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ABSTRACT

Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate

research. For a complex system such as a coupled ocean–atmosphere general circulationmodel, the sensitivity

and response of a model variable to amodel parameter could vary spatially and temporally. Here, an adaptive

spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from

a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting ‘‘good’’

values from the spatially varying posterior estimated parameter values; these good values are then averaged

to give the final global uniform posterior parameter. In comparison with existing methods, the ASA pa-

rameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.

1. Introduction

Parameter estimation using ensemble-based filters

(Anderson 2001) is emerging as a promising approach to

optimize parameters in a complex model (Annan and

Hargreaves 2004; Hacker and Snyder 2005; Annan et al.

2005a,b; Ridgwell et al. 2007; Hacker and Snyder 2005;

Aksoy et al. 2006a,b; Tong and Xue 2008a,b; Nielsen-

Gammon et al. 2010; Hu et al. 2010; Zhang et al. 2012;

Zhang 2011a,b; Wu et al. 2012, 2013; Liu et al. 2014,

manuscript submitted to J. Climate). In parameter esti-

mation in a complex system, such as a coupled ocean–

atmosphere general circulation model (CGCM), one

common issue is sampling error accumulation when

a large number of observations are used to update

a single-value parameter sequentially (Aksoy et al. 2006a).

To address this issue, Aksoy et al. (2006a) proposed

a spatial updating technique that transforms a single-value

parameter into a two-dimensional field and updates the

field spatially, so that localization in filtering can limit the

observational error accumulation. The final model pa-

rameter after each analysis has been derived in two

methods. In the first method, the globally uniform pa-

rameter value is recovered using a spatial average of the

entire spatially varying parameter field (SA;Aksoy et al.

2006a,b). In the second method, the spatially varying

parameters are allowed to vary spatially after each

analysis, in the so-called geographically dependent pa-

rameter optimization (GPO; see Wu et al. 2012, 2013).

Here, our objective is the recovery of the spatially

uniform parameter value. We propose an average

method called the adaptive spatial average method

(ASA). The ASA is refined from the SA method to in-

crease the efficiency of parameter estimation. The ASA

uses the ensemble spread as the criterion for selecting

‘‘good’’ parameter values from the spatially varying

parameter estimation; these good values are then aver-

aged to give the final posterior parameter. Liu et al.
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(2014, manuscript submitted to J. Climate) have recently

shown some examples of successful ASA estimation in

a CGCM. In this paper, we will examine in detail the

ASA methodology for parameter estimation in a CGCM

using ensemble-based filter. The e-folding solar penetra-

tion depth (SPD) is used as the major parameter for es-

timation in this study. We will show that, compared with

the SAmethod and the GPOmethod, our proposedASA

produces a faster convergence rate for parameter esti-

mation. The paper is organized as follows. Section 2

briefly describes the parameter estimation scheme and the

CGCM used in this study. Section 3 shows the model

sensitivity to the parameter SPD. Section 4 discusses the

ASA method. The ASA method is compared with the

GPOmethod and the SAmethod in section 5.A summary

and further discussion are given in section 6.

2. Model and method

a. Fast Ocean Atmosphere Model

Ourmodel, the FastOceanAtmosphereModel (FOAM;

Jacob 1997) is a CGCM with an atmospheric component

having an R15 spectral (7.58 longitude, 48 latitude, and 18

layers) resolution. The ocean component is a z-coordinate

modelwith a resolution of 2.88 longitude, 1.48 latitude, and
24 layers. Without flux adjustment, the fully coupled

model has been run for over 6000 yr with no apparent

drift in tropical climate (Liu et al. 2007a). In spite of its

low resolution, FOAM has a reasonable tropical cli-

matology (Liu et al. 2003), ENSO variability (Liu et al.

2000), and Pacific decadal variability (Wu et al. 2003; Liu

et al. 2007b).

b. Data assimilation scheme

Wewill use a particular ensemble Kalman filter (EnKF)

scheme, the ensemble adjustment Kalman filter (EAKF;

Anderson 2001, 2003) in this study. Model parameters will

be estimated simultaneously with the state variables by

augmenting state variables with model parameters (Banks

1992a,b; Anderson 2001).

The e-folding SPD is used as the major testing param-

eter for estimation. Solar attenuation in the ocean is

a function of the amount of biomass in the upper layers of

the ocean (Smith and Baker 1978; Ohlmann et al. 2000).

Previous studies suggest that solar penetration can have

a significant impact on the surface climate in a climate

model (Schneider and Zhu 1998; Nakamoto et al. 2001;

Murtuguddeet al. 2002;Ballabrera-Poyet al. 2007;Anderson

et al. 2007). In particular, some modeling studies found

that a deeper solar attenuation leads to warming in the

tropical Pacific annual mean SST, which may then re-

duce the cold bias in the equatorial Pacific in a coupled

ocean–atmosphere model (Murtugudde et al. 2002;

Ballabrera-Poy et al. 2007; Anderson et al. 2007).

Following Murtugudde et al. (2002), the downward

solar radiation I(z) at depth z in FOAM is calculated as

I(z)5 I(0)ge(2z/h) , (1)

where I(0) is the total incident solar radiation at the sea

surface and g 5 0.47 (Frouin et al. 1989) represents the

fraction of total solar radiation in the photosynthetically

available radiation band (wavelengths from380 to 700nm).

The remaining fraction of solar radiance is fully absorbed

in the topmodel layer of 20m.Also,h is the e-folding depth

of the solar penetration depth, which will be estimated in

our experiments. In the real world, the SPD can be treated

as a state variable, too, because it can be calibrated using

the remote sensing observation of ocean color. Here,

however, it is treated as a model parameter that will be

estimated using conventional observation of sea surface

temperature (SST) and sea surface salinity (SSS).

In this paper, we assume the ‘‘truth’’ SPD has a glob-

ally uniform value of 17m, and the truth simulation is

performed with this SPD. The first guess of SPD is as-

sumed to be 20m with an uncertainty of 3m (standard

deviation). The observation for the assimilations are the

monthly mean SST and SSS, which are generated by

adding a Gaussian white noise to the corresponding

truth states at each grid point. The observational error

scales (standard deviation) are 1K for SST and 1 psu for

SSS. An ensemble size of 30 is used in all of our exper-

iments. A 30-yr simulation from the control truth run is

used for the initialization of the ensemble, with the re-

start file of 1 January of each year used as the initial

condition for each ensemble member. For the state

variable, the upper eight layers of ocean temperature

and salinity (0–235m) are updated by the observations.

