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ABSTRACT

Three multivariate statistical methods to estimate the influence of SST or boundary forcing on the atmo-

sphere are discussed. Lagged maximum covariance analysis (MCA) maximizes the covariance between the

atmosphere and prior SST, thus favoring large responses and dominant SST patterns. However, it does not

take into account the possible SST evolution during the time lag. To correctly represent the relation between

forcing and response, a new SST correction is introduced. The singular value decomposition (SVD) of gen-

eralized equilibrium feedback assessment (GEFA–SVD) identifies in a truncated SST space the optimal SST

patterns for forcing the atmosphere, independently of the SST amplitude; hence it may not detect a large

response. A new method based on GEFA, named maximum response estimation (MRE), is devised to es-

timate the largest boundary-forced atmospheric signal. The methods are compared using synthetic data with

known properties and observed North Atlantic monthly anomaly data. The synthetic data shows that the

MCA is generally robust and essentially unbiased. GEFA–SVD is less robust and sensitive to the truncation.

MRE is less sensitive to truncation and nearly as robust as MCA, providing the closest approximation to the

largest true response to the sample SST. To analyze the observations, a 2-month delay in the atmospheric

response is assumed based on recent studies. The delay strongly affects GEFA–SVD and MRE, and it is key

to obtaining consistent results between MCA and MRE. The MCA and MRE confirm that the dominant

atmospheric signal is the NAO-like response to North Atlantic horseshoe SST anomalies. When the atmo-

sphere is considered in early winter, the response is strongest and MCA most powerful. With all months of the

year, MRE provides the most significant results. GEFA–SVD yields SST patterns and NAO-like atmospheric

responses that depend on lag and truncation, thus lacking robustness. When SST leads by 1 month, a signif-

icant mode is found by the three methods, but it primarily reflects, or is strongly affected by, atmosphere

persistence.

1. Introduction

The climatic impact of anomalous extratropical sea

surface temperature (SST) and other boundary forcing

is difficult to detect as the natural variability of the at-

mosphere (which would occur in the absence of boundary

forcing) is large outside the tropics, resulting in a small

signal-to-noise ratio. At midlatitudes, the dominant large-

scale air–sea interaction at interannual time scale reflects

the stochastic atmospheric forcing of SST anomalies

(Frankignoul and Hasselmann 1977). It largely deter-

mines the correlation between SST and the atmosphere

when SST follows or is in phase, although the unlagged

correlation between SST and surface heat flux is influ-

enced by the atmospheric response (Frankignoul et al.

1998). The influence of the ocean (or other boundary

forcing, hereafter referred to as SST forcing) must thus

be estimated from the relation between SST anomalies

and atmospheric fields lagging SST by more than the

atmospheric persistence. Frankignoul et al. (1998) esti-

mated the response of the surface heat flux to SST

anomalies (termed heat flux feedback) from the ratio of

the lagged covariance between SST and heat flux and
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the lagged SST autocovariance. The method has been

used to estimate the local response to SST anomalies,

land surface variability, and single SST patterns such as

empirical orthogonal functions (EOF) (Frankignoul and

Kestenare 2002; Liu and Wu 2004; Park et al. 2005; Z. Liu

et al. 2006, 2007). However, it is not well adapted to

the multivariate case when the forcing patterns are not

specified a priori.

Hence, the large-scale atmospheric response to SST

anomalies has been mostly derived with methods that

determine the key SST patterns, such as lagged maxi-

mum covariance analysis (MCA) based on singlular

value decomposition (SVD) (Czaja and Frankignoul

1999, 2002, hereafter referred to as CF99 and CF02,

respectively; Rodwell and Folland 2002; Q. Liu et al.

2006; Frankignoul and Sennéchael 2007) or canonical

correlation analysis (Friederichs and Hense 2003).

The MCA determines the atmospheric and oceanic

patterns that maximize the covariance between the two

fields. It is a powerful method to investigate dominant

ocean–atmosphere interactions since it favors large SST

forcing and/or atmospheric response. In many previous

applications, the most significant response was found

when SST leads by several months, resulting in un-

certainties in the SST amplitude since the SST may have

evolved during the time lag (CF02), but consistent with

modeling studies indicating that the atmospheric re-

sponse only reaches its maximum amplitude after a few

months owing to the time taken by transient eddies to

fully alter the initial baroclinic response (Ferreira and

Frankignoul 2005, 2008; Deser et al. 2007).

Another way to estimate the atmospheric response to

SST forcing was introduced by Liu et al. (2008), who

generalized the method of Frankignoul et al. (1998) to

the multivariate case with the generalized equilibrium

feedback assessment (GEFA). As GEFA involves in-

verting the lagged covariance matrix of the SST anoma-

lies, it is sensitive to sampling errors and spatial resolution

of the SST anomalies and is thus used in truncated SST

EOF space. GEFA can be combined with SVD to extract

optimal coupled modes, which describe the atmospheric

patterns that are most sensitive to SST anomaly forcing

(Liu and Wen 2008, hereafter referred to as LW08).

However, GEFA–SVD will not give large signals if the

optimal SST anomalies are small. As large signals are of

most interest in climate studies, we devise a new method

based on GEFA, named maximum response estimation

(MRE), which directly estimates the largest SST-forced

atmospheric modes.

