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Abstract 17	
 18	

A conceptual coupled ocean-atmosphere model is used to study coupled ensemble 19	

data assimilation schemes with the focus on the role of ocean-atmosphere interaction in 20	

the assimilation. The optimal scheme is the fully coupled data assimilation scheme that 21	

employs the coupled covariance matrix and assimilates observations in both the 22	

atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures 23	

the temporal fluctuation of the weather noise is found critical for the estimation of not 24	

only the atmospheric, but also oceanic states. The synoptic atmosphere observation is 25	

especially important in the mid-latitude system, where oceanic variability is driven by 26	

weather noise. The assimilation of synoptic atmospheric variability in the coupled model 27	

improves the atmospheric variability in the analysis and the subsequent forecasts, 28	

reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric 29	

observation can further improve the oceanic state estimation directly through the coupled 30	

covariance between the atmosphere and ocean states. Relative to the mid-latitude system, 31	

the tropical system is influenced more by ocean-atmosphere interaction and, thus, the 32	

assimilation of oceanic observation becomes more important for the estimation of the 33	

ocean and atmosphere.  34	

 35	
 36	

  37	
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1. Introduction 38	

As a flow-dependent data assimilation scheme, Ensemble Kalman Filter (EnKF) 39	

(Evensen, 1994; Tippett et al., 2003) in principle is equivalent to the 4-dimensional 40	

Variational Assimilation (4D-Var) scheme. Yet, EnKF is much more promising for the 41	

application to complex models such as coupled ocean-atmosphere general circulation 42	

models (OAGCMs), because it does not require an adjoint model. In an OAGCM, EnKF 43	

is critical in the model initialization for climate predictions (e.g. Zhang et al., 2009, 44	

2010). Since the memory of the climate system lies in the ocean, most prediction studies 45	

have focused on the improvement of the initial state of the ocean. Previous works for the 46	

initialization in OAGCMs either used crude nudging schemes (e.g. Latif et al., 1993; 47	

Rosati et al., 1997; Luo et al., 2005; Smith et al., 2007; Keenlyside et al., 2008), or 48	

applied data assimilation in the component model separately (e.g. Ji et al., 1995; Rosati et 49	

al., 1997; Fuji et al., 2009). Recently, an EnKF scheme is implemented in an OAGCM 50	

for the assimilation of both atmospheric and oceanic data (Zhang et al., 2007). This 51	

scheme is found to improve the initial coupled state, and in turn, the seasonal climate 52	

prediction, significantly over that from a traditional 3-dimensional Variational 53	

Assimilation (3D-Var) ocean initialization (Zhang et al., 2008). However, except for a 54	

few studies in simplified coupled climate models (e.g. Sun et al., 2002; Zhang et al., 55	

2011, Zhang, 2011a,b), EnKF has not been explored extensively in coupled climate 56	

models. This is due partly to the relatively new development of the EnKF method itself 57	

and partly to the more complex nature of the coupled climate system, especially the 58	

different time scales between the atmosphere and ocean.   Therefore, important issues on 59	

EnKF assimilation in OAGCMs remain to be explored. Here, we are concerned with two 60	
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questions. First, how important is the assimilation of synoptic atmospheric variability for 61	

coupled climate prediction? Second, what is the role of ocean-atmosphere coupling in 62	

coupled data assimilation and for the initialization and climate prediction?  63	

There have been studies that suggest the importance of the assimilation of 64	

atmospheric observations in climate prediction, notably El Nino Southern Oscillation 65	

(ENSO) prediction. Using a simple nudging scheme, forecast is improved using the initial 66	

ocean state that is forced by the observed surface wind (Cane et al., 1986; Latif et al., 67	

1993), and furthermore, the initialization is obtained by assimilating the observed surface 68	

wind in the coupled mode, instead of forcing the ocean in the ocean-alone mode (Chen et 69	

al., 2002).  Using an EnKF, ENSO forecast is improved by including the assimilation of 70	

atmospheric observations in the coupled model, relative to that initialized using the 71	

ocean-alone 3D-VAR assimilation (Zhang et al., 2008). Yet, there have been no studies 72	

that systematically explored the roles of coupled assimilation and atmospheric 73	

observation in the coupled system.  74	

Here, we will explore the role of coupled assimilation and the role of atmospheric 75	

observation in coupled EnKF data assimilation systematically. As a pilot study here, we 76	

will apply EAKF (a type of EnKF, Anderson, 2001, 2003) to a simple conceptual coupled 77	

ocean-atmosphere model. We will compare various coupled assimilation schemes with 78	

the focus on the role of ocean-atmosphere coupling in the coupled system. Special 79	

attention is also paid to the role of synoptic atmospheric observations in the coupled 80	

assimilation. The coupled climate will be studied in two settings, a mid-latitude-like 81	

system and a tropical-like system, the former being driven completely by weather noises. 82	

Our study shows that the fully coupled assimilation scheme, which assimilates both 83	
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oceanic and atmospheric observation through the coupled covariance matrix, gives the 84	

best analysis. This optimal analysis is achieved because the assimilation of synoptic 85	

atmospheric variability improves the surface atmospheric forcing to the ocean. In 86	

particular, high frequency atmospheric data captures the temporal behavior of the weather 87	

noise and therefore improves the surface “stochastic” atmospheric forcing to the ocean. 88	

