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ABSTRACT

The authors compared the assessment of the seasonal cycle of the atmospheric response to surface forcing

in three statistical methods, generalized equilibrium feedback analysis (GEFA), linear inverse modeling

(LIM), and fluctuation–dissipation theorem (FDT). These methods are applied to both a conceptual climate

model and the observation. It is found that LIM and GEFA are able to reproduce the major features of the

seasonal response consistently, whereas FDT tends to generate a bias of the phase of the seasonal cycle. The

success of LIM and GEFA for the assessment of the seasonal response is due to the slowly varying nature of

the annual cycle relative to the atmospheric response time. Therefore, the authors recommend GEFA and

LIM as two independent methods for the assessment of the seasonal atmospheric response in the observation.

1. Introduction

A robust assessment of the atmospheric response to

surface forcing in the observation is critical for our un-

derstanding of climate feedbacks. Because of the com-

plex nature of ocean–atmosphere feedback1 and the

limited observations, a statistical assessment is usually

subject to substantial uncertainty. It is therefore desir-

able to develop independent statistical methods for cross

validation. Recently, Liu et al. (2012, hereafter Part I)

compared three methods for the assessment of the annual

mean atmospheric response to multiple SST forcings in

the observation: generalized equilibrium feedback anal-

ysis (GEFA; Frankignoul et al. 1998; Liu et al. 2008),

linear inverse modeling (LIM; Penland and Sardeshmukh

1995; Newman et al. 2009) and fluctuation–dissipation

theorem (FDT; Leith 1975; Bell 1980). It is found that the

three methods produce highly consistent annual mean

atmospheric responses and therefore can be used for the

cross validation of the major features of the atmospheric

response to surface forcing in the observation.

This paper extends Part I to examine the seasonal

response. The application of the statistical assessment to

the seasonal cycle of the atmospheric response poses

further challenges. First, given the same length of data,

the effective sample size is reduced by a factor of 4 (12)

for the response of each season (calendar month). Fur-

thermore, unlike GEFA, which can be applied directly to

assess the seasonal cycle of the response, the feasibility of
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1 Land–atmosphere feedback can be discussed similarly.
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LIM and FDT for the assessments of the seasonal cycle

of response is unclear. For LIM, cyclostationary methods,

such as the fixed-phase and the phase-smoothed methods,

have been used to study the eigenmodes of the temporal

evolution of a seasonally varying system (e.g., Hasselmann

and Barnett 1981; Blumenthal 1991; OrtizBreviá 1997).

However, the feasibility of these methods on the assess-

ment of the seasonal feedback among different compo-

nents has not been studied, especially regarding the

sampling error. For FDT, to our knowledge, there has

been no study on its application to a seasonally varying

system and therefore its application on seasonal response

remains even more questionable. Here, we will show that

LIM can still provide an accurate assessment of the sea-

sonal cycle of the feedback response in the observation,

comparable with GEFA, whereas FDT tends to produce

a bias in the phase of the seasonal cycle. The ability for

LIM to assess the seasonal response is due to the slow-

varying nature of the seasonal cycle relative to the time

scales of the coupled system, especially the fast atmo-

sphere. As such, GEFA and LIM can be used as a cross

validation for the seasonal atmospheric response in the

observation. This paper is arranged similar to Part I. In

section 2, we briefly discuss these methods. In section 3,

we compare these methods in an idealized model. In

section 4, we will compare the assessment of the seasonal

atmospheric response in the observation using LIM and

GEFA. A summary is given in section 5.

2. GEFA, LIM, and FDT

a. Stationary system

We first briefly review the three methods. Assume2

that the coupled ocean–atmosphere system can be de-

scribed by a set of linear, stochastic dynamic system as

dx

dt
5 Axxx 1 Axyy 1 nx and (2.1a)

dy

dt
5 Ayxx 1 Ayyy 1 ny, (2.1b)

where x(t) is an atmospheric field; y(t) is an SST forcing

field; and nx and n
y

are stochastic climate noises in the

atmosphere and ocean, respectively. We further assume

the coupled system is stationary such that the sub-

matrices A** are all time independent. One key feature

of the coupled ocean–atmosphere system is a time-scale

separation: the atmosphere response has the time scale

of days to weeks, much faster than the slow SST vari-

ability of time scales of months. This multiple time scale

can lead to significant simplifications not only in the dy-

namics but also in the statistical assessment of the cou-

pled climate system. Averaged over a time scale longer

than the atmospheric persistence time (days), the atmo-

spheric response to SST variability (2.1a) can be ap-

proximated as a quasi-equilibrium response (see Part I

for more details)

Axxx 1 Axyy 1 nx 5 0, (2.2)

where the overbar represents a time mean. Denoting

B 5 2A21
xx Axy (2.3)

and n 52A21
xx nx, we have from (2.2)

x(t) 5 By(t) 1 n(t), (2.4)

where B is the so-called feedback matrix, By(t) is the

quasi-equilibrium atmospheric response to SST forcing,

and n(t) is the internal atmospheric variability that is

generated independent of SST forcing. Our objective is

to estimate B from the observed atmosphere x(t) and

ocean y(t).

As a variant of the regression approach (see Part I),

GEFA is a multivariate generalization of the univariate

feedback analysis of Frankignoul et al. (1998) (Liu et al.

2008). Because the SST variability cannot be forced by

the atmospheric internal variability of later times, we

have

Cny(t) 5 hn(t), y(t 2 t)i 5 0 (t . tn), (2.5)

where h i is the covariance and t is a lag longer than the

persistence time of the atmospheric internal variability

tn. The feedback matrix B can then be derived after

a right multiplication by the lagged SST as

B 5 Cxy(t)C21
yy (t). (2.6)

For a finite sample size t 5 1, . . . , T, the sample co-

variance is calculated as

2 For real-world application, this linear dynamic approximation

is not obviously valid a priori. In particularly, synoptic atmo-

spheric dynamics at subdaily and daily time scales are strongly

nonlinear and exhibit chaotic behavior at climate time scales.

However, a sufficiently long time average (relative to the non-

linear atmospheric dynamics: e.g., days) could render the high-

frequency nonlinear dynamics to stochastic noise according to the

central limit theorem (Gardiner 1997). Thus, coupled system may

be approximated as a linear dynamic system driven by stochastic

forcing.
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Cxy(t) 5
1

T
�
T

t51

[x(t) 2 ~x(t)][y(t 2 t) 2 ~y(t 2 t)]T,

(2.7)

where the T superscript is the transpose and

~x(t) 5
1

T
�
T

t51

x(t)

represents the sample mean.