The aim of this study is to compare the three methods

and assess their biases and robustness. With a climate

application in mind, we also discuss which method is

better to estimate the strongest atmospheric response.

The methods are described in section 2, where we show

how to take into account the SST anomaly evolution

in the lagged MCA to correctly represent the relation

between forcing and response. In section 3, the three

methods are applied to synthetic data with known prop-

erties. In section 4, the methods are used to detect North

Atlantic SST anomaly influence in the observations.

2. The three multivariate methods

Let X denote the atmospheric data matrix, with J

points and L time bins, and T the SST matrix, with I

points and L time bins. Assuming instantaneous linear

atmospheric response, one has

X(t) 5 FT(t) 1 N(t), (1)

where F is the feedback matrix, and N(t) represents

stochastic forcing by the atmospheric intrinsic variabil-

ity, which is independent of T(t). Other persistent at-

mospheric components such as being due to ENSO

teleconnections are assumed to be negligible or to have

been removed.

The covariance matrix between X and T at lag t is

estimated by

C
XT

(t) 5
1

L
�

t
X(t)TT(t � t), (2)

where the superscript T denotes transpose. For negative

t (atmosphere leads) and, in most cases, t 5 0, CXT(t)

primarily reflects the oceanic response to the atmo-

spheric forcing. For positive t larger than the intrinsic

atmospheric persistence, CXT(t) reflects the atmo-

spheric response to the boundary forcing. Indeed, in-

troducing (1) in (2) with CXT(t) 5 0 yields

C
XT

(t) 5
1

L
�

t
FT(t)TT(t � t) 5 FC

TT
(t), (3)

which only depends on F and T. The e-folding time scale

of large-scale atmospheric patterns such as the North

Atlantic Oscillation (NAO) does not exceed 10 days

(Feldstein 2000), hence a lag $ 1 month has often been

used to single out the atmospheric response with monthly

averaged data. However, we argue below that CXT(t) is

still affected by atmospheric persistence at a lag of

1 month, so that a larger lag should be used.

a. Lagged MCA

To estimate the atmospheric response to SST, the

MCA (e.g., Bretherton et al. 1992; von Storch and Zwiers

1999) determines the atmospheric and oceanic patterns
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that maximize the covariance at (positive) lag t between

X and T by decomposing them into

X(t) 5 �
K

1
u

k
a

k
(t) 5 UAT(t) and (4)

T(t � t) 5 �
K

1
v

k
b

k
(t � t) 5 VBT(t � t), (5)

where the u and v are the K orthonormal left and right

singular vectors of CXT(t). The SVD of the covariance

matrix is

C
XT

(t) 5
1

L
UAT(t)B(t � t)VT 5 UDVT, (6)

where D is the diagonal matrix of the singular values sk,

decreasing for increasing k. The first singular value de-

fines the atmospheric and oceanic patterns that have the

largest lagged covariance. The (dimensional) time series

are given by

a
j
(t) 5 uT

j X(t), b
j
(t � t) 5 vT

j T(t � t). (7)

To describe the patterns, it is convenient to show the so-

called homogeneous covariance map of T and the het-

erogeneous covariance map of X, given by the regression

of T(t 2 t) and X(t) onto the SST time series bj(t 2 t),

respectively, which preserve linear relations between

the variables (CF02). We show scaled homogeneous and

heterogeneous covariance maps that represent the at-

mospheric response (say in m) to the SST anomaly (in

K) t month earlier whose time series is the normalized

value of bj(t 2 t) (see appendix).

These relations are appropriate for predictive pur-

poses as they maximize the covariance between SST and

the atmosphere at a later time, but they do not represent

an equilibrium response solution as they do not take into

account the SST change during time t. To derive the

equilibrium atmospheric response, we multiply (3) by yk

and use (6), yielding

s
k
u

k
5 FC

TT
(t)v

k
5 Fq

k
. (8)

Based on (1), the equilibrium atmospheric response to

the SST forcing qk 5 CTT(t)vk is skuk. The comparison

with the homogeneous covariance map (A1) shows that

yk is multiplied by CTT(t) instead of CTT(0). This gives

a larger atmospheric sensibility since the SST is reduced

but the atmospheric signal unchanged. However, auto-

covariance estimates are negatively biased, especially at

large lag and when the true autocorrelation is large (von

Storch and Zwiers 1999), so that the SST correction

may overestimate the atmospheric sensitivity. Scaled

corrected homogeneous and heterogeneous covariance

maps are obtained by normalizing the time series de-

scribing the evolution of qk (see appendix). To inter-

pret (8), we may consider an autoregressive model for

the SST, given at a time lead t from an initial SST pattern

T(t) by

T(t 1 t) 5 AT(t) 1 e, (9)

where e is random noise. The optimal prediction is made

with the propagator A

A 5 C
TT

(t)C
TT

(0)�1. (10)

If T(t) is the uncorrected SST homogeneous covariance

map (A1), the predicted SST is

AT(t) 5 C
TT

(t)C
TT

(0)�1C
TT

(0)v
k

5 C
TT

(t)v
k

5 q
k
.

(11)

The corrected SST pattern qk can thus be thought of as

the time evolution of the original pattern of uncorrected

SST after a time t.