The weather noise forcing is particularly important in the mid-latitude system. In 89	

addition, the coupled covariance between the atmospheric and oceanic states further 90	

improves the oceanic state directly in the analysis through the background covariance 91	

between the atmosphere and ocean.  92	

The paper is arranged as follows. We will describe our conceptual coupled 93	

climate model in section 2. We will then compare different coupled assimilation schemes 94	

in the mid-latitude and tropical systems in section 3 and 4, respectively. A summary and 95	

discussion will be given in section 5.  96	

2. The Model 97	

The simple climate model consists of a fast and chaotic “atmosphere” and a 98	

slowly oscillating “ocean”. The atmospheric “wind”, or “weather noise”, is governed by 99	

the Lorenz63 model (Lorenz, 1963)  100	

ml

dx1

dt
 al (x2  x1)

ml

dx2

dt
 bl x1  x2  x1x3

ml

dx3

dt
 x1x2  cl x3

 ,     (1) 101	
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where the factor ml 1/ 6 is used to match the time steps of the Lorenz model with the 102	

rest of model equations.  The “surface air temperature” Ta is determined by an idealized 103	

thermodynamic model 104	

ma

dTa

dt
 c(T Ta )aTa  c4x2 .     (2) 105	

The slow ocean consists of the “sea surface temperature” (SST) T and “thermocline 106	

depth” h ,  which are described by an oscillator model (Jin, 1997) :  107	

dT

dt
 RT h c(Ta T ) c2x2  en (h bT )3

dh

dt
 rhbT

    (3) 108	

The default model parameters are 109	

 al 10, bl  28, cl  8 / 3, ma 1/ 20, a 1/ 3,     (4) 110	

for the atmosphere, 111	

  0.125,   0.75, r  0.25, b0  2.5,   0.5, b  b0, R b1 0.3125, en 1, (5) 112	

for the ocean,  113	

  c 1,         (6a) 114	

for thermal coupling, and 115	

c2  0.05, c4  0.1.       (6b) 116	

for the forcing of weather noise. All variables are in the nondimensional form, with a 117	

nondimensional time t~1 corresponding to a dimensional time ~2 months. The model is 118	

solved using a 4-th order Runge-Kutta method, with a time step of dt=0.002 (~2.88 hrs, 119	

or 250 steps ~ 1 month). 120	
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In this conceptual coupled model, the Lorenz63 model can be thought to represent 121	

internal atmospheric variability of, say, “wind”; this wind component is induced by the 122	

chaotic instability of the atmosphere itself and is independent of oceanic feedback. The 123	

wind variability acts as a weather noise that drives the air temperature (via the term c4x2) 124	

and SST (via the term c2x2) variability. 1   The air temperature is coupled with SST 125	

through a negative ocean-atmosphere feedback c(T-Ta) and thus represents the part of 126	

atmospheric variability that is strongly coupled with the ocean. The ocean model was 127	

originally derived for the tropical coupled ocean-atmosphere system (as the recharge 128	

oscillator model, Jin, 1997) with an internal oscillation mode of ~ 2-3 years. This 129	

oscillator is used here symbolically to represent an ocean-alone system. To avoid 130	

confusion, this model will be called the ocean oscillator model hereafter.  131	

In spite of its simplicity, the conceptual model captures the essential feature of a 132	

coupled system, with a fast atmosphere (days) coupled with a slowly varying ocean 133	

(months to years). The model parameters for the atmosphere wind model (1) and the 134	

oceanic model (3) are the the standard parameters of Lorenz (1963) and Jin (1997), 135	

respectively, except for the tunable relative coupling strength  . Other model parameters 136	

are tuned such that the coupled model captures some important statistical features of the 137	

coupled variability in a much more realistic system (see later discussion on Figs.2 and 4) 138	

such that this model may be of relevance to more complex climate systems. We 139	

constructed two model settings, a mid-latitude-like and a tropics-like coupled systems. In 140	

the mid-latitude system, parameters take the default values in eqns. (4)-(6). In particular, 141	

																																																								
1	The internal variability “wind” can also be thought as “precipitation”, which forces salinity variability in the ocean 
but with little feedback from the salinity.		
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the oceanic instability parameter is small (  0.5 in (5)) such that the oceanic mode is a 142	

damped oscillating mode. As such, the mid-latitude system is driven completely by the 143	

atmospheric noise using large forcing parameters c2=0.05, c4=0.1 in (6b). In the tropical 144	

system, the atmospheric forcing effect is reduced by 10 times to c2=0.005, c4=0.01. 145	

Furthermore, the instability is enhanced with 1.5such that the oceanic mode becomes 146	

self-exciting. Mathematically, the mid-latitude system is a damped system forced by 147	

strong stochastic noise, while the tropical system is a self-exciting system modified by 148	

weak stochastic noise. 2 149	

 In the mid-latitude system, the atmospheric wind exhibits fast and chaotic 150	

variability (Fig.1b). The ocean exhibits slow irregular oscillation punctuated by rapid 151	

events associated with the atmospheric forcing (Fig.1a); the air temperature consists of 152	

fast variability due to the wind and slow variability due to SST feedback (Fig.1b). The 153	

mid-latitude system captures some major features in a state-of-art OAGCM, the National 154	

Center for Atmospheric Research Community Climate System Model version 3.5 (NCAR 155	

CCSM3.5), as seen by comparing the lagged correlation in the mid-latitude North 156	

Atlantic in the OAGCM CCSM3.5 (Fig.2a) and in the simple model (Fig.2b). In the 157	

CCSM3.5 (Fig.2a) and the simple model (Fig.2b), both auto-correlations imply a short 158	

decorrelation time less than a month for the surface wind and a long decorrelation time of 159	

several months for the SST. Both autocorrelations of the air temperature decline rapidly 160	

in the first month and then slowly for several months, both attributed by the fast 161	

atmospheric wind and slow SST feedback. Both cross-correlations between wind and 162	

