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Abstract Observational information has a strong geo-

graphic dependence that may directly influence the quality of

parameter estimation in a coupled climate system. Using an

intermediate atmosphere-ocean-land coupled model, the

impact of geographic dependent observing system on

parameter estimation is explored within a ‘‘twin’’ experiment

framework. The ‘‘observations’’ produced by a ‘‘truth’’

model are assimilated into an assimilation model in which

the most sensitive model parameter has a different geo-

graphic structure from the ‘‘truth’’, for retrieving the ‘‘truth’’

geographic structure of the parameter. To examine the

influence of data-sparse areas on parameter estimation, the

twin experiment is also performed with an observing system

in which the observations in some area are removed. Results

show that traditional single-valued parameter estimation

(SPE) attains a global mean of the ‘‘truth’’, while geographic

dependent parameter optimization (GPO) can retrieve the

‘‘truth’’ structure of the parameter and therefore significantly

improves estimated states and model predictability. This is

especially true when an observing system with data-void

areas is applied, where the error of state estimate is reduced

by 31 % and the corresponding forecast skill is doubled by

GPO compared with SPE.

Keywords Observing system � Geographic dependence �
Parameter estimation � Coupled model

Abbreviations

EAKF Ensemble adjustment Kalman filter

SPE Single value parameter estimation

GPO Geographic dependent parameter optimization

SEO State estimation only

CTL Model free control run

SST Sea surface temperature

LST Land surface temperature

1 Introduction

Parameter estimation in a coupled climate model has

received increasing attention due to its potential in the

reduction of model bias and the improvement of climate

predictability. In data assimilation theory (e.g. Jazwinski

1970), parameter estimation can be realized by including

model parameters into assimilation control variables (e.g.

Banks 1992a, b; Anderson 2001; Hansen and Penland

2007; Zhang et al. 2011; Kang 2009; Kang et al. 2011). So

far, parameter estimation has been implemented mostly in

an idealized experimental framework and model observing

system (e.g. Annan and Hargreaves 2004; Aksoy et al.

2006a, b; Kondrashov et al. 2008; Tong and Xue 2008a, b;
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Zhang 2011a, b) for exploration. In the real world, how-

ever, a coupled general circulation model (CGCM) is used

to assimilate instrumental data for climate estimation and

prediction initialization. The observation-based parameter

estimation depends on the model sensitivity and the

observing system, both of which are geographic dependent.

Recently, Wu et al. (2012) investigated the impact of the

geographic dependence of model sensitivity on parameter

estimation with an intermediate coupled model, and pre-

sented a new parameter estimation scheme, called geo-

graphic dependent parameter optimization (GPO). As a

follow-up study, here we use the same model to examine

the impact of geographic dependent observing system on

parameter estimation. The observational information has

two types of geographic dependence. First, the data cov-

erage of the observing system has geographic dependence.

Second, physical processes in the climate system are geo-

graphically dependent (mixing in the ocean and convection

in the atmosphere for instance) which leads that the rep-

resentation of observations is geographic dependent.

A twin experiment framework is designed to carry out

this study. First, to simulate the geographic dependence of

the representation of observed values, we set a sensitive

parameter in the model to have geographic structures.

Second, to study the impact of the geographic dependence

of data coverage of an observing system, the twin experi-

ment is also performed when observations in certain areas

are removed. Based on such twin experimental settings, we

compare three sets of experiment results throughout this

study: (1) state estimation only (SEO) that only assimilates

observations into model states; (2) single-valued parameter

estimation (SPE) that performs both state and parameter

estimations but not allowing parameter to vary geograph-

ically and (3) geographic dependent parameter optimiza-

tion (GPO) that optimizes model parameters according to

local observational information and model sensitivity thus

allowing the parameter to vary geographically.

This paper is organized as following: after the methodology

section that briefly describes the model and the GPO scheme

as well as the twin experimental setting, Sect. 3 presents the

impact of geographic dependence of observing system on

parameter estimation. Section 4 examines the impact of dif-

ferent parameter estimation schemes on model predictability.

Summary and general discussions are given in Sect. 5.

2 Methodology

2.1 An intermediate coupled model

To clearly illustrate the impact of the geographic depen-

dence of observing systems on parameter estimation and

avoid the complexity of a CGCM, an intermediate

atmosphere–ocean-land coupled model (Wu et al. 2012) is

employed. Here, we briefly review the coupling scheme of

this model.