The Gaspari and Cohn (1999) covariance localization is

used with an influence radius of three horizontal grid

points for both state variables and the parameter SPD.

To extract signal-dominant state-parameter covariance,

the data assimilation scheme for enhancive parameter

correction (DAEPC) is applied (Zhang et al. 2012).

Before the parameter estimation is activated, the data

assimilation is performed in a spinup period of 2 yr

during which only the state variables are estimated.

3. Model sensitivity with respect to solar
penetration depth

We first investigate the model sensitivity to the solar

penetration depth. Two types of parameter sensitivities

need to be considered when DAEPC is used to improve

the model climate. The first type is the sensitivity of the

1 JUNE 2014 L IU ET AL . 4003



response of the model climatology to the change of the

parameter; this sensitivity shows if the final model cli-

mate can be improved by tuning this specific parameter.

The ocean surface climates of FOAM are significantly

different between a deeper SPD (20m) simulation and

a shallower (17m) one, characterized by a warming of

up to over 0.5K in the tropical ocean and a cooling of up

to20.5K in the subtropical ocean (see Fig. 1 in Liu et al.

2014, manuscript submitted to J. Climate).

The second type of sensitivity tests the model’s sensi-

tivity to parameter uncertainty (represented, say, by the

ensemble spread of the parameter) in the observational

space at the observational time interval; this sensitivity

examines the possibility of reducing parameter uncertainty

using the observations available. Furthermore, the model

response to parameter uncertainty consists of linear and

nonlinear parts. Since the Kalman filter framework is de-

rived as the optimal analysis for a linear system, some

features involving nonlinear dependence may be regarded

as noise for parameter estimation. Successful parameter

estimation requires a signal-dominant state-parameter

covariance, which is derived most favorably in a model

whose state variables exhibit a strong linear dependence

on model parameters (Aksoy et al. 2006a,b).

An ensemble simulation starting from the same initial

condition but using different values of the parameter

SPD (i.e., a perturbed ensemble of parameters) dem-

onstrates the second type of sensitivity (Fig. 1). (Here,

the parameter ensemble is constructed as a Gaussian

distribution with the mean of 20m and the standard

deviation of 3m.) Since we will use the observations of

monthly SST for parameter estimation, we will examine

the ensemble response of the first month SST. The en-

semble spread of the first month SST (monthly mean)

represents the response of the model SST to the un-

certainty of SPD in the observational space; the corre-

lation coefficient between the SPD ensemble and the

first month SST quantifies the linear part of the re-

sponse. Figure 1 shows an overwhelmingly negative

correlation between SST and SPD, implying predomi-

nantly a colder SST with a deeper SPD. This cooling is

likely to be caused by the direct effect of solar penetration.

Physically, a deeper SPD allows more solar radiation to

penetrate below the surface layer, leaving less shortwave

radiation heating the surface layer and therefore causes

surface cooling. The direct effect of solar penetration is

dominant in the initial months in response to a sudden

change of the SPD (Hokanson 2006). One striking feature

of the sensitivity is the strong variation with season and

location. The SST ensemble spread is large and exhibits

negative correlations in the summer hemispherewhere the

mixed layer is shallow and therefore the SST is more

FIG. 1. The model monthly SST response to 3-m SPD uncertainty at different month for (a) March, (b) June, (c) September, and

(d) December. The shading represents the correlation coefficient between the SPD ensemble and the first month monthly SST response

while the contours represent the magnitude of the monthly SST response (ensemble spread). A 30-member ensemble simulation starts

from the same initial condition but uses different values of the parameter SPD. The SPD ensemble is constructed as a Gaussian distri-

bution with a mean of 20m and a standard deviation of 3m. We integrate the model from the beginning of each month to the end of the

month to obtain the monthly mean response.
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sensitive to heat flux perturbations. Figure 1 is important

for our parameter estimation because it indicates the key

regions for parameter estimation. The regions with large

sensitivity and high correlation represent the regions of

large linear model response to SPD. These regions have

high signal-to-noise ratio and therefore are the regions

where the observation of SST are most effective for pa-

rameter estimation. The rest of regions, which account

for more than half of the grid points at each analysis step,

are unlikely to provide significant information for pa-

rameter estimation.

4. The adaptive spatial average scheme

The sensitivity experiments in section 3 show that the

model response to the parameter SPD varies significantly

in both space and time. We speculate that neither GPO

nor SA is most efficient for estimating the parameter.

This follows that only the regions with large model-to-

parameter linear response can provide state-parameter

covariance with high signal/noise ratio for parameter

estimation. Figure 1 implies that the state-parameter

covariance is insignificant over about half of the grid

points at a time and in about half of the year at a given

grid point. Therefore, for the purpose of parameter esti-

mation, the estimations are not useful for more than half

of the time at a given grid, and the estimations are not

useful for more than half of the grids in the basin for

a given observation time. Therefore, SA and GPO are

not the most efficient methods to estimate the parameter

SPD, as will be shown below.

Here we refine the SA method to the adaptive spatial

average method, to increase the efficiency of parameter

estimation. In SA, the final spatially uniform parameter

is estimated as the average of all the spatially different

posteriors, each derived at a grid point using localiza-

tion. The ASA is based on the idea that a parameter

estimation, which will be derived from an average of

spatially different posteriors, should be more accurate

if it only includes the average of those posteriors of

smaller uncertainties (i.e., errors). For practical appli-

cations where the truth parameter, and therefore the

parameter error, is unknown, we can consider the en-

semble spread as a representation of the error, as in

traditional application of ensemble filtering to state

variables (e.g., Evensen 2007). (We will return to this

point later.) Therefore, the ensemble spread can be

considered as the indicator of the quality of each pos-

terior parameter values and a higher-quality posterior

has a smaller ensemble spread. TheASAwill only retain

those high-quality values for the final averaging to de-

rive the value for the spatially uniform parameter. This

average value of high-quality values should have smaller

error than the average value of averaging all the values

as in SA, which include the high-quality as well as low-

quality values. A preliminary theoretical analysis of this

point is given in the appendix.