Although GEFA takes advantage of the multiple time

scales of the coupled system and approximate the atmo-

spheric response to SST as a quasi-equilibrium response

(2.2) or (2.4), LIM and FDT extract the atmospheric re-

sponse to SST from the transient evolution of the coupled

system, with the temporal atmospheric response resolved

explicitly. We can first estimate the system submatrices

Axx and Axy in (2.1a) using LIM and then derive the

feedback matrix B using (2.3) (Alexander et al. 2008;

Newman et al. 2009). The system submatrices can be

derived by combining the atmospheric and oceanic fields

together as a single climate field

z 5

�
x

y

�

and rewrite the coupled Eqs. (2.1a) and (2.1b) as

dz

dt
5 Az 1 n̂, (2.8)

where

A 5

"
Axx Axy

Ayx Ayy

#
, n̂ 5

"
nx

ny

#
. (2.9)

If the A is independent of time and the noise is Gaussian,

the optimal solution for a lead time t is (Penland 1989)

z(t 1 t) 5 G(t)z(t), (2.10a)

with the propagator G(t) as

G(t) 5 exp(At). (2.10b)

Thus, the propagator can be estimated by a right mul-

tiplication of zT(t) on (2.10a) in LIM as

G(t) 5 Czz(t)C21
zz (0). (2.11a)

Combining (2.10b) and (2.11a), we have the LIM esti-

mator for the system matrix A as

A 5 t21 lnfCzz(t)C21
zz (0)g. (2.11b)

Finally, the system matrix A can also be estimated

using a modified formula relevant to FDT (Leith 1975;

Bell 1980). Once again, assuming A is independent of

time, taking the exponential on both sides of (2.11b) and

then integrating over all the lags, we have the FDT es-

timator as (Kirk-Davidoff 2009)

2A21 5

ðt

0
Czz(t9)C21

zz (0) dt9, t/‘. (2.12)

If the sample size is sufficiently large, and the linear

dynamic system is stationary (time-independent A), the

three methods, GEFA in (2.6), LIM in (2.11b) and (2.3),

and FDT in (2.12) and (2.3), will give the same feedback

matrix B. For a limited sample size relevant to climate

observations, however, the estimation of the system ma-

trix A is usually subject to large sampling errors (e.g.,

Gritsun and Branstator 2007). Nevertheless, for a realistic

sample size (decades), Part I demonstrated that the

feedback matrix B can still be estimated accurately in

LIM and FDT as in GEFA, because of a cancelation of

the sampling errors between the submatrices Axx and Axy

in deriving B from (2.3).

b. Seasonally varying system

Now, we consider the seasonal response. Suppose the

dynamic system is modulated by the seasonality of the

system matrix A(t). This will lead to a seasonally de-

pendent feedback matrix B(t). Suppose k is a specific

phase of the annual cycle: say, a calendar month (week or

day). Then 1 yr has a total of K phases, and Dt 5 1 yr/K is

the time increment between each phase. The periodicity

of the system matrix gives

Ak [ A(kDt) 5 A[(K 1 k)Dt] [ AK1k, k 5 1, 2, . . . , K,

(2.13)

and similarly Bk 5 BK1k. Because the seasonal cycle is

much longer than the atmospheric response time, the

quasi-equilibrium response (2.2) or (2.4) should still be

approximately valid. Therefore, in principle, the seasonal

evolution of the feedback matrix B
k

can still be estimated

using GEFA as in the case of time-independent B in (2.6),

except with the covariance now calculated centered

around the specific phase; that is, (2.6) and (2.7) are

modified as

Bk 5 Cx
k
y

k
(t)C21

y
k
y

k
(t) (2.14)

with the sample covariance for, say, Cxkyk
(t) as
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Cx
k
y

k

(t) 5
1

M
�

M21

m50

fx[(mK 1 k)Dt] 2 x̂gfy[(mK 1 k 2 t)Dt] 2 ŷgT , (2.15)

where

x̂ 5
1

M
�

M21

m50

x[(mK 1 k)Dt]

represents the sample mean across different years. Here,

we have assumed that the total sample size T contains M

years of data: that is, T 5 MKDt.

LIM and FDT, however, are more complex. Strictly

speaking, with a time-dependent system matrix A, the

optimal solution (2.10a) and (2.10b) to the coupled

system is no longer valid. Therefore, it is unclear if the

seasonally varying A (and in turn the feedback matrix B)

can still be estimated accurately using the LIM estimator

(2.11b) or the FDT estimator (2.12). Physically, al-

though the seasonal cycle is much longer than the at-

mospheric response time, it can be comparable with the

oceanic time scale. Therefore, it is unclear if the seasonal

dependence of the system matrix A can be estimated

accurately using LIM or FDT. Here, we test an intuitive

and simple-minded approach. Because the seasonal cycle

is much longer than the atmospheric response time, we

may speculate that it is still possible for LIM and FDT to

give a reasonable estimation of the feedback matrix as in

the stationary case. Therefore, we will still use the LIM

estimator (2.11b), modified for the seasonally varying

case, as

Ak 5 t21 lnfCz
k
z

k
(t)C21

z
k
z

k
(0)g, (2.16)

where the covariance for phase k is calculated using the

same phase but different years, as in (2.15). This LIM

estimator is reminiscent of the fixed-phase method in

previous LIM studies but directly using the continuous

solution (2.15). In the same spirit, the FDT estimator is

modified as

2A21
k 5

ðt

0
Cz

k
z

k
(t9)C21

z
k
z

k
(0) dt9, t/‘. (2.17)

In previous LIM applications to a seasonally varying

system, two methods are used: the fixed-phase and phase-

smoothed methods (Hasselmann and Barnett 1981;

OrtizBreviá 1997). Both methods, however, apply readily

only to the finite difference form of an AR(1) system,

which is an approximation to the continuous system (2.8).