																																																								
2	The intensity of noise forcing plays the critical role here. The result remains robust for the mid-latitude system when 
the instability parameter is increased to   1.5, and remains robust for the tropical system when the instability 

parameter is reduced to   0.5 . 
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SST are higher for wind leading SST than for SST leading wind, suggesting that the wind 163	

is a major driving agent for SST variability with little feedback from SST. In comparison, 164	

both cross-correlations between air temperature and SST are more symmetric with lead-165	

lags, although the correlations are still stronger for air temperature leading SST. This 166	

reflects the nature of the negative ocean-atmosphere feedback in the mid-latitude, with 167	

the air-sea heat flux playing a dual role of first driving and later damping the SST 168	

(Frankignoul et al., 1998).  Therefore, the simple model captures some statistical features 169	

of ocean-atmosphere feedback in more realistic systems.  170	

In the tropics, the ocean exhibits a self-exciting oscillation without any 171	

perturbation. Fig.3a and b show a self-exciting solution perturbed weakly by the chaotic 172	

atmosphere. In comparison with the mid-latitude in Figs.1a, b, the tropical solution 173	

exhibits a much more regular cycle perturbed by weak noise. Due to the weak impact of 174	

weather noise, the lagged correlation shows that, in both the OAGCM (meridional wind, 175	

Fig.4a) and the simple model (Fig.4b), the air temperature almost co-vary with SST, 176	

while the wind is almost uncorrelated with SST.   177	

In short, in spite of its idealized nature, the simple model captures important 178	

features of the coupled ocean-atmosphere system and therefore provides a useful tool for 179	

exploring the role of ocean-atmosphere interaction in coupled assimilation.  180	

3. Coupled Assimilation in the Mid-latitude System 181	

We now study different schemes of data assimilation in the coupled mid-latitude 182	

model in the perfect model scenario, with the focus on the ocean state, whose long 183	

memory is critical for climate predictability. First, a control simulation is performed with 184	

the initial condition h=0, T=0, Ta=0.15, x1=x2=x3=0.0001 (Figs.1, 3). The model is spun 185	
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off  and then integrated for 200 yrs to represent the “truth”.  A synthetic observation is 186	

constructed by adding an observational noise onto the truth. The observational error for 187	

each variable is an independent Gaussian noise with a standard deviation 10% that of the 188	

control simulation. Unless otherwise specified, the coupled model assimilates the 189	

observation every 10 steps (~1.2 days) for the atmosphere and 40 steps (~5 days) for the 190	

ocean. Each ensemble has 20 members and each assimilation is integrated for 200 years 191	

with no inflation on the background covariance. The initial condition for the ensemble 192	

member is constructed from the observation at the time with a small random perturbation. 193	

Here, we discuss the results with all observational variables assimilated. When a subset 194	

of the observational states are assimilated, the results remain qualitatively consistent. 195	

Further sensitivity experiments show that our major conclusion remains qualitatively 196	

valid for other settings, including assimilation time steps, ensemble members，  the 197	

magnitude of the observational error and the inflation factors.  198	

We first compare three coupled assimilation schemes in the mid-latitude system, 199	

all using the coupled background covariance matrix in the filter analysis: CP-A 200	

assimilates the atmospheric observation only, CP-O assimilates the oceanic observation 201	

only, and CP-AO assimilates both atmospheric and oceanic observations (Table 1). We 202	

will compare the results of these schemes in terms of the normalized RMSEs (root mean 203	

square error normalized by the standard deviation of the control) 3 . The most 204	

comprehensive scheme is the fully coupled assimilation scheme CP-AO, which 205	

assimilates observations of both the atmosphere and ocean. The RMSE is reduced to 30% 206	

																																																								
3	To reduce the impact of the outlier problem in EAKF (Lawson and Hansen, 2004; Anderson, 2010; Liu et al., 2012),  
a simple approach is used here: for each scheme,  the RMSE is calculated with the top 5% of the RMSEs excluded (the 
result is similar if the top 1% is excluded). This way, our major conclusions become robust for different assimilation 
settings and model parameters.  
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(~0.03) and 3% (~0.003) of the observational errors for the atmosphere and ocean, 207	

respectively (Fig.5). (note, in Fig.5, the uncoupled scheme As-O will be discussed later in 208	

section 3b). If only the ocean observation is assimilated (CP-O), the RMSE is reduced to 209	

20% (~0.02) and 85% (~0.085) of the observational errors for h and SST, respectively 210	

(Fig.5), but remains comparable with the control for the atmospheric variables, with the 211	

RMSEs of 0.55 and 0.9 4  (both off scale in Fig.5) for air temperature and winds, 212	

respectively. The modest oceanic errors, especially for SST, are much larger than those in 213	

CP-AO, suggesting the importance of the atmospheric observation for the ocean state in 214	

the coupled assimilation. The poor constrain of the ocean observation on the atmosphere 215	

is expected because the wind does not respond to SST (as in eqn. (1), and the poor 216	

correlation < 0.2, Fig.A1b), and the air temperature is driven primarily by the stochastic 217	

wind forcing with  only a weak response to SST (correlation < 0.4, Fig.A1b).  218	

In contrast, when the atmospheric observation is assimilated into the coupled 219	

model (CP-A), the analysis is improved dramatically. The RMSE of CP-A is reduced to 220	

almost the same level as in CP-AO (Fig.5). This suggests that, for the mid-latitude 221	

system, atmospheric observation can play a much more important role than the oceanic 222	

observation for the coupled state. It is interesting that the atmospheric observation is even 223	

more important than the oceanic observation itself for the ocean state. The critical 224	

importance of the atmospheric observation here can be understood, partly, from the 225	

dynamic nature of the mid-latitude coupled system. The SST variability is forced by 226	

synoptic atmospheric variability, which is often considered as stochastic noise at the slow 227	

