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ABSTRACT

Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate

models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully

coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system

facilitated with parameter estimation. The authors first perform single-parameter estimation and then

multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter

[solar penetration depth (SPD)] is reduced by over 90% after ;40 years of assimilation of the conventional

observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter

estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are

assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the

reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in;8 years of

assimilation. Finally, the improved parameters also improve the model climatology. With the optimized

parameters, the bias of the climatology of SST is reduced by;90%. Overall, this study suggests the feasibility

of ensemble-based parameter estimation in a fully coupled general circulation model.

1. Introduction

In spite of the efforts of the climate modeling com-

munity over recent decades, current climate models still

suffer from significant climate biases (e.g., Lin 2007).

One important source of bias is the model parameters.

The tuning of the model parameters, however, has re-

mained a challenging task, especially in a complex cli-

matemodel, such as a coupled general circulationmodel

(CGCM), which consists of nonlinear dynamical pro-

cesses on a wide range of time scales and requires sub-

stantial computational resources. Early research suggests

that data assimilation can provide a potentially powerful

approach to optimizing model parameters using obser-

vations (Zou et al. 1992; Navon 1998). However, there

has been no published result of parameter estimation in

a CGCM. Here, we present the first study of successful

ensemble-based parameter estimation in a CGCM using

an idealized observation network, demonstrating the

feasibility of parameter estimation in a CGCM.

The advent of the ensemble Kalman filter scheme

(EnKF) for parameter estimation (Anderson 2001) pro-

vides a practical means for an automatic optimization

of the model parameters in a complex model. Previous

studies of parameter estimation using EnKF have led to

encouraging results. One approach focused on the im-

provement of model state climatology, using an iteration

method with the assimilation of the long-term observa-

tion of climatology (Annan andHargreaves 2004; Hacker

and Snyder 2005; Annan et al. 2005a,b; Ridgwell et al.

2007). The other approach performed simultaneous esti-

mation of model state variables and parameters with

the assimilation of the temporally varying observations

(Hacker and Snyder 2005; Aksoy et al. 2006a,b; Nielsen-

Gammon et al. 2010; Hu et al. 2010; Tong andXue 2008a,b;
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Zhang 2011a,b; Zhang et al. 2012; Wu et al. 2012, 2013).

Zhang et al. (2012) further proposed to include a spinup

period of pure state estimation before activating the pa-

rameter estimation in a so-called data assimilation with

enhancive parameter correction (DAEPC), which further

reduces the model bias and improves model forecast more

effectively. DAEPC has been applied successfully to con-

ceptual coupled climate models (Zhang 2011a,b; Zhang

et al. 2012) and an intermediate coupled atmosphere–

ocean–land model (Wu et al. 2012, 2013).

Here, we will investigate parameter estimation in

a CGCM using an ensemble coupled data assimilation

(ECDA) scheme of DAEPC (Zhang et al. 2012) in a

twin experiment framework where the parameter errors

are the only source of model error. We will show suc-

cessful estimations in both cases of single parameter and

multiple parameters after the parameters are carefully

selected. The paper is organized as follows: Section 2

briefly describes the assimilation scheme and the CGCM

we used in this paper. Sections 3 and 4 show the results of

parameter estimation for single and multiple parame-

ters, respectively. A summary is given in section 5.

2. Model and methodology

a. The Fast Ocean Atmosphere Model

The model used in this study is the Fast Ocean At-

mosphereModel (FOAM), which is a CGCMwith a fully

parallel implementation (Jacob 1997). The atmospheric

component is a R15 spectral model with an equivalent

resolution of 48 latitude, 7.58 longitude, and 18 vertical

levels. The ocean component is a z-coordinate model

similar to the Geophysical Fluid Dynamics Laboratory

(GFDL)Modular OceanModel (MOM) version 1.0 with

a resolution of 1.48 latitude, 2.88 longitude, and 24 vertical
levels. A simple thermodynamic sea ice model is incor-

porated. Without flux adjustment, the fully coupled

model has been run for over 6000 model years with no

apparent drift in tropical climate (Liu et al. 2007a). In

spite of its low resolution, FOAM has a reasonable

tropical climatology (Liu et al. 2003), ENSO variability

(Liu et al. 2000), and Pacific decadal variability (Wu et al.

