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Deciphering the evolution of global climate from the end of the
Last Glacial Maximum approximately 19 ka to the early Holocene
11 ka presents an outstanding opportunity for understanding the
transient response of Earth’s climate system to external and inter-
nal forcings. During this interval of global warming, the decay of
ice sheets caused global mean sea level to rise by approximately
80 m; terrestrial and marine ecosystems experienced large distur-
bances and range shifts; perturbations to the carbon cycle resulted
in a net release of the greenhouse gases CO2 and CH4 to the atmo-
sphere; and changes in atmosphere and ocean circulation affected
the global distribution and fluxes of water and heat. Here we sum-
marize a major effort by the paleoclimate research community to
characterize these changes through the development of well-
dated, high-resolution records of the deep and intermediate ocean
as well as surface climate. Our synthesis indicates that the super-
position of two modes explains much of the variability in regional
and global climate during the last deglaciation, with a strong
association between the first mode and variations in greenhouse
gases, and between the secondmode and variations in the Atlantic
meridional overturning circulation.

During the interval of global warming from the end of the Last
Glacial Maximum (LGM) approximately 19 ka to the early

Holocene 11 ka, virtually every component of the climate system
underwent large-scale change, sometimes at extraordinary rates,
as the world emerged from the grips of the last ice age (Fig. 1).
This dramatic time of global change was triggered by changes in
insolation, with associated changes in ice sheets, greenhouse gas
concentrations, and other amplifying feedbacks that produced
distinctive regional and global responses. In addition, there were
several episodes of large and rapid sea-level rise and abrupt cli-
mate change (Fig. 2) that produced regional climate signals
superposed on those associated with global warming. Consider-
able ice-sheet melting and sea-level rise occurred after 11 ka, but
otherwise the world had entered the current interglaciation with
near-pre-Industrial greenhouse gas concentrations and relatively
stable climates. Here we synthesize well-dated, high-resolution
ocean and terrestrial proxy records to describe regional and glo-
bal patterns of climate change during this interval of deglaciation.

Between the LGM and present, seasonal insolation anomalies
arising from the combined effects of eccentricity, precession, and
obliquity were generally opposite in sign between hemispheres
(Fig. 2C), whereas variations in annual-average insolation were
symmetrical about the equator. At the LGM, seasonal insolation

was similar to present, whereas subsequent changes in obliquity
and perihelion caused Northern-Hemisphere seasonality to reach
a maximum in the early Holocene.

CO2 concentrations started to rise from the LGM minimum
approximately 17.5� 0.5 ka (1). The onset of the CO2 rise may
have lagged the start of Antarctic warming by 800� 600 years (1),
but this may be an overestimate (2). CO2 levels stabilized from
approximately 14.7–12.9 ka, and then rose again from about 12.9–
11.7 ka, reaching near-interglacial maximum levels shortly there-
after. CH4 concentrations also began to rise starting at approxi-
mately 17.5 ka, with a subsequent abrupt increase at 14.7 ka, an
abrupt decrease at about 12.9 ka, followed by a rise at approxi-
mately 11.7 ka (3). Changes in N2O concentrations appear to
follow changes in CH4 (4). The combined variations in radiative
forcing due to greenhouse gases (GHGs) is dominated by CO2,
but abrupt changes in CH4 and N2O modulate the overall struc-
ture, accentuating the rapid increase at 14.7 ka and causing a
slight reduction from 12.9–11.7 ka (Fig. 2D).

