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ABSTRACT

Three statistic methods [generalized equilibrium feedback analysis (GEFA), linear inverse modeling

(LIM), and fluctuation–dissipation theorem (FDT)] are compared for their assessment of the atmospheric

response to sea surface temperature variability in the coupled climate system with a sample length com-

parable with the observations (decades). The comparison is made first in an idealized coupled model and

then in the observations. For daily to pentad data, for a linear stochastic system, the simple model study

demonstrates that all three methods are able to provide a consistent assessment of the atmospheric

response. For monthly data, GEFA is able to produce an assessment comparable with the daily or pentad

assessments using the three methods. The consistence of the three methods is further confirmed in the

observations for the responses of the atmospheric geopotential height (at 200 hPa) to the tropical ENSO mode

and the North Pacific mode. It is found that the three methods produce a consistent response with the overall

pattern correlation over 0.95 and the amplitude difference within 10%–20%. The consistent results in both the

simple model and the observations suggest that the three statistical methods can be used as a cross validation on

the robustness of the assessment of the atmospheric response to surface forcing in the observations.

1. Introduction

One critical issue in climate dynamics is to understand

the response of the atmosphere to slowly varying lower

boundary forcing, such as the sea surface temperature

(SST). From the coupled ocean–atmosphere perspec-

tive, the rapid atmosphere variability interacts with the

slow oceanic variability constantly: the atmosphere drives

the ocean and the ocean, in turn, feeds back on the at-

mosphere, forming complex coupled feedback loops.

Therefore, in the study of ocean–atmosphere inter-

action, the atmospheric response to SST variability is also

sometimes called the feedback response. This feedback

response is important because it represents the part of

climate variability that is potentially predictable beyond

the short atmospheric memory (days to weeks). In the

observations, however, this feedback response is usually

difficult to assess, because the observed time series of

ocean and atmosphere variability are the final product of

the coupled feedbacks, which makes it difficult to sep-

arate the atmospheric response to SST from its forcing

on SST. Ideally, in a model world, the atmospheric

feedback response can be assessed using ensemble ex-

periments in which the internal atmospheric variability

can be suppressed by the ensemble mean. This ensemble

method, however, is not feasible for real-world obser-

vation, which only has a single realization. Instead, to

assess the atmospheric response to SST variability in a
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single realization of observation, statistical methods are

needed.

Traditionally, the simplest method to assess the at-

mospheric response to a specific set of SST forcing, such

as regional SST indices or SST EOFs, is a (multiple)

regression of the atmospheric field onto the SST time

series. The regression is based on the assumption of a

quasi-equilibrium linear1 atmospheric response, and

therefore the atmosphere and SST data are often aver-

aged over a time scale longer than the time scale of

the rapid atmospheric response and internal vari-

ability (e.g., a month or season). In line with the quasi-

equilibrium response, often a simultaneous regression

is used. However, a simultaneous regression tends to

mix the atmospheric response (to SST) with the atmo-

spheric forcing (on SST) (Frankignoul 1999). Instead,

the atmospheric response to the simultaneous SST forcing

should be identified with the SST leading the atmo-

sphere, as first proposed by Frankignoul et al. (1998).

This SST-led regression is the essence of the so-called

generalized equilibrium feedback analysis (GEFA)

method (Frankignoul et al. 1998; Liu et al. 2008, here-

after LWL08; see section 2 for more discussion). An-

other type of method to study the atmospheric response

to multiple SST forcings (e.g., a SST field) has been

based on the singular value decomposition (SVD;

Bretherton et al. 1992) of the covariance matrix be-

tween the atmosphere and ocean. This method is also

based on the quasi-equilibrium atmospheric response.

Again, to isolate the atmospheric response from in-

ternal variability, the atmospheric response should

be identified with the SST leading the atmosphere

[also called maximum covariance analysis (MCA);

Czaja and Frankignoul 2002]. The SVD gives pairs of

atmosphere–ocean patterns that are most coherent.

However, for each pair, the atmospheric pattern is

usually not the true response pattern to the corre-

sponding SST pattern. Furthermore, the SVD is not

convenient for assessing the atmospheric response to a

given set of SST forcing, because the patterns of the

SST forcing are the result of SVD and therefore cannot

be specified a priori. In other words, the SVD provi-

des a good qualitative analysis of the atmospheric re-

sponse associated with a SST forcing field but does not

give a quantitative assessment of the atmospheric re-

sponse to a specified set of SST forcings. Here, we will

discuss more comprehensive statistic methods that can

assess the atmospheric response to a given set of SST

forcings systematically.

For statistical assessment, it is highly desirable to de-

velop independent statistical methods for cross valida-

tion. There are, at least, three comprehensive statistic

methods available for a systematic assessment of the

atmospheric response to a given set of SST forcing:

GEFA (LWL08; Liu and Wen 2008), linear inverse

modeling (LIM; Penland and Sardeshmukh 1995a,b;

Newman et al. 2009) and fluctuation–dissipation theo-

rem (FDT; Leith 1975; Bell 1980) (see more discussions

on the methods in section 2). In a purely linear system

and with sufficiently long sample, in principle, all the

three methods should give the same results. In the real

world, however, the observed climate anomalies, at

various time scales, may not follow linear dynamics.

Moreover, the limited climate data (;50 yr) may induce

substantial sampling error. It therefore remains unclear

if these linear statistical methods can be used to assess

the observed atmospheric response consistently.

The purpose of this paper is to show the consistence

of GEFA, LIM, and FDT for the assessment of the

observed atmospheric response to multiple SST forcing

with a sample size comparable with the present obser-

vations (decades). We will compare the assessment of

the three methods systematically, first in an idealized

coupled model and then in the observations. It is found

that, with the sample size of several decades, the three

methods are able to produce consistent atmospheric

response to SST forcing and therefore can be used for

cross validation, in the observations. It is interesting

and important to note that the robust estimation in LIM

and FDT only applies to the atmospheric response to

the slow SST forcing (i.e., the so-called feedback ma-

trix), not to the temporal evolution of the coupled sys-

tem (i.e., the full system matrix). This implies that the

three estimates of the feedback response are robust and

consistent for the special case of multiple time-scale sys-

tems, such as the atmosphere–ocean system here. The

paper is arranged as follows: In section 2, we briefly re-

view the three methods. In section 3, the three methods

are compared in an idealized coupled model, first in a

one-point model and then in a multipoint model. Sec-

tion 4 compares the three methods in the observations.

A summary and some discussions are presented in

section 5.

2. GEFA, LIM, and FDT

For pedagogical purposes, we will review GEFA,

LIM, and FDT briefly. The review here is to give those

readers who are unfamiliar with these methods an in-

troduction of some basic properties and relations of

these methods. As a start, we assume climate anomalies

in the coupled ocean–atmosphere system, after proper

1 Unless otherwise specified, this paper will be confined to the

discussion of linear atmospheric responses.
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spatiotemporal average, can be approximated as a sto-

chastically forced linear coupled system,2

dx

dt
5 Axxx 1 Axyy 1 nx and (1.1a)

dy

dt
5 Ayxx 1 Ayyy 1 ny, (1.1b)

where x and y are column vectors representing the at-

mospheric and oceanic fields, respectively. The nx and ny

are the stochastic noise forcing to the atmosphere and

ocean, respectively, which include the anomalies asso-

ciated with subscale processes and chaotic nonlinear

dynamics.