Furthermore, these studies have focused on the transient

evolution with the focus on the estimation of the propagator

G(t) and its eigenmodes. However, the estimation of the

system matrix A is likely to be more difficult and more

sensitive to sampling error than the propagator, be-

cause of the log function. In any case, we have at-

tempted to derive some approximate LIM estimators

for the seasonally varying system matrix Ak, following the

idea of the fixed-phase method in the finite difference

form of (2.8). However, there is no clear evidence

the sampling error of these methods is smaller than

the simple-minded Eq. (2.16). Indeed, in some sense, the

approximate LIM estimator (2.16) is in the spirit of the

fixed-phase method of previous LIM studies but directly

using the continuous solution (2.15). As for FDT, we

have yet to find an alternative estimator other than the

estimator (2.17).

3. An idealized model study

We first study the seasonal assessment in an idealized

coupled model similar to Barsugli and Battisti (1998),

which can be described in nondimensional equations as

dx

dt
5 2ax 1 by 1 n and (3.1a)

M
dy

dt
5 cx 2 dy. (3.1b)

The parameters are chosen as a 5 1:3, b 5 1 1

0:2 sin(t2p/T), c 5 1, d 5 1, M 5 10. Here, n is a Gaussian

white noise. A unit time t 5 1 corresponds to a nominal

time of ;4 days. Therefore, the atmospheric response

time scale to a given SST anomaly is ;1/a ; 3 days and

the oceanic response time scale to a given atmospheric

forcing is M/d ; 40 days or ;1–2 months. The coupled

system has a decorrelation time of 1 week for the at-

mosphere and 4–5 months for SST (not shown),

comparable with the observation. The seasonal cycle

of the atmospheric response is prescribed in the pa-

rameter b, where T ; 90 corresponds to ;1 yr. With the

application to the present observation in mind, the model

is integrated for 60 yr for each simulation, using the Euler

forward scheme with a time step of 0.05, with the noise

generated using a Gaussian random generator at each

time step. To assess the sampling error, an ensemble of

50 simulations is used. (The results are similar for larger

ensemble sizes.) Because the GEFA estimation of the

seasonal cycle is straightforward using (2.14), we will fo-

cus on LIM and FDT below.
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a. LIM

First, we confirmed one major finding of Part I about

LIM. With a finite sample size here (about ;102–103

atmospheric response time), the sampling error of the

feedback parameter B 5 b/a is reduced substantially

relative to the coefficients a and b themselves, due to the

cancelation of a common factor in the sampling error in

a and b. As a result, B is not sensitive to the lag of esti-

mation (see Fig. 3). Therefore, unless otherwise specified,

we only show LIM results with a lag of ;1 week.

For climate applications, it is usually desirable to es-

timate the feedback parameter B of a specific calendar

month (or season). However, for a better understanding

of the LIM estimation, we will first examine the LIM

estimation in daily, weekly, and monthly data, using the

simplest method called the direct method here. For

the direct estimation of the feedback parameter Bk of a

specific phase k (calendar day, week, or month), the

covariance in the LIM Eq. (2.11b) is calculated centered

at the phase k as in Eq. (2.16). For example, for the es-

timation of the daily feedback parameter at day 150, the

daily data of day 150 of each year will be used to cal-

culate the covariance at lag 0 and the daily data of day

149 will then be used to calculate the lag 1-day covari-

ance. Figure 1 shows the direct estimation of the seasonal

cycles of the feedback parameter using daily, weekly, and

monthly data. The estimated daily feedback parameter

recovers well the true seasonal cycle in the ensemble

mean, with an RMSE of ;0.05, confirming the unbiased

estimation of LIM on the seasonal cycle for a sufficiently

large sample size (Fig. 1a). As the sample size is increased

from 1 3 60 yr to 5 3 60 yr, 10 3 60 yr, 30 3 60 yr, 50 3

60 yr, and 100 3 60 yr, our further experiments show that

the RMSE (correlation) of the ensemble mean estima-

tion of the seasonal cycle is reduced (increased) from 0.25

(;0.4) to 0.13 (0.67), 0.09 (0.79), 0.055 (0.91), 0.045 (0.94),

and 0.035 (0.97), respectively. Therefore, about 10 3

60 yr 5 600 yr of data are needed to reduce the sampling

error significantly below the amplitude of the current

seasonal cycle signal (0.2/1.3 ; 0.15) and with a correla-

tion over ;0.8. The sampling error is large for each es-

timation of a sample size of 60 yr such that the ensemble

spread (measured by the standard deviation averaged

over the year) is 0.28, greater than the amplitude of the

seasonal cycle, 0.15. This large sampling error renders the

direct daily estimation rather inaccurate.

The large sampling error in the direct daily estimation

is due partly to the large noise in the daily data. This

noise can be reduced for weekly mean data, which may

then lead to a reduction of the sampling error in weekly

estimation. This is confirmed in our calculation. Similar

to the daily estimation, as the sample size is increased

from 1 3 60 yr to 5 3 60 yr, 10 3 60 yr, 30 3 60 yr, 50 3

60 yr, and 100 3 60 yr, our further experiments show

that the RMSE (correlation) of the ensemble mean es-

timation of the seasonal cycle is reduced (increased)

from 0.23 (;0.4) to 0.11 (0.76), 0.085 (0.86), 0.06 (0.94),

0.06 (0.96), and 0.05 (0.97), respectively. For a single

sample of 60 yr, Fig. 1b shows the direct estimation of

the weekly feedback coefficient. The sampling error

(annual mean ensemble spread) is now slightly reduced

FIG. 1. The direct LIM estimation of the feedback parameter b/a with an annual cycle in the idealized model, for each calendar (a) day,

(b) week, and (c) month, using daily, weekly, and monthly data, respectively. The thick solid line is the truth, the thin solid line with circles

is the 50-ensemble mean, and the dashed line is the ensemble spread (stand deviation).
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from the daily estimation of 0.28 to 0.20 but is still larger

than the amplitude of the seasonal cycle 0.15.

One might expect a further reduction of the sampling

error for the direct estimation using monthly data, be-

cause of the further reduction of the noise in the monthly

mean data. However, the direct monthly estimation

shows a significant increase of the sampling error over the

weekly and even daily estimation (Fig. 1c), with the an-

nual mean ensemble spread being 1.31. Further experi-

ments show that this RMSE (correlation) of the ensemble

mean is reduced (increased) only modestly from about

0.38 (0.56) to 0.22 (0.87) when the sample size increases

from 1 3 60 yr to 100 3 60 yr. Therefore, even with 50–

100 3 60 yr, the estimation still shows significant bias

from the truth, with an RMSE ;0.22. The failure of the

direct monthly estimation is largely due to the funda-

mental nature of LIM. As discussed in Part I (Penland and

Sardeshmukh 1995), in LIM, the atmospheric response

depends critically on the lagged covariance of the rapid

fluctuations of the atmospheric dynamics [as in Eq. (3.1a)].