A posterior value is good if its ensemble spread is

relatively small among all the posteriors estimated at all

the grid points. In practice, we use a threshold of the

spread ratio between the posterior and the prior to judge

the quality of the posterior and a posterior with a spread

ratio below the threshold is considered a good posterior

to be included for the final spatial average. (It should be

noted that the ensemble spread of the prior is spatially

uniform over the globe. Therefore, this spread ratio of

the posterior over prior does not affect the relative

magnitude of the posterior.) The speed of the decrease

of the parameter uncertainty depends greatly on the

magnitude of the signal. Initially, the ASA can use a

small ratio as the threshold because the initial parameter

uncertainty is large and the response magnitude (signal)

is large. The threshold will be increased during the

simulation with the decrease of the parameter uncer-

tainty. The ASA is applied every few EnKF analysis

cycles to obtain sufficient numbers of good parameter

posterior values. TheASA therefore differs from the SA

of Aksoy et al. (2006a), in which the spatial average is

performed every EnKF analysis cycle and on all grid

points. A conditional covariance inflation technique

(CCI) as in Aksoy et al. (2006b) is also employed here

on parameter ensemble after each ASA step to avoid

the filter divergence for parameter estimation. The CCI

inflates the parameter ensemble back to a predefined

minimum value when necessary. The predefined mini-

mum value is also the final uncertainty target for the

estimated parameter.

5. Comparison of ASA with GPO and SA

We now compare ASA with SA and GPO schemes in

FOAM. Two sets of experiments of parameter estima-

tion are performed using observations of monthly SST

and SST at every grid point. The first set of experiments

(EXP-1a and EXP-1b) use the GPO scheme and con-

firm that the parameter ensemble spread is a good index

for the parameter uncertainty (Figs. 2 and 3). The sec-

ond set of experiments (EXP-2a and EXP-2b; Figs. 4

and 5) compares the parameter estimations between

SA and ASA schemes. The details of the experimental

settings are shown in Table 1.

a. The assimilations with the GPO scheme

Both EXP-1a and EXP-1b use the GPO scheme but

with different observations. EXP-1b uses regular obser-

vations that consist of the ‘‘truth’’ plus noise. EXP-1a,
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called perfect observation experiment, uses the truth

from the control as the observations but nevertheless

treats it as having the same uncertainty scale as in EXP-

1b. For these two GPO experiments, neither EXP-1a

nor EXP-1b is able to produce good parameter estima-

tions if only the monthly SST and SSS data are assimi-

lated. Therefore, we are forced to also assimilate daily

atmosphere wind (U, V) and temperature T with an

error scale of 1m s21 and 1K, respectively; the obser-

vational error scales for SST and SSS are also forced to

be reduced from 1K and 1 psu to 0.5K and 0.5 psu, re-

spectively. The initial SPD error is also reduced from

3 to 1m.

As speculated, the spatial pattern of the RMSE of

SPD in EXP-1a is very consistent with the ensemble

spread after 20 years of simulation (Figs. 2a,b). There

are some regions of low uncertainty of SPD in different

ocean basins. A further study shows that the low un-

certainty in the midlatitude North Pacific and North

Atlantic is related to the large model sensitivity to SPD

during the boreal summer (Fig. 1b) and fall (Fig. 1c); the

low uncertainty in the eastern South Pacific, western

equatorial Pacific, South Atlantic, and southern Indian

Ocean is partly related to the large sensitivity of the

model SST to SPD in the austral fall (Fig. 1a) and

summer (Fig. 1d). The high positive correlation between

the parameter uncertainty and its ensemble spread can

be seen more clearly in the scatterplot, for example, at

the simulation year of 40 (Fig. 3a). The RMSE of SPD

estimation and its ensemble spread show a strong posi-

tive linear correlation with only modest spread residual.

The estimate values are closer to the truth when the

ensemble spread is small, except for the case of very

small ensemble spread (,;0.3m in Fig. 3a). The posi-

tive correlation between the posterior error and en-

semble spread supports our speculation before that the

ensemble spread can be used to represent the estimation

error or uncertainty. Furthermore, it is clear that a spa-

tial average will decrease the parameter error because

the average reduces the part of parameter uncertainty

that is spatially independent [see Eq. (A4)]. The error of

SPD can be further reduced by using only the posterior

values with smaller ensemble spread for average (Fig. 3b),

as hypothesized for theASA. The error of SPD is reduced

to 0.40m when the posterior values of SPD over all the

global grid points are averaged in EXP-1a (after 40 years

of assimilation), comparedwith the globalmeanRMSEof

SPD of 0.6m (first RMSE and then global average); this

error is decreased to 0.2 and 0.1m when the top 50% and

20% of grid points of smallest ensemble spread are av-

eraged, respectively. When the ensemble spread is at its

smallest values, the estimated values suffer from an

overshoot (i.e., the parameter error becomes negative).

This phenomenon also occurs in Liu et al. (2014, manu-

script submitted to J. Climate) when the similar observa-

tion coverage is applied (i.e., U, V, and T for the

atmosphere and SST and SSS for the ocean). The reason

for the overshoot will be discussed in a future study.

FIG. 2. Solar penetration depths estimated using DAEPC with the GPO method. The total ensemble size is 30. (a),(c) The spatial

distribution of parameter error values and parameter ensemble spreads after 20 years of simulation for the perfect observation experi-

ment. (b),(d) The parameter errors and parameter ensemble spreads after 20 years of simulation for regular observation experiments.
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The positive correlation between the parameter un-

certainty and parameter RMSE, however, is disrupted

significantly when the regular observation (‘‘truth’’ plus

noise) is used as in EXP-1b. Now, the spatial pattern of

the parameter ensemble spread (Fig. 2d) remains similar

to that in EXP-1a (Fig. 2b), but the pattern of the SPD

uncertainty (Fig. 2c) become very noisy. This occurs

because the parameter updating using EnKF also in-

troduces observational errors into the SPD posterior,

which is equivalent to adding random noise onto the

parameter posterior of EXP-1a. This noise leads to a

decrease of the consistence between the SPD uncer-

tainty and its ensemble spread. The distortion on the

correlation is seen clearly in the scatterplot Fig. 3c,

where the error value of SPD and its ensemble spread of

EXP-1b show a very weak linear relationship with

a much enhanced residual variance. Nevertheless, this

correlation is still significant at the 99% level. Further-

more, since the uncertainty associated with the obser-

vation errors is spatially independent, it can be reduced

dramatically using a spatial average. Indeed, the averag-

ing values of SPD are very similar for EXP-1a and EXP-

1b (cf. Figs. 3b and 3d), although the estimated values of

SPD are much noisier in EXP-1b than in EXP-1a.