To further focus on the low frequency dynamics of

slow oceanic time scale (e.g., months), we will average

the atmospheric equation over the slow time scale. Be-

cause the slow time scale is much longer than the rapid

atmospheric response time, the atmospheric Eq. (1.1a)

can be approximated as a quasi-equilibrium response

(see appendix A),

0 5 Axxx 1 Axyy 1 nx, (1.2)

where an overbar denotes the time average. Equation

(1.2) can be rewritten as

x(t) 5 By(t) 1 n(t), (1.3)

where

B 5 2A21
xx Axy (1.4)

will be called the feedback matrix, which gives the re-

sponse kernel of a mean atmospheric field x to a SST

forcing, with the response to the SST forcing y as By. It is

important to note that, no matter how strong the sto-

chastic atmospheric internal variability n is, it is un-

correlated with the SST of earlier times (earlier than the

persistence time of the atmospheric variability t
n
). There-

fore, we always have

Cny(t) 5 hn(t), y(t 2 t)i

[ n(t)yT(t 2 t) 5 0 for t . tn, (1.5)

where h i defines the covariance between the two fields

and the superscript ‘‘T’’ represents the matrix transpose.

The feedback matrix B can be obtained in GEFA

(Frankignoul et al. 1998; LWL08) with a covariance of

Eq. (1.3) with earlier SST y(t 2 t) as

B 5 hx(t), y(t 2 t)ihy(t), y(t 2 t)i21

5 Cxy(t)Cyy(t)21
t . tn. (1.6)

The estimated feedback matrix B (1.6) is ‘‘proportional’’

but not identical to the SST-led covariance matrix Cxy(t).

If applied at zero lag, it degenerates to the simultaneous

regression matrix Cxy(0)Cyy(0)21 to (1.3) and GEFA

becomes simply the simultaneous multiple regression.

However, this regression matrix is the true feedback

matrix only if the internal atmospheric variability n(t)

is not correlated to the SST in (1.5); that is Cny(0) 5

hn(t), y(t)i5 0. This is possible only for two scenarios.

First, the internal atmospheric variability is weak (i.e.,

n(t) ’ 0) such as the case in the tropical Pacific (TP)

ocean–atmosphere system, where large-scale atmospheric

variability x(t) is forced mainly by the SST variability y(t),

with little contribution from internal atmospheric vari-

ability (e.g., Kumar and Hoerling 1998). Second, the in-

ternal variability is not weak, n(t) 6¼ 0, but the region of

atmospheric response considered [and, in turn, the in-

ternal variability n(t)] is not collocated with the SST y(t)

or more precisely that the internal variability does not

force the SST locally [i.e., hn(t), y(t)i5 0]. Except for

these two scenarios, in general, a sufficiently long lag

t . tn is needed to ensure that the internal variability is

not correlated with earlier SST variability as in Eq. (1.5).

The relation between the GEFA feedback matrix (1.6)

and regression matrices can also be seen explicitly from the

decomposition of (1.6) into two parts as (Liu et al. 2006)

B 5 Cxy(t)Cyy(t)21

[ [Cxy(t)Cyy(0)21][Cyy(0)Cyy(t)21] or

[Cxy(t)Cyy(t)21][Cyy(t)Cyy(0)21] [ [Cxy(t)Cyy(0)21].

The latter can be written as

BB2(t) 5 B1(t).

2 For the real world, the validity of the linearization depends on

the time scale. At very short time scale (e.g., subdaily to daily),

atmospheric process can be strongly nonlinear. The linear dynamics

becomes more valid for a properly long time average, because the

averaged high-frequency chaotic nonlinear dynamics tends to be-

come stochastic noise according to the central limit theorem

(Gardiner 1997). Thus, for averages of different time scales, the

representation of each term could be different, including the noise

term. In our idealized model study of this section and in the next

section, however, we will ignore the issues related to the non-

linearity. Instead, we will assume the coupled climate process is

determined by a purely linear system (1.1) such that we can focus on

the comparison of sampling errors in different assessment methods.
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Here, B
1
(t) 5 Cxy(t)Cyy(0)21 is the regression matrix

from the prediction equation x(t) 5 B
1
(t)y(t 2 t) 1 e

1
,

and B
2
(t) 5 Cyy(t)Cyy(0)21 is the regression matrix

of the autoregression prediction equation of SST y(t) 5

B2(t)y(t 2 t) 1 e2. The equation BB2(t) 5 B1(t) can

therefore be interpreted as follows: the prediction of the

atmospheric response x(t) from an earlier SST y(t 2 t)

[via B1(t)] equals the rapid (instantaneous) atmospheric

feedback response x(t 2 t) to the SST y(t 2 t) of the

earlier time t 2 t (via B) following its decaying with the

autoregression evolution of the SST itself from y(t 2 t)

to y(t) [via B2(t)]. The feedback response therefore rep-

resents the part of atmospheric response that is potentially

predictable with the SST persistence. This decomposition

also suggests that the GEFA feedback matrix B is pro-

portional to the SST-led regression matrix and therefore

is qualitatively similar to the SST-led regression matrix.

In other words, the SST-led regression can also be used to

describe the atmospheric response qualitatively, as long

as the lag is not too large such that the SSTs have not

evolved into very different structures.

GEFA or the related regression approach take advan-

tage of the different time scales between the atmosphere

and ocean to approximate the atmospheric response

to SST as a quasi-equilibrium response. In contrast,

LIM and FDT treat the transient atmospheric re-

sponse explicitly and intend to extract the atmospheric

response to SST from the transient evolution of the

coupled ocean–atmosphere system. Now, the atmosphere

and ocean are treated together in a single coupled sys-

tem as

dz

dt
5 Az 1 ~n, (1.7)

where

z 5
x

y

� �
and ~n 5

"
nx

ny

#
.

The coupled system matrix is

A 5
Axx Axy

Ayx Ayy

" #
, (1.8)

and it determines the full temporal evolution of the

coupled system through the evolution Green’s function

(or propagator) G(t) 5 exp(At). If the stochastic forcing

is Gaussian, the optimal solution of the linear coupled

system starting from z(t) is z(t 1 t) 5 G(t)z(t), with the

corresponding optimal system matrix A estimated in

LIM as (Penland 1989)

A 5
1

t
ln[Czz(t)Czz(0)21], (1.9)

where Czz(t) [ hz(t), z(t 2 t)i and t is an arbitrary time

lag. Taking the exponential on both sides of (1.9) and

integrating over all the lags, we have

2A21 5

ðt

0
Czz(t9)Czz(0)21 dt9, t / ‘. (1.10)

In the context of linear system here, this is equivalent

to the FDT estimator (Leith 1975; Bell 1980; Kirk-

Davidoff 2009). Most LIM and FDT studies have been

applied to study the temporal evolution of the full

system (Cionni et al. 2004), such as ENSO variability

(Penland and Magorian 1993; Penland and Sardeshmukh

1995b). However, LIM and FDT can also be used to as-

sess ocean–atmosphere feedback indirectly by using the

submatrices Axy and Axx as well, as shown in Eq. (1.4)

(Newman et al. 2009; Alexander et al. 2008). However, as

noted in previous studies (e.g., Gritsun and Branstator

2007; Kirk-Davidoff 2009), an accurate estimation of

the system matrix A in LIM (Penland and Sardeshmukh

1995b) or FDT (e.g., Leith 1975) usually requires the

data to resolve all the time scales (modeled in the de-

terministic part) of a very long sample size; in particular,

it requires sufficiently high-frequency sampling of data

to resolve the fast atmospheric times scales in the cou-

pled system. Therefore, for our real-world climate data

of several decades, it remains unclear if LIM and FDT

can be used to assess ocean–atmosphere feedback with

sufficient accuracy.3

Finally, it is important to point out that our compar-

ison of GEFA, LIM, and FDT estimations of the feed-

back response is for the special case of multiple time

scales: the interaction between a fast atmosphere and a

slow ocean. For a general linear stochastic system (1.1),

it is clear that the feedback matrix in GEFA estimator

(1.6) does not equal to that derived using the sub-

matrices (1.4) from the LIM estimator (1.10) or FDT

estimator (1.11). However, for a fast atmosphere and a

slow ocean, we will show that the three methods give

very consistent estimate in both idealized models (sec-

tion 3) and in the observations (section 4).