A monthly mean tends to filter out the rapid atmospheric

fluctuation, leaving only the quasi-equilibrium response

[as in (2.2)]. Therefore, the lagged covariance in LIM is

no longer able to capture the rapid atmospheric responses.

For the same reason, the direct LIM estimation of seasonal

data further deteriorates.

To best estimate the monthly and seasonal feedback

coefficients in LIM, we therefore use an indirect method.

We first calculate the covariance using the direct method

in daily (weekly) data, and the covariances estimated

using daily (weekly) data are then averaged to each cal-

endar month. We speculate that this indirect method will

give good estimation of monthly feedback coefficients,

because this method maintains the lagged covariance of

rapid fluctuations as in the direct daily and weekly esti-

mation and, in the meantime, reduces the sampling error

with the monthly mean.

Our speculation is confirmed in Fig. 2a, which shows

an example of the indirect method with the monthly

mean on the direct daily estimation. Compared with the

direct daily estimation in Fig. 1a, the indirect method

reduces the sampling error for a sample size of 60 yr sig-

nificantly, with the sampling error (annual mean ensem-

ble spread) reduced from 0.28 in the direct method to

0.089. Further calculation with larger sample sizes

show that the RMSE (and correlation) of the indirect of

the length of 60 yr is better than that of the direct method

of 10 times longer sample size. The improved estimation

of the indirect method also applies to the weekly data.

The same indirect estimation but with the monthly mean

on the direct weekly estimation (as in Fig. 1b) largely

reduces the sampling error from the direct method of

0.20 to 0.09, giving a similar monthly estimation (Fig. 2b)

as from the indirect daily estimation (Fig. 2a), both

improved over the direct weekly estimation (Fig. 1b).

Therefore the indirect estimation of the monthly feed-

back parameter, using either daily or weekly data, ap-

pears to be the optimal approach.

As discussed in Part I for the stationary case, the lag of

optimal estimation should be longer than the atmo-

spheric response time. Figure 3a shows the correlation

and RMSE (relative to the truth) of the estimated sea-

sonal cycle with the truth as a function of the lag of LIM

estimation. The seasonal cycle is estimated for the monthly

feedback parameter B 5 b/a using the indirect method

averaged with daily data, and a 50 member of ensemble is

FIG. 2. As in Fig. 1, but for the feedback estimation as a function of calendar month. Shown are the LIM estimation of monthly feedback

using the indirect method with (a) daily and (b) weekly data and (c) the monthly GEFA estimation.
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used, each of 60 yr (as in Fig. 2a). It is seen that the

seasonal cycle is estimated well for lags longer than

the atmospheric response time, ;3 days, with a correla-

tion ;0:7 6 0:1 and RMSE ;0:1 6 0:01 (0.1 5 10% of

the truth). Using the weekly data (as in Fig. 2b), the op-

timal estimation is achieved at the lag of 2 weeks, with

a correlation of ;0:7 6 0:12 and RMSE of ;0:1 6 0:02

(Fig. 3d), comparable with that using the daily data

(Fig. 3a). The estimation degenerates for too large lags

because of the reduced sample size, as for the time-

independent case discussed in Part I.

The success of LIM on seasonal cycle is not obvious. If

the time scale of the time-dependent coefficients in the

coupled system (2.1a) and (2.1b) is longer than the time

scale of the ocean, the entire coupled system can be

treated as a system of slowly varying coefficient. The

optimal solution (2.10a) and (2.10b) should still be valid

approximately, and then, obviously, LIM is still valid.

However, the annual cycle, although much slower than

the atmospheric time scale, is of comparable time scale

with the oceanic time scale. Now, it is not obvious how

good the approximation the optimal solution (2.10b),

and in turn the LIM estimator (2.11b) is, in particular,

for a finite sample size.

Our discussion above does suggest that the LIM esti-

mation of seasonal cycle should degenerate as the length

of the annual cycle is reduced, because of the reduced

separation of time scales. Figure 3b shows the correlation

and RMSE of the estimated seasonal cycle is the same

as in Fig. 3a, but for a nominal year of the length of

4 months. The ensemble mean correlation is reduced

from 0.7 in Fig. 3a to less than 0.5, and the RMSE is in-

creased from 0.1 to .0.2. Furthermore, the lag range

for the optimal estimation is reduced from 3–40 days to

FIG. 3. LIM estimation of the seasonal cycle of the feedback parameter b/a using the indirect method (as in Fig. 2) using (a)–(c) daily and

(d)–(f) weekly data in the idealized model. The length of one nominal year is (a),(d) 12 months; (b),(e) 4 months; and (c),(f) 1 month. Each

panel shows the correlation (black diamonds) and RMSE (normalized relative to the truth) (gray circles) of the seasonal cycle estimated at

different lags against the truth (negative correlations are not drawn). For each nominal year, the correlation and RMSE are calculated

using 12 nominal months, which equals 1/12th of a nominal year. To ensure the same sample size of the average for each nominal month in

the indirect method, the ensemble sizes are taken as 50, 50 3 3 5 150, and 50 3 12 5 600 for a nominal year of 12 months, 4 months, and

1 month, respectively. As a result, the feedback for one nominal month is derived from 1500 daily estimates for all the three cases

(530 days 3 50 members 5 10 days 3 150 members 5 3 days 3 600 members). The ensemble mean and ensemble spread are plotted as the

heavy solid lines (with marks) and thin dashed lines, respectively.
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5–10 days. As the length of a nominal year is reduced to

1 month, the estimated seasonal cycle is much further

degenerated, with the correlation reduced to less than

0.3 and even negative, the RMSE increased to over

0.3, and an even narrower range of lags for optimal

estimation (Fig. 3c). Similarly, the degenerated sea-

sonal cycle with the length of the nominal annual cycle

is also seen for weekly data estimation, in comparing

Figs. 3e,f with Fig. 3d.3

b. Comparison with GEFA and FDT

The seasonal cycle of monthly feedback coefficient is

also estimated using GEFA (Fig. 2c). As discussed in

section 2, GEFA makes uses of the quasi-equilibrium

responses and use the monthly data to calculate the

covariance in (2.6). The GEFA estimation (Fig. 2c) is of

comparable accuracy (with the annual mean ensemble

spread being 0.11) as the indirect LIM estimations in

Fig. 2a (spread 0.089) and Fig. 2b (spread 0.092). There-

fore, GEFA and LIM can give good estimation of monthly

feedback with comparable accuracy. This is similar to the

annual mean response in Part I.