																																																								
4	Even though the atmospheric wind is forcing the air temperature and SST dynamically, with no dynamic feedback at 
all as shown in eqn. (1), the wind is still improved slightly by oceanic observations (normalized RMSE below 1 in CP-
O). Our further experiments show that this improvement is due to the background covariance between the wind and air 
temperature used in the analysis. Therefore, SST observation improves the air temperature, and in turn, wind. The 
instantaneous covariance allows the “response” variable to improve the “forcing” variable. 	
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ocean (and climate) time scale (Frankignoul and Hasselmann, 1977). This dominant role 228	

of atmospheric forcing on SST is shown clearly in the lagged correlation between SST 229	

and air temperature (Fig.A1f), where the maximum correlation (~0.6) occurs when air 230	

temperature leads SST (by ~80 steps). Therefore, as synoptic atmospheric forcing is 231	

improved, the ocean state is also improved.  232	

a) The role of synoptic atmospheric forcing 233	

We now further explore the role of synoptic atmospheric observation on the 234	

coupled assimilation. As atmospheric observation becomes less frequent, we speculate 235	

that the effect of the atmospheric observation on the coupled, in particularly the oceanic, 236	

state, will be reduced. Less frequent atmospheric observation should increase the analysis 237	

error in both CP-A and CP-AO and, furthermore, the error will increase faster in CP-A 238	

than in CP-AO because the latter is constrained by the ocean observation. This 239	

speculation is confirmed by two sets of assimilation experiments in CP-A and CP-AO, in 240	

which the atmospheric observational steps are increased from 10 to 640 steps 241	

systematically (while the ocean observation remains fixed at 40 steps). Fig.6 shows the 242	

RMSE ratio between the CP-A and CP-AO experiments as a function of the atmospheric 243	

assimilation steps. Since ocean variability is forced by the entire history of the 244	

atmospheric forcing, as a measure of the error of the atmospheric forcing, the RMSEs 245	

here are accumulated over both analysis and forecast steps5. Overall, as the steps of the 246	

atmospheric observation increase, the RMSE ratio tend to  increase for the ocean (Fig.6a) 247	

and air temperature (Fig.6b), indicating a faster increase of RMSE in CP-A than in CP-248	

AO. Therefore, ocean observations become more important for the ocean and air 249	

																																																								
5	The variation of the RMSE ratio also remains similar for the analysis RMSEs (not shown).	



CENKF, Liu et al	 	 13	
	

temperature as atmospheric observations become less frequent.  (The ratio of RMSEs for 250	

wind remains ~1 (not shown) because of the lack of oceanic impact on wind). In Fig.6b, 251	

the RMSE ratio for air temperature increases from 1 (at step 10) to 1.15 (at step 640) (the 252	

slight decreases at steps 20 and 80 are likely caused by sampling error). Therefore, the 253	

RMSE of air temperature increases slightly faster in CP-A than in CP-AO, reflecting the 254	

weak impact of SST on air temperature (Fig.6b). The faster error growth in the 255	

atmospheric forcing then leads to a faster error growth in the ocean in CP-A than in CP-256	

AO, and the RMSE ratios for oceanic variables increase eventually much beyond 1 for 257	

large atmospheric observational steps (Fig.6a). Indeed, in the limit of very large 258	

atmospheric observational steps, the RMSE of oceanic variability in CP-A saturates 259	

towards the control (~60% of control at step 640, not shown) because the CP-A scheme 260	

now uses virtually no observations in the atmosphere and ocean; the RMSE of oceanic 261	

variability in CP-AO, however, saturates towards that of CP-O (about 5%-10% of the 262	

control at step 640, not shown), because CP-AO now still uses full oceanic observations 263	

(every 40 steps). Since the RMSE of the ocean is much larger in CP-A than in CP-O, the 264	

RMSE ratio between CP-A and CP-AO grows very large in the ocean, especially for h.  265	

In spite of this overall increase trend of the RMSE ratio, it is important to note 266	

that the RMSE ratio remains close to ~1 for air temperature (Fig.6b) and ocean (Fig.6a) 267	

for sufficiently high frequency of atmospheric observations, notably at steps 10, 20 and 268	

even 40. This occurs because the atmospheric observation is so frequent that the forecast 269	

error has not grown significantly in the atmosphere, therefore, the error of the 270	

atmospheric forcing is not much larger in CP-A than in CP-AO (as seen in the RMSE 271	

ratio of air temperature in Fig.6b). The atmospheric forcing is therefore sufficiently 272	



CENKF, Liu et al	 	 14	
	

accurate in CP-A such that the addition of oceanic observations in CP-AO does not 273	

improve the ocean state significantly (Fig.6a).  This argument also implies that the 274	

critical frequency of atmospheric observation should be significantly shorter than the 275	

saturation time of forecast error, or crudely the persistence time. The atmospheric 276	

decorrelation time is less than ~40 steps for wind (Figs.A1c-e), and less than ~150 steps 277	

for air temperature (using a cut off correlation of ~0.2). Therefore, the critical frequency 278	

beyond which the RMSE ratio increases above 1 should be shorter than ~40 – 150 steps, 279	

consistent with the ~40 steps in Fig.6a. In short, if the atmospheric observation  is 280	

sufficiently shorter than its persistence time, the atmospheric observation is able to 281	

improve the atmospheric forcing and, in turn, the oceanic variability, significantly, in the 282	

coupled system. 283	

b) Coupled vs. uncoupled assimilation schemes 284	

We now compare the fully coupled scheme against an uncoupled assimilation 285	

scheme As-O (Table 1). The As-O scheme assimilates both atmospheric and oceanic 286	

observations, but separately in a two-tier approach: first, the atmospheric observation is 287	

assimilated in the atmosphere model forced by the SST observation (Specifically, the 288	