3 The terms ‘‘forcing’’ and ‘‘response’’ here often refer to the

slow SST forcing and the rapid atmospheric feedback response to

SST, respectively, which are in the convention of ocean–atmosphere

interaction studies. They are different from the convention in

linear stochastic dynamics such as LIM and FDT, where ‘‘forc-

ing’’ and ‘‘response’’ usually refer to the stochastic noise forcing

and the stochastic variables associated with the deterministic terms,

respectively.
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3. Comparison of GEFA, LIM, and FDT: Idealized
model studies

a. An idealized coupled model

We first compare GEFA, LIM, and FDT in an ideal-

ized thermally coupled ocean–atmosphere model. The

model is an extension of our nonlocal stochastic climate

model in LWL08 with the inclusion of the local temporal

variability in the atmosphere. It can also be treated as

the stochastic climate model of Barsugli and Battisti

(1998) with the addition of atmospheric advection. The

nondimensional equations are

›Ta

›t
1 U

›Ta

›x
5 2aTa 1 bTo 1 N and (2.1a)

M
›To

›t
5 cTa 2 dTo. (2.1b)

Here, Ta is the atmospheric temperature, To is SST, and

N is the stochastic forcing associated with atmospheric

internal variability. The coefficients a and d represent

damping of the atmosphere and ocean, respectively, and

b and c are the coupling coefficients between the at-

mosphere and ocean. The coefficient M� 1 represents

the large oceanic heat capacity relative to the atmo-

sphere. The atmospheric advection U provides the

nonlocal teleconnection in the coupled system, imitating

the dominant atmospheric teleconnection for climate

variability at monthly to seasonal time scales (Liu and

Alexander 2007).

Dividing the model domain into I intervals of the

width Dx 5 1/I and then using the ‘‘upwind’’ differencing

scheme on the advection term in (2.1a), we have the

discretized atmospheric equation as

dTa,i

›t
5

U

Dx
2 a

� �
Ta,i 2

U

Dx
Ta,i21

1 bTo,i 1 Ni(t), (2.2)

where i indicates the ith point. The advection term shows

that, in addition to the local SST forcing, atmospheric

variability at the ith point is also influenced by the ad-

vection from the upstream atmosphere at the (i 2 1)th

point [2(U/Dx)Ta,i21]. The discretized coupled equations

in (2.2) can be put in the vector form as

dTa

dt
5 AxxTa 1 AxyTo 1 N and (2.3a)

dTo

dt
5 AyxTa 1 AyyTo, (2.3b)

where

Axx 5

2
666664

U/Dx 2 a 0 . . . 0 0

2U/Dx U/Dx 2 a 0 . . . 0

0 . . . . . . . . . 0

0 . . . 2U/Dx U/Dx 2 a 0

0 . . . 0 2U/Dx U/Dx 2 a

3
777775,

Axy 5

2
6666664

b 0 . . . 0 0

0 b 0 . . . 0

0 . . . . . . . . . 0

0 . . . 0 b 0

0 . . . 0 0 b

3
7777775

, Ayx 5
1

M

2
6666664

c 0 . . . 0 0

0 c 0 . . . 0

0 . . . . . . . . . 0

0 . . . 0 c 0

0 . . . 0 0 c

3
7777775

, and

Ayy 5
1

M

2
66664

2d 0 . . . 0 0
0 2d 0 . . . 0
0 . . . . . . . . . 0
0 . . . 0 2d 0
0 . . . 0 0 2d

3
77775. (2.4)

The stochastic dynamic system (2.3a) and (2.3b) is in-

tegrated with the Euler forward scheme with the random

noise generated at each time step using independent

Gaussian random number generator. In the rest of this

section, the three methods will be compared first in a one-

point model and then in a multipoint model. Because

GEFA has been studied extensively in LWL08, we will

focus on LIM and FDT and its comparison with GEFA.
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b. One-point model study

In the one-point model, we simply set the atmospheric

advection to zero (U 5 0) in (2.1a) and (2.1b) (LWL08).

The model now consists of a single variable x for the

atmosphere and y for the ocean. Our results are not

sensitive to the model parameters as long as the time

scale of the ocean is much longer than the atmosphere

(M� 1). Here we only show the results with the model

parameters the same as in Barsugli and Battisti (1998)

with a 5 1.12, b 5 0.5, c 5 1.0, d 5 1.08, and M 5 20. The

integration time step is 0.25 (a unit time t 5 1 here

corresponds to a nominal ;4 days). The response time

of the atmosphere and SST are ;4 days (;1/a) and ;2–

3 months (;M/d), respectively, largely consistent with

the observations in the midlatitude. With our applica-

tion to the observations in mind, the sample size of the

model data is taken comparable with the reanalysis of

;50 yr, which is ;20 000 daily data, ;5000 binned 4-day

data, and ;650 binned monthly data.

We will first discuss the estimation of the feedback

coefficient

2A21
xx Axy 5 b/a

in LIM and FDT. Figure 1c shows the daily LIM esti-

mations (i.e., using daily data) at different lag t in a

100-member ensemble. The ensemble mean estimation

(blue solid line) virtually recovers the truth (red solid) at

small lags (,30 days), confirming the unbiased estima-

tion of LIM on the feedback coefficient with a suffi-

ciently large sample size (100 member 3 50 yr per

member 5 5000 yr). Furthermore, the ensemble spread

(gray bars; ;0.05) is ;10% of the feedback coefficient

itself (;0.43). This suggests that, for our realistic sample

size, daily LIM can provide a robust estimation of the

feedback parameter. As the lag increases, the ensemble

mean estimation gradually deviates from the truth and

the ensemble spread gradually increases, due to in-

creased sampling error.

The daily FDT estimation also gives good estimation

of the feedback parameter, now at large lag of in-

tegration t, consistent with the derivation of Eq. (1.11).

Figure 1e shows that the ensemble mean estimation

virtually recovers the true feedback at lag t . 30 days

with an ensemble spread of ;0.06, comparable with the

best LIM estimation (at small lags) in Fig. 1c. [For too

large lag t, the accuracy of both LIM and FDT estima-

tion decrease because of the lost sampling in the esti-

mation of the lagged covariance (not shown).]

The example above shows that both daily LIM and

FDT estimates are able to assess the feedback parame-

ter accurately for a realistic sample size. In contrast, the

estimation using monthly LIM (Fig. 1d) and FDT (Fig.

1f) (i.e., using monthly data) is rather poor, because the

ensemble mean is significantly biased from the truth

even with this large sample size. The failure of monthly

LIM and FDT is conceivably because both LIM and

FDT, in principle, need to resolve the time scale of at-

mospheric variability in the atmospheric Eq. (2.1) or

(2.3), which, in this case, is a few days (e.g., Penland and

Sardeshmukh 1995a). It should be noted here the study

here only focus on the statistical issues related to sampling

errors. For real-world application, there is still the dy-

namic issue that the daily average may not be sufficiently

long for the validity of the linearization representation of

the dynamics of the coupled system (see footnote 2).

It is important to point out that, in daily LIM and

FDT, the estimation of the feedback parameter (matrix)

B is more robust and accurate than that for the system

matrix A. Figure 2 shows the variation of the Axx and Axy

estimated in LIM and FDT at different lags, in the same

case as the feedback parameter estimation in Figs. 1c–f.

