI 5 (NIR 2 VIS)(NIR 1 VIS)21. The data are on

a 0.58 3 0.58 grid and covers July 1981–December 2006.

GIMMS NDVI applies radiometric calibration, atmo-

spheric correction, cloud screening, and solar zenith angle

correction to eliminate the effect not related to vegetation

change (Holben and Fraser 1984; Holben 1986; Tucker

et al. 2005). It should be noted that, although corrections

and calibrations have beenmade toGIMMSNDVI, it still

has some limitations. For example,NDVI tends to saturate

over forests (Huete 1997); can be contaminated by snow,

since snow has a high visible reflectance and a low near-

infrared reflectance (Julien and Sobrino 2009); and can

be affected by soil background conditions. The value of

NDVI of bare soil in deserts is similar to that of sparse

vegetation (Huete 1988).

Land cover type is obtained from the Earth Resources

Observation and Science (EROS) global land cover

characterization (GLCC) dataset, which is based pri-

marily on 1-km Advanced Very High-Resolution Radi-

ometer (AVHRR) 10-day NDVI composites from April

1992 through March 1993. The fraction of different

land cover types (evergreen forest, deciduous forest, and
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herbaceous/shrubs) is retrieved from the International

Satellite Land Surface Climatology Project, Initiative II

(ISLSCP II) Global Continuous Fields of Vegetation

Cover dataset (DeFries et al. 1999, 2000). Monthly SSTs,

which represent the oceanic forcing, are obtained from

the Hadley Center Sea Ice and Sea Surface Temperature

dataset (HadISST) (Rayner et al. 2003).

To check the robustness of the atmospheric response

to the vegetation forcing, three different observed sur-

face air temperature and precipitation datasets are used.

They are from the University of Delaware (UDEL)

(0.58 3 0.58 for 1901–2009) (Willmott and Matsuura

1995), the Climate ResearchUnit (CRU) (0.58 3 0.58 for
1901–2009) (Mitchell and Jones 2005), and the Param-

eter–Elevation Regressions on Independent Slopes

Model Climate Group (PRISM) (4 km3 4 km for 1895–

2010, only over the contiguous United States) (Daly et al.

2008), respectively. Upward and downward shortwave

radiation fluxes at the surface used to compute surface

albedo, and cloud fractional cover, are obtained from the

National Aeronautics and Space Administration (NASA)

Langley Research Center Atmospheric Science Data

Center Surface Radiation Budget (SRB) project (18 3 18
for 1984–2006) (Gupta et al. 1999). A global terrestrial

evapotranspiration (ET) from 1983 to 2006, with 18 3 18
resolution, is assessed using a satellite-based ET algorithm

(Zhang et al. 2010). The algorithm quantifies canopy

transpiration, soil evaporation, and open water evapora-

tion. Other atmospheric variables, such as geopotential

height and wind, are retrieved for 1979–present from the

FIG. 1. (a) Remotely sensed land cover type from the EROS GLCC dataset and the percent cover of (b) evergreen tree, (c) deciduous

tree, and (d) shrub/grass/cropland from the ISLSCP II Global Continuous Fields of Vegetation Cover dataset. Dashed boxes indicate the

NABF and NAMR regions.
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NorthAmericanRegionalReanalysis (NARR) (Mesinger

et al. 2006), with a spatial resolution of 32km 3 32km.

All data for this study are extracted for January 1982–

December 2006 (except the upward/downward shortwave

flux at surface, cloud cover fraction, andET) and remapped

to a 28 3 28 grid, except the land cover type and land cover
fraction. The seasonal cycle and third-order polynomial

trend are removed to compute the anomaly field.

b. CCSM3.5

The National Center for Atmospheric Research Com-

munity Climate System Model, version 3.5 (CCSM3.5)

(Gent et al. 2010), an interim version of CCSM, is used

in this study. The atmospheric, land, oceanic, and ice

components are the Community Atmosphere Model

(CAM3), Community Land Model–Dynamic Global

Vegetation Model (CLM–DGVM), Parallel Ocean Pro-

gram, version 2 (POP2), and Community Sea Ice Model,

version 5 (CSIM5), respectively, with no use of flux ad-

justment. The dynamic core of the atmosphere compo-

nent is finite volume discretization, and the horizontal

resolution is 2.58 longitude 3 1.98 latitude. The vertical

coordinate of CAM3 is the hybrid sigma pressure co-

ordinate with 26 levels. There are 10 soil layers in CLM.

To study the vegetation impact on the atmosphere, the

DGVM is coupled to the CLM. CLM–DGVM (Levis

et al. 2004; Bonan and Levis 2006) simulates the potential

vegetation type, so no land use is included. There are

a total of 10 plant function types simulated by the model,

including 7 types of trees and 3 types of grasses.

A multicentury, modern-day simulation (CTL) in equi-

librium is produced, and the last 100 years are analyzed.

From the CTL run, two statistical methods, the univariate

EFA and multivariate GEFA, are used to evaluate the

impacts of fluctuations in vegetation amount on North

American climate. Oceanic forcings are still present with

EFA, while with GEFA they are first extracted before

vegetation forcings are assessed. Themodel is only applied

to validate the GEFA methodology through dynamical

experiments. If the statistical assessment from theCTL run

agrees with the dynamical experiments in the same model

in terms of spatial pattern andmagnitude of response, then

GEFA is shown to be reliable and can be applied to ob-

servations with some confidence. Therefore, it is unnec-

essary to compare the simulated and observed results or

to validate the simulated climatology against observa-

tional data.