The atmosphere is a global barotropic spectral model

based on the equation of potential vorticity conservation:

oq

ot
þ Jðw; qÞ ¼ k To � lwð Þ ocean

k Tl � lwð Þ land

�
ð1Þ

where q ¼ byþr2w, b = df/dy, f denotes Coriolis

parameter, y represents the northward meridional distance

from the equator, w represents the geostrophic atmosphere

streamfunction. To and Tl denote sea surface temperature

(SST) and land surface temperature (LST) respectively.

The ocean consists of a 1.5-layer baroclinic ocean with a

slab mixed layer (Liu 1993) and the simulated upwelling

by a streamfunction equation as

o

ot
� u

L2
0

� �
þ b

o

ox
u ¼ cr2w� Kqr2u

o

ot
To þ u

oTo

ox
þ v

oTo

oy
� Khu ¼ �KT To þ ATr2To

þs s; tð Þ þ Co To � lwð Þ

8>>>>><
>>>>>:

ð2Þ

where u is the oceanic streamfunction; L2
0 ¼ g0h0=f 2 is the

oceanic deformation radius; Kh ¼ KT � j� f=g0 (Philan-

der et al. 1984) represents the strength of upwelling

(downwelling); s(s, t) = KT 9 s0(s) 9 [1-(s/4,500 ? 1/

200) 9 cos(2p(t-15)/360)] is the solar forcing, where s0

represents the annual-mean solar forcing with zonal dis-

tribution, s denotes latitude, t is the current time steps in

days. The period of solar forcing is set to 360 days, which

defines the model calendar year.

The evolution of LST is simulated simply by a local

linear equation

m
o

ot
Tl ¼ �KLTl þ ALr2Tl þ sðs; tÞ þ Cl Tl � lwð Þ ð3Þ

The coupled model is forwarded by a leap frog time

stepping with a half hour integration step-size. An Asselin-

Robert time filter (Robert 1969; Asselin 1972) is

introduced to damp spurious computational modes in the

leap frog time integration. Default values and meanings of

all parameters are listed in Table 1. Last fourteen

parameters are empirically determined by trial-and-error

tuning. Note that the solar forcing s(s, t) will not change

once it is determined using the default value of KT, so it

acts as a part of the ‘‘dynamic core.’’

2.2 Brief review of a geographic dependent parameter

optimization (GPO) scheme

GPO (Wu et al. 2012) is an extension of a coupled data

assimilation scheme with enhanced parameter correction

(DAEPC, Zhang et al. 2011). The ensemble adjustment
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Kalman filter (EAKF, Anderson 2001) is used to perform

the simultaneously state estimation and parameter estima-

tion in this study. EAKF is a sequential implementation of

Kalman filter (Kalman 1960; Kalman and Bucy 1961)

under an ‘‘adjustment’’ idea. While the sequential imple-

mentation provides much computational convenience for

data assimilation, the EAKF maintains the nonlinearity of

background flows as much as possible (Anderson 2001,

2003). Based on the two-step EAKF (Zhang and Anderson

2003), parameter estimation is a process similar to multi-

variate adjustment in state estimation. The first step com-

putes the observational increment (Zhang et al. 2007) using

Dyk;i ¼ �yu
k þ Dy0k;i

� �
� yp

k;i ð4Þ

where Dyk,i represents the observational increment of the

kth observation, yk, for the ith ensemble member; �yu
k is the

posterior mean of the kth observation; Dy0k;iis the updated

ensemble spread of the kth observation for the ith ensemble

member; yp
k;i is the ith prior ensemble member of the kth

observation. The second step that projects the observational

increment onto relevant parameters can be formulated as

Dbk;i ¼
cov b; ykð Þ

r2
k

Dyk;i: ð5Þ

Here Dbk,i indicates the contribution of the kth

observation to the parameter b for the ith ensemble

member. cov(b, yk) denotes the error covariance between

the prior ensemble of parameter and the model-estimated

ensemble of yk. rk is the standard deviation of the model-

estimated ensemble of yk.