SST forcing at each step is derived from the SSTs at the observational steps using a linear 289	

interpolation). Second, the atmospheric forcing (at analysis and forecast steps) is used to 290	

force the ocean model in its assimilation of oceanic observations. The atmospheric 291	

analysis here is equivalent to the standard atmospheric reanalysis product. For the 292	

oceanic state, the As-O scheme is equivalent to an ocean data assimilation forced by an 293	

atmospheric reanalysis product. In a sense, As-O is similar to many previous works for 294	

the initialization of the ocean state for climate predictions in coupled climate models (e.g. 295	
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Cane et al., 1986; Latif et al., 1993; Rosati et al., 1997) (although the assimilation 296	

schemes there are not ensemble filters).  A comparison of the RMSEs in As-O and CP-297	

AO (Fig.5) shows that, even with the same atmospheric and oceanic observations, the 298	

RMSE is significantly higher in As-O than in CP-AO, especially for the ocean. The 299	

improved analysis in CP-AO over As-O is due, partly, to the improvement of the SST 300	

forcing (to the atmosphere) through the coupled dynamics. Indeed, the RMSE of the SST 301	

analysis in CP-AO is reduced from the observational error (~0.1, Fig.5) (which is the 302	

error for the SST forcing in As-O) to less than 5% of the observational error (< 0.005, 303	

Fig.5).  Relative to As-O, the improved SST forcing CP-AO improves the atmosphere 304	

dynamically, which then improves the ocean dynamically. Indeed, even with the 305	

additional assimilation of oceanic observations, the analysis of As-O is significantly 306	

poorer than that in the coupled scheme CP-A for the ocean state and air temperature 307	

(Fig.5), even though the latter only assimilates the atmospheric observation. This is 308	

consistent with the critical importance of synoptic atmospheric observations as discussed 309	

in Fig.6.  310	

To further evaluate the role of atmospheric surface forcing, we performed another 311	

uncoupled oceanic assimilation (not shown) that is the same as As-O except that the 312	

atmospheric forcing is replaced by that in CP-AO at every time step. The RMSE in the 313	

ocean is now reduced by about half of that in As-O (due to the improved atmospheric 314	

forcing), but the RMSE still remains significantly higher than in CP-AO, even though 315	

both ocean assimilations used the same atmospheric forcing. This implies that the 316	

improved surface atmospheric forcing through the coupled dynamics is not the only cause 317	
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for the improved assimilation in the coupled scheme CP-AO over the uncoupled scheme 318	

As-O.   319	

c) The role of coupled background covariance 320	

In principle, ocean-atmosphere coupling affects the coupled data assimilation not 321	

only through the coupled dynamics, but also through the coupled covariance in the filter 322	

analysis. To further explore the difference between the coupled and uncoupled schemes, 323	

especially the role of the ocean-atmosphere interaction through the coupled covariance, 324	

we further compare the fully coupled scheme CP-AO with another coupled scheme: the 325	

dynamically coupled scheme CP-ABOB (Table 1). In CP-ABOB, atmospheric and 326	

oceanic observations are assimilated as in CP-AO except that the background covariance 327	

matrices for the atmosphere and ocean only use the sub-matrices for each component 328	

separately. Specifically, denote the transposes for atmospheric and oceanic variables as329	

A  x1, x2, x3,Ta T
 and O  T, h T

, respectively, the background covariance matrix is   330	

B 
BAA BAO

BAO BOO












,       (7) 331	

in CP-AO, but 332	

BABOB 
BAA 0

0 BOO












.       (8) 333	

in CP-ABOB. Here BAA A,A , BOO O,O , BAO A,O  .  334	

A comparison of CP-ABOB and CP-AO (Fig.7) shows that the RMSEs are 335	

comparable for the atmosphere, but is significantly greater in CP-ABOB than CP-AO for 336	

the ocean. Therefore, atmospheric observations can improve the ocean significantly in the 337	

fully coupled scheme CP-AO directly through the coupled covariance. This improvement 338	
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is further shown to be caused completely by the impact of the atmospheric observation on 339	

ocean. This is shown in two additional partially coupled experiments CP-A2OB and CP-340	

O2AB, which respectively use the coupling covariance BAO  on the ocean and 341	

atmosphere, respectively, with the corresponding background covariance matrices 342	

BA2OB 
BAA 0

BAO BOO












,     BO2AB 

BAA BAO

0 BOO












.   (9) 343	

Fig.7 shows almost the same RMSEs in CP-A2OB and the fully coupled CP-AO, but 344	

almost the same RMSEs in CP-O2AB and the dynamically coupled CP-ABOB. 345	

Therefore, for the mid-latitude system here, the impact of the coupled covariance on the 346	

coupled analysis is due to the atmospheric impact on ocean, with little oceanic impact on 347	

the atmosphere. 348	

It is also interesting to compare CP-ABOB with the uncoupled scheme As-O. 349	

Fig.7 shows that the RMSE is smaller in CP-ABOB than in As-O for air temperature, 350	

thermocline and SST. The error reduction in air temperature confirms that atmospheric 351	

observations improve the atmosphere state more in the coupled model than in the 352	

uncoupled atmospheric model, because the SST forcing is improved over the observation 353	

(used in As-O) by the coupled dynamics in the coupled model. For the ocean state, we 354	

may attribute the reduced RMSE from CP-ABOB to CP-AO to the coupled covariance, 355	

and from As-O to CP-ABOB to the improvement of atmospheric forcing in the coupled 356	

model.  357	

In short, high frequency synoptic atmospheric observation improves the coupled 358	

state significantly because of its improvement on the atmospheric analysis and, in turn, 359	

the surface forcing to the ocean.  The fully coupled assimilation CP-AO improves the 360	
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ocean significantly over the uncoupled scheme As-O for two reasons: the coupled 361	

dynamics improves the atmospheric forcing by improving the SST forcing to the 362	

atmosphere (from As-O to CP-ABOB), and, the coupled background covariance allows 363	

the atmospheric observation to improve the ocean state through the analysis directly.  364	