Freshwater forcing of the Atlantic meridional overturning
circulation (AMOC) is commonly invoked to explain past and pos-
sibly future abrupt climate change (5, 6). During the last deglacia-
tion, the AMOC was likely affected by variations in moisture
transport across Central America (7), salt and heat transport from
the Indian Ocean (8), freshwater exchange across the Bering Strait
(9), and the flux of meltwater and icebergs from adjacent ice sheets
(6). The first two factors largely represent feedbacks on AMOC
variability. Freshwater exchange across the Bering Strait began
with initial submergence of the Strait during deglacial sea-level
rise. Highly variable fluxes from ice-sheet melting and calving and
routing of continental runoff (Fig. 2 E–I) also directly forced the
AMOC, but uncertainties in the sources of several key events re-
main (SI Appendix).
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Results
Sea-Surface Temperatures. We compiled 69 high-resolution proxy
sea-surface temperature (SST) records spanning 20–11 ka that
provide broad coverage of the global ocean (SI Appendix). Our eva-
luation of SST reconstructions from regional ocean basins suggests
that warming trends are smallest at low latitudes (1–3 °C) and high-
er at higher latitudes (3–6 °C) (SI Appendix, Fig. S2). In any given
basin, however, there is considerable variation among the specific
proxy reconstructions as well as between the different proxies. We
thus use Empirical Orthogonal Function (EOF) analysis to extract
the dominant commonmodes of regional and global SST variability
from the dataset (Methods and SI Appendix). Two orthogonal modes
explain 78% of deglacial SST variability. The first EOF mode ex-
hibits a globally near-uniform spatial pattern (SI Appendix, Fig. S4).
Its associated principal component (PC1) displays a two-step
warming pattern from approximately 18–14.3 and 12.8–11.0 ka, with
an intervening plateau (Fig. 3A). The second EOF mode exhibits a
more complex spatial pattern (SI Appendix, Fig. S4), but its asso-
ciated PC2 is dominated by millennial-scale oscillations with
decreases during the Oldest and Younger Dryas events separated
by an increase during the Bølling–Allerød period (Fig. 3B).

We also calculate the leading PCs for different latitudinal
bands. PC1 explains an increasing fraction of regional variance
moving southward from the northern extratropics (59%) to the
southern extratropics (79%), indicating that the climate records
have more in common further to the south (SI Appendix, Fig. S5).
The regional PC1 for the northern extratropics includes millen-
nial-scale variability similar to the global SST PC2, whereas PC1s
for the tropics and southern extratropics exhibit two-step warm-
ing patterns, similar to the global SST PC1.

Intermediate-Water Changes.During the LGM, there was a chemi-
cal divide at approximately 2–2.5 km water depth in the North
Atlantic that separated shallower, nutrient-poor Glacial North
Atlantic intermediate water (GNAIW) from more nutrient-rich
deep water (10, 11) (Fig. 2C). Low nutrients at intermediate

B
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Fig. 1. (A) Climate simulation of the Last Glacial Maximum 21,000 y ago
using the National Center for Atmospheric Research Community Climate
System Model, version 3.0 (141). Sea-surface temperatures are anomalies re-
lative to the control climate. Also shown are continental ice sheets (1,000-m
contours) (149) and leaf-area index simulated by themodel (scale bar shown).
(B) Same as A except for 11 ka.
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Fig. 2. Climate records and forcings during the last deglaciation. The oxygen-
isotope (δ18O) records from Greenland Ice Sheet Project Two (GISP2) (150) (dark-
blue line) and Greenland Ice Core Project (GRIP) (151) (light-blue line) Greenland
ice cores shown in (A) (placed on the GICC05 timescale; ref. 57) document mil-
lennial-scale events that correspond to those first identified in northern European
floral and pollen records. LGM, Last Glacial Maximum; OD, Oldest Dryas; BA,
Bølling–Allerød; ACR, Antarctic Cold Reversal; YD, Younger Dryas. (B) Oxygen-iso-
tope (δ18O) record from European Project for Ice Coring in Antarctica (EPICA)
Dronning Maud Land (152) (dark-green line) and deuterium (δD) record from
Dome C (45) (light-green line) Antarctic ice cores, placed on a common timescale
(2). (C) Midmonth insolation at 65°N for July (orange line) and at 65°S for January
(light-blue line) (153). (D) The combined radiative forcing (red line) from CO2

(blue dashed line), CH4 (green dashed line), and N2O (purple dashed line) relative
to preindustrial levels. CO2 is from EPICA Dome C ice core (1) on Greenland Ice
Core Chronology 05 (GICC05) timescale from ref. 2, CH4 is fromGRIP ice core (154)
on the GICC05 timescale, and N2O is from EPICA Dome C (155) and GRIP (156) ice
cores on theGICC05 timescale. Greenhouse gas concentrationswere converted to
radiative forcings using the simplified expressions in ref. 157. The CH4 radiative
forcing was multiplied by 1.4 to account for its greater efficacy relative to CO2