3. Method

a. Statistical method

The statistical method, GEFA, is applied in this study

to assess vegetation forcing on the atmosphere across

North America, primarily in the observations. Since this

method has been discussed in detail in previous studies

(Liu et al. 2008; Liu and Wen 2008) and has been suc-

cessfully applied to estimate the influence of global SST

patterns on global geopotential height (Wen et al. 2010),

U.S. precipitation (Zhong et al. 2011), North Atlantic

heat flux (Wen et al. 2013), and U.S. surface air tem-

perature and precipitation (Wang et al. 2013), it is only

briefly described here. GEFA is a multivariate method,

making it possible to extract the vegetation influence on

the atmosphere after removing oceanic forcings. At the

time scale considered in this study, which is monthly, the

atmospheric response to vegetation and oceanic forcing

has reached quasi equilibrium. The memory of the at-

mosphere is only one to two weeks, while that of the

ocean and vegetation exceeds one month. Therefore, at

the monthly time scale, the atmosphere has already

reached equilibrium and atmospheric internal variabil-

ity can be considered as white noise. Based on stochastic

climate theory (Frankignoul and Hasselmann 1977), the

atmospheric variableA at time t can be decomposed into

two terms: one is the feedback response to vegetation

and oceanic forcings VO and the other is atmospheric

internal variability N. Therefore,

A(t)5B3VO(t)1N(t) , (1)

where B is the feedback matrix. Application of the co-

variance of VO(t 2 t) to both sides of Eq. (1) results in

B5
hA(t),VO(t2 t)i
hVO(t),VO(t2 t)i2

hN(t),VO(t2 t)i
hVO(t),VO(t2 t)i , (2)

where ha, bi indicates the covariance between variables

a and b, and the second term is the sampling error. Since

variability in either SSTs or vegetation amount at

a previous time, VO(t 2 t), does not correlate with at-

mospheric internal variability at time t, N(t), it is con-

cluded that hVO(t 2 t), N(t)i 5 0. Therefore,

B5
hA(t),VO(t2 t)i
hVO(t),VO(t2 t)i, t . 0, (3)

where t is the time lag, which should be longer than the

atmospheric persistence time: B represents the instan-

taneous atmospheric response to a slowly evolving forcing

term. The unit of B is (unit of the atmospheric variable)

(standard deviation of vegetation)21, and by multiplyingB

by the standard deviation of vegetation the feedback

strength can be quantified. Theoretically, B does not

change with lag t but for a finite sample size, the sampling

error, hN(t), VO(t 2 t)ihVO(t), VO(t 2 t)i21 is not zero.

When the lag time t increases, the autocovariance of VO,
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hVO(t), VO(t 2 t)i will decrease, and then the sampling

error increases (Liu et al. 2006). Therefore, the first lag is

usually preferred. In this paper, t is assigned to 1 month.

The feedback response at t 5 2 is also checked for ro-

bustness, but not shown. In the GEFAEqs. (1)–(3), if the

forcing VO consists of a single forcing, it degenerates to

the equilibrium feedback assessment. Therefore, if one

wants to analyze the influence of vegetation in NAMR

on the atmosphere using EFA, just let VO 5 NAMR.

Clearly, if the atmosphere A(t) is truly affected by mul-

tiple forcings, the EFA will mix the assessed response to

other forcings not included.

Forcing fields of vegetation are represented by the

regional-mean time series of vegetation index [NDVI in

the observations and leaf area index (LAI) in the model,

since the model only outputs LAI, and the length of

available remotely sensed NDVI exceeds that of LAI]

for NAMR and NABF. The oceanic forcing fields are

represented by principal components (PCs) through

empirical orthogonal function (EOF) analysis. The global

ocean north of 208S is divided into five ocean basins:

the tropical Pacific (TP; 208S–208N, 1208E–608W), the

North Pacific (NP; 208–608N, 1208E–608W), the tropical

Indian (TI; 208S–208N, 358–1208E), the tropical Atlan-

tic (TA; 208S–208N, 658W–158E), and the North At-

lantic (NA; 208–608N, 1008W–208E). The vegetation

time series and SST PCs are combined into a single

forcing matrix for VO:

VO5 [ NABF NAMR TP1 TP2 NP1 NP2 TI1 TI2 TA1 TA2 NA1 NA2 ]. (4)

The numbers 1 and 2 after each ocean basin indicate the

first and second PC, respectively. For example, TP1 rep-

resents the first PC of tropical Pacific SST, andNABF and

NAMR represent the vegetation time series for the two

study regions. The forcing matrix used here is the same as

applied byWang et al. (2013), except here it also includes

two vegetation forcings and the time series is shorter in

duration, which is limited by the duration of the vegeta-

tion time series. The influence of global SSTmodes on the

atmosphere does not change significantly with or without

the inclusion of these vegetation forcings.