DAEPC is a modification of the standard data assimi-

lation with adaptive parameter estimation (e.g. Kulhavy

1993; Borkar and Mundra 1999; Tao 2003). Since the

successfulness of parameter estimation entirely depends on

the accuracy of the state-parameter covariance (Zhang

et al. 2011), and that model parameters do not have any

dynamically-supported internal variability, the accuracy of

the ensemble-evaluated covariance is determined by the

accuracy of the model ensemble simulating the intrinsic

uncertainty of the states for which the observations try to

sample. After state estimation reaches ‘‘quasi-equilibrium’’

(QE), parameter uncertainty contributes much to the error

of model state so that signal dominates the parameter-

observation covariance. A norm of model state adjustments

is used to determine whether state estimation has reached a

QE state. Then parameters are adjusted using Eq. (5). The

updated parameters are applied to the next data assimila-

tion cycle, which further refines the state estimates.

The inflation scheme of DAEPC based on model sen-

sitivities of parameters (Zhang et al. 2011; Zhang 2011a, b)

is a particular aspect of DAEPC which is formulated as

~bl ¼ �bl þmax 1;
a0rl;0

rlrl;t

� �
bl � �bl

� �
: ð6Þ

where bl and ~bl represent the prior and the inflated

ensemble of the parameter bl, rl,t and rl,0 denote the prior

spreads of bl at time t and the initial time, a0 is a constant

Table 1 Default values and

meanings of parameters
Parameter Meaning Value Nature of the value

r Radius of earth 6.365 9 106 m Untunable constant

X Angular velocity of the earth 7.292 9 10-5 rad/s ‘’

g0 Reduced gravity 0.026 ms-2 ‘’

k Flux coefficient of the atmosphere 223 s-2 K-1 Empirically tuning

l Dimensional conversion factor 2.2 9 10-7 m-2 sK ‘’

h0 Mean thermocline depth 500 m ‘’

c Momentum coupling coefficient 10-5/(100 days) ‘’

Kq Diffusive coefficient of oceanic streamfunction 10-5 ‘’

j Ratio between upwelling and damping 1/6 Km-1 ‘’

KT Damping coefficient of sea surface temperature 1/(180 days) ‘’

AT Diffusive coefficient of sea surface temperature 104 m2 s-1 ‘’

Co Flux coefficient of the ocean 10-8 Km-2 ‘’

m Ratio of heat capacity between the land

and the ocean

0.1 ‘’

KL Damping coefficient of land surface temperature 1/(180 days) ‘’

AL Diffusive coefficient of land surface temperature 104 m2 s-1 ‘’

Cl Flux coefficient of the land 10-8 Km-2 ‘’

g Asselin-Robert filter coefficient 0.01 ‘’
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tuned by a trial-and-error procedure. rl is the sensitivity of

the model state with regard to bl. The over bar represents

the ensemble mean.

Based on DAEPC, GPO localizes both the parameter

and its sensitivity, then signals in parameter estimation can

be significantly enhanced and the optimal parameter can be

obtained under local least square frame (Wu et al. 2012).

2.3 Twin experiment design

A ‘‘twin’’ experiment is designed to explore the impact of

the geographic dependence of observing system on

parameter estimation. In order to simulate the geographic

dependence of the observational representation, we set the

most sensitive parameter (Wu et al. 2012), KT, in the

‘‘truth’’ model is latitude-dependent. For 90�S and 90�N,

KT is set to the default value, while linearly reducing to

95 % of the default value at equator. Other 13 empirical

parameters keep their default values without spatial vari-

ation. Then with this parameter configuration, starting from

initial conditions Z0 = (w0, u0, T0
o , T0

l ), where u0 = 0, w0,

T0
o and T0

l are zonal mean values of corresponding clima-

tological fields, the coupled model is run for 101 years to

generate time series of the ‘‘truth’’ with the first 50-year

being the spin-up period. ‘‘Observations’’ of model states

are generated by adding a Gaussian white noise that sim-

ulates observational errors to the relevant ‘‘true’’ states of

the rest 51 years at specific observational frequencies. The

standard deviations of observation relative to the truth are

106 m2 s-1 for w, 100 m2 s-1 for u, 1 K for To and Tl

respectively, while corresponding sampling frequencies are

6 h (for w), 1 day (for u, To and Tl). In this study, the

‘‘observation’’ locations of w are global randomly and

uniformly distributed with the same density of the model

grids, while the ‘‘observation’’ locations of u, To and Tl are

simply placed at 5� 9 5� global grid points which start

from (0�E, 85�S) at the left-lower corner to (355�E, 85�N)

at the right-upper corner. In order to simply simulate the

geographic dependence of observational coverage, obser-

vations of To within mid-latitude North Pacific (180�E–

205�E; 20�N–45�N) are removed. The ensemble size is set

to 20 throughout this study, because a larger number did

not change significantly the results.