(158). (E) Relative sea-level data from Bonaparte Gulf (green crosses) (159), Bar-
bados (gray anddark-blue triangles) (160), NewGuinea (light-blue triangles) (161,
162), Sunda Shelf (purple crosses) (163), and Tahiti (green triangles) (164). Also
shown is eustatic sea level (gray line) (165). (F) Rate of change of area of Lauren-
tide Ice Sheet (LIS) (166) and Scandinavian Ice Sheet (SIS) (SI Appendix). (G) Fresh-
water flux to the global oceans derived from eustatic sea level in E. (H) Record of
ice-rafted detrital carbonate from North Atlantic core VM23-81 identifying times
of Heinrich events 1 and 0 (167). (I) Freshwater flux associated with routing of
continental runoff through the St. Lawrence and Hudson rivers (filled blue time
series) with age uncertainties (168). Also shown is time series of runoff through
the St. Lawrence River during the Younger Dryas (solid blue line) (142).
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depths likely reflect increased formation of well-ventilated
GNAIWand a reduced northward extent of nutrient-rich Antarc-
tic intermediate water (AAIW) (11). The nutrient content of
intermediate waters increased during the Oldest and Younger
Dryas events (Fig. 3C), indicating a possible reduction in the vo-
lume of GNAIW (12). Neodymium isotope data (ϵNd) indicate
that there may also have been an incursion of a Southern Ocean
water mass similar to that of present-day AAIW (13), or alterna-
tively that southern-sourced deep waters already filling the deep
North Atlantic basin (14) shoaled to intermediate depth. Addi-
tional evidence for increased northward extent of AAIWat these
times comes from elevated radiocarbon reservoir ages in North
Atlantic planktonic foraminifera (15) and low, Southern Ocean-
like Δ14C at mid-depth in the North Atlantic (16) and on the Bra-
zil margin (17).

Deep-intermediate δ13C gradients increased in the LGM equa-
torial Pacific, suggesting stronger or lower-nutrient AAIW influ-
ence (18). In the southwest Pacific (19) and the Arabian Sea (20),
δ13C values were lower at intermediate-depth sites during the
LGM, increased approximately 17.5 ka, decreased again during
the Bølling–Allerød, and subsequently increased during the
Younger Dryas (Fig. 3D). The increases in δ13C may reflect an
increased influence of glacial AAIW (19, 20), although changes

in the preformed δ13C of the intermediate water cannot be ex-
cluded. In contrast, intermediate-depth sites in the southeast
Pacific document evidence for an expanded depth range of a
more-oxygenated AAIW during the LGM followed by stepwise
reduction in oxygen content between 17 and 11 ka (21) (Fig. 3D).
The results from the southwest and southeast Pacific on the tim-
ing of changes in AAIW thus differ, and additional evidence is
needed to resolve whether these two areas were indeed subject
to different changes at intermediate-water depth. In the eastern
North Pacific, Nd isotope data may record an expansion of AAIW
during the Oldest Dryas interval (ca. 18–15 ka) (22), although an
alternative forcing from the north is possible.

Along the North American Pacific margin, intermediate-depth
O2 levels were higher than today during the LGM, Oldest Dryas,
and the Younger Dryas, and lower than today during the Bølling–
Allerød interval and earliest Holocene (23, 24) (Fig. 3D). These
changes can be explained by enhanced (decreased) formation of
North Pacific intermediate water (NPIW) and/or by reduced (in-
creased) productivity along the North American margin; proxy
evidence lends support to both scenarios.

Deep-Ocean Changes. During the LGM, increased nutrients in
North Atlantic deep waters likely resulted from a northward
and upward expansion of Antarctic bottom water at the expense
of North Atlantic deep water (NADW) (11). Benthic-planktic
radiocarbon differences were slightly higher at the LGM than
at present, consistent with overall vigorous circulation, although
with greater influence of Antarctic water masses of relatively low
preformed 14C associated with incomplete gas exchange with the
atmosphere (25). The circulation proxies ϵNd (Fig. 3F) and Δ14C
suggest little difference between the Oldest Dryas and the LGM
in the deepest North Atlantic (14, 16), whereas 231Pa∕230Th and
particularly δ13C suggest that the net AMOC decreased below
LGM strength at nearly all depths during the Oldest Dryas
(12, 26–29) (Fig. 3 C and E). All tracers of deepwater production
indicate renewed production of NADW at the start of the
Bølling–Allerød, followed by a subsequent decrease during the
Younger Dryas (Fig. 3 C, E, and F), althoughΔ14C records suggest
a much greater decrease than 231Pa∕230Th at this time (16, 27).

Reconstructions of δ13C also support the existence of a deep
chemical divide in the Indo-Pacific during the LGM, although it
was somewhat shallower than in the Atlantic (30). The possibility
that a deeper version of NPIW formed in the LGM North Pacific
remains uncertain (31). Deep water may have formed in the north-
western Pacific to 3,000-m depth during the Oldest Dryas (32).