In this paper, the results of vegetation forcing to the

atmosphere are discussed by season. Seasonal GEFA

feedback coefficients are obtained by averaging the cor-

responding 3-monthly GEFA feedback coefficients. For

example, theMarchGEFA feedback matrix is computed

using data from February and March as follows:

B(Mar)5
hA(Mar),VO(Feb)i
hVO(Mar),VO(Feb)i . (5)

Then, the springtime [March–May (MAM)] atmospheric

response is calculated as

B(MAM)5
B(Mar)1B(Apr)1B(May)

3
. (6)

The statistical significance of B is tested using the

Monte Carlo bootstrap approach (Czaja and Frankignoul

2002). The atmospheric variable is randomly scrambled

1000 times,B is computed each time, and the accumulative

probability is then used to judge the significance, with 90%

chosen as the significant level. The results are found to be

robust if we modify either the latitude/longitude range of

the ocean basins and vegetation regions or the spatial res-

olution of the analyzed data.

b. Dynamical method

In a climate model, the feedback coefficient m can be

estimated through a dynamical assessment using en-

semble sensitivity experiments in which the forcing field

V(t) is prescribed. Here m, instead of B, is used to rep-

resent the feedback coefficient because m from the dy-

namical assessment represents the feedback from a

single forcing, while B from the statistical assessment

represents feedbacks from all forcings. Therefore,

A(t)5mV(t)1N(t) . (7)

Theoretically, the ensemble mean of the atmospheric

internal variability should be zero, or fN(t)5 0g, where
the braces represent the ensemble mean. Therefore, the

ensemble mean of the atmospheric response is

fA(t)g5mfV(t)g , (8)

and the feedback coefficient m is computed as the ratio

of the ensemble mean of the atmospheric response to

the ensemble mean of the forcing:

m5
fA(t)g
fV(t)g . (9)

To eliminate the oceanic impacts on the atmosphere

completely and to minimize computation time, a fixed

SST experiment (CLM_SST) is first conducted. In this

50-yr simulation, the atmosphere and land are dynami-

cally active, and the boundary conditions for the ocean

and sea ice are held fixed to the climatology from the
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CTL run.Monthly restart files are saved so as to perform

the dynamic experiments.

A set of 50 ensemble experiments (CAP_LAI) is

conducted with CCSM3.5. Beginning on 1 July of each

model year in the CLM_SST run, LAI in the NAMR is

capped at or below 2m2m22 during the whole month.

This experiment design is further explained in section

4b. NAMR rather than NABF is chosen to do the dy-

namical experiment, first, because of the large simulated

LAI interannual variability there (it is very small in

NABF) and, second, because the atmosphere is influ-

enced by both vegetation and SST (Wang et al. 2013).

c. Relationship between statistical and dynamical
assessments

Statistical and dynamical methods have their own

advantages and disadvantages and are complementary

to each other. The statistical method can be used on both

observational and model data, while the dynamical

method is limited to models. Compared with conducting

dynamical experiments, the statistical method is easily

applied and computationally inexpensive. Unlike with

assumptions made in the GEFA statistical method, such

as the linear relationship between the forcing and re-

sponse fields, almost no assumptions are made with the

dynamical method. In this study, these two methods are

applied as follows. First, the statistical method is applied

to the CTL run to analyze the vegetation influence on

the atmosphere. Second, in the same model, dynamical

experiments are performed to analyze vegetation influence

on the atmosphere. The results from both statistical and

dynamical approaches in the model are compared: if they

are found to be consistent, then it demonstrates that the

statistical method, GEFA, is valid. Finally, GEFA is ap-

plied with confidence to the observations in order to un-

derstand the observed influence of vegetation anomalies on

North American climate.

4. Validation of GEFA in CCSM3.5

Although GEFA was previously validated using the

fully coupled model, CCSM3.5, by Wang et al. (2013),

the current study represents its first application to veg-

etation feedbacks. Therefore, it is necessary to first

validate the method in a model before applying it to

observations. The validation will be performed for the

NAMR in a two-step process. First, the ability of GEFA

to separate the vegetation influence from that of the

ocean is demonstrated by examining the influences of

NAMR vegetation on the atmosphere in the CTL run

using statistical methods, GEFA and EFA. The dis-

crepancy between GEFA and EFA indicates the oce-

anic influence. Second, statistical GEFA results from the

CTL run are compared with results from the dynamical

experiments.

a. Statistical assessment

In this part, the influence of NAMR vegetation on the

atmosphere in the CTL run is studied using statistical

methods, GEFA and EFA. The EFA assessment is

used for comparison and highlighting the impacts of

oceanic forcings. This is because EFA is a univariate

method, so the computed atmospheric response to the

vegetation forcing is corrupted by oceanic forcings.

GEFA is a multivariate method, allowing for the elimi-

nation of oceanic forcings prior to calculating vegetation

forcings on the atmosphere. The simulated regional-

mean time series of NAMR LAI is used to represent the

forcing field of NAMR vegetation (Fig. 4a). In this sec-

tion, the feedback coefficient is multiplied by the stan-

dard deviation of simulatedmonthlyLAI anomaly, which

is 1.26m2m22.

The monthly atmospheric response to the NAMR veg-

etation forcing is analyzed in the model and presented as

a regional mean since the simulated atmospheric response

is mainly local. To the first order, both EFA and GEFA

results indicate NAMR vegetation has the strongest sim-

ulated impacts on surface air temperature and precip-

itation during summer [June–September (JJAS)], with

peaks in July (Fig. 2). A study by Xue et al. (2010) also

concluded that the impact of NAMR vegetation biophys-

ical process on precipitation is strongest in June–August

FIG. 2. Simulated monthly response of regional-mean local sur-

face air temperature (lines with squares, 8C) and precipitation

(lines with circles, mmday21) to the NAMR forcing in the CTL run

using both GEFA (solid lines) and EFA (dashed lines). The

markers indicate 90% statistical significance, based on Monte

Carlo tests. Values in this figure indicate the simulated atmospheric

response to a one standard deviation increase in LAI across the

NAMR.
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(JJA) and weakest in December–February (DJF) (Fig. 3

inXue et al. 2010).An increased vegetation amount results

in local cooling and an increase in precipitation during

summer. However, there are also significant differences

between GEFA and EFA for both temperature and

precipitation, with the greatest difference during winter.