Statistical significance of the MCA modes can be

tested using a moving block bootstrap approach, linking

the original SST anomalies with randomly scrambled

atmospheric ones, and comparing the square covariance,

correlation, and square covariance fraction with the

randomized ones (CF02; Rodwell and Folland 2002).

b. GEFA

The GEFA method of Liu et al. (2008) estimates the

feedback matrix F from (3)

F 5 C
XT

(t)C
TT

(t)�1. (12)

This requires inverting the SST covariance matrix. As

the historical record is limited, sampling error can be

large, in particular at large lag, and a regularization

method is needed. The inversion is done in a truncated

EOF space. However, it requires choosing the optimal

EOF truncation, a difficult issue (Liu et al. 2008; LW08).

GEFA can be used to estimate the atmospheric response

to prescribed SST patterns, such as SST EOFs (Wen et al.

2010).

GEFA can also be used to estimate optimal feedback

modes by performing a SVD of the feedback matrix

(LW08). If the SVD decomposition of F is the L (left)

and R (right) orthogonal fields, with SVD values gj, we

have
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C
TX

(t)C
TT

(t)�1
5 F 5 LSRT

5�g
j
l

j
rT

j . (13)

Right multiplication by rk yields

g
k
l
k

5 Fr
k
, (14)

so that r1 is the optimal SST forcing pattern that forces

an atmospheric response pattern l1 with a magnitude g1.

It is, however, sensitive to EOF truncation (LW08, see

also below). The dimensional form is obtained as in (A4).

The optimal mode describes the pair of patterns that

reflects the largest atmospheric sensitivity to SST anom-

alies. The optimization in GEFA pertains to the feedback

matrix. Hence, it identifies the SST pattern that produces

the strongest possible atmospheric response among all

possible SST patterns of the same magnitude. If the

sample SST variability is not dominated by this optimal

SST pattern, the atmospheric signal may be small. Sta-

tistical significance is tested as for the MCA by com-

paring the singular values of F to randomized ones.

c. MRE

Since GEFA–SVD may not detect a large atmo-

spheric signal, we introduce the MRE method that aims

at detecting the largest boundary forced atmospheric

signals. It seeks to maximize the magnitude of the at-

mospheric response in a given dataset. Since the signal is

given from (1) by FT(t), the largest response is obtained

by calculating the main EOFs of FT(t), which maximize

the represented variance. If F is known, the calculation

is straightforward. Otherwise, F can be estimated as in

GEFA in a truncated SST space. The EOFs of FT are the

eigenvectors of the covariance matrix

C
FT FT

(0) 5 FC
TT

(0)FT

5 C
TX

(t)C
TT

(t)�1C
TT

(0)C
TT

(t)�1C
TX

(t)T,

(15)

providing orthogonal estimates of the largest atmo-

spheric response patterns pi

FT(t) 5 �
i

c
i
(t)p

i
. (16)

The SST anomalies that generated the response are

found by regressing the original SST anomaly field T(t)

onto the principal components ci(t) and dimensional

patterns obtained by normalizing the latter. Although the

MRE also involves estimating F and thus inverting the

SST covariance matrix, it is shown below to be more ro-

bust and less sensitive to the EOF truncation than GEFA–

SVD. This presumably occurs because the dominant SST

anomalies tend to have a large scale, which filters out the

sampling errors of F in (16). Statistical significance is

tested by scrambling the atmospheric time sequence to

build the distribution of the randomized eigenvalues of

FT under the null hypothesis of no true signal.

d. Delayed atmospheric response

Model response to fixed or interactive SST anomalies

(Ferreira and Frankignoul 2005, 2008; Deser et al. 2007)

and statistical analysis (Strong et al. 2009) suggests that

the large-scale atmospheric response to persistent bound-

ary forcing only reaches its maximum amplitude after a

few months.1 This might explain why the covariance and

the statistical significance were stronger in the MCA when

the atmosphere lagged SST by 3 or 4 months than by 1 or

2 months in CF02 and Frankignoul and Sennéchael

(2007). If the atmospheric response takes weeks or months

to reach its maximum amplitude, FT(t) in (1) should be

replaced by
Ð t

0 F(u)T(u) du. A response that depends on

a weighted integral of the SST evolution could be

modeled by a time-delay vector, but estimating it would

increase the dimensionality and the complexity of the

analysis. However, the transient atmospheric response

in the model studies above approximately obeys

dX

dt
5 �X

a
1 bT(t), (17)

where a defines the response time and b the amplitude.

For t� a, the solution is

X(t) 5 b

ðt

0

T(u) exp �t � u

a

� �
du

5 abT(t*) 1� exp � t

a

� �h i
’ abT(t*) (18)

if we use the mean value theorem. Hence, relation (1)

can be replaced by

X(t) 5 FT(t � a) 1 N(t), (19)

where the delay a 5 t 2 t* is likely to be rather close to a.

The MCA correction in (8) should then be based on

CTT(t 2 a) rather than CTT(t) for t $ a. For 0 # t , a,

we use CTT(0), lacking a better model. In GEFA and

MRE, (12) should be similarly replaced by

F 5 C
XT

(t)C
TT

(t � a)�1, (20)

1 This does not hold for the atmospheric boundary layer, which

responds rapidly.
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which decreases the sensitivity of F to sampling errors

since the SST covariance matrix is estimated at shorter

lag. In MRE, the SST patterns that generated the largest

responses are obtained by regressing T(t 2 a) onto the

EOF time series.