The low concentrations of atmospheric CO2 during the LGM
are thought to have been caused by greater storage of carbon in
the deep ocean through stratification of the Southern Ocean (33,
34). Southern Ocean deep waters had the lowest δ13C values (35)
and were the source of the most dense (36) and salty (37) waters
in the LGM deep ocean. Release of the sequestered carbon may
have occurred due to deep Southern Ocean overturning induced
by enhanced wind-driven upwelling (38) and sea-ice retreat (34)
associated with times of Antarctic warming, coincident with the
Oldest and Younger Dryas cold events in the north (1). There
may be a low Δ14C signal of this two-pulse release that spread as
far as the North Pacific (39) and north Indian (40) oceans via
AAIW. Although recent Δ14C evidence from the intermediate-
depth Brazil margin supports this scenario (17), data from the Chi-
lean and New Zealand margins do not (41, 42). Evidence for a
water mass with very low Δ14C values in the deepest parts of the
ocean is contradictory (43, 44), however, indicating that our under-
standing of the relationship between deep-ocean circulation, its in-
teraction with the atmosphere, and carbon fluxes is incomplete.

Polar Regions. LGM temperatures in East Antarctica were ap-
proximately 9–10 °C lower than today (45), whereas average
LGM temperatures in Greenland were approximately 15 °C lower
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Fig. 3. (A) Principal component (PC) 1 based on all of the SST records (solid
blue line). PC1s based only on alkenone (dashed light-blue line) and Mg∕Ca
records (dashed orange line) are also shown. The percentage of variance
explained by PC1 is 49%, by PC1 (Mg∕Ca) is 59%, and by PC1 (UK0

37) is
64%. (B) PC2 based on all of the SST records (solid blue line). PC2s based only
on alkenone (dashed light-blue line) andMg∕Ca records (dashed orange line)
are also shown. The percentage of variance explained by PC2 is 29%, by PC2
(Mg∕Ca) is 13%, and by PC2 (UK0

37) is 15%. (C) Temporal evolution of δ13C in
the North Atlantic basin reconstructed from data shown by black diamonds
based on a depth transect of six marine cores (10, 12, 26, 169–171). (D) Proxy
records of intermediate-depth waters from the Arabian Sea and Pacific
Ocean. Cyan line is δ13C record from the Arabian Sea (20), sky blue line is five-
point running average of δ13C record from the SW Pacific Ocean (19), blue
line is diffuse spectral reflectance (factor 3 loading) (a proxy of organic car-
bon) from the North Pacific (24), yellow and orange lines are records of excess
Re (a proxy of dissolved oxygen) from the southeast Pacific (21). (E) Pa/Th
records from the North Atlantic Ocean (27, 28, 172). (F) ϵNd records from the
North Atlantic (14) (blue line) and south Atlantic (173) (purple line). Abbre-
viations are as in Fig. 2.
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(46). There are also good constraints on the abrupt warmings that
occurred in Greenland at the end of the Oldest Dryas (9� 3 °C)
and Younger Dryas (10� 4 °C) events (47, 48).

Synchronization of Greenland and Antarctic δD and δ18O
records (49–52) confirmed a north-south antiphasing of hemi-
spheric temperatures (bipolar seesaw) during the last deglacia-
tion (53–55) (Fig. 2). Despite these advances, uncertainties in
relative timing of events between Greenland and Antarctic ice-
core records remain, and not all records agree on the precise tim-
ing of abrupt events. For example, in contrast to the standard
bipolar seesaw model, the Law Dome ice-core record indicates
that the Antarctic Cold Reversal started before the Bølling (56).
Moreover, the stable isotope records in Greenland cores differ
during the Oldest Dryas (57), whereas in Antarctica, East Antarc-
tic ice cores and twoWest Antarctic ice cores have similar patterns
that broadly follow the classic seesaw pattern, whereas two other
West Antarctic ice cores (Siple Dome and Taylor Dome) suggest a
more complicated deglacial record (58, 59). It remains unclear,
however, as to whether these latter differences are due to uncer-
tainties in chronology, elevation changes, stratigraphic distur-
bances, or spatially variable climate changes (59–61).