For daily LIM and FDT, Figs. 2a,c show that the en-

semble mean estimation of both Axx and Axy deviate

from the truth substantially. This is consistent with

previous studies (e.g., Gritsun and Branstator 2007) that

an accurate estimation of the full system matrix A in-

volving the atmospheric response requires a very large

sample size. However, it is rather surprising that the

feedback parameter can be estimated almost perfectly

and the estimation exhibits much less sensitivity to lags

(Figs. 1c,e). For example, the daily LIM estimation (at

small lags , 10 days) shows the magnitude of both Axx

and Axy are greater than the truth by ;20% (Figs. 2a,c),

whereas the feedback parameter 2A21
xx A

xy
(Fig. 1c) is

estimated almost perfectly. It is indeed interesting (and

important) that the feedback parameter 2A21
xx A

xy
can

be estimated more accurately than Axx and Axy indi-

vidually. Similarly, in the FDT estimation (at large

lags . 30 days), the ensemble mean estimation of both

Axx and Axy are greater than the truth by about 50%

(Figs. 2a,c), whereas the feedback parameter deviates

from the truth by only ;5% (Fig. 1e). Because the

feedback parameter depends on the ratio 2A21
xx A

xy
, the

accurate estimation of the feedback parameter must be

caused by the cancelation of a common sampling error

factor in both Axx and Axy. This common factor is likely

related to the condition of the covariance matrix Czz(0)

and in turn the inverse. This result has been found highly

robust in our numerical experiments not only in the one-

point model but also in the multipoint model and, to

some extent, in the observations. That is, in general, the

sampling error is reduced significantly from the indi-

vidual submatrices Axx and Axy to the feedback matrix

B 5 2A21
xx Axy, such that the estimation is more accurate
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for the feedback matrix B than for Axx and Axy. This also

reduces the sensitivity to lag (or the so-called tau test)

in B than A (see appendix B). Our extensive numerical

study suggests that the reduced sampling error in

B 5 2A21
xx Axy than in Axx and Axy is not a general result

for any x and y; instead, it is caused by the time-scale

separation between the fast atmosphere x and slow SST y.

Therefore, it applies particularly to our assessment of the

fast atmospheric feedback response to slow SST forcing.

Now, we turn to GEFA estimation of the feedback

parameter and its comparison with LIM and FDT. As

discussed in Frankignoul et al. (1998) and LWL08,

monthly GEFA can give a good assessment of the

feedback parameter for the first few lags. At the best

FIG. 1. The univariate GEFA (black line), LIM (blue line), and FDT (green line) estimation of the ocean feedback

coefficient, compared with the truth (red line) in the one-point model. The univariate GEFA estimation using (a)

daily and (b) monthly data, as a function of lag time t. A 100-member ensemble is used. The ensemble mean is

indicated by the black solid line, and the ensemble spread is indicated by the gray error bar. (c),(d) As in (a),(b), but

for LIM estimation. (e),(f) As in (a),(b), but for FDT estimation.
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estimation of lag of 1 month (see Fig. 1b), the ensemble

mean feedback parameter is ;0.45 with an ensemble

spread of ;0.05, comparable with the best estimation in

daily LIM (Fig. 1c) and FDT (Fig. 1e). This is easy to

understand because GEFA is based on the assumption

of quasi-equilibrium response (1.2) or (1.3), which is

approximately true for monthly data. Here, we further

find that GEFA is also able to estimate the feedback

parameter using daily data as long as the lag is longer

than the atmospheric response time (appendix C). For

example, in the daily GEFA estimation (Fig. 1a), the

ensemble mean estimation has the best estimation at

lags . 15 days, with an accuracy and ensemble spread

comparable with the optimal estimation from daily LIM

and FDT (Figs. 1c,e).

In summary, our study in the one-point model sug-

gests that, with a realistic sample size, GEFA, LIM, and

FDT can all give reasonable assessment of the oceanic

feedback parameter. Using daily data, all three methods

can give good estimation of the feedback parameter,

whereas using monthly data only GEFA seems to give a

good estimation. It is also important to note in daily LIM

and FDT that our sample size here, although insufficient

for an accurate estimation of the system matrix A, is suffi-

cient for a robust estimation of the feedback parameter B.

c. Multipoint model study

We now show that the major conclusions in the one-

point model also hold in a six-point model. The model

parameters are set the same as in the one-point model,

with the addition of the atmospheric advection as U 5

20.08. The time step is 0.2. Sensitivity studies show that

the major conclusions derived from this model remain

unchanged in other parameter settings and model

resolutions.4

FIG. 2. The system matrix A estimated at different lags in the same case of one-point model as in Fig. 1. The element

A(1, 1) (5Axx) estimated in LIM (blue) and FDT (green) using (a) daily and (b) monthly data, compared with the

truth (red). A 100-member ensemble is used, with the ensemble mean in the solid line and the ensemble spread in

dash line. (c),(d) As in (a),(b), but for the element A(1, 2) (5Axy).

4 For models of more grid points, however, a direct estimation of

the feedback matrix is subject to larger sampling errors due to the

correlation of SST variability among neighboring points (LWL08).

Now, the base of the SST forcing needs to be selected carefully. A

convenient choice is the leading EOFs (Wen et al. 2010; Fan et al.

2011).
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Figure 3 shows the feedback matrix estimated using

daily data. The feedback matrix B
e

is estimated using

a 100-ensemble member and is compared with the truth

B
t

in pattern correlation corrhB
e
, B

t
i and amplitude ra-

tio std(Be)/std(Bt). (The pattern correlation and spatial

standard deviation are both calculated by lining the

elements of each matrix as one series.) In the GEFA

estimation, the pattern correlation of the 100-ensemble

mean estimation drops rapidly in the first few lags t ,

10 days and then declines slowly from a correlation of

;0.7 with a narrow spread of ;0.1 (Fig. 3a). Similarly,

the amplitude ratio also decreases first rapidly toward

FIG. 3. Daily estimation of the feedback matrix Be using GEFA (black line), LIM (blue line), and FDT (green line)

at different lags, compared with the truth Bt in the six-point model. The comparison is made in pattern correlation

(corrhBe, Bti) and amplitude ratio [std(Be)/std(Bt)]. (a) The pattern correlation and (b) the amplitude ratio for

GEFA. A 100-member ensemble is used with the ensemble mean in a black solid line and the ensemble spread in gray

error bars. (c),(d) As in (a),(b), but for LIM. (e),(f) As in (a),(b), but for FDT.
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t ; 10 days and then increases gradually (Fig. 3b). The

high pattern correlation at small lags is due to the per-

sistence of the atmospheric variability, whereas the

gradual decrease of the pattern correlation and gradual

increase of the amplitude ratio after t ; 10 days are due

to the increased sampling error.5 For LIM, the best es-

timation is achieved at small lags with a pattern corre-

lation of ;0.7 and amplitude ratio of ;1.3 (Figs. 3c,d).

In FDT, the pattern correlation stays around ;0.7 while

the amplitude ratio increases to slightly over 1 (Figs.

3e,f). Furthermore, the pattern correlation and ampli-

tude ratio of the feedback matrix are not sensitive to

lag in LIM (toward the optimal estimation at t ; 1 day)

and FDT (toward the optimal estimation of t .

10 days). This insensitivity to lag is due to a cancelation

of sampling error between Axx and Axy (see Figs. B1, B2)

as discussed in the one-point model.

Overall, the three methods in daily estimation give

comparable results at their optimal estimation, with a

pattern correlation of ;0.7 and amplitude ratio of ;1.2.