Note that the atmospheric response time to SST

forcing is larger than the e-folding time scale of large-

scale atmospheric patterns as it results from different

physics. The former reflects the time it takes for the

transient eddies to alter the initial baroclinic atmo-

spheric response into a full-grown equivalent baro-

tropic one (Ferreira and Frankignoul 2005; Deser et al.

2007). The latter is determined by internal atmospheric

dynamics.

3. Application to a simple advective stochastic
climate model

a. The model

To compare the methods, we use the conceptual sto-

chastic climate model of Liu et al. (2008) that includes

nonlocal atmospheric advection. The coupled model, in

nondimensional form in the domain 0 # x # 1, consists

of the atmospheric equation

›T
a
/›x 5 l(T � T

a
) 1 n(x, t) (21)

and the oceanic equation

›T/›t 5 H � dT, (22)

where Ta is air temperature, T is SST, H 5 Ta 2 T is the

downward heat flux, and d is the oceanic damping. The

relative importance of local coupling versus nonlocal

advection is measured by l, a smaller l representing

a stronger advection or, equivalently, a weaker local

coupling. The atmospheric response to a SST anomaly

T(x, t) is instantaneous and can be obtained by in-

tegrating the equilibrium atmospheric Eq. (21) down-

wind along x. After digitizing into I spatial intervals, the

atmospheric response can be put in the form (1) (see Liu

et al. 2008 for more details), where X represents the

air temperature and N a transformed stochastic forc-

ing given by N(t) 5 (B/l)n(t) 1 qb. Here, the air

temperature at the upstream boundary x 5 0 is Ta0(t),

which decays downwind following qb
T 5 (q, q2 . . . qI)

with q 5 e2lDx , 1. The feedback matrix, given by

F 5 lDx

1 0 .. 0

q 1 .. 0

.. .. .. ..

qI�1 qI�2 .. 1

2
6664

3
7775 (23)

can be interpreted as follows. The positive diagonal el-

ements represent the local air temperature response to

SST. The positive off-diagonal elements represent the

nonlocal response, with the ith row representing the

response Tai to all the upstream SSTs Tj( j # i), whose

influence decays downwind with the distance following

an increasing power of q. Alternatively, the jth column

represents the remote impacts of Tj on all downstream

air temperature Tai (i $ j), which also decay downwind

with the distance. The coupled system in terms of SST is

obtained by inserting (1) into (22) as

dT/dt 5 (F� I)T(t) 1 N(t)� dT, (24)

where lDx , 1 is required for the Courant–Friedrichs–

Lewy (CFL) numerical stability criterion.

As in LW08, we consider a 12-point model that is

forced by independent stochastic forcing in the interior

and at the upstream boundary. The forcing is either

spatially uncorrelated (12 spatial degrees of freedom,

hereafter df) or a dipole with identical stochastic forcing

in the first and the last 6 points (2 df). A sample size of

L 5 800 is used for each realization, with the data binned

in a time interval of 0.5. A 500-member ensemble is

performed in each case. We will discuss a weak advec-

tion case (l 5 4.8, d 5 0) and a strong advection case

(l 5 1.2, d 5 0), focusing on the first two modes and lag # 5.

The figures below show for each mode the mean SST

(the average SST pattern of the mode over the 500 re-

alizations), the true mean atmospheric response ob-

tained by applying the true F to the mean SST, and the

mean atmospheric response based on the estimated F in

each of the 500 realizations. What quantifies the ro-

bustness of the method is the uncertainty of the esti-

mated atmospheric response, given for each mode by

the 95% confidence interval derived at each grid point

from the distribution of the difference between esti-

mated and true response to the SST in each of the 500

realizations. The results are robust when the estimated

response has a small uncertainty, hence is systematically

close to the true one, but not when the scatter is large

(large uncertainty). The response will be considered as

‘‘well determined’’ if it is significantly different from

zero at more than half of the 12 grid points, a subjective

but conservative choice (see section 3e).

b. Lagged MCA

In the most idealized case (weak advection, 12 df), the

estimated atmospheric response is unbiased and its un-

certainty very small, so we show the modes at lag 5 (Fig. 1,

left). The MCA takes into account the SST amplitude,

thus favoring dominant SST patterns. In the present

case, the SST variability increases downstream, hence
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the SST in the first MCA mode also increases down-

stream. The uncertainty is even smaller at shorter lag,

and the patterns are similar, but for a slight upstream

shift, as expected from the atmospheric advection. Using

correlated atmospheric forcing (2 df) only slightly in-

creases the uncertainty (Fig. 1, right). In both cases, the

SST correction (8) is crucial to representing the forcing

pattern as the SST before correction (lower continuous

lines) is somewhat different, especially at large lag.

Omitting the SST correction, as in previous applications

of the MCA, leads to a biased relation between forcing

and response.