Beringia. During the LGM, proxy records indicate that July tem-
peratures were approximately 4 °C lower than present in eastern
Beringia (62), whereas central and western Beringia experienced
relatively warm summers similar to present (63). Summer tem-
peratures in eastern Beringia began to increase between 17 and
15 ka, with peak warmth reached by the start of the Bølling, and
temperatures similar to or warmer than modern during the sub-
sequent Allerød (63). During the Younger Dryas, temperatures
were similar or warmer-than-present across most of central Alas-
ka, northeastern Siberia, and possibly the Russian Far East and
northern Alaska, whereas southern Alaska, eastern Siberia, and
portions of northeastern Siberia cooled (64).

North America. During the LGM, eastern North America vegeta-
tion was dominated by forests comprised of cold-tolerant conifers
that may have formed an open conifer woodland or parkland, in-
cluding in areas currently occupied by grassland (65–67). The
southeastern and northwestern United States supported open
forest in areas that are presently closed forest, suggesting colder
and drier-than-present conditions (68–70), whereas the Ameri-
can southwest had open forest in areas of present-day steppe and
desert, indicating wetter conditions (71–73). Overall, these vege-
tation changes suggest a steepened latitudinal temperature gra-
dient, southward shift of westerly storm tracks, and a general
temperature decrease of at least 5 °C, with considerable spatial
variability (66, 71, 74–76).

Vegetation changes between 16 and 11 ka closely track millen-
nial-scale climate variability (77) with time lags on the order of
100 y or less (78, 79). Abrupt changes in ecosystem function are
also indicated by elevated rates of biomass burning accompanying
abrupt warming events at 13.2 ka and at the end of the Younger
Dryas (11.7 ka) (80). The highest rates of change in eastern North
America are associated with the beginning and end of the Young-
er Dryas (66, 74). Equally abrupt and synchronous hydrological
changes also occurred in the southwest (72, 73), with parallel
changes in treeline in the Rocky Mountains (81).

South America.Noble gas ratios in fossil groundwater indicate that
LGM surface air temperature decreased by 5–6 °C relative to
modern in the Nordeste of Brazil (7°S) (82). Tropical paleo-
precipitation patterns during the LGM indicate that, relative to
modern, precipitation was generally less north of the equator
(83), greater throughout the South American summer monsoon
(SASM) sector extending from approximately 0 to 30°S (84–86),
and less in the east-central Amazon and the Nordeste of Bra-
zil (87).

Little is known about deglacial temperature changes, whereas
precipitation changes are reasonably well constrained. In most
of the region, wet periods coincide with wet-season insolation max-
ima that are of opposite sign across the equator, although north-
eastern tropical Brazil is an exception because it is antiphased with
the SASM region (87). Millennial-scale changes are superimposed
on this insolation-driven pattern, with dry events throughout the
northern tropics (88, 89) and wet events throughout the southern
tropics (84–87, 90–92) during the Oldest and Younger Dryas.
These millennial hydrologic responses appear to be of similar mag-
nitude as the response to orbital forcing.

In southern South America, vegetation patterns suggest that
LGM climate was colder and drier than at present, and the south-
ern westerly wind belt, with associated rainfall, was shifted north-
ward (40–44°S) or weakened (93, 94). Cold parkland conditions
persisted west of the Andes until 17.5 ka between 40 and 44°S and
until 15.0 ka between 44 and 47°S, after which climate warmed
(95–97). In northern and southern Patagonia, cold steppe-like con-
ditions were present until 13.0 ka east of theAndes, with significant
warming after that (98, 99). Vegetation records indicate cooling
during the Antarctic Cold Reversal between approximately 15.0
and 12.6 ka (97), but that the region subsequently experienced spa-
tially variable responses through the Younger Dryas (100).

Europe.Pollen records indicate that during the LGM, northern Eur-
ope was covered by open, steppe-tundra environments (101, 102),
whereas southern Europe was covered largely by steppe-grassland
and semidesert environments (103), but with mountains providing
refugia for most deciduous tree species (104). Climate reconstruc-
tions from these records that account for the effects of lower atmo-
spheric CO2 indicate winter cooling of 5–15 °C across Europe, with
the greatest cooling in western Europe, and precipitation decreases
of as much as 300 to 300–400 mmy−1 in the west (105).