Overall, the consistency between the parameter un-

certainty and its ensemble spread indicates that the pa-

rameter ensemble spread can be used as a good index for

the uncertainty of the parameter value and therefore can

be used as the criteria for selecting good posteriors for

averaging. A spatial average of those good posteriors

tends to give a better final estimation.

b. Comparison between SA and ASA

Asdiscussed regardingEXP-1a andEXP-1b, and in the

appendix, the uncertainty of the parameter posterior can

be reduced using spatial averages. The ASA and SA are

applied in EXP-2a and EXP-2b, respectively. A pre-

defined minimum ensemble spread value of 0.3m for the

CCI is applied in EXP-2. Unlike the GPO experiments

above, now, the error of SPD is reduced dramatically in

both EXP-2a and EXP-2b even only with monthly mean

SST and SSS observations (Fig. 4a), implying an increased

robustness of parameter estimation using spatial average.

Based on the ensemble sensitivity shown in Fig. 1, we

apply the ASA every six analysis cycles (6 months) in

EXP-2a with an initial threshold of 0.68. To prevent

the degeneration case of too few good values, the

threshold increases by 0.1 until it reaches 0.98 whenever

the total number of good values is smaller than a given

number, here set as 400. The ASA picks different grids

at different times for averaging. The number of grid

points of good values also varies temporally in the range

of 400–4000, which is around 2%–40% of total ocean

grids (Fig. 4b). The ensemble spread of SPD initially

FIG. 3. The estimated SPD after 40-yr simulations using DAEPC with the GPO method. (a) The scatter diagram

between SPD error values and its ensemble spreads. The red line is the regression line. (b) The blue line is the

averaging value of SPD using top percent grids (with smallest ensemble spread) and the red dashed lines represent

1 standard deviation of the averaging values. The black dashed line is the ‘‘truth.’’ Both (a) and (b) are for EXP-1a

using perfect observations. (c),(d) As in (a),(b), but for EXP-1b using regular observations.

1 JUNE 2014 L IU ET AL . 4007



decreases much faster than its real uncertainty (Fig. 4a),

reaching the minimum parameter ensemble spread of

0.3m in five simulation years. Although this ensemble

spread (0.3m) is smaller than the real error in years 5–

20, the SPD continues to converge to its truth. The SPD

error in EXP-2a is decreased from 3 to 0.3m (the esti-

mating goal) in 20 years (Fig. 4a).

During the assimilation cycle, the ensemble spread

still remains positively correlated with the estimation

errors among different points, albeit with a substantial

spread (as discussed for EXP-1b in Fig. 3b). This can be

seen in the two examples of scatterplots of SPD after the

first and fifth spatial updating cycles in Figs. 5a and 5b,

respectively. The ASA produces a good SPD estimation

by averaging only a moderate number of good values

(200–2000) once the threshold (the uncertainty ratios

between the posterior and prior) is selected appropri-

ately. This can be seen in Figs. 5c and 5d, which shows

the number of good values and the average of these good

values respectively, as functions of the threshold in ASA

for the first five assimilation cycles. For example, for the

first assimilation cycle, the average SPD is 18.5m with

the threshold of 0.8m and the number of good values of

;400; the average SPD is 17.6m with the threshold of

0.65m and the number of good values of;1000. If the

threshold is too small, too few values are defined as good

values. This will lead to a too small sample size and large

sampling error, such that ASA no longer produces good

results (Figs. 5b,d).

The final estimation also depends on the minimum

ensemble spread specified in CCI. The error of the es-

timated SPD seems to saturate at the equilibrium level

of ;0.2-m error in ;30 yr in EXP-2a if the minimum

parameter ensemble spread remains at 0.3m. This mini-

mum ensemble spread can be decreased afterward to

yield more accurate estimation. The ASA estimation is

repeated from year 31 to year 47 but now with the min-

imum parameter ensemble spread reduced from 0.3 to

0.2m; now the SPD error further decreases from 0.2 to

;0.1m (Fig. 4a, green lines). In this case, a reduced

minimum ensemble spread further improves the final

convergence of the parameter estimation.

In comparison with the ASA (in EXP-2a), the spatial

average using all the grid points in SA (EXP-2b) shows

a considerably slower convergence in the SPD estima-

tion, with the SPD error barely reaching 0.3m after 47

years of assimilation (Fig. 4a, red lines). Similar to the

ASA, the ensemble spread of SPD in SA also decreases

much faster than its real error scale. The CCI with the

minimum parameter ensemble spread of 0.3m prevents

the filter divergence of the parameter estimation. In the

meantime, the evolution of estimation SPD in SA is

more stable than in ASA because more grids and in turn

a bigger sample size in the former than the latter.

Overall, ASA demonstrates a faster convergence rate

than SA for SPD estimation because the former uses

only good values for averaging.

6. Summary and discussion

Refining the spatial average scheme (SA), we pro-

posed the adaptive spatial average scheme (ASA) to

improve the efficiency of the parameter estimation in

a complex system, such as a CGCM. The ASA is ex-

plored in the twin experiment framework in FOAM,

where the biased parameter (SPD) is the only model

error source. The e-folding scale of the solar penetrating

depth is used as the biased parameter for estimation.

Sensitivity experiments show that the response of the

FOAM to the parameter uncertainty varies spatially and

temporally. The ASA is demonstrated to increases the

efficiency of parameter estimation significantly over

FIG. 4. The estimated SPD using DAEPC with the ASA (EXP-

2a) and SA (EXP-2b). (a) Temporal evolution of parameter error

(thick lines) and 1 standard deviation of ensemble spread (thin

lines). The red lines are for EXP-2b and the blue lines are for EXP-

2a; the green lines are also for EXP-2a but with a reducedminimum

parameter ensemble spread of 0.2 for years 31–47. The black solid

line is the ‘‘truth’’ and the black dashed lines are the minimum

parameter ensemble spreads (uncertainty goals) for the experi-

ments. (b) Temporal evolution of total numbers of grids used for

average in ASA.
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previous assimilation techniques such as the SA (Aksoy

et al. 2006a) and geographic dependent parameter op-

timization (GPO) (Wu et al. 2012).