As in LW08, the strong advection case proves more

difficult and only mode 1 is well determined. The un-

certainty becomes large by lag 4, hence we show the

results for lag 2, the largest lag yielding a reasonably

well-determined response for both uncorrelated (Fig. 2,

top) and correlated (bottom) forcing. Again, the lagged

MCA is basically unbiased.

c. GEFA–SVD

The calculation was made in truncated EOF space

using the first 3, 5, and 7 EOFs (hereafter TR3, TR5, and

TR7). In the weak advection case with uncorrelated

forcing, the first two GEFA–SVD modes are nearly

unbiased at lag 1 and 2, but the uncertainty is larger than

in the MCA, and it increases with the number of EOFs.

As discussed by Liu et al. (2008), GEFA deteriorates

at large lag and depends sensitively on the EOF trunca-

tion because of decreasing SST autocovariance, sampling

errors, and increasing covariance among different SST

PCs. We show in Fig. 3 (left) the two modes in TR5 at lag

2, the largest lag for which they are both well determined

(mode 1 remains well determined until lag 5 in TR3, lag 3

in TR5, and lag 2 in TR7). The patterns strongly differ

from those of the MCA and the amplitude is smaller,

FIG. 1. MCA mode (top) 1 and (bottom) 2 at lag 5 in the weak advection case with (left) spatially uncorrelated (12 df)

and (right) correlated (2 df) forcing. The mean SST is given by triangles, the mean estimated atmospheric response by

the upper continuous line, the true response to the mean SST by circles, and the mean SST before correction by the

lower continuous line. Gray shading corresponds to 61 standard deviation and the dashed line indicates the un-

certainty (see text). Units are in K.

FIG. 2. As in Fig. 1, but for mode 1 at lag 2 in the strong advection

case with (top) uncorrelated and (bottom) correlated forcing.
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reflecting that GEFA–SVD maximizes the atmospheric

sensitivity independently from the SST amplitude.

In more difficult cases, GEFA–SVD may only provide

well determined, albeit slightly biased, modes at lag 1

and in TR3, a strongly truncated EOF space. The two

modes are (moderately) well determined in the weak

advection case with correlated forcing but with a large

dispersion of the 500-member ensemble (Fig. 3, right).

For strong advection, only mode 1 can be reliably esti-

mated and solely for uncorrelated forcing (Fig. 4). Hence,

GEFA–SVD only provides reliable estimates in favor-

able cases. It depends sensitively on the EOF truncation,

as discussed by LW08, who suggested empirical rules to

determine the optimal truncation.

d. MRE

The MRE proves to be more robust than GEFA–SVD

and less sensitive to lag and EOF truncation. In the weak

advection case with uncorrelated forcing, the first two

modes are well-determined, unbiased estimates of the

maximum atmospheric responses as derived from the

true F until lag 4 or 5, depending on truncation (lag 5 in

TR3, lag 4 in TR5 and TR7). As illustrated in Fig. 5

(left), the modes broadly resemble those obtained with

MCA, reflecting that MCA favors large signals. For

correlated forcing, the results remain very good at small

lag; however, at large lag, a strong truncation is needed,

as both modes only remain well determined and nearly

unbiased until lag 4 in TR3, lag 3 in TR5 (Fig. 5, right),

and lag 2 in TR7.

As with the other methods, only the first mode can be

confidently estimated in the large advection case. MRE

is nearly as robust as MCA since, for uncorrelated (cor-

related) forcing, it remains well determined until lag 2

(lag 2) in TR3, lag 2 (lag 1) in TR5 (Fig. 6), and lag 1 (lag

1) in TR7. However, the atmospheric response is biased

high in Fig. 6, although the bias is very small at smaller

truncation or shorter lag, as in Fig. 7 below.

e. Summary

The mean atmospheric response patterns are com-

pared for the first two modes in Fig. 7 for weak (top) and

strong (bottom) advection with uncorrelated forcing. The

SST patterns were shown above, and all estimates are

based on lag 1. For GEFA–SVD and MRE, we use TR5,

except in the strong advection case where GEFA–SVD

FIG. 3. GEFA–SVD mode (top) 1 and (bottom) 2 in the weak advection case at (left) lag 2 in TR5 with spatially

uncorrelated forcing and (right) lag 1 in TR3 with correlated forcing, showing the mean SST (triangle), the mean

estimated atmospheric response (continuous line), and the true response to the mean SST (circle). The gray shading

corresponds to 61 standard deviation, and the dashed line indicates the uncertainty. Units are in K.

FIG. 4. As in Fig. 3, but for the first GEFA–SVD mode in the strong

advection case at lag 1 in TR3 with uncorrelated forcing.
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is in TR3. For completeness, we also show the atmo-

spheric response obtained by applying GEFA to the first

two SST EOFs (hereafter GEFA–EOF), as in Wen et al.

(2010).

For weak advection (top), MRE provides for both

modes unbiased estimates of the largest atmospheric

responses, and this holds for correlated forcing. The

lagged MCA gives atmospheric modes that are pretty

similar to the true largest ones but slightly smaller for

mode 1 and shifted downstream. The atmospheric re-

sponse obtained with GEFA–EOF1 resembles the first

MCA mode. However, the response to GEFA–EOF2

differs. As expected from the different maximization

criterion, the atmospheric signals estimated by GEFA–

SVD are different and smaller for mode 1. At larger lag

(not shown), the comparison is similar and MRE keeps

providing unbiased estimators of the largest true re-

sponses. Mode 1 in the lagged MCA underestimates a

little more the maximum true responses with increasing

lag, while GEFA–EOF1 remains a good estimator of the

largest true response. On the other hand, the GEFA–

SVD modes only remain stable until lag 2 and, to a lesser

extent, lag 3.