The termination of the LGM was marked by a slight increase in
temperature and precipitation (106–108), followed by a cool and
dry stadial from approximately 17.5 to 14.7 ka (i.e., during the Old-
est Dryas) when vegetation returned to its glacial state (107). At
the onset of the Bølling, temperatures increased rapidly by 3–5 °C
across western Europe (109), whereas subsequent cooling at the
start of the Younger Dryas ranged between 5 and 10 °C (110–
112). This temperature decrease resulted in a return to grassland
communities in the south of Europe and tundra in the north. The
Younger Dryas ended abruptly in Europe approximately 11.7 ka
with a rapid temperature increase of approximately 4 °C, but varied
latitudinally, with a greater increase in the north (113).

Africa. Several different proxies indicate that, during the LGM,
much of Africa was more arid and approximately 4 °C colder than
present (114, 115). Arid conditions that prevailed across much of
North Africa during the Oldest and Younger Dryas (114, 116) ex-
tended across the equator to about 10°S in East Africa (117, 118).
In northern and eastern equatorial Africa, precipitation began to
increase approximately 16 ka, followed by two abrupt increases in
precipitation at approximately 15 and 11.5 ka (114, 119–122),
which correlate to the abrupt onset of the Bølling and Holocene,
respectively, implying intensification of the North African summer
monsoon during Northern-Hemisphere interstadials (123, 124).

Although only constrained by a few records, deglacial tempera-
ture changes recorded in lakes south of the equator indicate
a monotonic increase between approximately 20 and 18 ka, fol-
lowed by more rapid and larger warming between 18 and 14.5 ka
in a pattern similar to that observed in Antarctic ice cores (122,
125, 126). Temperatures subsequently decreased between 14.5
and 12 ka before rapidly increasing to values similar to present
at approximately 11 ka (122, 126).

Monsoonal and Central Asia. The Asian Monsoon region is com-
prised of the Indian subdomain, which receives moisture domi-
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nantly from the Indian Ocean, and the east Asian subdomain
which receives moisture mainly from the Pacific Ocean. Although
arid central Asia is beyond the farthest northward extent of the
summer monsoon, proxy records from this region delineate the
boundary between the monsoon circulation and the midlatitude
westerlies as well as document the strength of the winter mon-
soon associated with the winter Siberian High.

At the LGM, there is evidence for a weak summer monsoon
relative to today (127), a stronger winter monsoon (128, 129), and
colder, dustier conditions (130, 131). Lakes throughout most of
monsoonal and arid central Asia were smaller at the LGM com-
pared to today, probably because of decreased precipitation
across the region (132).

A variety of proxy records show a weakened summer monsoon
during the Oldest Dryas, a stronger monsoon during the Bølling–
Allerød, and a weaker monsoon during the Younger Dryas (127,
131–136). The sequence of events is similar between speleothem
records from the Indian and east Asian subdomains, including
nearly identical magnitudes of δ18O change (137). Two key differ-
ences between the speleothem and Greenland ice-core records
are less abrupt transitions in Asia and a strong summer monsoon
into the Allerød after Greenland temperature decreased. Rela-
tively slow transitions in Asia also differ from the abrupt shifts
in atmospheric methane recorded in ice cores, suggesting a dif-
ferent tropical methane source, such as from high northern lati-
tudes, with a more rapid response (137) or a nonlinear response
of Asian methane sources to warming. A lake record of winter
monsoon strength from southeast China may indicate an antic-
orrelation between winter and summer monsoon strength
throughout all the deglacial climate events (138).

Discussion
We add 97 records to the 69 SST records used previously and re-
calculate the EOFs to characterize the temporal and spatial
patterns of the leading modes of global climate variability for
the 20- to 11-ka interval (SI Appendix). In addition to character-

izing SST variability as before, we now also characterize variabil-
ity in regional and global continental temperature and pre-
cipitation as well as a composite of global temperature variability
(Fig. 4).

The global SST modes remain largely unchanged, with 71% of
the variance in the dataset explained by essentially the same two
EOFs and PCs (Fig. 4 and SI Appendix, Fig. S6). The global con-
tinental temperature modes are similarly largely explained by two
patterns of variance (70%). As with global SSTs, the first EOF
mode for continental temperature exhibits a globally near-uniform
spatial pattern with large positive loadings in most records (SI
Appendix, Fig. S6), and its associated principal component (PC1)
displays a similar two-step warming pattern (Fig. 4). The global
continental temperature PC2 only differs from the global SST
PC2 in having a muted oscillation during the Bølling–Allerød,
but is otherwise similar in showing a reduction into the Oldest
and Younger Dryas events. Combining ocean and continental tem-
perature records yields global modes that are nearly identical to
the global SST modes (Fig. 4).