4. Coupled Assimilation in the Tropical System 365	

We now discuss the tropical system briefly, in comparison with the mid-latitude 366	

system. We will show that the major conclusions in the mid-latitude system still hold 367	

qualitatively in the tropical system: the fully coupled scheme gives the optimal coupled 368	

state and high frequency synoptic atmospheric observations can improve the ocean state 369	

significantly. Quantitatively, however, the stronger ocean-atmosphere coupling in the 370	

tropics renders synoptic atmospheric observation less important than in the mid-latitude, 371	

while oceanic observations become more important.  372	

As in the mid-latitude system (Fig.5), the normalized RMSEs in CP-AO, CP-A 373	

and CP-O (Table 1) a minimum in CP-AO, and almost the same in CP-A and CP-AO. 374	

Therefore, CP-AO is the optimal scheme and synoptic atmospheric observation plays a 375	

dominant role. Meanwhile, the assimilation of the ocean observation in CP-O reduces the 376	

RMSEs by half  compared with the mid-latitude system for ocean (h and T, ~0.01, ~0.045 377	

in Fig.8, vs. ~0.02 and ~0.09 in Fig.5) and air temperature (~0.35 vs. ~0.65, off scale in 378	

Fig.8 and Fig.5), due to the stronger ocean-atmosphere coupling and the weaker weather 379	

noise forcing in the tropical system. Indeed, the stronger ocean-atmosphere coupling can 380	

be seen in the much larger correlation between SST and air temperature in the tropical 381	

(~0.9, Fig.A2b,f) than in the mid-latitude (~0.4, Fig.A1b,f) systems. The weaker weather 382	

noise forcing can also be seen in the lagged cross-correlation, which peaks almost 383	
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simultaneously in the tropical system (Fig.A2f), rather than when the air temperature 384	

leads SST in the mid-latitude system (Fig.A1f). The increased role of oceanic 385	

observations in the tropical system can also be seen the RMSE ratio between CP-A and 386	

CP-AO in Fig.9. Although qualitatively similar to the mid-latitude system (Fig.7), an 387	

increase of atmospheric observational steps increases the RMSE more in CP-A than in 388	

CP-AO, quantitatively, the RMSE ratio increases significantly beyond 1 for ocean 389	

(Fig.9a) and air temperature (Fig.9b) at 20 steps, while it remains close to 1 even till ~40 390	

steps in the mid-latitude system.  391	

Coupling also improves the estimation, as in the mid-latitude. The RMSE is 392	

reduced from the uncoupled As-O to the coupled CP-AO (Fig.8), similar to the mid-393	

latitude system (Fig.5). Quantitatively, the RMSE is reduced by 10 times in the tropical 394	

system (0.06 in As-O to 0.007 in CP-AO), but only by a half in the mid-latitude system 395	

(from 0.022 to 0.013), because of a greater role of ocean-atmosphere coupling in the 396	

tropical system. The coupled covariance also improves the estimation (Fig.10) as in the 397	

mid-latitude (Fig.7), in comparison of the fully coupled CP-AO with the dynamically 398	

coupled CP-ABOB. Quantitatively, however, the improvement is much less than in the 399	

tropics, as the RMSE in CP-ABOB is not much greater than in CP-AO for air 400	

temperature and ocean (Fig.10). Therefore, unlike the mid-latitude, where the coupled 401	

covariance is the major mechanism that improves the coupled over the uncoupled 402	

schemes, the improvement of the atmospheric forcing is the major mechanism that 403	

improves the coupled assimilation in the tropics. This is consistent with a stronger ocean-404	

atmosphere coupling and, in turn, a stronger feedback of SST on air temperature in the 405	

tropical system.   406	
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5. Summary and Discussions    407	

We studied several coupled schemes of EAKF in a simple coupled ocean-408	

atmosphere model in the perfect model scenario, with the focus on the role of ocean-409	

atmosphere interaction in the assimilation. Our study confirms that the optimal 410	

assimilation scheme is the fully coupled data assimilation scheme that assimilates 411	

observations in both the atmosphere and ocean and that employs the coupled covariance 412	

matrix. It is further found that the assimilation of synoptic atmospheric variability is 413	

critical for the improvement of not only the atmospheric state, but also the oceanic state, 414	

especially in the mid-latitude system, where oceanic variability is driven predominantly 415	

by weather noise. Furthermore, atmospheric observation can also improve the oceanic 416	

state through the coupled covariance, especially in the mid-latitude system. Relative to 417	

the mid-latitude system, the tropical system is influenced more by oceanic dynamics and 418	

ocean-atmosphere interaction. Therefore, the assimilation of oceanic observation 419	

becomes more important. This study suggests that the analysis of the coupled climate 420	

state variables are best derived in the fully coupled model using both the atmospheric and 421	

oceanic observations. Furthermore, synoptic atmospheric observations are critical for the 422	

improvement of the coupled analysis. Finally, coupled covariance between the ocean and 423	

atmosphere should also be employed to achieve the best analysis.  424	

The importance of synoptic atmospheric observation for improving the ocean 425	

state has important implication for climate predictions: although the memory of the 426	

climate system lies in the ocean, synoptic atmospheric observations can significantly 427	

improve the ocean initial state and, in turn, climate prediction of slow oceanic variables. 428	

Therefore, the synoptic atmospheric observation alone is able to improve the coupled 429	
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initial state in a balanced way (in both atmosphere and ocean), which will help improving 430	

climate prediction. We performed ensemble climate prediction experiments initialized by 431	

the coupled state of different assimilation schemes. Since each of our schemes (Table 1) 432	

improves the coupled state in both the atmosphere and ocean in a balanced way, it also 433	

improves the climate prediction of slow ocean state. For example, the RMSE is smaller in 434	