During winter, the nearly zero temperature response in

GEFA suggests that NAMR vegetation does not signifi-

cantly affect surface air temperature, while the modestly

negative temperature response in EFA suggests that

NAMR vegetation has a significantly negative impact on

temperature. The discrepancies between GEFA and

EFA imply a significant impact from forcings other than

the NAMR vegetation, most likely the oceanic forcings.

The discrepancies also suggest the limited accuracy of the

univariate EFA approach, as applied by Notaro et al.

(2006) and Liu et al. (2006).

Since the discrepancies are largest in January, we will

focus on that month to understand the oceanic impact on

the atmosphere. According to EFA, an increase in LAI

over the NAMR supports an increase in temperature to

the north of 508Nand a decrease over the southernUnited

States (Fig. 3a). However, the GEFA result suggests that

the NAMR vegetation only exerts a significant local

impact on surface air temperature (Fig. 3b). Most likely,

the ENSO mode can explain the decrease in surface air

temperature over the southern United States (Fig. 3c)

(Wang et al. 2013), and the North Pacific second EOF

mode (NP2) can explain the increase in surface air

temperature north of 508N (Fig. 3d), rather than a non-

local vegetation feedback. Through comparing GEFA

and EFA results, it is shown that the GEFA method can

separate the vegetation impact from that of the ocean.

The response of surface air temperature to the ocean

forcing has been demonstrated in an accompanying pa-

per (Wang et al. 2013).

Now, we shift the focus to summer when NAMR veg-

etation has the strongest impact on both air temperature

and precipitation in the model. The response spatial pat-

terns for June, July, and August are very similar (figure

not shown) except that the response strengths are differ-

ent (Fig. 2). Here, we focus on July. According to GEFA,

FIG. 3. Simulated response of surface air temperature (8C) to the NAMR vegetation forcing in the CTL run using (a) EFA and

(b) GEFA in January. Simulated response of surface air temperature (8C) to (c) TP1 (ENSO) and (d) NP2 forcing in the CTL run using

GEFA. Shading indicates 90% statistical significance, based onMonte Carlo tests. Spatial patterns of SST anomalies for TP1 and NP2 are

shown in inset maps in (c) and (d), respectively. Dashed boxes indicate the NAMR.
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the enhanced vegetation amount over the NAMR in-

creases local and downstream simulated precipitation up

to 0.70mmday21 (Fig. 4d) and reduces the surface air

temperature locally up to 21.888C (Fig. 4c). To eluci-

date the responsible mechanism for these feedbacks in

CCSM3.5, the regional-mean response of each compo-

nent of the surface energy budget is analyzed usingGEFA.

According to the surface energy budget (Fig. 5), the neg-

ative surface air temperature anomaly is caused by both an

increase in net latent heat flux (LH) [primarily canopy

transpiration (FCTR)] and decrease in net shortwave

radiation (SW) [primarily downward solar radiation

(SWY)]. The lowered surface air temperature corre-

sponds to decreased net sensible heat flux (SH) [from

both the canopy (SH_V) and ground (SH_G)] and de-

creased net longwave radiation (LW) [mainly emitted

longwave radiation (LW[)].
The statistical GEFA results suggest the following

mechanism for the NAMR in CCSM3.5. When LAI is

increased, canopy transpiration and evaporation are en-

hanced (Fig. 4b), given that the expanded leaf area can

interceptmore precipitation. This cools the surface air and

FIG. 4. Results from the CTL run using the GEFA statistical assessment for July. (a) Spatial pattern of NAMR forcing, which is the

regression pattern of regional-mean LAI to itself (unitless). Response pattern of (b) evapotranspiration rate (mmday21), (c) surface air

temperature (8C), and (d) precipitation (mmday21). Shading indicates 90% statistical significance, based on a t test in (a) andMonte Carlo

tests in (b)–(d). Dashed boxes indicate the NAMR.
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increases atmospheric moisture content and relative hu-

midity. Themoistened atmosphere helps the formation of

low-level clouds (not shown) and precipitation, which di-

minish downward solar radiation and further cool the sur-

face air. To detect whether the change in precipitation is

primarily caused by local moisture recycling or remote

moisture fluxes, the response in total evapotranspiration

rate is compared to that of precipitation. The total evapo-

transpiration rate is increased locally (Fig. 4b, regional

mean: 0.34mmday21) at a greater rate than precipitation

(Fig. 4d, regional mean: 0.25mmday21), suggesting that an

inefficient moisture recycling dominates instead of remote

moisture resources. The resulting moisture divergence (not

shown) is further evidence that local moisture recycling is

more important than remotemoisture fluxes into the region

during July, in response to elevated vegetation amount. In

CCSM3.5, the North American monsoon onsets in July

but does not peak until September. It is found that

vegetation has more influence on the atmosphere dur-

ing the onset of the North American monsoon, which

is consistent with Notaro et al. (2011) and Notaro

and Gutzler (2012). The strong evapotranspiration–

precipitation response is likely caused by the wet bias

and excess vegetation amount simulated in the model

(Notaro and Gutzler 2012).

The statistical assessment demonstrates the GEFA’s

ability to separate the vegetation impact from that of the

ocean in the CTL run, but this validation approach is not

as direct as dynamical experiments. Therefore, in sec-

tion 4b, dynamical experiments are conducted, and in

section 4c, the results from the statistical and dynamical

assessments are compared.

b. Dynamical assessment

According to the statistical assessment, vegetation in

the NAMR has the strongest impact on the atmosphere

during summer, so the dynamical assessment focuses on

July. In the CAP_LAI ensemble experiments, LAI is

capped at or below 2m2m22 across the NAMR through-

out the entire month since the simulated interannual

standard deviation of LAI is about 2m2m22. An upper

limit, rather than a lower limit, is assigned since the model

generally simulates excessive LAI. It should be noted that

since LAI of forests is larger than that of grass, CAP_LAI

by 2 will have more effect on forest. By comparing the

climate in Clim_SST and CAP_LAI, both of which use

fixed SST, the simulated impact of a change in LAI across

the NAMR can be dynamically assessed.