The majority of the records used for the precipitation EOF
analysis are from the tropics and subtropics, with many of these
associated with monsoon systems (SI Appendix, Fig. S7). The glo-
bal precipitation EOF1 differs from the global temperature
EOF1 in having a more complex spatial pattern (SI Appendix,
Fig. S7). The associated PC1 also differs in indicating that the
initial increase in precipitation lagged the initial increase in
the global temperature PC1 by at least 2,000 y, that it had abrupt
increases at the end of the Oldest and Younger Dryas events, and
that it experienced distinct oscillations corresponding to the
Bølling–Allerød and Younger Dryas events (Fig. 4). Other than
an approximately 1,000-y delay in the decrease at the start of the
Oldest Dryas, PC2 for global continental precipitation is similar
to the global temperature PC2.

We also find regional variability for the ocean basins and con-
tinents for which we have data as suggested by the factor loading

Fig. 4. Regional and global principal components (PCs) for temperature (T) and precipitation (P) based on records shown on map in lower left. Red dots on
map indicate sites used to constrain ocean sea-surface temperatures, yellow dots constrain continental temperatures, and blue dots constrain continental
precipitation. PC1s are shown as blue lines, PC2s as red lines. We used a Monte Carlo procedure to derive error bars (1σ) for the principal components which
reflect uncertainties in the proxy records. All records were standardized to zero mean and unit variance prior to calculating EOFs, which is necessary because
the records are based on various proxies and thus have widely ranging variances in their original units (SI Appendix).
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pattern for the global EOF1 (SI Appendix, Fig. S6). Regional SST
PC1s suggest that deglacial warming began in the Southern, In-
dian, and equatorial Pacific oceans, with each regional PC1 also
showing a similar two-step structure through the remainder of the
deglaciation as identified in the global SST PC1 (Fig. 4). In con-
trast, regional SST PC1s for the North Atlantic and North Pacific
oceans indicate that temperatures began to increase later there
and experienced more pronounced millennial-scale variability
during the subsequent deglaciation corresponding to the Oldest
Dryas-Bølling-Allerød-Younger Dryas events.

The regional continental temperature PC1s also suggest spatially
variable patterns of change, whereby Greenland andEurope have a
strong expression of millennial-scale events, whereas Beringia,
North America, Africa, and Antarctica are more similar to the
two-step structure seen in the global land and ocean temperature
PC1s (Fig. 4). In contrast, the regional precipitation PC1s for North
and South America, Africa, and Asia generally exhibit the millen-
nial-scale structure seen in the global precipitation PC1 (Fig. 4).

Regional PC2s account for a relatively small fraction of the
total variance (2–31%) and in some cases are likely insignificant
(SI Appendix). SST PC2s of most ocean basins display some or all
of the millennial-scale structure that characterizes the global SST
PC2, with the strongest expression being in the North Atlantic
and Indian oceans, but also with a subtle but clear registration
in the equatorial Pacific Ocean PC2s (Fig. 4).

Continental regions generally exhibit little coherency with each
other in their PC2 patterns. There is little variance preserved in
the PC2s for the polar regions (Greenland and Antarctica) (SI
Appendix), whereas the temperature PC2s for Beringia, North
America, Europe, and Africa and precipitation PC2s for North
and South America and Africa are all distinct from each other
and are thus likely capturing regional variability (Fig. 4). The pre-
cipitation PC2 for Asia reveals a clear structure corresponding to
the Bølling–Allerød and Younger Dryas events, further indicating
the strong influence of millennial-scale climate change on the hy-
drology of this region.

In conclusion, our synthesis indicates that the superposition of
two orthogonal modes explains much of the variability (64–
100%) in regional and global climate during the last deglaciation.
The nearly uniform spatial pattern of the global temperature
EOF1 (SI Appendix, Fig. S6) and the large magnitude of the tem-
perature PC1 variance indicate that this mode reflects the global
warming of the last deglaciation. Given the large global forcing of
GHGs (139), the strong correlation between PC1 and the com-
bined GHG forcing (r2 ¼ 0.97) (Fig. 5A) indicates that GHGs
were a major driver of global warming (140).