2003; Liu et al. 2007b) largely comparable with current

CGCMs.

b. Coupled data assimilation with enhancive
parameter correction

In data assimilation, parameters can be estimated by

augmenting state variables with model parameters (e.g.,

Banks 1992a,b; Anderson 2001). Here we will use the

data assimilation with enhancive parameter correction

(Zhang et al. 2012). The DAEPC uses one particular

EnKF scheme, the ensemble adjustment Kalman filter

(EAKF) (Anderson 2001, 2003), to estimate state vari-

able and parameter simultaneously in the coupled sys-

tem. One key factor for successful parameter estimation

is to extract signal-dominant state–parameter covariance.

The covariance is calculated by using the parameter un-

certainty and the forecast uncertainty in the observation

space. The signal is the model response to the parameter

uncertainty. The noise is introduced by the limited en-

semble size and is proportional to the total forecast un-

certainty. Before the parameter estimation is activated,

the DAEPC performs a spinup process for the state es-

timation to reach a quasi-equilibrium state such that the

uncertainty of the model state is sufficiently constrained

by observations (see Zhang et al. 2012 for details).

c. The adaptive spatial average scheme

The parameters in this study are assumed to be

globally uniform. If a globally uniform parameter is

treated as a single-value parameter, there will be a large

number of observations available for updating. This will

lead to the accumulation of all of the sampling errors,

therefore contaminating the estimation (Aksoy et al.

2006a). To address this issue, Aksoy et al. used an up-

dating method that transforms a globally uniform pa-

rameter into a two-dimensional field and updates the

field spatially using localization. They also used a spatial

average method (SA) to retain global uniformity of the

estimated parameter after spatial updating. For a com-

plex system such as a CGCM, the sensitivity and re-

sponse of a model variable to a model parameter may

vary spatially and temporally. Recently, the SA was fur-

ther refined to an adaptive spatial average (ASA) scheme

by Liu et al. (2014), which increases the convergence rate

of parameter estimation in a CGCM.

Briefly, the ASA uses the ensemble spread as the

criterion for selecting ‘‘good’’ values from the spatially

varying posterior parameter field, and those good values

are then averaged to give the final analysis of the glob-

ally uniform posterior parameter. A posterior value is

called good if its ensemble spread decreases substan-

tially from that in the prior. The ASA calculates the

uncertainty ratios between the posterior and prior. If the

ratio is below a threshold, the ASA defines the posterior

value as a good posterior value. The speed of the de-

crease of the parameter uncertainty depends greatly on

the magnitude of the signal. Initially, the ASA can use

a small value as the threshold because the initial pa-

rameter uncertainty is large and the responsemagnitude

(signal) is large. The threshold will be increased during

the simulation with the decrease of parameter uncer-

tainty. The initial threshold in our experiments is 0.68. If

the total number of good posterior values is less than
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400, the threshold increases by 0.1 until it reaches 0.98.

The ASA is applied every few EnKF analysis cycles (in

our case, every six analysis cycles) to obtain a sufficient

number of good parameter posterior values. A more

detailed description of ASA is beyond the scope of this

study and is reported in Liu et al. (2014).

3. Observations and ensemble configuration

An ensemble size of 30 is used in our experiments.

A 30-yr simulation from the control ‘‘truth’’ run is used

for the initialization of the ensemble with the model

state valid at 1 January of each year. The observations in

ocean are monthly sea surface temperature (SST) and

salinity (SSS), which cover the global ocean basin. The

observations are generated by adding Gaussian white

noise on the corresponding truth states at each grid point

with the observational error scales (standard deviation)

of 1K and 1 psu (practical salinity units) for SST and

SSS. The ocean surface observations are used to update

the upper eight layers of ocean temperature (T) and

salinity (S) (0 ; 235m). Here the cross-covariances

between SST and SSS are used to update each other.

The Gaspari and Cohn (1999) covariance localization is

applied with the influence radius of three grid points

horizontally for the state variables. The observations in

the atmosphere include winds and temperatures (U, V,

and T) for all the atmospheric grids (3D) with the error

scales of 1.0m s21, 1.0m s21, and 1.0K, respectively, and

a time interval of 12 h. This gridded reanalysis format

setting of atmospheric observations was applied in the

Geophysical Fluid Dynamics Laboratory’s ECDA sys-

tem (Zhang et al. 2007). An observation is used only

to update the state variables (U, V, and T) at its own

location.