In comparison, FDT tends to produce a bias in the

phase of the seasonal cycle. Figure 4 shows the monthly

feedback parameter estimated using a FDT that is sim-

ilar to the indirect method of LIM shown in Fig. 2a. That

is, the feedback for each calendar day is estimated first

using daily data as in (2.17), and the daily feedback co-

efficients are then averaged for each calendar month.

Figure 4a shows the FDT estimation with a short inte-

gration upper bound [in (2.12)] of 10 days. The short in-

tegration in Fig. 4a shows an underestimation of the

overall feedback strength and a slight underestimation of

the amplitude of the seasonal cycle. This bias is reduced

somewhat when the integration upper bound is increased

to 30 days (Fig. 4b). As the integration time is increased

further to 80 days (Fig. 4c), the biases in the overall

feedback strength and the amplitude of the seasonal cycle

are further reduced. However, the seasonal cycle is

shifted earlier by ;2 months. This example shows an

intrinsic problem in the FDT estimation of the sea-

sonal cycle. For a time-independent feedback, the FDT

Eq. (2.12) shows that, in principle, the FDT estimation

should be integrated toward infinity. In practice, with

a given sample size, the covariance with large lags com-

parable with the sample size tends to have large sampling

errors. Therefore, as discussed in Part I, the FDT esti-

mation is always improved when the integration length

is increased (as long as it is much shorter than the sam-

ple length). In the case of seasonally varying feedback,

FIG. 4. FDT estimation of the seasonal cycle of the feedback for each calendar month using the indirect method in daily data in the

idealized model. Shown are the results for different integration upper bound: (a) tau 5 10 days, (b) tau 5 30 days, and (c) tau 5 80 days.

The line legends are as in Figs. 1 and 2.

3 Regardless of the sampling error, however, one may speculate

that the success of LIM depends on the annual cycle being much

longer than the rapid atmospheric response time, instead of the

slow oceanic time scale. This is because the success of LIM in es-

timating the feedback parameter B 5 b/a depends on the estima-

tion of the coefficients in the atmospheric Eq. (3.1a) (a and b),

instead of the oceanic Eq. (3.1b). This speculation is confirmed with

our further experiments of sufficiently large sample sizes. It is

found that, even with a nominal year as short as 2–3 months, rel-

ative to the truth, the estimated seasonal cycle has a correlation of

;0.8–0.9 and an RMSE of ,0.1 (e.g., the ensemble mean estima-

tion in Figs. 1a,b), although the lag range for best estimation is

reduced significantly similar to Fig. 3 (not shown).
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however, a longer integration time—although it im-

proves the FDT in the strength of the feedback—

introduces feedback signals from other calendar months.

This produces a systematic shift of the seasonal cycle.

Therefore, even though FDT can be as accurate as LIM

and GEFA for the annual mean feedback (see Part I), the

seasonal cycle of the feedback is best estimated using

LIM and GEFA.

4. Observational study

We now compare GEFA and LIM for the atmo-

spheric response to SST variability in observations. The

atmosphere observations are from the National Cen-

ters for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) reanalysis of

1948–2010 (http://www.esrl.noaa.gov/psd/data/gridded/

FIG. 5. Comparison between (a)–(d) weekly LIM and (e)–(h) monthly GEFA responses for Z200 to ENSO mode

in the TP (TP1). Solid (dashed) contours are for positive (negative), with the interval being equal to 10 gpm (zero line

omitted), and the region above 95% confidence level is shaded in red for positive and in blue for negative. The

magnitude of the response should be interpreted as that to the same SST EOF1 pattern that has a maximum SST

anomaly in the eastern equatorial Pacific of 1.18C.
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data.ncep.reanalysis.html), daily, 2.58 3 2.58 global grids

(144 longitudes 3 73 latitudes). SST data are monthly

Hadley Centre Sea Ice and SST dataset (HadISST)

data (http://www.opsi.gov.uk/advice/crown-copyright/

copyright-guidance/index.htm). For weekly LIM (and

GEFA; see appendix) assessment, we obtain the weekly

SST using a cubic spline interpolation from the monthly

SST. [Similar results are obtained using the weekly av-

erage of the daily skin temperature (SKT) (not shown)].

All the data are anomalies from the seasonal cycle and

are detrended by a third-order polynomial. Similar to

Wen et al. (2010, hereafter W10) and Part I, we will

study the response of the 200-hPa geopotential height

(Z200) to the dominant SST EOF modes but now fo-

cusing on the comparison of seasonal responses es-

timated in the monthly GEFA and weekly LIM. The

SST EOFs, which are derived from the year-round SST

variability, are used to represent the SST forcing be-

cause they are often used as the definition of major SST

variability modes. Furthermore, the EOF base for SST

forcing reduces the correlation among different forc-

ings and therefore reduces sampling error significantly

(Fan et al. 2011).

In our study here, each principal component (time

series of EOF expansion coefficient) is standardized for

the year-round variability (s 5 1) and the dimensional

magnitude is represented in each EOF pattern. As such,

the atmospheric response is interpreted as the response

to each dimensional EOF. A total of 10 SST modes are

used, which are the first two regional EOFs in the

tropical Pacific (TP; 208S–208N, 1208E–608W), tropical

Indian Ocean (TI; 208S–208N, 358–1208E), tropical At-

lantic (TA; 208S–208N, 658W–158E), North Pacific (NP;

208–608N, 1208E–608W) and North Atlantic (208–608N,

1008W–208E). As in W10 and Part I, our results are in-

sensitive to the choice of the ocean regions and the

truncation number of leading EOF modes. The indirect

LIM assessment is the seasonal mean of the direct weekly

LIM estimation. The estimation has some variations with

lags of estimation (see appendix). Here, we chose the

weekly LIM of lag 5 3 weeks. A tau test (Penland and

Sardeshmukh 1995; Shin et al. 2010) similar to that in Part

I (appendix B there) shows that these LIM responses are

not very sensitive to lags, especially its response pattern

(see appendix). The GEFA assessment uses monthly data

at the lag 5 1 month and is averaged for each season.