In comparison, for monthly estimations (Fig. 4), only

GEFA at lag of 1 month gives a good estimation, with a

pattern correlation over ;0.6 and amplitude ratio of

;1.4. The GEFA estimation deteriorates with lag (in

months) due to the decrease in the SST autocovariance

and in turn increased sampling error (Liu et al. 2006).

The monthly estimation of the feedback matrix is poor

in LIM or FDT, similar to the one-point model. There-

fore, for LIM and FDT, high-frequency sampling of data

is desirable for the estimation of the feedback matrix.

In Figs. 3 and 4, the optimal lag for estimating B is

selected with the truth Bt known. This selection strategy

is not feasible in real-world application where the truth

is unknown. Here, we will determine the optimal estima-

tion with an empirical approach using the successive pat-

tern correlation corrhB
t
, B

t21i (where B
t

denotes the B

estimated at lag t) and amplitude ratio std(B
t21)/std(B

t
),

as proposed in LWL08. Figure 5 shows the successive

pattern correlation and successive amplitude ratio for

daily estimation, with the magenta line in each panel

denoting the lag of optimal estimation. The optimal lag

is selected as the lag at which the successive pattern

correlation and amplitude ratio become stabilized to

close to 1. Taking the daily GEFA estimation as an ex-

ample, the optimal selection is picked at lag t 5 9, where

the successive pattern correlation and amplitude ratio

begin to stabilize at the correlation of ;1 and amplitude

ratio of ;1 (Fig. 5a). This optimal lag is consistent with

the best estimation obtained through the comparison with

the truth in Figs. 3a,b. Similarly, the optimal lag deter-

mined from the successive pattern correlation and am-

plitude ratio in LIM and FDT are also similar to those

selected from Fig. 3.

Figure 6 summarizes the optimal feedback matrices,

for data binned in daily, 4 days, and monthly, estimated

in GEFA, LIM, and FDT. The optimal estimation is

determined from the successive pattern correlation and

amplitude ratio as discussed in Fig. 5, and the estimated

feedback matrix is compared with the truth in pattern

correlation (Fig. 6a) and amplitude ratio (Fig. 6b). For

the three methods, with daily data, they all produce a

good pattern correlation (;0.7) and amplitude ratio

(;1.3). The 4-day estimation remains comparable with

the daily estimation. The monthly estimation, however,

degenerates significantly except for GEFA. These re-

sults are consistent with the discussions on Figs. 3 and 4.

In short, our idealized model study suggests that, for

our current climate data of several decades, LIM

and FDT are valid for high-frequency data whereas

GEFA is valid for the high-frequency as well as low-

frequency data. Here, the high-frequency data have

a sufficiently high frequency of sampling such that

it resolves the fast atmospheric dynamics; the low-

frequency data are smoothed with coarse graining such

that the high frequency atmospheric dynamics is fil-

tered out. Our idealized model study is not a proof of

the consistency of the three methods, because it is

a special system with a specific sparse system matrix.

Nevertheless, it does indicate the possibility of the

consistency of the three methods as long as there is

a clear time-scale separation between the atmosphere

and ocean. This suggests the possibility that the three

methods can potentially be used for cross validation

against each other.

4. Comparison of GEFA, LIM, and FDT:
Observational study

Here, we further show that GEFA, LIM, and FDT

also give consistent estimates in the observations. We

will study the response of the atmospheric 200-hPa

geopotential height (Z200) to the dominant SST vari-

ability modes, as in Wen et al. (2010) using monthly

GEFA. Specifically, we will compare the monthly GEFA

assessment with the pentad LIM and FDT assessments.

The geopotential height data are from the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) global re-

analysis data from 1958 to 2007 (http://www.esrl.noaa.

gov/psd/data/gridded/data.ncep.reanalysis.html) with a

resolution of 2.58 3 2.58 (144 longitude 3 73 latitude).

5 This has been demonstrated in the coupled model using ex-

periments with the ocean forcing Axyy term surpressed in the at-

mospheric Eq. (1.1a).
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The SST data are the skin temperature from NCEP–

NCAR reanalysis with the same temporal resolution

(daily) as the geopotential height data; the spatial res-

olution is 1.8758 in longitude and a variable Gaussian

grid in latitude (192 longitude 3 94 latitude). All the

data are anomalies from the seasonal cycle and are then

detrended with a third-order polynomial filter. Similar

to Wen et al. (2010), the set of SST forcing is derived

from the two leading EOFs in the TP (208S–208N,

1208E–608W), the tropical Indian Ocean (TI; 208S–208N,

358–1208E), the tropical Atlantic (TA; 208S–208N,

658W–158E), the North Pacific (NP; 208–608N, 1208E–

608W), and the North Atlantic (208–608N, 1008W–208E).

The first two EOF modes of the five basins are combined

into a set of EOF modes to represent the ocean forcing.

These EOFs represent the dominant oceanic variability

modes, including the ENSO mode in the tropical Pacific

(TP1) and the North Pacific Oscillation (NPO) over the

FIG. 4. As in Fig. 3, but for monthly estimation.
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North Pacific (NP1) (for their pattern and time series,

see Wen et al. 2010). It is important to point out that, as

in the idealized model studies, our observational studies

in LIM and FDT also show a better tau test for the

feedback matrix B than the atmospheric system matrix

A (see Figs. B3, B4). In the following, we only show the

response to TP1 and NP1 modes, because the conclusion

holds for other modes.

Figures 7a,b show the response of Z200 to TP1 and

NP1 using monthly GEFA (Figs. 7a,b). [These monthly

responses are reproduced in the pentad GEFA estima-

tion, with an excellent pattern correlation (0.99 for both

FIG. 5. Optimal estimations (magenta line) for GEFA (black line), LIM (blue line), and FDT (green line) of the

feedback matrix B in the six-point model. The lag of optimal estimation (magenta line) is selected according to the

successive pattern correlation (corrhB
t
, B

t21
i) and amplitude ratio [std(B

t21
)/std(B

t
)]. The successive pattern

correlation (solid) and amplitude ratio (dash) for GEFA estimation using (a) daily and (b) monthly data, as a

function of lag time t. A 100-member ensemble is used, with the ensemble mean in black and the ensemble spread in

gray. (c),(d) As in (a),(b), but for LIM. (e),(f) As in (a),(b), but for FDT.
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TP1 and NP1) and amplitude ratio (1.0 for TP1 and 1.1

for NP1). The amplitude of each response pattern is

calculated as the mean of the absolute value of the re-

sponse at each point.] The GEFA responses are now

compared with the response in pentad LIM (Figs. 7c,d)

and FDT (Figs. 7e,f). The lag of optimal estimation is

t 5 1 month for GEFA and t 5 3 and 12 pentads for

LIM and FDT, respectively, which is selected using the

empirical method of successive pattern correlation and

amplitude ratio as discussed in Fig. 5.6 As in Wen et al.

(2010), the statistical significance of the response is

tested with a Monte Carlo method in which the atmo-

spheric time series is randomly scrambled 200 times. As

in Wen et al. (2010), the monthly GEFA assessment of

the atmospheric response to TP1 mode (Fig. 7a) shows a

pair of Rossby waves locally over the tropical eastern

Pacific, a Pacific North America (PNA) atmospheric

teleconnection toward North America, and a Pacific

South America (PSA) teleconnection toward the Ant-

arctic. This atmospheric response pattern, at the first

order, can be understood as a baroclinic equatorial

Rossby wave response to a deep tropical heating asso-

ciated with the warm equatorial SST (Gill 1980) and the

subsequent barotropic Rossby wave propagation toward

the extratropics (Hoskins and Karoly 1981). Further-

more, the GEFA response to TP1 is very similar to the

multiple regression patterns derived with lag of 11, 0,

and 21 (not shown). This is because TP1 is affected little

by internal atmospheric variability such that the covariance

between the SST and atmospheric internal variability is

always small [i.e., (1.5)]. Thus, the feedback matrix B

can be derived in (1.7), in principle, at any lag.