The ASA uses the posterior ensemble spread as the

criterion to select the ‘‘good’’ values from the spatial

updating posterior parameter values and only use the

good values for the averaging to yield the globally uni-

form posterior. In comparison with the SA scheme, the

ASA produces a faster convergence for parameter es-

timation. The faster convergence of ASA than SA is

robust in other settings, as seen in two additional pairs of

experiments the same as EXP-2a and EXP-2b, except

for the observational interval of 10 days (EXP-3a and

EXP-3b) and 1 day (EXP-4a and EXP-4b), respectively

(Table 1). When the observational interval is shortened,

the model response to the parameter uncertainty be-

comesmore linear. However, the response amplitude still

varies spatially and temporally (not shown). Therefore,

ASA is still more suitable than SA. Similar to EXP-2,

both EXP-3 and EXP-4 show faster decreases of the SPD

ensemble spread than its real uncertainty in the initial

stage. The convergence time is also shortened for a shorter

observational interval. In ASA, the SPD errors reach the

objective uncertainty (0.3m) in ;10yr (EXP-3a; Fig. 6a)

FIG. 5. (a) The scatter diagram between SPD error values and its ensemble spreads for EXP-2a after the first

analysis cycle of parameter updating. The red line is the regression. (b) As in (a), but for after the fifth analysis cycle.

(c) The numbers of ‘‘good’’ grids (values) for 1–5 analysis cycles of EXP-2a using ASAwith different thresholds. The

blue line is for the first analysis cycle, the green line is for the second, the red line is for the third, the cyan line is for the

fourth, and the magenta is for the fifth. (d) The mean SPD values of the good grids from (c) respectively.

TABLE 1. The experiment setting. The oceanic observations are SST and SSS; atmospheric observations are T,U, andV. EXP-1a uses the

perfect observations (truth). EXP-5a and EXP-5b estimate the parameter md and EXP-6a and EXP-6b estimate the parameter mq.

EXP Method Obs. (ocean; atmosphere) Parameter (truth) Initial guess/truth/uncertainty

1a and 1b GPO 1 month; 1 day SPD 18/17/1 for SPD (m)

2a ASA 1 month; — — 20/17/3 for SPD (m)

2b SA 1 month; — — 20/17/3 for SPD (m)

3a ASA 10 days; — — 20/17/3 for SPD (m)

3b SA 10 days; — — 20/17/3 for SPD (m)

4a ASA 1 day; — — 20/17/3 for SPD (m)

4b SA 1 day; — — 20/17/3 for SPD (m)

5a ASA 1 month — 1.2/1.0/0.2 for md

5b SA 1 month — 1.2/1.0/0.2 for md

6a ASA 1 month — 1.2/1.0/0.2 for mq

6b SA 1 month — 1.2/1.0/0.2 for mq
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and ;5 yr (EXP-4a; Fig. 6b) of simulations, for the

observational interval of 10 and 1 days, respectively,

whereas in SA they take ;30 yr (EXP-3b; Fig. 6a) and

;10 yr (EXP-4b; Fig. 6b). It is noted that the estimated

SPD in EXP-4 (Fig. 6b) is less stable than in EXP-2 or

EXP-3 (Figs. 3a and 6a). The observational interval in

EXP-4 is only 1 day, whereas the decorrelation time

scale of SST is a few months. This results in the accu-

mulation of sampling error because the model SST does

not have the time to respond before another observation

is added. The accumulation of sampling error causes

poor parameter estimation compared to the other ex-

periments. Furthermore, the instability of the estimated

parameter in Fig. 6b could become worse as the to-

tal assimilation time increases. We could increase the

assimilation time interval for parameter estimation to

reduce the instability of parameter estimation.

The ASA is designed to deal with the spatially and

temporally varying feature of model response to pa-

rameter in CGCM. As pointed out by one reviewer, for

SPD, SST shows little sensitivity to the parameter per-

turbation in about half of theWorld Ocean (Figs. 1a–d).

One may speculate that our experiments for the esti-

mation of SPD are too peculiar. The SA is inferior to

ASA because the posteriors in these regions of little

sensitivity are subject to too large a noise (with little

response signal) and therefore contaminate the SA esti-

mation seriously. To clarify this, it will be desirable to test

the estimation for a parameter that has more spatially

uniform response sensitivity. Therefore, we repeated the

estimation for two other parametersmd andmq (also see

Liu et al. 2014, manuscript submitted to J. Climate): md

and mq are artificial multipliers to the momentum and

latent heat fluxes between the ocean and atmosphere,

respectively, with 1 as the default truth model value. The

model SST sensitivity to either parameter is more uni-

form than for SPD (not shown). Our experiments EXP-

5a and EXP-5b and EXP-6a and EXP-6b use the same

experimental setting as EXP-2a and EXP-2b except for

estimating the imperfect parameters md and mq, re-

spectively (Table 1, Fig. 7). Both EXP-5a and EXP-6a

FIG. 6. (a) The temporal evolution of SPD (thick lines) and

1 standard deviation of ensemble spread (thin lines) for EXP-3.

The red lines are for EXP-3b and the blue lines are for EXP-3a.

The black solid line is the ‘‘truth’’ and the black dashed lines are the

minimum parameter ensemble spreads (uncertainty goals) for

the experiments. (b) As in (a), but for EXP-4.

FIG. 7. (a) The temporal evolution of md (thick lines) and

1 standard deviation of ensemble spread (thin lines) for EXP-5. The

red lines are for EXP-5b and the blue lines are for EXP-5a. The

black solid line is the ‘‘truth’’ and the black dashed lines are

the minimum parameter ensemble spreads (uncertainty goals)

for the experiments. (b) As in (a), but for the temporal evolution of

mq for EXP-6.
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show faster decreases of the parameter errors than EXP-

5b and EXP-6b. It is found that md reaches the objective

uncertainty of 0.04 (set by the minimum ensemble spread

specified in CCI) in;10 yr with ASA but in more than 30

years of assimilation with SA (Fig. 7a). Similarly, mq

reaches an objective uncertainty of 0.04 in ;25yr with

ASA but in more than 40 years of assimilation with SA

(Fig. 7b). Therefore, the improvement of ASA over SA is

valid for more general cases than the SPD.

The ASA has also been shown successful for the esti-

mation of multiple parameters (Liu et al. 2014, manu-

script submitted to J. Climate). Therefore, we believe that

the ASAmethod is well suited for the estimation of those

parameters with a globally uniform feature in CGCM.

The estimation of a spatially varying parameter in

CGCM, however, remains to be further studied.