In comparing Clim_SST with CAP_LAI, LAI in-

creases significantly in the NAMR, with no significant

FIG. 5. Results from the CTL run using the GEFA statistical assessment. Regional-mean

response of surface energy fluxes (Wm22) to the NAMR forcing in July. Gray bars indicate the

main terms of the surface energy budget, and blank bars are the components of the gray bar to

their left. From left to right are net downward shortwave (SW), incident shortwave (SWY),
reflected shortwave (SW[), net downward longwave (LW), downward longwave (LWY),
emitted longwave (LW[), sensible heat flux from surface (SH), sensible heat flux from vege-

tation (SH_V), sensible heat flux from ground (SH_G), latent heat flux to the atmosphere

(LH), canopy transpiration (FCTR), canopy evaporation (FCEV), ground evaporation

(FGEV), and heat flux into soil (FGR). The underscored terms indicate 90% statistical sig-

nificance based on Monte Carlo tests. Values in this figure represent surface energy flux

changes due to a one standard deviation increase in LAI across the NAMR.
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change outside of the NAMR (Fig. 6a). One of the ad-

vantages of dynamic experiments is that onemaymodify

vegetation in a specific region and isolate the climatic

response. When LAI increases, the surface air temper-

ature decreases locally (Fig. 6c) and precipitation in-

creases both locally and downstream (Fig. 6d). The

dynamical response patterns in surface air temperature

and precipitation are qualitatively consistent with the

statistical GEFA results (cf. Figs. 6c,d and Figs. 4c,d). By

comparing the change in regional-mean surface energy

budget (Fig. 7) and moisture divergence (not shown) be-

tween both methods, it is evident that the proposed

mechanism is consistent, with the reduction in surface air

temperature mainly caused by increased net latent heat

flux (primarily FCTR) and the increased precipitation

mainly due to local moisture recycling. The comparison of

the response strengths between the statistical and dy-

namical assessments is discussed in section 4c.

c. Comparison of statistical and dynamical
assessments

In sections 4a and 4b, the influence of vegetation in

the NAMR on the atmosphere is assessed in CCSM3.5

using two independent methods: the statistical method

FIG. 6. Results of dynamical assessment, based on CLM_SST 2 CAP_LAI: changes in (a) LAI (m2m22), (b) evapotranspiration rate

(mmday21), (c) surface air temperature (8C), and (d) precipitation (mmday21) in July. Shading indicates 90% statistical significance,

based on t tests. Dashed boxes indicate the NAMR.
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(GEFA) and the dynamical method (ensemble experi-

ment). The two assessments qualitatively agreewith each

other (cf. Fig. 4 versus Fig. 6 and Fig. 5 versus Fig. 7). The

results of the statistical assessment (Figs. 4b–d and 5) are

based on the multiplication of the feedback coefficient

with the standard deviation of LAI, thereby quantifying

the atmospheric response to a one standard deviation

increase in LAI. The results of the dynamical assessment

(Figs. 6b–d) are computed as the difference between

Clim_SST and the CAP_LAI experiments, thereby in-

dicating the atmospheric response to the LAI anomaly in

Fig. 6a. To directly compare the two assessments, the

dynamical results must be divided by the LAI change

and multiplied by the standard deviation of LAI. Since

the simulated climatic response to NAMR vegetation is

mainly local, the regional-mean responses in surface air

temperature, precipitation, and total evapotranspiration

are summarized in Table 1. The statistical feedback as-

sessments are always larger than that of the dynamical

assessments, although they are of the same order of

magnitude and direction. The discrepancy in magnitude

between the two assessments can likely be explained by

the indirect vegetation–soil moisture feedback (Notaro

et al. 2008; Liu et al. 2010). In the NAMR, LAI and soil

moisture are positively correlated. The influence of

vegetation on the atmosphere from the CTL run is the

sum of that of vegetation and soil moisture, while from

the CAP_LAI run, it is the pure vegetation influence.

Since LAI and soil moisture are so closely correlated, the

GEFA method cannot separate the impact of LAI from

that of soil moisture. A dynamic experiment in which

LAI and soil moisture decrease together may match

GEFA results closer.

Overall, by applying two independent methods in the

model it is shown that GEFA can determine the atmo-

spheric response pattern to a specific vegetation forcing

in agreement with dynamical experiments. In the next

section, we will apply GEFA to the observational data.

5. Observational assessment of vegetation
influences

In the previous section, the vegetation impact on the

atmosphere in the NAMR was systematically assessed

using both statistical and dynamical methods in CCSM3.5

and found to be in agreement, thereby validating the sta-

tistical approach GEFA. In this section, the observed in-

fluence of vegetation on the atmosphere is examined using

this statistical approach for both the NAMR and NABF.

It is more difficult to explore the mechanism for

the atmospheric response to vegetation forcing using

FIG. 7. As in Fig. 5, but for the results of dynamical assessment: CLM_SST2 CAP_LAI and

significance is checked with t tests. Values in this figure represent surface energy flux changes

due to the increase one standard deviation of LAI.