In the strong advection case (Fig. 7, bottom left), the

first MRE mode at lag 1 is most similar to the largest true

response, albeit slightly overestimated (but not in TR3).

The response given by MCA is broadly similar but slightly

smaller and shifted downstream, while GEFA–EOF1 is

closer to the largest true response. The atmospheric sig-

nal in GEFA–SVD is different and weaker. As the lag

increases, it is found that in TR5 (but not in TR3), MRE

substantially overestimates the response (Fig. 6) and be-

comes useless by lag 3 or 4. GEFA–EOF also degrades at

large lag, but the MCA mode remains very stable. Similar

behaviors are found for correlated forcing, where the

only method whose bias does not increase with increasing

FIG. 5. MRE mode (top) 1 and (bottom) 2 in TR5 in the weak advection case with (left) spatially uncorrelated and

(right) correlated forcing at lags 4 and 3, respectively. The mean SST is given by triangles, the mean estimated

atmospheric response by the continuous line, and the true response to the mean SST by circles. Gray shading cor-

responds to 61 standard deviation and the dashed line the uncertainty. Units are in K.

FIG. 6. As in Fig. 5, but in the strong advection case at (top) lag 2

with uncorrelated forcing and (bottom) lag 1 with correlated

forcing.
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lag is MCA. Since one does not know in a practical ap-

plication if the atmospheric response is well determined,

we also show the poorly determined mode 2 (Fig. 7,

bottom right). MRE and MCA are close to the second

true largest response. This holds until lag 3, suggesting

that our definition of ‘‘well determined’’ in section 3a may

be too strict. On the other hand, GEFA–SVD and

GEFA–EOF show little stability as the signal changes

with the lag.

In summary, the stochastic model suggests that MRE

is the most accurate method if one seeks the oceanic

influence that explains most atmospheric variance,

although it fails at large lag in unfavorable cases. The

MCA provides slightly smaller but more robust esti-

mates of the largest atmospheric response. GEFA–SVD

is less robust and detects a different, smaller signal.

GEFA–EOF also provides a good estimate of the larg-

est atmospheric response for SST EOF1 but not SST

EOF2, so that GEFA–EOF may not always identify

large responses.

4. Application to observed air–sea interactions in
the North Atlantic

To compare MCA, GEFA–SVD, and MRE in a re-

alistic setting, we consider monthly anomaly data in the

FIG. 7. Comparison between the (left) first and (right) second atmospheric response mode in

the (top) weak and (bottom) strong advection case estimated at lag 1 with the lagged MCA

(dashed), GEFA–SVD (crosses), MRE (stars), and GEFA–EOF (circles). The last three

methods are based on TR5, except for GEFA–SVD in the strong advection case, based on TR3.

The maximum true response is shown in continuous line. All amplitudes are given for nor-

malized SST time series.
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North Atlantic sector where previous studies based on

lagged MCA (CF99, CF02; Frankignoul and Kestenare

2005) found that a NAO-like signal during early winter

was significantly linked to a prior horseshoe SST anomaly

pattern (hereafter NAH). However, different modes

were found in year-round data using GEFA–SVD

(LW08) and GEFA–EOF (Wen et al. 2010). We focus

on the relation between prior SST anomalies and geo-

potential height anomalies at 500 hPa (hereafter Z500)

in the North Atlantic sector (108–708N, 1008W–208E),

using the National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research

(NCAR) reanalysis for 1958–2008 (Kistler et al. 2001),

area weighting, and either monthly anomalies for the

whole year, which provides the largest sample but may

mix different atmospheric dynamics, or atmospheric

anomalies in November–January (hereafter NDJ), when

the signal was most significant in CF02. We consider SST

in a large (108–708N, 1008W–108E) and a small (208–608N,

808W–08) domain to investigate the robustness of the

methods. A cubic trend was removed from all data to

reduce the influence of trends and ultralow frequencies.

The ENSO signal was removed by regression onto the

first two principal components of tropical Pacific SST

anomalies, taking into account the phase asymmetry of

ENSO teleconnections, as in Frankignoul and Kestenare

(2005). Statistical significance was estimated using a

bootstrap approach with 500 randomized atmospheric

sequences. We only discuss the first mode since higher

modes were generally not significant or robust. Only sig-

nificant modes at the 10% level are shown.

As discussed in section 2d, the large-scale atmospheric

response to extratropical SST anomalies cannot be

considered as instantaneous on the monthly time scale.

This was represented by introducing the delay a in (18).