Much further work remains. All of our experiments of

parameter estimation in this study were implemented in

a twin experiment framework, where the sampling error

is one of the major error sources for parameter estima-

tion. The parameter estimation using the real observa-

tional data will be much more complex than that. Aside

from the parameter uncertainties, the model bias can be

generated in a CGCM due to model structural errors,

such as the imperfect dynamical framework and the in-

complete understanding for physical processes. It re-

mains a great challenge to identify the sources of the

model bias from the candidates of the model structural

deficiencies, as well as the large number of model pa-

rameters. Hu et al. (2010), in their real-data parameter

estimation study, pointed out that the parameter esti-

mation using real observations might produce the right

answer for the wrong reasons. Furthermore, the un-

certainty generated by the model structural errors can-

not be included in a single model ensemble forecast.

Therefore, the background uncertainty estimated from

the ensemble perturbations usually suffers a negative

deficiency when we apply parameter estimation using

real observations. A negatively biased background un-

certainty could cause poor filter performance or even

filter divergence, and therefore cause parameter esti-

mation failure. One has to tune the inflation factor to

compromise the uncertainty deficiency using a state-

of-the-art inflation schemes, such as the covariance

inflation/relaxation (Zhang et al. 2004), the additive

inflation (Hamill and Whitaker 2005), or the adaptive

covariance inflation (Anderson 2007, 2009).
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APPENDIX

Preliminary Theoretical Consideration for ASA

Here, we will discuss the SA and ASA from a more

quantitative perspective. When we implement the spa-

tial updating in ensemble-based parameter estimation,

we obtain a spatially varying parameter posterior field.

The posterior errors at different locations are correlated

because the parameter priors are identical for the entire

field. To quantify the effect of spatial averaging, we

can separate the posterior errors into two independent

components: one linearly dependent on the parameter

prior error and the other uncorrelated with the first one.

In EnKF, the covariance(s) between the parameter

and the model forecasts in observational space are used

directly to update parameter in exactly the samemanner

as for the state variables. When we use a forecast xf and

an observation xo to update a parameter b, the (s2
b)a of

a parameter posterior can be written as

(s2
b)a5s2

b(12 u) , (A1)

where u5 [r2s2
x/(s

2
x 1R)] with 0# u, 1. Here the s2

x, R

are the error scales (variances) of xf and xo, respectively;

r is the correlation coefficient between the forecast xf

and the parameter prior. The uncertainty of the pa-

rameter posterior decreases with the increase of u. The

ratio between parameter posterior uncertainty and prior

uncertainty

(s2
b)a

s2
b

[ r5 12 u .

In EnKF, (s2
b)a and s2

b are represented by the variance

of the parameter posterior and prior ensemble, re-

spectively. So the r is the ratio between the posterior and

the prior ensemble spread. For a spatial updating, dif-

ferent location has different r. The ASA uses the r as an

index to select the good values from a posterior field.

The parameter posterior error of «ab originates from

different sources, xf , xo, and bf , and can be written as

two parts based on the correlation relationships among

the error sources

«ab 5sbN
f
b(12 u)1sb

ffiffiffiffiffiffiffiffiffiffiffiffi
u2 u2

p
Nb

x , (A2)

where N
f
b and Nb

x are independent white noise with the

scale of 1. The two terms on the right-hand side of
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Eq. (A2) represent two independent components of the

total uncertainty (error) of a posterior value for any

given sb and u. The first term linearly depends on the

error of the parameter prior of (sbN
f
b), while the second

term is uncorrelated with the error of the parameter

prior. The second term is produced by the errors from

observations, initial conditions, and the nonlinear part

of model response to the parameter prior. The first term

is dominant when u is close to 0 and the uncertainty of

the posterior is close to the uncertainty of the parameter

prior. The second term become primary when u is close

to 1 and the uncertainty of the posterior is much smaller

than the uncertainty of the parameter prior (Fig. A1).

For a spatial updating, we can rewrite Eq. (A2) into

a spatially varying field

«ab,i5sbN
f
b(12 ui)1sb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui 2 u2i

q
Nb

x,i , (A3)

where i5 1, 2, . . . , N indicate the locations. The first

term on the right-hand side is all linearly dependent

among different locations, while the second term on the

right-hand side can be regarded as independent among

different locations when the posterior values are widely

distributed over a large domain. For a spatial average,

the two terms have opposite changes. Averaging the ba
i

to obtain a single-value parameter, the posterior error is

«ab,i 5
sb

M
�
i
N

f
b(12 ui)1

sb

M
�
i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui 2 u2i

q
Nb

x,i

�
. (A4)

We now discuss the two terms on the right-hand side

of Eq. (A4) one by one, regarding the difference be-

tween SA and ASA. The first term is linearly dependent

on the parameter prior error (N
f
b), so its scale is mainly

affected by the distribution of ui but not the averaging

sample size of M. The first term can be discussed conve-

niently by assuming a uniform distribution [umin . . . umax]

for ui. The SA scheme (Aksoy et al. 2006a) averages

all posterior values over the entire domain. This term

becomes sbf12 [(umin 1 umax)/2]gNf
b. The ASA sets a

threshold uth where (umin # uth # umax) to remove the

values with ui , uth from the average pool such that this

term becomes sbf12 [(uth 1 umax)/2]gNf
b, which is

smaller than that using the SA scheme when the differ-

ence between umin and umax is large and uth is significantly

greater than umin. When uth5 umin, the ASA recovers to

the SA.When uth 5 umax, theASA just picks the posterior

value with the ‘‘best’’ posterior (i.e., the minimum anal-

ysis error).

The second term on the right-hand side of Eq. (A4)

decreaseswith the increase of the average sample size ofM

because the Nb
x,i values are independent among different

sites. Therefore, the second term inASA is larger than that

in SA because ASA uses a smaller M than SA. However,

when the number of average valuesM is sufficiently large,

the second term for both SA and ASA is smaller than the

first term (unless the ui are all close to 1), and therefore has

limited impact on the total error. When the ui are all close

to 1, the first term is trivial comparingwith the second term

before average [see Eq. (A2) and Fig. A1], but this rarely

happens for parameter estimationwithEnKF in a complex

system such as a CGCM because it would require

r2 ’ 1, s2
x � R. The umin is usually close to 0, especially

when the parameter is nearly converging.

The ASA can reduce the error related to the param-

eter prior error in spite of a reduced the averaging

sample size because good posteriors are used, which

have sufficiently large ui. The ASA produces a better

analysis of b than SA after averaging the same posterior

field when the uth is significantly smaller than the umax. In

summary, the SA reduces the errors related to the ob-

servations and forecasts. These errors are uncorrelated

between different locations. The ASA scheme enhances

the signal during the averaging by filtering out the region

with weak signal or no signal. Therefore the ASA can

produce a faster convergence than the SA (see Figs. 4a, 6,

and 7).