We first perform single-parameter estimation and then

multiple-parameter estimation. In the single-parameter

estimation experiment, we only assimilate the oceanic

observations and the biased parameter convergences to

the truth values after the assimilation.Wehave tested two

different experimental settings for multiple-parameter

estimation. One experiment (EXP-M1) only uses the

oceanic observations as the single-parameter estimation

experiment. The other experiment (EXP-M2) assimilates

both oceanic observations and atmospheric observations.

In parameter estimation, an observation can constrain

a parameter directly and indirectly. An observation

constrains a parameter directly by updating the pa-

rameter using the state–parameter covariance between

the forecast of the observational variable and the pa-

rameter. An observation can constrain a parameter in-

directly by constraining the state variables and thus

improving the analysis and forecast of state variables

and the state–parameter covariance. The state–parameter

covariance is the key for parameter estimation and is

expected to be signal dominant. The signal, generated

by the parameter uncertainty, is only part of the model

total forecast uncertainty. The noise, introduced by the

limited ensemble size, is proportional to the model total

forecast uncertainty. The weights of the signals on the

total forecast uncertainty, to some extent, indicate the

signal/noise ratio of state–parameter covariance(s).

The weights, which are different for different state var-

iables, can be quantified from model forward sensitive

experiments (Aksoy et al. 2006a; Tong and Xue 2008a;

Nielsen-Gammon et al. 2010; Liu et al. 2014). One can

choose the state variable with the biggest weight to di-

rectly update a parameter to enhance the signal/noise

ratio of state–parameter covariance.

Here, the SST is the chosen variable to directly update

parameters for both single-parameter and multiple-

parameter estimation. Other observations constrain the

parameters indirectly through constraining the model

state, which improves the forecast of SST and the state–

parameter covariance. The parameter updating is acti-

vated two years after a spinup period, in which only the

state variables are updated by the observations. As for

the updating of state variables, the direct updating of

parameters also uses covariance localization (Gaspari

and Cohn 1999) with an influence radius of three grid

points horizontally. A conditional covariance inflation

(CCI) technique, as in Aksoy et al. (2006b), is also em-

ployed here on parameter ensembles after each ASA

step to avoid filter divergence for parameter estimation.

The CCI inflates the parameter ensemble spread back

to a predefined minimum value when necessary. The

predefined minimum value is also the final uncertainty

target for the estimated parameter.

4. Single-parameter estimation

We first use the solar penetration depth (SPD) as the

parameter for estimation. Solar attenuation in the ocean

is a function of the amount of biomass in the upper

layers of the ocean (Smith and Baker 1978, Ohlmann

et al. 2000). Following Murtugudde et al. (2002), the

downward solar radiation I(z) at a depth of z in FOAM

is calculated as

I(z)5 I(0)re2z/h , (1)

where I(0) is the total incident solar radiation at the

sea surface and r5 0:47 (Frouin et al. 1989) represents

the fraction of total solar radiation in the photosyn-

thetically available radiation band (wavelengths from

380 to 700 nm). The remaining fraction of solar radiance
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is fully absorbed in the top model layer of 20m. The h is

the SPD that will be estimated in our experiments. In the

real world, the SPD can be treated as a state variable

too, because it can be calibrated using the remote sensing

observation of ocean color. Here, however, it is treated as

a globally uniform model parameter in FOAM that will

be estimated using DAEPC.

Previous studies suggest the SPD is a parameter that

has a significant impact on the surface climate (Schneider

and Zhu 1998; Nakamoto et al. 2001; Murtugudde et al.

2002; Ballabrera-Poy et al. 2007; Anderson et al. 2007).

This impact can also be seen in FOAM in the difference

of the climatology of SST between two simulations with

different SPDs (the one with a 20-m SPD minus the one

with a 17-m SPD) (Fig. 1). A larger SPD induces signifi-

cant surface warming over the tropical Pacific, consistent

with previous studies (Murtugudde et al. 2002; Ballabrera-

Poy et al. 2007; Anderson et al. 2007; Hokanson 2006).