CP-AO than As-O in both the ocean and air temperature (Figs.5, 8), which in turn is 435	

smaller than those in CP-O; accordingly, the climate prediction of T and h deteriorate 436	

from CP-AO to As-O and finally to CP-O (not shown). One extreme example of 437	

unbalanced initial condition is the perfect ocean experiment (PO), as being used in some 438	

early studies of experimental decadal climate predictions (Collins et al., 2002). In PO, the 439	

ocean initial condition is the truth, while the atmosphere initial state is selected randomly 440	

from the control. A comparison of the climate prediction (Fig.11) shows that the 441	

prediction of the ocean state eventually becomes much worse in PO than in CP-AO after 442	

a very short lead time when ocean is almost perfect in PO. This occurs because the very 443	

large initial error in the atmosphere in PO quickly drives the ocean away from the truth.  444	

It is interesting that the major conclusions of our conceptual model study seem to 445	

be consistent with previous studies in more realistic models. The importance of the 446	

atmospheric observations has been recognized even in the early stage of ENSO 447	

prediction, where less advanced assimilation schemes such as nudging are used for 448	

initialization (e.g. Cane et al., 1986; Latif et al., 1993). These studies found that a better 449	

forecast is achieved using the initial ocean state that is forced by the observed surface 450	

wind and the addition of further oceanic observation may not improve climate prediction 451	

significantly.  Our conclusion that the assimilation in the coupled scheme (e.g. CP-A) 452	
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improves the coupled state than the uncoupled assimilation (e.g. As-O) also appears to be 453	

consistent with Chen et al. (2002). They found that their ENSO prediction is improved if 454	

the initialization is obtained by assimilating the observed surface wind in the coupled 455	

mode, instead of forcing the ocean in the ocean-alone mode.  The importance of synoptic 456	

wind for improving climate prediction is consistent with the EAKF study in an OAGCM 457	

(Zhang et al., 2008). This study shows that ENSO forecast is improved using the EAKF 458	

in the coupled model compared with the ocean-alone 3D-VAR assimilation.  459	

Much further studies are needed, especially in more realistic models. One 460	

surprising result in our model is the overwhelming importance of synoptic atmospheric 461	

observation, such that the assimilation of synoptic atmospheric observation alone (CP-A) 462	

improves the coupled state almost the same as assimilating additionally oceanic 463	

observations (CP-AO). Equivalently, the assimilation of oceanic observation has little 464	

impact on the atmosphere, even the air temperature, as shown in CP-O. Previous studies 465	

with more realistic models, including OAGCMs show that the assimilation of oceanic 466	

observations in the coupled model can indeed improve the atmospheric state, especially 467	

in the tropics (Ji et al., 1995; Rosati et al., 1997; Luo et al., 2005; Fuji et al., 2009). The 468	

overwhelming role of synoptic atmospheric observation in our study could be related to 469	

the lack of dynamic ocean-atmosphere feedbacks in our idealized model, especially in the 470	

tropics. In a more realistic tropical system, the (zonal) wind anomaly is significantly 471	

correlated with SST, because of the strong dynamic response of the atmosphere to 472	

tropical SST anomaly (Gill, 1980; Lindzen and Nigam, 1987). This zonal wind effect is 473	

absent in our tropical system, which only simulates the meridional wind (Fig.4a) and 474	

therefore lacks the dynamic ocean-atmosphere feedback.  475	
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 480	

Appendix: Lagged cross-correlations among model variables 481	

To help us understand the nature of the covariance among different model variables, and 482	

in turn the ensemble filter analysis, the lagged cross-correlations among different model 483	

variables are shown for the mid-latitude system in Fig.A1 and for the tropical system  in 484	

Fig.A2. See the text for discussions.   485	

 486	

  487	
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Table 1: Data Assimilation Schemes 566	

 567	
568	

Name Atmos 
obs. 
  

Ocean 
obs.  

Model Background Covariance 
Matrix 

CP-AO yes yes coupled  coupled  
CP-A yes no coupled  coupled  
CP-O no yes coupled  coupled  
As-O yes yes 1st: atmos. model (forced by SST 

obs.),  
2nd: ocean model (forced by 
atmos. analysis.) 

atmos.-alone 
ocean-alone 

CP-ABOB yes yes coupled atmos.-alone, 
ocean-alone 

CP-A2OB yes yes coupled In CP-ABOB, add 
atmospheric covariance to 
ocean for oceanic analysis 