We used a 5 2 months. The lagged MCA is not very

sensitive to the choice of a since it affects the SST

anomaly pattern and the amplitude of the atmospheric

response but not the atmospheric pattern nor its statis-

tical significance. On the other hand, GEFA–SVD and

MRE strongly depend on a via (19), which strongly af-

fects the oceanic and atmospheric patterns and their

statistical significance. Interestingly, using a 5 2 months

leads to coherent results between MCA and MRE.

a. Lagged MCA

As in earlier studies, the maximum covariance occurs

when Z500 leads SST by 1 month or at lag 0, reflecting

the North Atlantic SST anomaly tripole response to

NAO forcing (Fig. 8). The covariance and statistical

significance decrease at lag 1 (SST leads for positive lag),

but the covariance maps remain broadly similar, while

a different SST anomaly pattern appears at lag $ 2. The

resemblance of the mode at lag 1 with that representing

the SST response to the atmospheric forcing (also found

for the second MCA mode) suggests that it primarily re-

sults from atmospheric persistence and the use of monthly

data (in the presence of submonthly variability), rather

than reflecting a positive feedback between the tripole

and the NAO. This would be consistent with Barsugli

and Battisti (1998), who showed that the persistence

of the lagged covariance between the atmosphere and

prior SST is increased by low-frequency SST adjustment

to stochastic atmospheric forcing.

In the early winter case, the covariance and statistical

significance are small at lag 2 but large at lag 3 and 4 (Fig.

8). As in earlier studies, the mode corresponds to the

forcing of a NAO-like signal by the NAH SST anomaly

(hereafter the NAH–NAO mode). A comparison with

the mode obtained without SST correction, which is

based on (A1) rather than (8), shows that the amplitude

of the atmospheric response is increased by the SST

correction (the corrected SST is smaller but its time

series normalized), while the NAH has a stronger center

of action off Africa (Fig. 9). This is at odds with Wang

et al. (2004), who suggested, based on Granger causality,

that the SST anomaly southeast of Newfoundland solely

has a significant causal effect on the atmosphere. At

larger lag, significance decreases and the (corrected)

SST anomaly becomes increasingly deformed, while

Z500 increases. Very similar results are obtained in the

small SST domain, showing the robustness of the method.

Based on lag 3, the Z500 response reaches 45 m east of

southern Greenland and half this value over the Azores

for a SST anomaly reaching 0.45 K. Introducing the SST

correction thus suggests a higher atmospheric sensitivity

than estimated by CF02, although it strongly depends on

the atmospheric delay (higher sensitivity for a smaller

delay, weaker for a larger one). A stronger response is

suggested by lag 4, perhaps because of growing bias in

the covariance matrices, or because the delay was un-

derestimated. When all the months are considered, the

MCA yields nearly the same patterns but with a weaker

atmospheric high and reduced significance, as the mode

is only 10% significant at lag 4 (Fig. 10). This is con-

sistent with a response primarily taking place in fall and

winter.

b. MRE

The most significant results are found when all the

months are considered, presumably because the SST

covariance matrix in (19) is better conditioned with a

larger sample. As the MRE proved rather robust, trun-

cations between TR5 and TR10 were considered. As in

the MCA, in most cases a significant mode is found at lag

1, which broadly resembles that at lag 0 showing the SST
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anomaly tripole response to the NAO forcing (not

shown). This confirms that lag 1 is indicative of, or

strongly biased by, the SST response to the atmosphere.

As summarized in Table 1, a significant NAH–NAO

mode is found at lag 4 and, occasionally lag 3 or 5, for all

truncation between TR6 and TR10. The patterns are

stable to truncation and similar in the two SST domains,

strikingly resembling the MCA patterns in Fig. 10, ex-

cept that the maximum SST signal occurs southeast of

Newfoundland, in better agreement with Wang et al.

(2004), and the negative anomaly of Azores high is

stronger (Fig. 11). When Z500 is limited to NDJ, the

NAH–NAO mode is also found at lag 3 or 4, albeit

only in TR5 to TR7, mostly in the small domain and

with slightly less robust patterns (Fig. 12). At lag 3,

the amplitudes are comparable to those in the MCA,

but the signal is even much larger at lag 4, consistent

with the bias high found in unfavorable cases with the

artificial data.

Without delay in the atmospheric response, the NAO/

SST tripole mode was also found at lag 1, but there was

no significant mode at larger lag. This confirms that the

atmospheric response should not be considered as in-

stantaneous with monthly averaged data.

FIG. 8. First MCA mode between SST (K, white contour for negative values) and Z500 in NDJ (contour interval

5 m), assuming a 2-month atmospheric response time: (top) lag (left) 0 and (right) 1; and (bottom) lag (left) 3

and (right) 4. The lag (positive when SST leads) is indicated; sc denotes square covariance and r correlation, with

the estimated statistical significance. The SST anomaly time series are normalized, so that typical amplitudes are

given.
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c. GEFA–SVD

The most significant results with GEFA–SVD are also

found when all the months are considered. As they are

more sensitive to truncation, we considered truncations

between TR3 and TR10. The mode at lag 1 is significant

at most truncation between TR5 and TR8, generally

resembling that at lag 0 (which should reflect an oceanic

response to the atmosphere), while differing somewhat

from that at larger lag. This is illustrated in Fig. 13 for

TR5, where the mode, a NAO-like Z500 pattern linked

to a quadripolar SST pattern, is similar, albeit with a

lower statistical significance, to that found in TR5 at lag

1 by LW08 for a different dataset (1957–93). Yet, the

mode somewhat differs from that at lag 2 (12% signifi-

cant, not shown) and lag 3, so that it may not fully rep-

resent an oceanic response.