Physically, a deeper SPD allows more solar radiation to

penetrate below the surface layer, leaving less short-

wave radiation to heat the surface layer. This direct ef-

fect tends to generate surface cooling, opposing the

surface warming in the tropical Pacific. Instead, the

surface warming in the tropical Pacific is caused by

an indirect effect of solar penetration, which involves

momentum redistribution in the oceanic mixed layer

(Murtugudde et al. 2002). Figure 1 shows that deeper

SPD also leads to significant surface cooling in sub-

tropical oceans and significant warming in the Southern

Ocean at high latitudes. The indirect and direct effects

discussed above combine to contribute to the locations

of warming and cooling. Overall, this sensitivity exper-

iment suggests that the model climate will vary with the

SPD parameter.

The DAEPC combined with the adaptive spatial av-

erage leads to a successful estimation of the SPD with

the first guess of SPD of 20m with an uncertainty of 3m

(standard deviation) and the truth SPD of 17m (Fig. 2).

The SPD is not a dynamical variable. Therefore, its

variance (ensemble spread) does not increase during the

model integration; yet, its variance is reduced at each

analysis step. As a result, the ensemble spread of SPD

initially decreases much faster than its rms error

(RMSE) (Fig. 2). The CCI prevents parameter variance

from decreasing indefinitely by adopting a minimum

parameter ensemble spread of 0.3m (1/10 of the initial

standard deviation) in the first 30 years of simulation.

The minimum parameter ensemble spread is decreased

FIG. 1. The climatological annual mean SST difference between two simulations with the same initial conditions

but different SPD (20–17m). The climatological mean SST(s) are calculated from the 80-yr average after 20 years of

spinup. The green contours represent the 95% confidence level.

FIG. 2. Single-parameter estimation (SPD) uses DAEPC with

the adaptive spatial average (ASA) method. The ensemble size is

30. The observations are the monthly SST and SSS. The blue line is

for the temporal evolution of the ensemble mean of SPD, and the

red dashed lines are the 1 standard deviation of its ensemble

spread. The black solid line is the truth, and the black dashed lines

are the minimum parameter ensemble spreads (uncertainty goals)

of CCI in the experiment.
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to 0.2m for the simulation afterward (year 31 ; 47),

when we believe the estimated SPD has converged close

to the truth value. The error of the parameter SPD de-

creased from 3 to 0.2m after 47 years of assimilation.

The consistency between the ensemble spread and its

represented forecast error is a very important factor for

EnKF to succeed. The spatial pattern of the monthly

average SST error (RMSE) shows maximums at both

the high latitudes and equatorial region and a minimum

in the off-equatorial regions (Fig. 3a). This pattern re-

sembles that of the SST variance (figure not shown)

because the regions of higher variance usually have

larger forecast errors. The larger SST RMSE and vari-

ance located in the Pacific equatorial region are related

to the model ENSO variability. The spatial pattern and

amplitude of the ensemble spread of SST resemble

closely those of the forecast RMSE of SST (Fig. 3b),

suggesting a good quality of the ensemble-based filter.

The improvement of the parameter also improves the

model climate and, in turn, the forecast errors of state

variables. The experiment after parameter estimation

produces a better forecast of monthly SST (the first

month) in comparison with a pure data assimilation

experiment, which uses the same experiment design

but with the biased SPD parameter (20m) and no pa-

rameter correction. The spatial patterns of the RMSE

of the first month SST forecast resembles closely that

in the experiments of pure data, but the amplitude is

reduced by 12% in the former relative to the latter

(0.40 vs 0.45K) for the SST RMSE averaged between

608S and 608N. In the pure data assimilation experi-

ment, the average RMSE of 500-mb geopotential

height (GPH) is;21m, which is;2/3 of that in a model

ensemble simulation that does not assimilate any ob-

servations. The addition of parameter estimation in the

ocean does not further improve the quality of atmo-

sphere analysis and forecast.

The robustness of our parameter estimation is con-

firmed with another experiment that uses the SA

method of Aksoy et al. (2006a). The SA experiment also

estimates the parameter successfully but with a slower

convergence rate (see Liu et al. 2013 for details).