TABLE 1. Regional-mean response of surface air temperature,

precipitation, and total evapotranspiration to the NAMR vegeta-

tion forcing according to the statistical and dynamical methods in

CCSM–DGVM for July.

Variable

Statistical

assessment

Dynamical

assessment

Surface air temperature (8C) 20.66 20.34

Precipitation (mmday21) 0.25 0.10

Total evapotranspiration

rate (mmday21)

0.34 0.22
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observational, remote sensing, and reanalysis data than

with a climate model. Reanalysis data is generated using

a land model whose vegetation condition is specified

using an observed climatological vegetation index. For

example, the daily green vegetation fraction in NARR

data is derived from the National Environmental Sat-

ellite, Data, and Information Service (NESDIS) 5-yr

global monthly climatological vegetation index (Mesinger

et al. 2006). Therefore, there is no interannual variability

in the reanalysis vegetation index. As observations are

assimilated during reanalysis, model variables such as

surface air temperature, precipitation, sea level pressure,

geopotential height, andwind are influenced by vegetation

interannual variability. Therefore, the mechanism of the

atmospheric response can be deduced from these vari-

ables. Model variables such as evapotranspiration and

albedo are poorly constrained since no assimilation is

done during reanalysis. It is better to use satellite-derived

evapotranspiration and albedo to do the mechanism

analysis. The record length of the remotely sensed NDVI

(25 yr) and other satellite-derived variables, such as

evapotranspiration (24 yr), downward/upward solar radi-

ation at surface, and cloud fractional cover (23 yr), is short,

and such a short time series can induce large sampling

errors. To increase the degree of freedom and decrease

the sampling error, only the seasonal-mean response

patterns are shown in this study. Also, three atmospheric

datasets are used to check the robustness, and through

comparing the statistical results using these different da-

tasets, an ensemble estimate of the atmospheric response

strength is formulated. Further understanding will rely on

model sensitivity experiments and field experiments.

a. Influence of NAMR vegetation on the atmosphere

The observed regional-mean time series of NAMR

NDVI is used to represent the forcing field of NAMR

(Fig. 10a). In the following discussion, the feedback co-

efficient ismultiplied by the standard deviation of observed

NDVI, which is 0.017 (unitless). The observed vegetation

types in the NAMR include shrubland and grassland in the

westernUnited States and evergreen and deciduous forests

along west coast of Mexico (Fig. 1a).

The three datasets consistently show that the observed

response of surface air temperature and precipitation

to the NAMR vegetation forcing is strongest during JJA

(Fig. 8a). During JJA, an enhanced vegetation amount

leads to cooler conditions across north central North

America and the western United States and warmer con-

ditions across the Gulf states (Figs. 9a,c,e). The peak

cooling ranges from 20.978C in PRISM to 21.208C in

UDEL, while the peak warming ranges from 10.968C in

CRU to 11.028C in UDEL. An increase in NAMR veg-

etation amount leads to enhanced precipitation in the

north central United States and a precipitation deficit over

the Gulf states (Figs. 9b,d,f). The strongest precip-

itation surplus ranges from 10.43mmday21 in UDEL

to 10.58mmday21 in CRU over the western United

States, while the most severe precipitation deficit ranges

from 21.06mmday21 in PRISM to 21.23mmday21 in

CRU over the Gulf states.

The NAMR vegetation influences the atmosphere

mainly through both hydrological and roughness feed-

backs during JJA.Enhanced vegetation amount inNAMR

slightly increases local evapotranspiration (Fig. 10b),

mainly across the southwestern United States, which fa-

vors more precipitation there. The main determinant of

the change of land surface roughness is vegetation height

(Sud et al. 1988). Increased vegetation amount in the

FIG. 8. (a) Regional-mean (1158–102.58W, 358–458N) observed

seasonal precipitation response (mmday21) to the NAMR vege-

tation forcing. (b) Regional-mean (1158–1008W, 408–608N) ob-

served seasonal surface air temperature response (8C) to the

NABF vegetation forcing. Gray, black, and blank bars represent

results from UDEL, CRU, and PRISM, respectively. Underscored

seasons indicate 90% statistical significance, based onMonte Carlo

tests. Values in this figure indicate the observed atmospheric re-

sponse to a one standard deviation increase in NDVI.
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NAMR leads to greater surface roughness, which favors

a local low pressure anomaly (Fig. 10d) and air conver-

gence near the surface. At 700hPa, the low pressure

anomaly is further generated over the southwestern and

north central United States (Fig. 11a), which is associated

with ascending motion (not shown) and more cloud cover

(Fig. 11b), supporting an increase in precipitation.The local

low pressure anomaly further generates an atmospheric

teleconnection response, consisting of a high pressure

anomaly over the southeastern United States, corre-

sponding to descending motion, less cloud cover (Fig.

11b), and a precipitation deficit. The southwesterly wind

anomaly (Fig. 11b, green arrow) brings Pacific moisture

to the southwestern United States, leading to a pre-

cipitation surplus. The northerly wind anomaly (Fig. 11b,

red arrow) advects dry continent air and also blocks

moisture flow from the Gulf of Mexico, thereby drying

the southeastern United States.