In contrast, the global temperature PC2 is remarkably similar
to a North Atlantic Pa/Th record (r2 ¼ 0.86) that is interpreted as
a kinematic proxy for the strength of the AMOC (27) (Fig. 5B).
Similar millennial-scale variability is identified in several other
proxies of intermediate- and deep-ocean circulation (Fig. 3),
identifying a strong coupling between SSTs and ocean circulation.
The large reduction in the AMOC during the Oldest Dryas can be
explained as a response to the freshwater forcing associated with
the 19-ka meltwater pulse from Northern-Hemisphere ice sheets,
Heinrich event 1, and routing events along the southern Lauren-
tide Ice Sheet margin (141), whereas the reduction during the
Younger Dryas was likely caused by freshwater routing through
the St. Lawrence River (142) and Heinrich event 0 (Fig. 5B). The
sustained strength of the AMOC following meltwater pulse 1a
(Fig. 5B) supports arguments for a large contribution of this event
from Antarctica (143). With EOF2 accounting for only 13% of
deglacial global climate variability, we conclude that the direct
global impact of AMOC variations was small in comparison to
other processes operating during the last deglaciation.

The global precipitation EOF1 shows a more complex spatial
response than the global temperature EOF1 (SI Appendix,
Fig. S7), whereas the initial increase in the associated PC1 signif-

icantly lags the initial increase in the global temperature PC1, as
well as exhibits greater millennial-scale structure than seen in the
global temperature PC1 (Figs. 4 and 5). Insofar as precipitation
increases should accompany a warming planet, the approximately
2-ky lag between the initial increase in temperature and precipi-
tation may reflect one or more mechanisms that affect low-lati-
tude hydrology, including the impact of Oldest Dryas cooling
(122, 127), a nonlinear response to Northern-Hemisphere forcing
by insolation (144) and glacial boundary conditions (145), or
interhemispheric latent heat transports (146). This response
may then have been modulated by subsequent millennial-scale
changes in the AMOC and its attendant effects on African (122)
and Asian (127) monsoon systems and the position of the Inter-
tropical Convergence Zone (147, 148) and North American
storm tracks (72).

Methods
Data. We compiled 166 published proxy records of either temperature (sea
surface or continental) or precipitation for the 20- to 11-ka interval. We re-
calibrated the age models for all radiocarbon-based records whose raw data
were available or could be obtained from the original author (n ¼ 107). For
non-radiocarbon-based records (e.g., ice cores, speleothems, tuned records)
and records with unavailable raw data, the published age models were used.

Empirical Orthogonal Functions. We use EOFs to provide an objective charac-
terization of deglacial climate variability. Because the records used here are
based on various proxies and thus have widely ranging variances in their ori-
ginal units, we standardized each one to zeromean and unit variance prior to
calculating EOFs. This standardization causes each record to provide equal
“weight” toward the EOFs. For the SST EOF analysis, records were kept in
degrees Celsius and thus their original variance was preserved. Records were
interpolated to 100-y resolution for all analyses.

Modeling Records with Principal Components. We model the proxy records as
the weighted sum of the first two principal components from each regional
EOF analysis to show how well the leading modes for each region represent
the records. In other words, record x is modeled as PC1 × EOF1x þ PC2×
EOF2x , where EOFx is the loading for record x. We used a Monte Carlo pro-
cedure to derive error bars for the principal components shown in Figs. 4 and
5, which reflect uncertainties in the proxy records. The principal components
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Fig. 5. (A) Comparison of the global temperature PC1 (blue line, with con-
fidence intervals showing results of jackknifing procedure for 68% and 95%
of records removed) with record of atmospheric CO2 from EPICA Dome C
ice core (red line with age uncertainty) (1) on revised timescale from ref. 2.
(B) Comparison of the global temperature PC2 (blue line, with confidence
intervals showing results of jackknifing procedure for 68% and 95% of re-
cords removed) with Pa/Th record (a proxy for Atlantic meridional overturn-
ing circulation) (27) (green and purple symbols). Also shown are freshwater
fluxes from ice-sheet meltwater, Heinrich events, and routing events (Fig. 2).
(C) Comparison of the global precipitation PC1 (blue line) with record of
methane (green line) and radiative forcing from greenhouse gases (red line)
(see Fig. 2D). Abbreviations are as in Fig. 2.
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were calculated 1,000 times after perturbing the records with chronological
errors, and in the case of calibrated proxy temperature records (e.g., Mg∕Ca,
UK0

37), with random temperature errors as well. The standard deviation of
these 1,000 realizations provides the 1σ error bars for the principal com-
ponents.
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