Monthly GEFA at a larger lag has similar response pat-

tern, but it tends to have a larger magnitude due to the

decorrelation of SST (W10) and is subject to higher

sampling error (Liu et al. 2006). The statistical signifi-

cance for both LIM and GEFA is tested with a Monte

Carlo method, in which the atmospheric field is randomly

scrambled 100 times.

We will show the comparison of LIM and GEFA as-

sessments for the seasonal responses to the first EOFs

of the tropical Pacific (TP1; the ENSO mode), the trop-

ical Indian Ocean [TI1; the Indian Ocean basin (IOB)

mode], and the North Pacific [NP1; the North Pacific

Oscillation (NPO) mode] (see Fig. 1 of W10 for their

patterns). Part I has shown that the annual mean re-

sponses are consistent in LIM, FDT, and GEFA with

global pattern correlations of ;0.95 and global mean

amplitudes comparable within about 610%. Here, we

further show that the seasonal responses are also largely

consistent between GEFA and LIM.

Figure 5 shows that the overall global seasonal re-

sponses to the ENSO mode (TP1) are largely consistent

in LIM and GEFA. The seasonal responses are presented

in four pairs for boreal spring [March–May (MAM)],

summer [June–August (JJA)], fall [September–November

(SON)], and winter [December– February (DJF)] (Fig. 5).

The magnitude for each response should be interpreted

as the response to the TP1, which is characterized by

a warming in the tropical Pacific (see Fig. 1a of W10) with

a maximum SST anomaly of 1.18C in the eastern equa-

torial Pacific. Here, we note that the difference in the

response magnitude in different seasons is not due to the

different strength of SST forcing, because the response

for different seasons estimated here are subject to the

same TP1 forcing. As in the annual mean response in

GEFA (W10) and LIM (Part I), all the seasonal re-

sponses are dominated by a ridge locally over the eastern

TABLE 1. Cross pattern correlation between the GEFA (lag 5 1 month) and LIM (lag 5 3 weeks) responses to TP1 in all the seasons.

LIM/MAM LIM/JJA LIM/SON LIM/DJF GEFA/MAM GEFA/JJA GEFA/SON GEFA/DJF

LIM/MAM 1

LIM/JJA 0.57 1

LIM/SON 0.63 0.44 1

LIM/DJF 0.67 0.41 0.61 1

GEFA/MAM 0.95 0.60 0.58 0.65 1

GEFA/JJA 0.61 0.94 0.48 0.44 0.63 1

GEFA/SON 0.68 0.48 0.94 0.72 0.63 0.53 1

GEFA/DJF 0.66 0.44 0.71 0.91 0.61 0.51 0.83 1
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equatorial Pacific and significant remote responses in the

extratropics via atmospheric teleconnection.

More important here is that major differences be-

tween the responses of different seasons are also largely

consistent between GEFA and LIM. As seen in Fig. 5,

the two methods give comparable amplitude of response

to the same magnitude of SST forcing. For the same

magnitude of TP1 forcing, the strongest response occurs

in winter and spring (Fig. 5) in both methods. If the

magnitude of the PC1 is considered (s 5 1.15, 1.13, 0.8,

and 0.88 for fall, winter, spring, and summer), the actual

seasonal atmospheric response, which can be derived by

multiplying the values shown in Fig. 5 by the s of the

season. The strongest overall global response occurs in

boreal winter in both methods, consistent with the peak

response in the mature phase of ENSO. Furthermore,

the global pattern of the response is largely consistent

between LIM and GEFA, with the global pattern cor-

relations of 0.95, 0.94, 0.94, and 0.91 for spring, summer,

fall, and winter, respectively. These correlations between

FIG. 6. As in Fig. 5, but for the Z200 response to the IOB mode of the TI (TI1). The magnitude of the response should be

interpreted as that to the same broad SST EOF1 pattern that has a maximum SST anomaly in the TI of 0.298C.
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the two methods are substantially higher than the cor-

relations between different seasons using the same

method (values in boldface in Table 1). Therefore, the

different features of the seasonal responses are iden-

tified with reasonable confidence in both GEFA and

LIM. More specifically, the local ridge response over the

eastern equatorial Pacific is the strongest in boreal winter

(Figs. 5d,h). The remote Pacific North America (PNA)

teleconnection into the Northern Hemisphere (NH) is

present mainly in boreal winter (Figs. 5d,h) and spring

(Figs. 5a,e), consistent with Kumar and Hoerling (1998).

However, the Pacific South America (PSA) teleconnec-

tion into the Southern Hemisphere (SH) is present in

almost all the seasons. A full understanding of the phys-

ical mechanism of these seasonal responses is beyond

the scope of this study. Nevertheless, we give some brief

discussions here. The strong equatorial ridge response

represents perhaps a stronger atmospheric convection in

boreal winter (Matsuno 1966; Gill 1980) when the sea-

sonal warming reaches its mature phase in the eastern

equatorial Pacific (Rasmusson and Carpenter 1982). The

strong PNA in boreal winter and early spring is likely the

result of strong westerly jet and in turn a stronger sta-

tionary wave response (Davis and Benkovic 1994; Kumar

and Hoerling 1998; Notaro et al. 2006). The presence of

PSA in all the seasons is somewhat unexpected. To con-

firm its robustness, we made a composite analysis of the

ENSO years for both boreal winter and summer. It is

clear that PSA exists in both winter and summer, whereas

PNA exists only in winter. The presence of year-round

atmospheric teleconnections in the extratropical SH

seems to be consistent with previous observations (Mo

and White 1985; Berbery et al. 1992; Kousky and Bell

1992) and can be attributed to the presence of wave-

guide there (Ambrizzi et al. 1995). We speculate that the

presence of the year-round PSA is due to a weak sea-

sonality in the SH westerly jet and in turn the stationary

wave response all year-round. This speculation appears

to be consistent with a recent two-layer model study

(Lee et al. 2009). This study shows that, under the ob-

served climatological wind, a tropical heating can induce

strong PNA and PSA in the respective winter as in the

observation. Furthermore, the tropical heating can also

force a modest PSA in austral summer but no PNA in

boreal summer (their Fig. 7). A visual inspection of the

climatological wind (their Fig. 6) shows that the summer

barotropic westerly is less than half of that in winter in

the NH but amounts to 2/3 of that in winter in the SH.