These major features of the GEFA atmospheric re-

sponse are all reproduced in the pentad LIM assessment

(Fig. 7c) and FDT assessment (Fig. 7e); the pattern

correlations between the GEFA response and LIM and

FDT are 0.96 and 0.99, respectively. Furthermore, the

amplitudes of the responses in LIM and FDT are also

comparable with that of GEFA. For example, the am-

plitude of the Rossby wave center is ;20 gpm in monthly

GEFA, in response to the unit ENSO mode (corre-

sponding to the SST pattern with the maximum anomaly

of 1.18C in the eastern equatorial Pacific); this is com-

parable with the ;20- and ;15-gpm responses in LIM

and FDT, respectively. The overall consistency in the

amplitude of the response can also be seen in the am-

plitude ratio relative to the monthly GEFA estimate: 1.1

for LIM and 1.2 for FDT. The consistent assessment

suggest that GEFA, LIM, and FDT can provide a pow-

erful cross validation of the major features of the

FIG. 6. The comparison of the optimal GEFA (black line with star), LIM (blue line with circle), and FDT (green

line with diamond) estimations of the feedback matrix B in different time resolution (selected using the successive

correlation and amplitude ratio as in Fig. 5). (a) The pattern correlation of the optimal estimation with the true B, and

(b) the amplitude ratio of the optimal estimation over the true B. A 100-member ensemble is used with the ensemble

mean in the solid line and the ensemble spread in the error bar. The x axis marks the time resolution for daily, four-

day, and monthly estimations.

6 The results are similar for optimal LIM and FDT estimations in

2-day data and weekly data.
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atmospheric response to TP1, significantly enhancing

our confidence in the assessment.

The atmospheric response to the North Pacific SST

variability NPO (mode is also found consistent in the

three assessments. Figure 7b shows the monthly GEFA

estimation of the response of Z200 to NP1 (here, the

SST EOF is negative in its maximum loading region in

the midlatitude North Pacific). As in Wen et al. (2010),

this response is characterized by a local response of

warm SST ridge over the Aleutian low and a remote

response downstream over the North Atlantic. This

warm SST-ridge response locally over the North Pacific

is likely to be caused by a dominant winter atmospheric

response associated with eddy–mean flow interactions

(Peng et al. 1997; Peng and Whitaker 1999). The down-

stream teleconnection to the North Atlantic resembles

closely to the winter atmospheric teleconnection pattern

known as the Aleutian–Icelandic seesaw (Honda et al.

2001, 2005). This teleconnection is initiated by an ac-

cumulation of atmospheric wave activity in the Aleutian

low region in early to midwinter. Part of the wave ac-

tivity then propagates across North America in the form

of stationary Rossby wave train, forming the stationary

anomaly over the North Atlantic. As in the response

to TP1, the GEFA response is similar to the correspond-

ing multiple regression pattern with the SST leading

atmosphere by one month (not shown). In contrast to

the response to TP1, however, this GEFA response

pattern differs dramatically from the multiple re-

gression pattern at zero lag and with the atmosphere

leading SST by one month, both of which show a much

stronger atmospheric activity over the North Pacific

(not shown). This is because the North Pacific SST

variability is forced predominantly by the atmospheric

FIG. 7. Comparison of (a),(b) monthly GEFA response with the pentad (c),(d) LIM and (e),(f) FDT response for

the response of the Z200 to the leading EOF mode in the (a),(c),(e) TP (TP1) and (b),(d),(f) NP (NP1). Solid

(dashed) contours are for positive (negative), with contour interval of 5 gpm (the zero contour is omitted). The

regions above 95% confidence level are shaded in red for positive and in blue for negative.
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internal variability such that the covariance between

the atmospheric internal variability and SST is small

[i.e., (1.5)] only when the SST leads the atmosphere, as

in (1.6).

These major features in GEFA response are in good

agreement with the pentad LIM estimation (Fig. 7d) and

FDT estimation (Fig. 7f). The pattern correlation be-

tween the GEFA response and LIM and FDT are 0.94

and 0.99, respectively. The response amplitudes are also

comparable, with the maximum local response ;10 gpm

in response to the NP1 EOF mode (with a maximum

anomaly of 20.68C in the Kuroshio Extension region).

The overall amplitude ratio relative to the monthly

GEFA is 0.97 for LIM and 1.13 for FDT. The consistent

assessment of the atmospheric response to the NP1 in

the three methods should provide a benchmark for

modeling studies, which so far have shown diverse re-

sults (e.g., Kushnir et al. 2002).

5. Summary and discussion

This paper compares the statistical assessment of the

atmospheric response to SST variability with a realistic

sample size using three statistical methods: GEFA, LIM,

and FDT. The comparison is made in idealized models

and in the observations. Our study suggests that the

three methods are able to give a consistent assessment of

the atmospheric response. Therefore, the three methods

can be used together for cross validation of the assess-

ment of the atmospheric response to surface forcing in

the observations.

For practical applications, as far as the assessment of

the atmospheric response to SST variability is concerned,

monthly GEFA is still the most convenient approach. For

some applications where only monthly data are available

(e.g., for the diagnosis of climate feedback from climate

model outputs, which are usually stored in monthly data),

monthly GEFA is the only method feasible. However, as

long as daily or weekly data are available, the cross val-

idation using LIM and FDT (and high-frequency GEFA)

provides important advantages. First, as studied before

for monthly GEFA estimations at different lags (LWL08;

Wen et al. 2010), the response patterns tend to be robust

in all the methods. Here, for the response to the leading

SST modes in the observations, the pattern correlation

among the three estimates is usually over ;0.95. There-

fore, the cross validation enhances our confidence of the

response pattern. Second, more important than the re-

sponse pattern, the cross validation greatly improves our

confidence on the response amplitude. The response

amplitude has been a problem in monthly GEFA esti-

mation. Because of the rapid decorrelation (in months) of

SST forcing, the response amplitude tends to increase

substantially with lag in monthly GEFA (Wen et al.

2010), making it difficult to determine the correct am-

plitude. Here, the estimated response amplitude of the

three methods are consistent within 10%–20% in terms

of the overall amplitude ratio, giving us much more

confidence of the amplitude estimation. Third, the cross

validation may reduce the uncertainty associated with

some assumptions on the monthly GEFA. Because of

the large lag sensitivity (or the difficult in tau test) of

monthly GEFA (appendix B), one problem has been the

choice of the lag. For example, because of strong non-

linear eddy–mean flow interactions, the atmospheric

response to SST anomaly may take longer than a month

(e.g., Ferreira and Frankignoul 2008). This would sug-

gest that one may choose the estimation at lags of 2 months

or even longer. However, an increased lag leads to a re-

duced SST autocovariance and, in turn, an increased

sampling error, leaving a difficult choice to balance the

errors associated with the dynamics of the atmospheric

response and sampling error. The cross validation here

helps to reduce this uncertainty, because LIM and FDT (or

high-frequency GEFA) do not depend critically on the

slow response time scale of the atmospheric response. If

the optimal estimation from the three methods show a

consistent result, it is highly likely the estimation is truly

optimal. However, one should be cautious in using high-

frequency data for estimation. This is because the estima-

tion here is accurate only to the extent that the dynamics

can be approximated as a linear stochastic processes (see

footnotes 1 and 2). Because regional synoptic process can

be strongly nonlinear at synoptic time scales, one should be

cautious in applying the method to very short data, such as

daily. A proper average, such as weekly, may reduces the

noise related to nonlinear processes and therefore provides

the optimal estimation (e.g., Newman et al. 2009). Indeed,

in addition to the implication on sampling error, the con-

sistency between the pentad LIM and FDT (and GEFA)

assessment and the monthly GEFA assessment in the

observations (Fig. 7) may have an important dynamic im-

plication: it implies that the pentad average seems to be

sufficiently long to allow the dynamic process of the global

atmospheric response to SST to be approximated as a lin-

ear stochastic process as in (1.1a).