FIG. 3. The spatial patterns of the (a) RMSE and (b) ensemble spread of the forecast monthly SST (first month)

averaging 332 cases, which initiate from each month of the simulation years 21–48 in the single-parameter esti-

mation experiment using DAEPC with the ASA method.
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5. Multiple-parameter estimation

In this section, we extend the parameter estimation

from a single parameter (SPD) to three biased param-

eters: One is in the ocean component, and the other two

are related to air–sea coupling (Table 1). The imperfect

ocean parameter is still the SPD that has been discussed

in the previous section. The imperfect parameters for

air–sea coupling are two artificial parameters, md and

mq, which are the multipliers to the momentum and la-

tent heat fluxes, respectively, between the ocean and

atmosphere (calculated in the coupler component of the

model). Thus,md 5 1:0 andmq 5 1:0 recover the default

setting of air–sea coupling. The specific value and the

minimum ensemble spread for each imperfect parame-

ter are shown in Table 1.

The model climatology of SST shows significant sensi-

tivity to the two coupling parameters,md andmq (Fig. 4).

The parameter md directly influences the momentum

flux between the ocean and the atmosphere. When md

is increased from 1 to 1.2, the SST shows a significant

warming in the subtropical oceans and cooling at higher

latitudes (Fig. 4a). The warming in the subtropics seems

to be induced, partly, by the slower surface wind (in

response to a larger drag coefficient) and, in turn, re-

duced evaporative cooling, while the cooling in the

midlatitude and subpolar regions may be contributed by

a stronger mixing of the colder water from the bottom

of the mixed layer and a stronger Ekman upwelling. The

parameter mq influences the latent heat flux between

the atmosphere and ocean and therefore impacts SST

directly. An increase in mq (from 1 to 1.2) enhances la-

tent heat flux cooling and therefore leads to a significant

surface cooling over the global ocean, except for high

latitudes where the latent heat flux is small (Fig. 4b).

The results of multiple-parameter estimation are not

as good as the single-parameter estimation when the

same experimental setting is used, because the non-

linearity between parameters and state variables weakens

TABLE 1. Multiple-parameter estimation experiment (the

estimated values are from EXP-M2).

Parameter

(unit)

Initial guess

value

Estimated

value

Truth

value

CCI

threshold

SPD (m) 20.0 17.1 17.0 0.3

md 1.20 0.99 1.0 0.02

mq 1.20 1.00 1.0 0.02

FIG. 4. The climatological annual mean SST difference between two simulations with the

same initial conditions but different parameters: (a) the differentmd (1.2–1.0); (b) the different

mq (1.2–1.0). The climatological mean SST(s) are calculated from the 80-yr average after 20

years of spinup. The green contours represent the 95% confidence level.
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the correlation between forecast error and individual

parameter uncertainty. For the EXP-M1, some param-

eters do not converge when we only assimilate the oce-

anic observations (monthly SST and SSS) (Fig. 5). Only

the SPD successfully converges to the truth in 50 years

of assimilation (Fig. 5a). The evolution of estimation

SPD has slower convergence speed and less parameter

stability compared with the estimation SPD in single-

parameter estimation (Fig. 2). The error of themq is only

reduced by ;50% in 50 years of assimilation (Fig. 5c),

and the error of the md shows a slight increase after the

assimilation (Fig. 5b). However, themd andmq converge

successfully in the single-parameter estimation with the

same observational setting (see Fig. 5 in Liu et al. 2014).

The lower estimation performance ofmultiple-parameter

estimation compared with single-parameter estimation is

consistent with previous works (Aksoy et al. 2006b; Tong

and Xue 2008b; Hu et al. 2010).

The smaller reliability of multiple-parameter estima-

tion can, in theory, be improved by decreasing the fore-

cast errors of model variables that are used to constrain

parameters directly. The assimilation of additional at-

mospheric observations into the model in EXP-M2 gen-

erates more accurate analysis and forecast of SST. The

smaller forecast uncertainty of SST, with the reduced

sampling error, enhances the signal/noise ratio of state–

parameter covariance, which then accelerates the conver-

gence of the parameter estimation (Fig. 6). The parameters

in EXP-M2 almost all converge to the truth values after

a 16-yr assimilation, and the convergence speed is much

faster than the speed of those in EXP-M1 (Fig. 5). The

estimated md and mq monotonically converge to the

truth in 8 model years (Figs. 6b,c). The estimated SPD

initially exhibits a small overshoot; that is, the parame-

ter error decreases from positive (3.0m) to negative

(;20.5m) and then converges back to the truth. The

estimated SPD relaxes back to the truth in eight model

years (Fig. 6a). Our other experiments show that this

type of overshooting sometimes occurs yet appears to

have little impact on the final convergence. Similar to

the single-parameter estimation that has been discussed

in section 3, parameter ensemble spreads initially all

suffer a negative bias compared with their RMSEs, which

confirms the necessity of applying CCI on the parameter

ensemble spreads.