CP-O2AB yes yes coupled In CP-ABOB,  add oceanic 
covariance to the atmosphere 
for atmospheric analysis 
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Figure Captions 569	
 570	
Figure 1. Time series of (a) SST (T) and ocean thermocline depth (h), (b) atmospheric 571	
winds (x1,x2,x3) and air temperature (Ta) in the control simulation of the mid-latitude 572	
coupled system.  573	
	574	
Figure 2.  Auto correlations (solid) and cross-correlations (dash) of monthly SST, air 575	
temperature and wind in (a) CCSM3.5 North Atlantic average and (b) the mid-latitude 576	
coupled system. The wind is the zonal surface wind in (a) and x2 in (b). The cross-577	
correlations are between SST and the atmospheric temperature and wind, with the 578	
positive lags for SST leading the atmosphere. 579	
	580	
Figure 3. Same as Fig.1 but for the tropical coupled system.  581	
	582	
Figure 4. Same as Fig.2 but for the tropical coupled system.  583	
 584	
Figure 5. Analysis RMSE (normalized by the standard deviation of the control run) of all 585	
the 6 variables for different assimilation schemes in the mid-latitude coupled system: OB: 586	
Observation, coupled schemes CP-A, CP-O, CP-AO (CP-AO and CP-A almost overlap 587	
with each other) and the uncoupled scheme As-O (see Table 1). The observational time 588	
steps for the atmosphere and ocean are 10 and 40 steps, respectively. The RMSE is 589	
calculated as the average of the RMSEs at all the analysis steps.  590	
	591	
Figure 6. The ratio of RMSE (accumulated for all time steps) between CP-A and CP-AO 592	
as a function of the time steps of atmospheric observation in the mid-latitude system. (a) 593	
SST and thermocline depth, (b) air temperature. The oceanic observation time step is 594	
fixed at 40 steps. (The ratio of RMSE at the analysis steps are similar).  595	
	596	
Figure 7. Analysis RMSE (normalized by the standard deviation of the control run) for 597	
As-O (circle), CP-AO (solid dot), CP-ABOB (cross), CP-A2OB (triangle) and CP-O2AB 598	
(plus) in the mid-latitude coupled system for h, T, x2 and Ta. An ensemble of 80 members 599	
is performed with the ensemble mean in marks and the ensemble spread (standard 600	
deviation) in double bars. The observational time steps for the atmosphere and ocean are 601	
10 and 40 steps, respectively.  602	
	603	
Figure 8. Same as Fig.5 but for the tropical system.  604	
 605	
Figure 9. Same as Fig.6 but for the tropical system.  606	
 607	
Figure 10. Same as Fig.7 but for the tropical system.  608	
 609	
Figure 11:  Forecast RMSE in the mid-latitude system for h (left) and T (right) initialized 610	
in PO (dash) and CP-AO (solid) schemes.   611	
 612	
Figure A1. Lagged correlations among all model variables in the mid-latitude system. 613	
Each panel represents the pivotal variable that is used for lagged correlation with itself 614	



CENKF, Liu et al	 	 30	
	

(auto-correlation) and other 5 variables (cross-correlations). The positive lead step is for 615	
this pivotal variable leading other variables. Each variable is represented in the same 616	
color, blue for h, green for T, red for x1, cyan for x2, purple for x3 and yellow for Ta.  For 617	
example, in panel (b), the auto-correlation of T is in blue, the cross-correlation between T 618	
and h, x1, x2, x3 and Ta are in blue, red, cyan, purple and yellow, respectively.   619	
	620	
Figure A2. Same as Fig.A1 but for the tropical system.   621	
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	622	
	623	

 624	
Figure 1. Time series of (a) SST (T) and ocean thermocline depth (h), (b) atmospheric 625	
winds (x1,x2,x3) and air temperature (Ta) in the control simulation of the mid-latitude 626	
coupled system.  627	
 628	
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	641	

 642	
 643	
 644	

 645	
 646	
 647	
Figure 2.  Auto correlations (solid) and cross-correlations (dash) of monthly SST, air 648	
temperature and wind in (a) CCSM3.5 North Atlantic average and (b) the mid-latitude 649	
coupled system. The wind is the zonal surface wind in (a) and x2 in (b). The cross-650	
correlations are between SST and the atmospheric temperature and wind, with the 651	
positive lags for SST leading the atmosphere.  652	
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	653	
	654	

	655	
	656	
	657	
Figure 3. Same as Fig.1 but for the tropical coupled system.  658	
	659	
	 	660	
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	661	
	662	
	663	

		664	
										665	
		666	
Figure 4. Same as Fig.2 but for the tropical coupled system.  667	
	668	
	669	
	670	
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	692	
	693	
	694	

	695	
	696	
	697	
Figure 6. The ratio of RMSE (accumulated for all time steps) between CP-A and CP-AO 698	
as a function of the time steps of atmospheric observation in the mid-latitude system. (a) 699	
SST and thermocline depth, (b) air temperature. The oceanic observation time step is 700	
fixed at 40 steps. (The ratio of RMSE at the analysis steps are similar).  701	
 702	
	 	703	
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	704	

	705	
	706	
	707	
	708	
Figure 7. Analysis RMSE (normalized by the standard deviation of the control run) for 709	
As-O (circle), CP-AO (solid dot), CP-ABOB (cross), CP-A2OB (triangle) and CP-O2AB 710	
(plus) in the mid-latitude coupled system for h, T, x2 and Ta. An ensemble of 80 members 711	
is performed with the ensemble mean in marks and the ensemble spread (standard 712	
deviation) in double bars. The observational time steps for the atmosphere and ocean are 713	
10 and 40 steps, respectively.  714	
	715	
	716	
	717	
	718	
	719	
	720	
	721	
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	723	
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	731	
	732	
	733	
	734	
	735	
Figure 8. Same as Fig.5 but for the tropical system.  736	
	737	
	738	
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Fig.9:  Same as Fig.6 but for tropical system. 748	
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	759	
Fig.10:  Same as Fig.7 but for the tropical system.  760	
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 764	

 765	
Figure 11:  Forecast RMSE in the mid-latitude system for h (left) and T (right) initialized 766	
in PO (dash) and CP-AO (solid) schemes.   767	
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	769	
	770	

	771	
Figure A1. Lagged correlations among all model variables in the mid-latitude system. 772	
Each panel represents the pivotal variable that is used for lagged correlation with itself 773	
(auto-correlation) and other 5 variables (cross-correlations). The positive lead step is for 774	
this pivotal variable leading other variables. Each variable is represented in the same 775	
color, blue for h, green for T, red for x1, cyan for x2, purple for x3 and yellow for Ta.  For 776	
example, in panel (b), the auto-correlation of T is in blue, the cross-correlation between T 777	
and h, x1, x2, x3 and Ta are in blue, red, cyan, purple and yellow, respectively.   778	
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Figure A2. Same as Fig.A1 but for the tropical system.  786	
	787	