One important and robust finding here is that, in LIM

and FDT, the feedback matrix B is less sensitive to lags

than the system matrix A. Therefore, the feedback can

be estimated more accurately than the dynamics of the

full temporal evolution. Physically, this makes sense

because the feedback only involves the dynamics of the

quasi-equilibrium (or stationary) response of the atmo-

sphere, whereas the temporal evolution involves the

full dynamics of the system and therefore requires

much more information. However, this finding remains
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empirical at this stage, because we have not found

a general mathematical proof.

Finally, it is important to point out that this paper is

not a general comparison of the three methods. Instead,

this paper focuses on the assessment of the response of

the fast component (atmosphere) to the slow compo-

nent (ocean) in a multiple time-scale system. LIM and

FDT, in principle, can be used to also study the full

temporal evolution of the coupled dynamics, although

the study of the full dynamics would require much large

sample size. GEFA, however, only has a limited appli-

cation: it only applies to the study of the response of the

fast component to the slow component.

It is encouraging that we now have at least three sta-

tistical methods that can be used for cross validation of

the atmospheric response in the observations. This cross

validation is important, because, in many applications,

the atmospheric response to a surface forcing, such as

extratropical SST (Kushnir et al. 2002) and land eco-

system (Liu et al. 2006; Notaro et al. 2006), remains

highly uncertain in the observations as well as in models.

This uncertainty occurs because the feedback signal is

overwhelmed by internal atmospheric variability. As

discussed before, the three statistical methods here ap-

ply to the case where we have specified surface forcings,

such as the forcing in different regions, or in different

EOF modes, as studied here. These methods are the

extension of the simple regression method previously

used and are complimentary to another type of statisti-

cal methods that identify the optimal response patterns,

such as MCA, GEFA–SVD, and maximum response

estimation (MRE; Frankignoul et al. 2011). All these

statistical assessments are important both in reducing

the uncertainty of the assessment and in shedding light

on the dynamics of the climate feedback. Finally, these

statistical methods can be combined with dynamic model

experiments (e.g., Liu and Wu 2004) to provide a com-

prehensive statistical–dynamical strategy for the assess-

ment and understanding of the atmospheric response to

surface boundary forcing.
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APPENDIX A

Approximated Equation for the Averaged Variable

Here, we give a heuristic derivation of the averaged

atmospheric Eq. (1.2) using a scaling analysis. Our

derivation is not a general proof, which is beyond the

scope of this paper. Instead, it is intended to give the

readers some sense why fundamentally the quasi-

equilibrium balance should be valid for the fast atmo-

spheric equation averaged over a long time. We will only

consider the original Eq. (1.1a) in its simplest scalar form

[the single point model in (2.1a)]

dx

dt
5 2ax 1 by 1 n. (A.1)

Averaged over the time period from t 2 L to t 1 L, we

have the averaged equation

x(t 1 L) 2 x(t 2 L)

2L
5 2ax(t) 1 by(t) 1 n(t), (A.2)

where the overbar denotes the time average as, say,

for x(t),

x(t) [
1

2L

ðt1L

t2L
x(t9) dt9. (A.3)

The averaged Eq. (A.2) can be written as a quasi-

equilibrium balance similar to (1.2) as

0 5 2ax(t) 1 by(t) 1 n*(t), (A.4)

where the new noise term consists of the averaged noise

and the fluctuation of the averaged local variability (left-

hand side term) in (A.2),

n*(t) 5 n(t) 2
x(t 1 L) 2 x(t 2 L)

2L
. (A.5)

Furthermore, for a sufficiently long average, the left-

hand side of (A.2) can be shown to diminish more rapidly

than the right-hand side terms, such that the left-hand

side becomes negligible in (A.2). Thus, (A.2) is equiv-

alent to (1.2), or (A.5) can be approximated as

n*(t) ’ n(t). (A.6)

To show this, we assume x, y, and n each can be ap-

proximated as a red noise process with persistence times

of 1/lx, 1/lyn and 1/ln, respectively. The covariance

function is therefore, say, for x,

hx(t 1 t), x(t)i5 s2
xe2l

x
jtj. (A.7)

The variance of the averaged variable can be derived as
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hx(t), x(t)i5 2s2
x

2lxL 1 e22l
x
L 2 1

(2lxL)2
. (A.8)

The maximum variance is achieved at the limit of short

average time l
x
L / 0 as the original variance hx(t),

x(t)i5 s2
x 5 hx(t), x(t)i. As the average time increases,

the variance decreases. For an average time longer than

the decorrelation time 1/lx,

lxL � 1, (A.9)

the variance (A.8) approaches

hx(t), x(t)i/ s2
x

lxL
. (A.10)

Therefore, the magnitude of the first term on the right-

hand side of the averaged Eq. (A.2) decreases as 1/
ffiffiffiffi
L
p

.

This 1/
ffiffiffiffi
L
p

decrease rate is also true for the averaged

noise, which can be considered either as a red noise in

the form of (A.7) but with a short persistence time

1/ln # 1/lx or simply as a white noise. The variance of

the averaged y can also be considered similarly as for

x except for a longer persistence time 1/ly � 1/lx, such

that hy(t), y(t)i may not decrease substantially if the

average time is longer than the persistence time of

the atmosphere [i.e., (A.9)] but not much longer than

the persistence time of the SST (e.g., lyL ; 1). Overall,

however, the magnitude of each term on the right-hand

side of the averaged Eq. (A.2) decreases no faster than

1/
ffiffiffiffi
L
p

. In comparison, the variance of the left-hand side

of (A.2) is on the order of

x(t 1 L) 2 x(t 2 L)

2L
,

x(t 1 L) 2 x(t 2 L)

2L

� �
5

s2
x

2L2
(1 2 e22l

x
L) /

s2
x

2L2
. (A.11)

So, its magnitude decreases as 1/L, much faster than the 1/
ffiffiffiffi
L
p

rate of the right-hand side terms. In particular, from

(A.11) and (A.10), we have the ratio of the two terms in (A.2) as

x(t 1 L) 2 x(t 2 L)

2L
,

x(t 1 L) 2 x(t 2 L)

2L

� �
a2 x(t), x(t)h i /

lx

2La2
;

lx

2Ll2
x

;
1

2Llx

� 1. (A.12)

Here, the first ‘‘;’’ sign has used the fact that the SST

variability is much slower than the atmospheric vari-

ability so that the persistence time of atmosphere x(t) is

approximately 1/lx ; 1/a in Eq. (A.1).

APPENDIX B

Tau Test in the Multipoint Model
and the Observations

Our study shows that the estimation of the feedback

matrix B is better than that of the system matrix A in

LIM and FDT. This has implication to the tau test for

LIM and FDT, which are designed to validate the linear

stochastic model (1.1a) and (1.1b) in terms of the sen-

sitivity of the estimated A to lags (Penland 1989;

Penland and Sardeshmukh 1995a). The linear sto-

chastic model is more likely to be valid if the matrix A

has a smaller lag sensitivity or a more robust tau test.

This tau test also applies to the feedback matrix B here.