The parameter estimation also helps to improve the

analysis of the state variables. Here we use the short

forecast to indicate the decrease of analysis error of state

variables (because the analyses are not saved in our ex-

periment). Figure 6d shows the evolution of the forecast

RMSEs of monthly SST and 500-hPa geopotential height

(GPH) during the assimilation. During the spinup period

of DAECP (first two years), the forecast errors for SST

decrease very rapidly and reach quasiequilibrium in a few

months, with the average RMSE reduced from ;1 to

;0.2K. TheRMSE further decreases to;0.1Kwhen the

parameter updating is activated and the uncertainties of

parameters are reduced. During the period of parameter

estimation (after year 2), the ensemble spread of forecast

SST becomes smaller than the SST RMSE (Fig. 6d), but

FIG. 5. The temporal evolution of estimated parameters for the

multiple-parameter estimation experiment of EXP-M1, which only

assimilates the oceanic observations of monthly SST and SSS:

(a) the SPD, (b) md, and (c) mq. The solid blue lines are the pa-

rameter ensemble means, the red dashed lines are the 1 standard

deviation of ensemble spreads, the black solid lines are the truth,

and the black dashed lines are the minimum parameter ensemble

spreads of CCI in the experiment.
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the smaller ensemble spread of state variables does not

seem to affect the parameter estimation. All of the three

biased parameters converge to the truth values quickly. It

should be pointed out that, for simplicity, we have not

used covariance inflation on state variables to enhance

their ensemble spreads. It is conceivable that, with an

inflation scheme, the estimation of the parameter and

state variables will be further improved.

Similar to SST, the forecast error of GPH decreases

dramatically with the assimilation of atmospheric ob-

servations of U, V, and T. The forecast error reaches

quasiequilibrium during the spinup period of DAECP

with an average RMSE of ;2.0m. The RMSE further

decreases to ;1.0m when the parameter updating is

activated and the uncertainties of parameters are re-

duced. The ensemble spread of GPH is sensitive to the

parameter ensemble spread. The ensemble spread is

greater than its RMSE during the spinup period of

DAECP and becomes smaller than its RMSE when the

parameter updating is activated and the parameter en-

sembles suffer the negative bias. The ensemble spread of

GPH and its RMSE become consistent when the anal-

yses reach equilibrium and the negative bias of parameter

ensemble disappears. In addition, to decrease the com-

putational cost, the atmospheric observations are only

used to update the state variables locally in EXP-M2. It is

expected that the state variables will be further improved

when the observations are also used to update the nearby

regions with a covariance localization scheme.

As expected, the improved parameters also improve

the model climate. The bias of the SST climatology,

generated by the initial parameter errors (see Table 1),

shows significant cooling with an average RMSE of

;0.61K (Fig. 7a). The spatial pattern is very similar to

Fig. 3b, because the effect of mq is the strongest among

the three biased parameters. The weak bias along the

equatorial region is due to the warming produced by

the positive biases of SPD and md, which counteracts

the cooling generated by the biased mq. The significant

cooling of SST accompanies a cold bias in the atmo-

sphere in FOAM, which lowers the GPH (Fig. 8a). The

GPH climatology at 500 hPa shows a significant negative

bias with an average RMSE of ;12.5m. The spatial

pattern ofGPHbias (Fig. 8a)matches the spatial pattern

of SST climatology bias (Fig. 7a). When the updated

parameters (Table 1) are used, the biases in SST and

FIG. 6. The temporal evolution of estimated parameters and forecast RMSE of SST and GPH for the multiple-

parameter estimation experiment of EXP-M2, which assimilates both the oceanic observations and the atmospheric

observations: (a) the SPD, (b)md, and (c)mq, as well as (d) the SSTRMSE. The solid blue lines in (a),(b), and (c) are

the parameter ensemblemeans, and the red dashed lines are the 1 standard deviation of ensemble spreads. The black

solid lines are the truth, and the black dashed lines are the minimum parameter ensemble spreads of CCI in the

experiment. The solid line and the dashed line in (d) are the 1-monthly forecast RMSE and ensemble spread of SST

(blue lines) andGPH (green lines), respectively. TheRMSE and ensemble spread are first calculated in each grid and

then averaged from 608S to 608N.
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GPH climatology decrease dramatically, with the RMSE

of SST and GPH reduced to ;0.05K and ;1.4m (Figs.