REFERENCES

Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006a: Ensemble-

based simultaneous state and parameter estimation with MM5.

Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

FIG. A1. The scale (variance) of each term in Eq. (A2). The blue

curve is for the scale of the first term sbN
f
b(12 u) of the right-hand

side of the equation, which is related to the error of the parameter

prior; the green curve is the scale of the second term sb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 u2

p
Nb

x ,

which is related to the uncertainties of the observation and the

forecast but unrelated to the parameter uncertainty. The black

curve is the scale of the total error «ab.

4012 JOURNAL OF CL IMATE VOLUME 27

http://dx.doi.org/10.1029/2006GL026186


——,——, and——, 2006b: Ensemble-based simultaneous state and

parameter estimation in a two-dimensional sea-breeze model.

Mon. Wea. Rev., 134, 2951–2970, doi:10.1175/MWR3224.1.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter

for data assimilation. Mon. Wea. Rev., 129, 2884–2903,

doi:10.1175/1520-0493(2001)129,2884:AEAKFF.2.0.CO;2.

——, 2003: A local least squares framework for ensemble

filtering. Mon. Wea. Rev., 131, 634–642, doi:10.1175/

1520-0493(2003)131,0634:ALLSFF.2.0.CO;2.

——, 2007: An adaptive covariance inflation error correction al-

gorithm for ensemble filters. Tellus, 59A, 210–224, doi:10.1111/

j.1600-0870.2006.00216.x.

——, 2009: Spatially and temporally varying adaptive covariance

inflation for ensemble filters. Tellus, 61A, 72–83, doi:10.1111/

j.1600-0870.2008.00361.x.

Anderson, W. G., A. Gnanadesikan, R. Hallberg, J. Dunne, and

B. L. Samuels, 2007: Impact of ocean color on themaintenance

of the Pacific cold tongue. Geophys. Res. Lett., 34, L11609,

doi:10.1029/2007GL030100.

Annan, J. D., and J. C. Hargreaves, 2004: Efficient parameter es-

timation for a highly chaotic system. Tellus, 56A, 520–526,

doi:10.1111/j.1600-0870.2004.00073.x.

——, ——, N. R. Edwards, and R. Marsh, 2005a: Parameter esti-

mation in an intermediate complexity Earth system model

using an ensemble Kalman filter. Ocean Modell., 8, 135–154,

doi:10.1016/j.ocemod.2003.12.004.

——, D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005b:

Parameter estimation in an atmospheric GCM using the en-

semble Kalman filter. Nonlinear Processes Geophys., 12, 363–

371, doi:10.5194/npg-12-363-2005.

Ballabrera-Poy, J., R. Murtugudde, R. H. Zhang, andA. J. Busalacchi,

2007: Coupled ocean–atmosphere response to seasonal modula-

tion of ocean color: Impact on interannual climate experiments

in the tropical Pacific. J. Climate, 20, 353–374, doi:10.1175/

JCLI3958.1.

Banks, H. T., Ed., 1992a: Control and Estimation in Distributed

Parameter Systems. Frontiers in Applied Mathematics, Vol.

11, SIAM, 227 pp.

——, 1992b: Computational issues in parameter estimation and

feedback control problems for partial differential equation sys-

tems. Physica D, 60, 226–238, doi:10.1016/0167-2789(92)90239-J.
Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Fil-

ter. Springer, 187 pp.

Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, and R. C.

Smith, 1989: A simple analytical formula to compute clear

sky total photosynthetically available solar irradiance at the

ocean surface. J. Geophys. Res., 94, 9731–9742, doi:10.1029/

JC094iC07p09731.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions.Quart. J. Roy. Meteor.

Soc., 125, 723–757, doi:10.1002/qj.49712555417.
Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter as-

similation of fixed screen-height observations in a parameter-

ized PBL. Mon. Wea. Rev., 133, 3260–3275, doi:10.1175/

MWR3022.1.

Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error

due to unresolved scales in ensemble data assimilation: A

comparison of different approaches. Mon. Wea. Rev., 133,

3132–3147, doi:10.1175/MWR3020.1.

Hokanson, E. P., 2006: The effects of solar penetration on a cou-

pled general circulation model. M.S. thesis, Dep. of Atmo-

spheric and Oceanic Sciences, University of Wisconsin–

Madison, 110 pp.

Hu, X.-M., F. Zhang, and J.W. Nielsen-Gammon, 2010: Ensemble-

based simultaneous state and parameter estimation for treat-

ment of mesoscale model error: A real-data study. Geophys.

Res. Lett., 37, L08802, doi:10.1029/2010GL043017.

Jacob,R., 1997: Low frequency variability in a simulated atmosphere–

ocean system. Ph.D dissertation, University of Wisconsin–

Madison, 155 pp.

Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climatic shift of El

Ni~no variability in the Holocene. Geophys. Res. Lett., 27,

2265–2268, doi:10.1029/2000GL011452.

——, B. Otto-Bliesner, J. Kutzbach, L. Li, and C. Shields, 2003:

Coupled climate simulations of the evolution of global mon-

soons in the Holocene. J. Climate, 16, 2472–2490, doi:10.1175/

1520-0442(2003)016,2472:CCSOTE.2.0.CO;2.

——, and Coauthors, 2007a: Simulating the transient evolution and

abrupt change of Northern Africa atmosphere–ocean–terrestrial

ecosystem in the Holocene. Quat. Sci. Rev., 26, 1818–1837,

doi:10.1016/j.quascirev.2007.03.002.

——, Y. Liu, L. Wu, and R. Jacob, 2007b: Seasonal and long-term

atmospheric responses to reemerging North Pacific Ocean

variability: A combined dynamical and statistical assessment.

J. Climate, 20, 955–980, doi:10.1175/JCLI4041.1.

Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and

A. Busalaccki, 2002: Effects of penetrative radiation on the

upper tropical ocean circulation. J. Climate, 15, 470–486,

doi:10.1175/1520-0442(2002)015,0470:EOPROT.2.0.CO;2.

Nakamoto, S., S. Prasanna Kumar, J. M. Oberhuber, J. Ikshizaka,

K. Muneyama, and R. Frouin, 2001: Response of the equato-

rial Pacific to chlorophyll pigment in a mixed layer isopycnal

ocean general circulation model. Geophys. Res. Lett., 28,

2021–2024, doi:10.1029/2000GL012494.