To roughly simulate the real world scenario in which both

the assimilation model and the assimilation initial condition

are biased relative to observations, in our assimilation model,

KT is set to 10 % greater than the global mean of the ‘‘truth’’

values while other 13 parameters keep their default values.

Starting from Z0, the biased model is spun-up for 50-year to

generate the biased initial model states Z1 = (w1;u1; T1
o ,

T1
l ). Then, the ensemble initial conditions of w are produced

by superimposing a Gaussian white noise with the standard

deviation of 106 m2 s-1 on w1, while u, To and Tl are

unperturbed. In addition, initial standard deviation of KT is

set to 1 % of the biased value, while other parameters are not

perturbed. We denote the ensemble initial conditions of the

coupled model as P.

Starting from P, an ensemble control run is integrated

for 51 years without observational constraint (denoted as

CTL) and the SEO is also performed. Then, parameter

estimation experiments are started at the end of the first

year where the state estimation has reached its quasi-

equilibrium. Leaving out another 3 years as the spin-up

period for parameter estimation, the evaluations of all

assimilation schemes are based on the results of the last

47 years. Table 2 lists observation-adjusted model vari-

ables and observation-optimized model parameter in the

assimilation. Here, wo, uo, To
o and To

l represent observa-

tions; w, u, To and Tl denote model states to be estimated;

KT is the parameter to be estimated. A two-time level

adjustment (Zhang et al. 2004) is employed for state esti-

mation. Additionally, in order to remove spurious corre-

lations caused by long distance, a distance factor (Hamill

et al. 2001) is introduced into the filtering. For w and Tl, the

impact radius of observations is set to 500 km; while for u
and To, it is set to 1,000 km 9 cos(min(s, 60)), where s
denotes the latitude of model grid.

3 Impact of the geographic dependence of observing

system on parameter estimation

In this section, impacts of the geographic dependence of To

observing system on traditional single-value parameter

estimation (SPE) and GPO are investigated. Before

parameter optimization starts, we compute the norm of

model state adjustments to ensure that the state estimation

reaches quasi-equilibrium (Zhang et al. 2011), roughly

determining the state estimation spin-up period as 1 year.

For the inflation scheme of parameter ensemble, the

ensemble spread of a model prognostic variable when a

perturbation is added on a parameter is used to evaluate the

relevant sensitivities quantitatively. For SPE, rl in Eq. (6)

simply takes the time–space mean of the sensitivities of

SST to KT. a0 is set to rl after trial-and-error tuning. At

each analysis step, SPE uses all available observations of

To to adjust the ensemble of KT sequentially.

Table 2 Observation-adjusted model variables and observation-

optimized model parameter in the assimilation

wo uo To
o To

l

State estimation w u To Tl

Parameter optimization – – To, KT –

X. Wu et al.
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In GPO, the value of rl in Eq. (6) is geographically

dependent (we use the time average of sensitivities to

estimate).The inflation factor a0 is set to 1.0. During

parameter optimization, the impact radius of observations

of SST is assumed to be the same as state estimation. GPO

optimizes KT for each ocean grid using surrounding

observations of SST. The initial KT for each grid is set to

the same biased value as in SEO. In order to avoid intro-

ducing large parameter gradient between the no-observa-

tion area and the ambient places, a simple linear

interpolation of KT is performed in the no-observation area.

For each analysis step, after all KT in other model grids

being updated with observations of SST, each KT that falls

in this area is replaced by the linear interpolated value of

the nearest four grids outside this place.

Figure 1 shows the truth (the thin solid line), the initial

biased value (the dotted-dashed line) and the global mean

(the thick solid line) of the truth of KT, the time-averaged

SPE-estimated (the dotted line) and the time-latitude

averaged GPO-optimized (the dashed line) KT. SPE

improves the initial biased value significantly and approa-

ches the global mean of the truth. Because the initial biased

KT is much larger than the maximal value (locates at poles)

of truth KT, SPE can drag the biased KT around the global

mean, and therefore improve the quality of SST in the mid

latitudes. For GPO, it exactly tracks the truth value in the

mid latitudes. For high latitudes, especially in Southern

Hemisphere, GPO-optimized KT is a little deviated from

the ‘‘truth’’ which is caused by insufficient observation

constraint there. Note that due to the linear variation of KT

from the poles to the equator, the linear interpolation can

perfectly approach the ‘‘truth’’ value in the no-observation

area. In the real world and a CGCM, the same smoothing

scheme may not be able to attain such excellent result.