In addition, the summer baroclinic westerly (vertical

shear) has its maximum latitude closer to the equator in

the SH (DJF at 288S) than in the NH (JJA at 458N).

Therefore, in austral summer in the SH, the baroclinic

jet extends into the tropics and is able to convert trop-

ical heating-induced baroclinic disturbance into baro-

tropical disturbance; this barotropic disturbance then

propagates through the stronger barotropic jet deep into

the high-latitude SH.

Similar to the response to ENSO, the overall global

seasonal response to the IOB mode (TI1) is also largely

consistent between GEFA and LIM (Fig. 6). The IOB

mode (TI1) is characterized by a basinwide warming over

the tropical Indian Ocean with the maximum warming of

0.298C (see Fig. 1b of W10). This mode lags the ENSO

mode by about a season (with the magnitude of the PC as

s 5 1.13, 1.10, 0.87, and 0.85 for winter, spring, summer,

and fall, respectively), largely reflecting its passive re-

sponse to ENSO (Yang et al. 2007). First, as in the year-

round responses in GEFA (W10), the responses to the

IOB mode is dominated by a zonally uniform ridge re-

sponse around the global tropics in all the seasons in both

LIM and GEFA. This is in sharp contrast to the tropical

response to ENSO mode, which is dominated by a local

response over the eastern Pacific (Fig. 5). Most important

here, many features of the seasonal responses are com-

mon in both LIM and GEFA. The global pattern corre-

lation between GEFA and LIM response to TI1 in all the

seasons is ;0.8–0.9, substantially higher than the corre-

lation with other seasons (values in boldface in Table 2).

The correlation between summer and winter are almost

zero in the same method or different methods, indi-

cating dramatic changes in the seasonal response. The

tropical response, including its circumglobal feature, is

TABLE 2. Cross pattern correlation between the GEFA (lag 5 1 month) and LIM (lag 5 3 weeks) responses to TI1 in all the seasons.

LIM/MAM LIM/JJA LIM/SON LIM/DJF GEFA/MAM GEFA/JJA GEFA/SON GEFA/DJF

LIM/MAM 1

LIM/JJA 0.51 1

LIM/SON 0.27 0.20 1

LIM/DJF 0.35 0.22 0.42 1

GEFA/MAM 0.84 0.64 0.14 0.21 1

GEFA/JJA 0.54 0.92 0.28 0.18 0.71 1

GEFA/SON 0.34 0.42 0.77 0.68 0.18 0.37 1

GEFA/DJF 0.36 0.25 0.45 0.90 0.16 0.14 0.76 1
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the strongest in spring (Figs. 6a,e; further amplified by

the large s 5 1.10) and weakest in fall (Figs. 6b,f). The

mechanisms for these seasonal responses remain to be

explored.

Finally, the overall global seasonal responses to the

NPO mode (NP1) are also largely consistent in GEFA

and LIM (Fig. 7). The NPO mode is characterized by a

cold SST in the western-central North Pacific with a

maximum amplitude of 20.68C, surrounded by an arch

of warm SST with a maximum of 0.68C (Fig. 1d of W10),

which varies little with season (s ’ 1 for all the seasons).

As in the year-round response (W10; Part I), a common

response in all the seasons is an enhanced Aleutian low

locally over the cold North Pacific. The response to NP1

shows significant differences in seasonal responses. Most

important here, these seasonal differences are common

in both LIM and GEFA, as in the seasonal responses to

TP1 and NP1. The seasonal responses between the two

FIG. 7. As in Figs. 5 and 6, but for the Z200 response to the NPO mode in the NP (NP1). The magnitude of the

response should be interpreted as that to the same SST EOF1 pattern that has a maximum negative SST anomaly in

the midlatitude NP of 20.68C.
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methods have a pattern correlation of ;0.9, substantially

higher than the correlation with the responses in other

seasons (values in boldface in Table 3). The response

patterns are virtually uncorrelated between summer and

winter in both methods, again, indicating a dramatic sea-

sonality of the atmospheric response. More specifically,

the local low pressure response and its extension into the

East Asia is the strongest in winter (Figs. 7d,h). The re-

mote response over the North Atlantic sector is the

strongest in winter, dominated by a teleconnection of

a high over northern Canada and a low over the North

Atlantic in winter (Figs. 7d,h). The strong cold SST–low

pressure response over the North Pacific in winter is

consistent with previous studies in the observation and

model experiments (e.g., Liu et al. 2007). The emergence

of the Aleutian low–Icelandic low teleconnection in the

winter is also consistent with the synoptic analysis and is

associated with Rossby wave propagations (Honda et al.

2001).

Although LIM and GEFA estimation gives an overall

consistent global response, it is important to point out

that there are also differences between the two estima-

tions, especially for the magnitude in specific regions; for

example, the high response over Northern Canada to

the Arctic is stronger in GEFA (Fig. 7h) than in LIM

(Fig. 7d). The difference between the two methods can

be related to a more general issue in both methods: how

to choose the optimal lag for estimation. As discussed in

the appendix, each method of estimation has some de-

pendence on the lags. In particular, the magnitude of the

response tends to increase with the lag, especially in

GEFA. There is no perfect way for choosing the lag. An

empirical rule, as suggested by Part I, is to examine the

successive pattern correlation and ratio of magnitude

of the response and to select the lags of more responses

(i.e., successive pattern correlation close to 1 with least

change of amplitude). If one uses this empirical rule, the

optimal lag can differ among different seasons, in dif-

ferent methods, and for the responses in different re-

gions and to different modes. Our choice of a 3-week lag

for LIM here is based roughly on our empirical rule for

the global response. For the monthly GEFA, the 1-month

lag is the minimum lag, chosen partly for its small sam-

pling error (Liu et al. 2006) and partly for its lose con-

sistency with the weekly GEFA estimation of the optimal

lags of 3–4 weeks. This introduces uncertainties in the

estimated response, especially in its regional amplitude.

Therefore, if one is interested in the response of a specific

region, we believe it is important to examine the lag de-

pendency of that region carefully before determining the

optimal lag of estimation.