Nielsen-Gammon, J.W., X.-M.Hu, F. Zhang, and J. E. Pleim, 2010:

Evaluation of planetary boundary layer scheme sensitivities

for the purpose of parameter estimation.Mon.Wea. Rev., 138,

3400–3417, doi:10.1175/2010MWR3292.1.

Ohlmann, J. C., D. A. Siegel, and C. D. Mobley, 2000: Ocean

radiant heating. Part I: Optical influences. J. Phys. Ocean-

ogr., 30, 1833–1848, doi:10.1175/1520-0485(2000)030,1833:

ORHPIO.2.0.CO;2.

Ridgwell, A., J. C. Hargreaves, N. R. Edwards, J. D. Annan, T. M.

Lenton, R. Marsh, A. Yool, and A. Watson, 2007: Marine

geochemical data assimilation in an efficient Earth system

model of global biogeochemical cycling.Biogeosciences, 4, 87–

104, doi:10.5194/bg-4-87-2007.

Schneider, E., and Z. Zhu, 1998: Sensitivity of the simulated annual

cycle of sea surface temperature in the equatorial Pacific to

sunlight penetration. J. Climate, 11, 1932–1950, doi:10.1175/

1520-0442-11.8.1932.

Smith, R. C., and K. S. Baker, 1978: The bio-optical state of ocean

waters and remote sensing. Limnol. Oceanogr., 23, 247–259,

doi:10.4319/lo.1978.23.2.0247.

Tong, M., and M. Xue, 2008a: Simultaneous estimation of micro-

physical parameters and atmospheric state with simulated

radar data and ensemble square root Kalman filter. Part I:

Sensitivity analysis and parameter identifiability. Mon. Wea.

Rev., 136, 1630–1648, doi:10.1175/2007MWR2070.1.

——, and ——, 2008b: Simultaneous estimation of microphysical

parameters and atmospheric state with simulated radar data

and ensemble square root Kalman filter. Part II: Parameter

estimation experiments. Mon. Wea. Rev., 136, 1649–1668,

doi:10.1175/2007MWR2071.1.

Wu, L., Z. Liu, R.Gallimore,R. Jacob,D. Lee, andY. Zhong, 2003:

Pacific decadal variability: The tropical Pacific mode and the

1 JUNE 2014 L IU ET AL . 4013

http://dx.doi.org/10.1175/MWR3224.1
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1029/2007GL030100
http://dx.doi.org/10.1111/j.1600-0870.2004.00073.x
http://dx.doi.org/10.1016/j.ocemod.2003.12.004
http://dx.doi.org/10.5194/npg-12-363-2005
http://dx.doi.org/10.1175/JCLI3958.1
http://dx.doi.org/10.1175/JCLI3958.1
http://dx.doi.org/10.1016/0167-2789(92)90239-J
http://dx.doi.org/10.1029/JC094iC07p09731
http://dx.doi.org/10.1029/JC094iC07p09731
http://dx.doi.org/10.1002/qj.49712555417
http://dx.doi.org/10.1175/MWR3022.1
http://dx.doi.org/10.1175/MWR3022.1
http://dx.doi.org/10.1175/MWR3020.1
http://dx.doi.org/10.1029/2010GL043017
http://dx.doi.org/10.1029/2000GL011452
http://dx.doi.org/10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2
http://dx.doi.org/10.1016/j.quascirev.2007.03.002
http://dx.doi.org/10.1175/JCLI4041.1
http://dx.doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2
http://dx.doi.org/10.1029/2000GL012494
http://dx.doi.org/10.1175/2010MWR3292.1
http://dx.doi.org/10.1175/1520-0485(2000)030<1833:ORHPIO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2000)030<1833:ORHPIO>2.0.CO;2
http://dx.doi.org/10.5194/bg-4-87-2007
http://dx.doi.org/10.1175/1520-0442-11.8.1932
http://dx.doi.org/10.1175/1520-0442-11.8.1932
http://dx.doi.org/10.4319/lo.1978.23.2.0247
http://dx.doi.org/10.1175/2007MWR2070.1
http://dx.doi.org/10.1175/2007MWR2071.1


North Pacific mode. J. Climate, 16, 1101–1120, doi:10.1175/

1520-0442(2003)16,1101:PDVTTP.2.0.CO;2.

Wu, X., S. Zhang, Z. Liu, A. Rosati, T. Delworth, and Y. Liu, 2012:

Impact of geographic dependent parameter optimization on

climate estimation and prediction: Simulation with an in-

termediate coupled model. Mon. Wea. Rev., 140, 3956–3971,

doi:10.1175/MWR-D-11-00298.1.

——, ——, ——, ——, and ——, 2013: A study of impact of the

geographic dependence of observing system on parameter

estimation with an intermediate coupledmodel.Climate Dyn.,

40, 1789–1798, doi:10.1007/s00382-012-1385-1.

Zhang, F., C. Snyder, and J. Sun, 2004: Impact of initial esti-

mate and observation availability on convective-scale data

assimilation with an ensemble Kalman filter. Mon. Wea.

Rev., 132, 1238–1253, doi:10.1175/1520-0493(2004)132,1238:

IOIEAO.2.0.CO;2.

Zhang, S., 2011a: Impact of observation-optimized model param-

eters on decadal predictions: Simulation with a simple pyc-

nocline prediction model. Geophys. Res. Lett., 38, L02702,

doi:10.1029/2010GL046133.

——, 2011b: A study of impacts of coupledmodel initial shocks and

state–parameter optimization on climate predictions using

a simple pycnocline prediction model. J. Climate, 24, 6210–

6226, doi:10.1175/JCLI-D-10-05003.1.

——, Z. Liu,A. Rosati, and T.Delworth, 2012: A study of enhancive

parameter correction with coupled data assimilation for climate

estimation and prediction using a simple coupledmodel.Tellus,

64A, 10963, doi:10.3402/tellusa.v64i0.10963.

4014 JOURNAL OF CL IMATE VOLUME 27

http://dx.doi.org/10.1175/1520-0442(2003)16<1101:PDVTTP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2003)16<1101:PDVTTP>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00298.1
http://dx.doi.org/10.1007/s00382-012-1385-1
http://dx.doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
http://dx.doi.org/10.1029/2010GL046133
http://dx.doi.org/10.1175/JCLI-D-10-05003.1
http://dx.doi.org/10.3402/tellusa.v64i0.10963