Even so, we believe that the smoothed parameter will be

better than the non-smoothed one and SPE-generated

parameter, because the parameter values used to smooth

the non-adjusted one are optimized by the local

observations.

Figure 2 shows the time series of ensemble members

(dotted lines) of SPE-estimated KT, the global mean of

‘‘truth’’ values (the black line) and the upper (KT at poles)

and lower (KT at equator) bounds (dot-dashed lines) of KT.

During the first half year of parameter estimation, the

ensemble of KT oscillates dramatically around the global

mean, representing the spin-up period of parameter esti-

mation. Afterwards, the ensembles reach a quasi-stationary

state where they oscillate between the upper and lower

bounds. Note that due to the lack of dynamic support for

parameter, an over small a0 in Eq. (6) can cause the

parameter ensemble to lose its spread, i.e. filter divergence.

Figure 3 shows the spatial distribution of root mean

square error (RMSE) of SST for CTL (panel a), SEO (panel

b), SPE (panel d) and GPO (panel c). For better compari-

son, results of SEO, SPE and GPO in the data void region

(bounded by the black line in panels b, c, d) are zoomed in

as Fig. 3e (SEO), Fig. 3f (SPE) and Fig. 3g (GPO). Com-

pared with CTL, SSTs are significantly improved by SEO

and SPE. For SEO, due to the biased KT which is far away

from the ‘‘truth’’ values, the error of SST decreases from

the equator towards both poles. Without observation con-

straint, the error of SST for SEO (Fig. 3e) is comparable to

CTL. For SPE, the minimum error of SST locates at the

Fig. 1 Meridional distributions of the damping coefficient (KT) of

SST, where the dashed line represents the time-zonal averaged

geographic dependent parameter optimization (GPO) optimized KT;

the dotted line indicates the time-averaged single-value parameter

estimation (SPE) estimated KT; the dotted-dashed line is the initial

biased KT; the thick solid line shows the global mean of the ‘‘truth’’

values; the thin solid line is the ‘‘truth’’ value

Fig. 2 Time series of the ensemble members of KT for SPE scheme.

The dotted lines represent the 20 ensemble members of KT, the black
line is the global mean of ‘‘truth’’KT and the dot-dashed lines indicate

the upper (KT at poles) and lower (KT at equator) bounds of KT. Note

that parameter estimation is activated after 1 year’s state estimation

only (SEO)

A study of impact of the geographic

123



mid latitudes in both Hemispheres where the parameter is

close to the truth. SPE applies the estimated KT to all places

including no-observation areas, which leads a systematic

improvement of SST of SEO. However, without state

estimation in the data void region, SPE can only partially

reduce the error of SST (check with Fig. 3e, f). For GPO, it

further reduces the error of SST for SPE in all places. Note,

due to the fact that KT is the sole error source of the

assimilation model, the latitude-dependence of KT in the

‘‘truth’’ model and the single value of KT in SEO and SPE

lead the zonal-distributed error of SST.

Figure 4 shows the time series of the RMSEs of the

atmospheric streamfunction (panel a), the oceanic stream-

function (panel b), SST (panel c) and LST (panel d) for

SEO (the blue line), SPE (the red line) and GPO (the green

line) respectively. The small panel in panel b is the zoomed

in version of the time series for the 5th year. Due to the

coupling effects, improvements of SST for SPE and GPO

also somewhat refine the atmospheric streamfunction and

the oceanic streamfunction. Compared with SEO, because

of the weak coupling between the land and other compo-

nents, the improvements of LST for SPE and GPO are not

as significant as those of the atmosphere and the ocean.