Generally, the observed response pattern of surface

air temperature is opposite of the precipitation response

(Fig. 9). Enhanced (diminished) precipitation is associ-

ated with more (less) cloud cover (Fig. 11b), which

FIG. 9. Observed response of (left) surface air temperature (8C) and (right) precipitation (mmday21) to the NAMR vegetation forcing

during JJA using (a),(b) UDEL, (c),(d) CRU, and (e),(f) PRISM. Shading indicates 90% statistical significance, based on Monte Carlo

tests. Dashed boxes indicate the NAMR. Spatial correlations between the UDEL and CRU, UDEL and PRISM, and CRU and PRISM

response patterns are 0.95, 0.95, and 0.97, respectively, for surface air temperature and 0.75, 0.78, and 0.79 for precipitation.
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decreases (increases) the downward solar radiation (not

shown) and cools (warms) the air.

b. Influence of NABF vegetation on the atmosphere

The regional-mean time series of observed NABF

NDVI is used to represent the forcing field of the NABF

(Fig. 13a). In the subsequent discussion, the feedback

coefficient is multiplied by the standard deviation of this

time series, which is 0.023 (unitless). This forcing field is

highly correlated with the entire boreal forest belt across

North America (Fig. 1a).

All three datasets indicate that the observed influence

of NABF vegetation on both surface air temperature

and precipitation is strongest during MAM (Fig. 8b).

The response pattern of surface air temperature is con-

sistent with past studies (Bonan et al. 1992; Snyder et al.

2004; Notaro et al. 2006; Notaro and Liu 2008), in-

dicating a local positive feedback between boreal forest

cover and surface air temperature. Enhanced vegetation

FIG. 10. (a) Spatial pattern of NAMR vegetation forcing, which

is the regression pattern of observed regional-mean NDVI to it-

self (unitless). Observed response pattern of (b) satellite-derived

total evapotranspiration (mmday21), (c) albedo from NASA

SRB, and (d) sea level pressure (hPa) from NARR to the NAMR

vegetation forcing during JJA. Shading indicates 90% statistical

significance, based on Monte Carlo tests. Dashed boxes indicate

the NAMR.

FIG. 11. Observed response pattern of (a) 700-hPa geopoten-

tial height (m) and corresponding wind (m s21) from NARR and

(b) cloud cover fraction from NASA SRB to the NAMR vegeta-

tion forcing during JJA. Shading and thick green arrows indicate

90% statistical significance, based on Monte Carlo tests. Dashed

boxes indicate the NAMR. Red and green arrows in (a) indicate

negative and positive anomalies of moisture flux, respectively.
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greenness leads to local warming, particularly around the

central United States–Canadian border (Figs. 12a,c,e). The

peak warming ranges from11.348C in PRISM to11.418C
in CRU. The positive surface air temperature anomaly is

mainly caused by a decrease in surface albedo (Fig. 13c,

peaks at20.088), which is consistent with the field study by

Betts andBall (1997).Although greater evapotranspiration

(Fig. 13b) should contribute cooling near the surface, this

response is weak compared with the warming effect of al-

bedo during spring (Brovkin 2002).

Little is known about the feedback of NABF vegeta-

tion on precipitation. In this study, we found that NABF

vegetationmainly has nonlocal impacts on precipitation.

Positive anomalies in NABF vegetation lead to en-

hanced precipitation in the western United States, with

peaks ranging from 10.56mmday21 in CRU to

0.61mmday21 in PRISM, and reduced precipitation in

the eastern United States, with peaks ranging from

21.04mmday21 in UDEL to 21.33mmday21 in CRU

(Figs. 12b,d,f). The nonlocal precipitation response can

be explained by an anomalous atmospheric circulation.

The atmospheric response to the surface warming has

a nearly equivalent barotropic structure (Figs. 14a,b),

with an anomalous trough over the Gulf of Alaska,

anomalous ridge over the NABF, and anomalous trough

over the subtropical North Atlantic, similar to a positive

PNA pattern. The mechanism of this warm ridge re-

sponse is likely related to the dominant atmospheric

response associated with eddy–mean flow interaction in

the mid- to high latitudes (Peng et al. 1995; Peng and

Whitaker 1999), which is beyond the scope of this paper.

A precipitation surplus is generated over the western

United States due to an anomalous southwesterly wind

(Fig. 14b, blue arrow) that advects moist air from the

Pacific inland and more cloud cover (Fig. 14c). The

northerly wind anomaly over the eastern United States

FIG. 12. As in Fig. 9, but indicating the response to the NABF vegetation forcing during MAM. Spatial corre-

lations between the UDEL and CRU, UDEL and PRISM, and CRU and PRISM response patterns are 0.95, 0.97,

and 0.95, respectively, for surface air temperature and 0.87, 0.89, and 0.92 for precipitation.
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(Fig. 14b, orange arrow) brings dry continental air and

less cloud cover to the eastern United States and weakens

the flow from the Gulf of Mexico (Fig. 14c), leading to

downstream drying. The local precipitation response is

the result of competition among vegetation hydrological,

roughness, and thermal feedback. Elevated vegetation

amount increases evapotranspiration, which tends to

moisten the local atmosphere and favors more local

precipitation. Increased roughness caused by more vege-

tation induces a local low pressure anomaly, which also

favors more local precipitation. However, these local

FIG. 13. As in Fig. 10, but indicating the response to the NABF

vegetation forcing during MAM.

FIG. 14. Observed response pattern of (a) 250-hPa and (b) 700-hPa

geopotential height (m) and corresponding wind (m s21) from

NARRand (c) cloud cover fraction fromNASASRB to theNABF

vegetation forcing during MAM. Shading and thick green arrows

indicate 90% statistical significance, based on Monte Carlo tests.

Dashed boxes indicate the NAMR. Orange and blue arrows in

(b) indicate negative and positive anomalies of moisture flux,

respectively.
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precipitation surpluses are cancelled by the anomalous

descending motion of the air caused by the vegetation

thermal feedback (albedo effect).