7b and 8b). Overall, like the single-parameter experi-

ment, the multiparameter estimation also improves the

model climate and forecast significantly.

6. Summary

In this study, we explored the parameter estimation in

aCGCMusing an ensemble-based assimilation scheme in

a twin experiment framework. Here, our DAEPC suc-

cessfully optimized the single imperfect parameter SPD

using the conventional observations of monthly SST and

SSS. The SPD error was reduced from 3 to 0.2m after

;40yr of assimilation. The DAEPC also performed well

in the experiments of multiple-parameter estimation by

using the 12-hourly atmospheric winds and temperature

observations and the monthly SST and SSS observations

in the ocean. The three imperfect parameters all con-

verged on the truth values after a 16-yr assimilation.

The improved model parameter also improved the

model climatology and model forecast. The RMSE of the

SST climatology was reduced from;0.6 to;0.05K, from

the model of initial biased parameters to the optimized

parameters (Table 1). The RMSE of the forecast monthly

SST (firstmonth) was reduced by 12%with the parameter

correction in the experiment of single-parameter estima-

tion. The forecast RMSE of monthly SST and GPH de-

creased from;0.12 to;0.07K and from;2.0 to;1.0m,

respectively, by correcting biased parameters in the ex-

periments of multiple-parameter estimation.

It is important for ensemble-based parameter estima-

tion to choose the right observations to update parame-

ters directly. Parameters are not dynamical variables;

they cannot be modified by model dynamics but only by

the observations directly through the state–parameter

covariance. The error of a parameter decreases when the

parameter is directly updated by observations with signal-

dominated state–parameter covariance(s). The error of a

parameter could increase when the parameter is directly

updated by the observations with a noise-dominated

state–parameter covariance(s). The signal/noise ratios

of state–parameter covariance(s) are different for dif-

ferent observational variables. To retain successful pa-

rameter estimation, we have to choose the observational

variables with robust state–parameter covariance(s) to

directly update the parameters. The other observations

can still improve parameter estimation by improving the

FIG. 7. The SST climatology difference between two simulations with the same initial con-

ditions but different parameters: (a) the initial parameters (Table 1) minus the truth param-

eters; (b) the estimated parameters (Table 1) minus the truth parameters. The climatological

mean SST(s) are calculated from the 80-yr average after 20 years of spinup. The green contours

represent the 95% confidence level.
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model forecast and enhancing the state–parameter co-

variance used for parameter updating. In this study, SST

was chosen as the observational variable to directly up-

date parameters, which leads to the parameter estimation

success in single-parameter estimation. When multiple

parameters are biased in EXP-M1, the state–parameter

covariance(s) of SST become less robust, which results

in a failure to estimate the parameters of md and mq.

Decreasing the forecast error of SST can enhance the

state–parameter covariance and improve the parameter

estimation. Indeed, the assimilation of additional atmo-

spheric observations into the model in EXP-M2 narrows

the SST uncertainty and produces successful estimation

for all three biased parameters. However, when we re-

placed SST with SSS to directly update parameters, the

parameter estimation failed even for single-parameter

estimation because the response of SSS to parameters is

much weaker than that of SST.

To our knowledge, this is the first demonstration of

successful ensemble-based parameter estimation in

a general circulation model with a fully coupled ocean–

atmosphere dynamic. It demonstrates the feasibility of

parameter optimization in a complex CGCM using an

ensemble-based filter for parameter optimization and

therefore suggests the potential of parameter optimi-

zation to reduce model bias and improve CGCMs in the

future. The idealized observation network used in this

study is very different than the realistic observation

network. The atmospheric observations applied in this

study are using the gridded reanalysis format setting.

Previous works show that, by assimilating the reanalysis

data, ensemble coupled data assimilation (ECDA) sig-

nificantly improves the forecast and analysis in Geo-

physical Fluid Dynamics Laboratory Climate Models

(Zhang et al. 2007; Yang et al. 2013; Chang et al. 2013;

Zhang et al. 2014). The ensemble-based parameter es-

timation in the CGCM using realistic reanalysis prod-

ucts as observations remains to be further studied.
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