Figure 5 shows the spatial distributions of RMSEs of the

atmospheric streamfunction (panels b, d, f) and the oceanic

streamfunction (panels a, c, e) for SEO (panels a, b), SPE

(panels c, d) and GPO (panels e, f). For SPE, the improve-

ment of KT in the data-void region refines fluxes from the

ocean to the atmosphere, which further reduces the error of

the atmospheric streamfunction (Fig. 5d). As such, the

oceanic streamfunction is also improved (Fig. 5c). We found

that the oscillation of KT around the global mean can intro-

duce noises into the atmospheric streamfunction in the mid

and high latitudes (Fig. 5b), which further perturbs the

oceanic streamfunction there (Fig. 5f). For GPO, due to the

better SST caused by the optimized geographic dependent

KT, it further significantly ameliorates the atmospheric

streamfunction and the oceanic streamfunction for SPE.

Figure 6 shows the time series of the RMSEs of SPE-

estimated KT (the dotted line) and GPO-optimized KT (the

dashed line). After 1 year’s SEO spin-up period, there is

another half year spin-up period of SPE while no spin-up

period existing in GPO. Furthermore, the RMSE of GPO-

optimized KT is much smaller than that of SPE-estimated

KT. It’s easy to infer that the minimum RMSE indicates

that SPE estimates a global mean of ‘‘truth’’ for KT.

Table 3 gives the total RMSEs of the atmospheric

streamfunction (column 2), the oceanic streamfunction

(column 3), SST (column 4) and LST (column 5) for CTL

(row 2), SEO (row 3), SPE (row 4) and GPO (row 5)

respectively. With state estimation, SEO, SPE and GPO

dramatically reduce the error of all model states. Through

parameter estimation, SPE and GPO further greatly refine

the SST. Coupling effects lead the consistent improvement

of other three variables. Due to the weak coupling between

the land component and other ones, improvement of LST is

not so significant. Compared with SPE, GPO reduces the

RMSEs of the atmospheric streamfunction, the oceanic

streamfunction, SST and LST by 14, 27, 81 and 0.5 %. On

average, errors of model states are reduced by 31 %.
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Fig. 3 The spatial distributions

of the root mean square error

(RMSE) of SST for control run

(CTL, a), SEO (b, e), SPE (d,

f) and GPO (c, g). b, c, d show

the results in observed areas

while e, f, g give the error

distributions in no-observation

areas (the rectangle area

bounded by the black line in b,

c, d). Note that b and d use the

same shade scale
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Figure 7 shows the spatial distribution of the time-

averaged GPO-optimized KT. It is dominated by a zonal

distribution and increases linearly from the equator towards

both poles, both of which are consistent with the ‘‘truth’’

structure of KT.

4 Evaluation of ‘‘climate’’ prediction skill

In order to evaluate the impact of observation-estimated

parameter on model predictions, 20 forecast initial condi-

tions are selected every 5 years apart from the SEO, SPE

Fig. 4 Time series of the

RMSEs of the atmospheric

streamfunction (a), the oceanic

streamfunction (b), SST (c) and

LST (d) for SEO (blue line),

SPE (red line) and GPO (green
line). Note that first year’s

results are not shown here

because of the same RMSEs for

these three schemes
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and GPO analysis fields in the period of 5–100 years. Then

20 initial fields are forwarded up to 10 years for these three

assimilation schemes. Here, the global anomaly correlation

coefficient (ACC) of the forecasted ensemble mean is used

to evaluate the global pattern correlation with the ‘‘truth’’;

the global RMSE of the forecasted ensemble mean is used

to evaluate the global absolute error with respect to the

‘‘truth’’. However in the real world with instrumental data,

the error of the innovation of forecasts to observations may

be a more appropriate quantity to evaluate forecast skills of

different data assimilation schemes (see e.g. Fukumori

et al. 1999).

We first examine the ‘‘climate’’ prediction skill. The

discrepancy between SEO-used and SPE-estimated KT and

the ‘‘truth’’ KT causes the initial ACCs of SST very low

(about 0.2–0.3, the solid line and the dotted line in Fig. 8a).

After 2 month’s lead time, ACCs of both SEO and SPE

drop to around 0. By contrast, the GPO-optimized KT can

retrieve the major spatial structure of the ‘‘truth’’ KT, which

effectively enhances the initial ACC (about 0.8, the dashed

line in Fig. 8a) of SST. Because KT dominates the SST

equation, erroneous KT in SEO, which is far away from all

the ‘‘truth’’ values of KT, makes the RMSE of SST (see the

solid line in Fig. 8b) increase rapidly and dramatically.