The smaller lag sensitivity of B than A implies that the

tau test is more robust for B than A. This has been

shown in the one-point model (Figs. 1, 2) and can be

shown to be valid in the multipoint model and the ob-

servations.

Figure B1 shows the amplitude ratio between the es-

timation and the truth similar to the B estimation in the

six-point model in Figs. 3d,f, but now for the submatrices

Axx and Axy. For LIM, within the first 60 lag days, the

amplitude ratio decreases dramatically from 1.2 to 0.2

for Axx (Fig. B1a) and from 1.7 to 0.5 for Axy (Fig. B1b)

but increases only modestly from 1.2 to 1.6 for B (Fig. 3d).

Similarly, in FDT, the amplitude ratio stays above 1.6 for

Axx (Fig. B1c) and are close to ;2 for Axy (for large lags

in Fig. B1d) but stays below ;1.4 for B (Fig. 3f). The

implication is that some common sampling error factor

in the magnitude is canceled between Axx and Axy such

that the estimation of B is improved.

Figure B2a shows the tau test, or lag sensitivity, for the

daily LIM estimation in a randomly selected realization.

For a given point xi, the atmospheric response to the 6

SST forcing (points) is represented by a vector, which is

the ith row of the submatrix Axy (denoted as Aixy)7 or the

7 This form of the tau test is suggested by Dr. Sang-Ik Shin.
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ith row of the feedback matrix B (denoted as B
i
). Figure

B2a plots the norm of the forcing vector as a function of

the lag for the Aixy (dashed) and for Bi (solid) for all the

six atmospheric points (six solid curves and six dashed

curves). It is seen that the norms of the forcing vectors

decrease dramatically with lag in the system matrix Aixy

but change only slightly in the feedback matrix B
i
. This

smaller lag sensitivity in the feedback matrix than in the

system matrix is consistent with the discussion in Fig. B1.

Figures B2b–d further illustrates the lag sensitivity of

the forcing vectors in B over A for the midpoint of the

atmosphere (i 5 3) in 10 randomly selected realiza-

tions. Consistent with the discussion on the realization

in Fig. B2a, the sensitivity to lag is much smaller in the

feedback matrix (Fig. B2b) than in the system matrices

(Figs. B2c,d).

Now, we turn to the tau test for the pentad LIM es-

timation of the observed Z200 response to the set of 10

SST forcings as discussed in Fig. 7. First, we select 60 grid

points in the atmosphere uniformly (area weighted)

across the globe to illustrate the lag sensitivity. As in

Fig. B2, for a given point xi, Figs. B3a,b show the norm of

each forcing vector as a function of lag for Aixy [denoted

as miA(t)] and Bi [denoted as miB(t)], respectively. It is

seen that the norms decrease with lag substantially for

A
ixy but increase modestly for B

i
, reminiscent of the tau

test in the simple model in Fig. B2. The lag sensitivity

can be further quantified using relative lag sensitivity,

which is defined as the standard deviation of the lag

sensitivity relative to its mean, s[miA(t)]/miA(t) and

s[miB(t)]/miB(t). The relative lag sensitivity is plotted

for every point over the globe for Axy (Fig. B4a) and B

(Fig. B4b). It is seen that the relative sensitivity is usually

below 10%–20% for B (global mean ; 0.1) but below

40%–50% for Axy (global mean ; 0.30). Therefore,

the relative sensitivity of B is below 50% of Axy over

most of the globe, as seen in their ratio (Fig. B4c) (global

mean of ;0.5).

FIG. B1. The amplitude ratio between the estimation and truth at different lags for the submatrices Axx and Axy in

the six-point model. Daily LIM estimation of (a) Axx and (b) Axy. A 100-member ensemble is used with the en-

semble mean as the solid line and the ensemble spread as the gray error bar. (c),(d) As in (a),(b), but for daily FDT

estimation.
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FIG. B2. Tau test for daily LIM estimation in the six-point model for the norm of forcing vectors as a function of lags.

(a) The solid lines show the norms of the SST forcing vectors to the six points of the atmosphere in the feedback matrix

(Bi, i 5 1, . . , 6, with the response at each point indicated by a different colors) in a randomly selected realization. The

dashed lines show the norms of the corresponding system matrix Aixy (i 5 1, . . . , 6, with the response at each point

indicated by the same color as in the feedback matrix). (b) Tau test of the feedback matrix for atmospheric point 3 (B3) in

10 random selected realizations. (c),(d), As in (b), but for the corresponding system matrices (c) A
3xy and (d) A

3xx.

FIG. B3. Tau test in pentad LIM for the norm of the forcing vectors to the Z200 in the observations. A total of 60 lines

are plotted in each panel, representing 60 atmospheric grids selected uniformly (area weighted) across the globe.
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APPENDIX C

GEFA for High-Frequency Data

GEFA can also be applied to high-frequency data,

such as daily and weekly data, as long as the dynamics

can be approximately as a linear stochastic system. This

can be understood from the single point coupled atmo-

sphere (x) and ocean (y) model. The atmospheric Eq. (1.1a)

or (2.1a), for a specific t, can be rewritten by substituting

t with t 1 t as

dx(t 1 t)

dt
5 2ax(t 1 t) 1 by(t 1 t) 1 n(t 1 t).

Multiply the equation by y(t) and perform ensemble

covariance with respect to t, and we have

dhx(t 1 t), y(t)i
dt

5 2ahx(t 1 t), y(t)i1 bhy(t 1 t), y(t)i

1 hn(t 1 t), y(t)i.

Notice, for example,

hx(t 1 t), y(t)i 5 hx(t), y(t 2 t)i[ Cxy(t),

and we have the covariance equation

dCxy(t)

dt
5 2aCxy(t) 1 bCyy(t) 1 Cny(t). (C.1)

Because the oceanic response time is very slow, the

atmospheric response time can be approximated as

t
atm

; 1/a. For lags much longer than the atmospheric

response time t*� t
atm

, the ratio between the first two

terms is

dCxy(t)

dt
aCxy(t)

;
tatm

t*
� 1. (C.2)

Local variability is negligible and the covariance equa-

tion degenerates to similar to the quasi-equilibrium dy-

namics (1.2),

0 ’ 2aCxy(t) 1 bCyy(t) 1 Cny(t). (C.3)

Therefore, the feedback parameter can be estimated the

same as using monthly data from the quasi-equilibrium

response.

Relative to GEFA on high-frequency data, the monthly

GEFA is more economical because it only requires

monthly data. However, monthly GEFA tends to ex-

hibits a greater sensitivity with lag with the amplitude of

the feedback parameter increasing rapidly with lags,

making it difficult to perform tau test on the feedback

matrix B. This larger lag sensitivity for monthly B,

however, is not caused by the failure of GEFA itself;

instead, it is caused by the decorrelation of SST forcing

after 2–3 months, which leads to an increased sampling

error (Liu et al. 2006). With daily or pentad GEFA,

however, a range of lags can be tested within 2–3 months

before a significant increase of sampling error. For ex-

ample, for our observational assessment in Fig. 7, pentad

GEFA (not shown) gives almost the same response as

monthly GEFA (pattern correlation of ;0.99 and am-

plitude ratio of ;1.0) but now performs well in tau test.

Indeed, the lag sensitivity of the feedback matrix B from

pentad GEFA is almost the same as that for pentad LIM

(Figs. B3b, B4b) (not shown), giving us more confidence

on the GEFA estimation.

FIG. B4. Tau test in pentad LIM for the norm of the forcing

vector to Z200 for each grid point over the globe in the observa-

tions. The relative standard deviation (a) s[miA(t)]/miA(t) and (b)

s[m
iB

(t)]/m
iB

(t) and (c) the ratio of (b) to (a).
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