In short, LIM and GEFA give largely consistent sea-

sonal responses for all the seasons and therefore can serve

for the cross validation of the seasonal atmospheric re-

sponses. Indeed, for the 40 pairs of atmospheric responses

(10 SST EOF modes and four seasons), the global pattern

correlation between the corresponding LIM and GEFA

responses are between 0.77 and 0.96, with the average

being 0.9. The amplitude ratio between LIM and GEFA

responses, measured by the standard deviation of the

global response, ranges from 0.77 to 1.38, with an average

of 1.03. In spite of the largely consistent response from

the global perspective, there are some important dis-

crepancies in some extratropical regional responses,

especially in the response magnitude. Further careful

studies are needed to assess the magnitude of the re-

gional response. In addition, the physical mechanisms

of the identified seasonal responses also remain to be

fully understood.

5. Summary and discussion

As an extension of Part I, we compared three statis-

tical methods for the assessment of the seasonal cycle of

the atmospheric response in both a conceptual climate

model and the observation. It is found that both LIM

and GEFA are able to reproduce the major features of

the seasonal response over the globe. The FDT method,

however, tends to produce a shift in the seasonal cycle.

The capability for GEFA and LIM to assess the sea-

sonal response appears to be due to the slow annual

cycle time scale relative to the rapid atmospheric

TABLE 3. Cross pattern correlation between the GEFA (lag 5 1 month) and LIM (lag 5 3 weeks) responses to NP1 in all the seasons.

LIM/MAM LIM/JJA LIM/SON LIM/DJF GEFA/MAM GEFA/JJA GEFA/SON GEFA/DJF

LIM/MAM 1

LIM/JJA 0.20 1

LIM/SON 0.58 0.25 1

LIM/DJF 0.37 0.18 0.33 1

GEFA/MAM 0.94 0.35 0.56 0.40 1

GEFA/JJA 0.30 0.90 0.38 0.11 0.45 1

GEFA/SON 0.52 0.27 0.85 0.44 0.52 0.33 1

GEFA/DJF 0.46 0.24 0.41 0.87 0.53 0.22 0.53 1
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response time. Therefore, GEFA and LIM can be used

to provide independent assessment of the seasonal at-

mospheric response in the observation. Finally, much

effort is still needed to assess the magnitude of regional

responses and to understand the mechanism of the at-

mospheric response.
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APPENDIX

Observational Responses Estimated at
Different Lags

We have examined the seasonal response in obser-

vations using weekly LIM, weekly GEFA, and monthly

GEFA at various lags. The major features of the esti-

mated global responses are robust. In particular, con-

sistent with the annual responses discussed before (Liu

et al. 2008; W10; Part I), the pattern and magnitude of

the seasonal global responses tend to be stable. As an

example, here we only show the response to the Pacific

ENSO mode (TP1) using the SST forcing that is the

same as in Figs. 5–7. [The major results are similar for

the response to TI1 and NP1 (not shown).]

Figure A1a shows the successive pattern correlation

of the global seasonal responses in weekly LIM and

weekly GEFA of lags 1–8 weeks. It is seen that almost all

the pattern correlations are above 0.95. A more compre-

hensive view of the pattern can be seen in Fig. A2, which

shows the pattern cross correlation among all the weekly

GEFA, LIM, and the 1-month GEFA. The first feature

is that weekly LIM and weekly GEFA are highly cor-

related for all the seasons, in particular at the same lag

(diagonal; correlation . 0.95). Indeed, unless the lags

are very different (e.g., .4 weeks), all the patterns in

GEFA and LIM are correlated close and above 0.9.

Furthermore, except for lags larger than 7 in some

seasons, weekly LIM are highly correlated with the

monthly GEFA (correlation close and higher than 0.9),

with the highest correlation at lags close to 1 month (3, 4,

and 5 weeks).

The response magnitude has features similar to the

pattern correlation but with somewhat larger uncertainty.

Figure A1b shows the magnitude of the global seasonal

response (in spatial standard deviation) in weekly LIM

and weekly GEFA for lags 1–8 weeks. For reference, the

monthly GEFA response at lag 1 month is also shown.

First, the magnitude of the global response tends to in-

crease with the lag, especially in GEFA. This increase of

magnitude in GEFA is caused by the decorrelation of

SST forcing as discussed before (Liu et al. 2008; W10;

Part I). The magnitudes vary by ;10%–20% for LIM but

larger for GEFA especially for fall and spring. Similar

to the pattern correlation, the magnitude of the weekly

estimation is closest to the monthly GEFA (1 month)

around the lags 3 and 4 weeks (similar to the pattern

correlation). A comprehensive view of the magnitudes

FIG. A1. (a) Successive pattern correlation of the global seasonal responses to TP1 mode estimated at different lags

(in weeks) in weekly LIM (solid) and weekly GEFA (dashed). The successive correlation at lag n represents the

pattern correlation between lag n and lag n 1 1. (b) The magnitude (spatial standard deviation) of the global re-

sponses to TP1 estimated at different lags for weekly LIM (solid) and GEFA (dashed). In (b), the monthly GEFA

responses at lag 1 month are also plotted as the constant (dotted) lines. Color schemes are red for spring, green for

summer, yellow for fall, and blue for winter.
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can be seen in the cross ratios of the magnitude in Fig. A3.

First, as seen in Fig. A1b, the magnitude of LIM and

GEFA responses tend to increase with lags (for each

column and row, respectively). Second, GEFA and LIM

tend to have comparable magnitude with a ratio close

to one, especially for comparable lags (along the diag-

onal). LIM estimation has a comparable magnitude to

the monthly GEFA at lags 3–4 weeks.

The variation of the response with lag makes it diffi-

cult to choose the optimal lag for estimation. In partic-

ular, the highest successive pattern correlation occurs

at different lags for different season and in different

methods (Fig. A1a). From our empirical rule (Part I),

this implies the optimal lag should be different for dif-

ferent season and different methods. In the paper (Figs.

5–7), for simplicity and from the overall global per-

spective, we have used the weekly LIM at lag 3 because

this lag has a rather high successive correlation for most

seasons. This lag is also consistent with our annual mean

estimation in Part I. The monthly GEFA (at month 1) is

used because it is the simplest monthly GEFA estima-

tion and seems to be not too different from the optimal

weekly estimation (at lags 3–4 weeks). One can further

imagine that, for the response at different regions, the

optimal lag will also be different and therefore requires

further studies.

FIG. A2. Pattern correlation of the global response to TP1 between weekly GEFA and weekly LIM estimated at

lags 1–8 weeks for the four seasons. For each season, the vertical axis is the lag (in weeks) for GEFA and the

horizontal axis is the lag (in weeks) for LIM; (top) the correlation between weekly LIM and the monthly GEFA

(lag 1 month).
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