SPE-estimated KT approaches the global mean of the

‘‘truth’’ values, which greatly reduces the RMSE of SST

(see the dotted line in Fig. 8b). With the GPO-optimized

KT, RMSE of SST is further reduced significantly. Com-

parison between SPE and GPO for the first 2 months’

‘‘climate’’ forecast lead time shows that the averaged ACC

of SST is increased by 379 % from 0.14 to 0.67 and the

averaged RMSE is reduced by 83 % from 1.34 to 0.23 K.

Then we evaluate the ‘‘weather’’ forecast skill. Fig-

ure 8c and d show the variations of ACC and RMSE with

14 days’ forecast lead time of the forecasted ensemble

means of the atmospheric streamfunction for SEO (the

solid line), SPE (the dotted line) and GPO (the dashed

line). With coupling effect between the ocean and the

atmosphere components, GPO-optimized KT greatly

improves SST and thus refines the atmospheric stream-

function, which leads to the highest ACC and the smallest

RMSE. For SEO and SPE, the incorrect structure of KT

disturbs the atmosphere and reduces the ‘‘weather’’ forecast

skill. It’s also very interesting that SPE loses its superiority

relative to SEO after about 5 days’ forecast lead time,

which may be caused by many uncertain reasons. Com-

parison between SPE and GPO for the first 14 days’

‘‘weather’’ forecast lead time shows that the averaged ACC

of the atmospheric streamfunction is increased by 4 %

from 0.79 to 0.82 and the averaged RMSE is decreased by

5 % from 4,005,831 to 3,808,744 m2 s-1. If we roughly

combine the RMSE and ACC results of the ‘‘climate’’

prediction and the ‘‘weather’’ forecast for SPE and GPO,

the forecast skill of SPE is nearly doubled by GPO.

5 Summary and Discussions

A twin experiment framework with an intermediate cou-

pled model is designed to investigate the impact of the

geographic dependence of observing system on parameter

estimation. In this framework, some model parameter

(physics) in the ‘‘truth’’ model that is used to produce

‘‘observations’’ is allowed to vary geographically so as to

simulate the geographic dependence of representation of

Fig. 6 Time series of the RMSEs of KT for SPE (the dotted line) and

GPO (the dashed line). Note that because parameter estimation is

activated after 1 year’s SEO, the RMSEs of KT during the first year

are the same for two schemes

Table 3 Total RMSEs of atmospheric streamfunction-w, oceanic

streamfunction-u, sea surface temperature (To) and land surface

temperature (Tl) for all experiments

w (m2 s-1) u (m2 s-1) To (K) Tl(K)

CTL 42858182.3 17685.89 37.93 2.89

SEO 561773.0 40.27 1.93 2.05

SPE 527109.9 37.77 0.79 2.05

GPO 453397.5 27.62 0.15 2.04
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Fig. 7 The spatial distribution of GPO-optimized KT
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observational information, while the corresponding

parameter in the assimilation model takes the first guess

with a biased single value. Furthermore, observations in

some area are removed to study the impact of geographic

dependent observational coverage.

‘‘Observations’’ are assimilated into the assimilation

model to implement SEO, single-valued parameter esti-

mation (SPE) and GPO. Results show that the SPE-esti-

mated parameter approaches the global mean of the ‘‘truth’’

values. Localization of the parameter makes GPO exactly

retrieve the ‘‘truth’’ structure of the parameter, which

systematically reduces the errors of model state in observed

places. Through coupling effects, other model variables

can be consistently improved by the parameter estimation.

It’s worth mentioning that an appropriate smoothing can

effectively enhance the signal of the parameter in the no-

observation area and further improves the quality of state

estimates. Forecast experiments show that GPO-optimized

parameter can greatly improve the model predictability.

Although promises are shown with the simple model,

there are considerable challenges remained when the GPO

scheme is applied to the real climate observing system with

a CGCM. First, besides the uncertainty induced by model

parameters, many other model bias sources exist. How

multiple model biases influence the quality of parameter

estimation shall be examined. Second, the observing sys-

tem in the real world is much more complicate than the

simple case in this study. The impact of a more realistic

observing system shall be further investigated. Third, a

simple linear interpolation is employed here in parameter

estimation for the observation-void places; an advanced

interpolation scheme (Yang et al. 2009) may have impact

on the results and needs be examined. Last, the inflation in

GPO is determined by trial-and-error tuning, and an

adaptive scheme (Anderson 2008; Miyoshi 2011) may be

helpful for CGCM applications.
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