6. Conclusions and discussion

The influence of vegetation on the atmosphere across

North America is assessed using the multivariate sta-

tistical method, GEFA, in three observational datasets.

Isolating vegetation feedbacks is challenging not only

because the influence of vegetation on the atmosphere is

modest compared with that of the atmosphere on vege-

tation, but also because both vegetation and the oceans

can influence the atmosphere. This is the first systematic

study to quantify and understand vegetation local and

nonlocal impacts on the atmosphere under the premise of

first removing oceanic impacts. Before applying the sta-

tistical method to observational data, it is first applied to

a CCSM3.5 fully coupled control run and validated against

dynamical experiments in the same model. By comparing

results obtained through both statistical (GEFA) and dy-

namical (ensemble experiments) assessments, it is dem-

onstrated that the GEFA can exclusively distinguish the

influence of vegetation on the atmosphere. We next focus

on observed vegetation feedbacks in two contrasting re-

gions: the North Americanmonsoon region (NAMR) and

North American boreal forest (NABF).

The observed influence of vegetation in the NAMR

on the atmosphere, characterized by both roughness and

hydrological feedbacks, peaks in JJA and includes both

local and nonlocal effects. When the vegetation amount

is increased in the NAMR, the vegetation evapotrans-

piration is enhanced, which favors local precipitation.

Elevated vegetation amount also increases local surface

roughness, which leads to a local low pressure anomaly

and further generates an atmospheric teleconnection

response downstream. This anomalous atmospheric

circulation and corresponding moisture advection cause

a precipitation surplus over the western and central

United States and precipitation deficit over the Gulf

states. The response of surface air temperature is mainly

determined by the change in downward solar radiation

and cloud cover fraction, which is related to the pre-

cipitation change.

The observed influence of vegetation in the NABF on

the atmosphere, characterized by a thermal feedback, is

greatest during MAM. The boreal forest has a local ef-

fect on temperature and both a local and nonlocal effect

on precipitation. By lowering the surface albedo, an

increase in vegetation across the NABF can warm

the air locally. The atmospheric response to this warm-

ing consists of a local equivalent barotropic high and

remote equivalent barotropic lows near Alaska and the

subtropical North Atlantic. This anomalous atmo-

spheric circulation and associated moisture advection

lead to drying in the eastern United States and greater

precipitation in the western United States.

Vegetation influence on the atmosphere in NAMR

and NABF is unique from each other. In NAMR, the

vegetation influence is strongest during JJA at the onset

of the North America monsoon since water supply is

limited then, while in NABF it peaks in MAM because

the large albedo difference between vegetation and

snow and shortwave radiation is significant. In NAMR,

the vegetation hydrological and roughness feedback is

dominant in NAMR since vegetation activity is strong,

while thermal feedback is dominant in NABF due to the

albedo difference between boreal forest and snow. In

NAMR, vegetation primarily influences both local and

nonlocal precipitation and then consequently affects the

surface air temperature, while in NABF vegetation first

influences local surface air temperature and then the

nonlocal precipitation.

The observed feedback results are found to be rela-

tively insensitive to the size of the study region (e.g.,

NAMR or NABF). Although wemade some progress in

understanding vegetation feedbacks, it should be kept in

mind that the statistical method used in this study is

based on linear theory; however, in the real world,

vegetation may produce nonlinear feedbacks (Zhou

et al. 2003). Therefore, the results attained here should

be viewed as first-order estimates. The accuracy of the

statistical assessment using observation data is limited

by observational errors and the short duration of the

observational record. To estimate how many years of

data are needed for stable GEFA results, spatial corre-

lations of GEFA response pattern estimates using

a different length of data and estimates using the full

100-yr data are computed (Fig. 15). The 35-yr data is

sufficient for surface air temperature to reach a 0.9

correlation with the 100-yr result, while 60-yr data is

needed for precipitation to reach a 0.9 correlation with

the 100-yr result. The 0.9 correlation is chosen because

the correlation coefficient, as a function of length of

data, reaches an asymptote around that value. Results

using only 25-yr data contain a large sampling error;

however, that is the best we can achieve at this time with

observations. Besides SST and vegetation, there are still

other forcings that impact the atmosphere, and we will

consider adding them when time and data permit.

Although the climate model is only used to validate

the statistical GEFA method, a comparison of the at-

mospheric responses to the vegetation forcing between

observations and the model can aid in understanding

the model’s performance. Both in the model and ob-

servations, the atmospheric response to the NAMR
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vegetation forcing is strongest during JJA. The atmo-

spheric response is mainly local in the model (Fig. 4) but

nonlocal in the observations (Fig. 9). In the model,

vegetation hydrological feedback dominates, while in

the observations, both vegetation roughness and hy-

drological feedbacks play an important role. This is

likely due to the wet bias and excessive vegetation bias

simulated over the NAMR by CCSM3.5 (Notaro et al.

2011; Notaro and Gutzler 2012). Owing to the simulated

gap in boreal forest, and the zero interannual variability of

evergreen forest, the vegetation interannual variability in

NABF is very small; the impact of the boreal forest on the

atmosphere cannot be studied using this model. In short,

the model still needs to be improved. Using theUniversity

ofCalifornia, LosAngelesAGCM,Xue et al. (2010) found

that a comprehensive vegetation biophysical process can

reduce the model bias significantly. To have a better un-

derstanding of land–atmosphere interaction, a model in-

tercomparison study of the Global Land–Atmosphere

Coupling Experiment (GLACE) has been done (Koster

et al. 2006). With a longer time series and improved

model simulations, vegetation–atmosphere feedbacks

can be better understood.
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