The modes at lag $ 2 likely reflect an atmospheric

response to SST but, as summarized in Table 2, they

proved very sensitive to truncation. For instance, the

first mode differs in TR6 and TR7 (Fig. 14, left) from

that in TR5, while in TR3, yet another mode is found,

resembling the NAH–NAO mode (Fig. 14, right). In

addition, the modes are sensitive to domain size at large

lag (not shown). In early winter, a significant mode is

found at one or two lags between lag 3 and 5 for small

truncation (TR3 to TR5), mostly in the small domain,

but with very limited SST stability, although all the

FIG. 9. As in Fig. 8 (bottom panels), but without SST correction.

FIG. 10. As in Fig. 8, but based on all months of the year.

TABLE 1. Dependence on lag and truncation of the SST pattern

in MRE for the North Atlantic case based on all months of the year.

Only modes that are 10% significant in at least one North Atlantic

domain are indicated. NAH indicates that the SST pattern re-

sembles the North Atlantic horseshoe. Bold symbols indicate that

the mode is significant in the small and the large domains.

MRE TR5 TR6 TR7 TR8 TR9 TR10

Lag 2

Lag 3 NAH

Lag 4 NAH NAH NAH NAH

Lag 5 NAH NAH
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atmospheric patterns are NAO-like. In two cases, but

not the others, the mode resembles the NAH–NAO

mode. Hence, no coherent picture of the optimal SST

forcing pattern emerges.

Without delay in the atmospheric response, a mode

that broadly resembles that at lag 0 was generally found

at lag 1 or 2 (and in a few cases 3), but the patterns lacked

robustness and the Z500 amplitude was very large.

5. Summary and conclusions

Three multivariate statistical methods to estimate the

influence of SST or boundary forcing on the atmosphere

were discussed. Lagged MCA maximizes the lagged

covariance between the atmosphere and prior SST. It

thus favors large responses and dominant SST patterns,

and it is well suited for making predictions. As the MCA

does not take into account the possible SST evolution

during the time lag, a SST correction was introduced to

correctly represent the relation between forcing and

response. GEFA–SVD identifies the SST patterns that

produce the maximum atmospheric response indepen-

dently from the SST amplitude; hence it may not detect

a large response. A new method, MRE, was designed to

estimate the largest boundary-forced atmospheric signal

in the sample. In both GEFA–SVD and MRE, the SST

covariance matrix must be inverted and SST is consid-

ered in a truncated space, thus requiring an appropriate

truncation. For climate applications where the emphasis

is on detecting or predicting the SST pattern that is re-

sponsible for the most atmospheric variance, MRE and

MCA are preferable, while GEFA–SVD may be of in-

terest in some theoretical framework. The usefulness of

the methods, however, also depends on their biases and

robustness, which was investigated.

FIG. 11. First MRE mode between SST (K, white contour for

negative values) and Z500 (contour interval 5 m) at lag 4 in TR6,

assuming a 2-month atmospheric response time. The SST anomaly

time series is normalized, so that typical amplitudes are given. The

statistical significance is indicated.

FIG. 12. First MRE mode between SST (K, white contour for negative values) and Z500 in NDJ (contour interval

5 m) in TR6, assuming a 2-month atmospheric response time: lag (left) 3 and (right) 4. The SST anomaly time series

are normalized, so that typical amplitudes are given. Lag and statistical significance are indicated.

15 MAY 2011 F R A N K I G N O U L E T A L . 2535



The methods were first applied to synthetic data with

known properties, following Liu et al. (2008). Four cases

were considered, ranging from an idealized case with

weak SST advection and spatially uncorrelated atmo-

spheric forcing to the most difficult case with strong

advection and correlated forcing. The lagged MCA was

very robust and unbiased. However, without correction

for the SST evolution, the SST anomaly was a biased

version of the SST forcing pattern. The atmospheric

patterns in the first two modes were pretty similar to the

largest true atmospheric responses, and they were well

determined, although in the most unfavorable cases

(strong advection) only the first mode could be reliably

estimated at small lag. This, however, was also the case

for the other methods. Nonetheless, the ensemble mean

response remained stable at large lag, when the other

methods failed.

The absolute optimal SST pattern for forcing the at-

mosphere estimated by GEFA–SVD did not have very

large amplitude in the synthetic data. Hence, GEFA–

SVD led to different modes and weaker atmospheric

signals. It was unbiased but sensitive to the EOF trun-

cation and much less robust than MCA, providing reli-

able estimates only in favorable cases. This reflects its

high sensibility to bias and sampling errors in the lagged

SST covariance matrix (LW08).

In most cases, MRE provided unbiased estimates of

the largest true atmospheric response, and it was nearly

as robust as the MCA, with limited sensitivity to the

EOF truncation. However, with strong advection, the

first mode could only be reliably estimated at shorter

lag than with the MCA, and the atmospheric response

was biased high. The robustness of the MRE should

thus be verified by varying the lag and the truncation.

Although both GEFA–SVD and MRE require invert-

ing the SST covariance matrix to estimate the feedback

matrix F, MRE proved more robust. Presumably, this

occurs because F is applied to the SST field at each

time step to estimate the dominant response, so that

the large SST scale smoothes the sampling errors

of F.

Applying GEFA to the first SST EOF similarly pro-

vided robust estimates of the largest atmospheric re-

sponse, with little sensitivity on truncation except in very

unfavorable cases, consistent with Z. Liu et al. (2011, un-

published manuscript) who showed that the GEFA re-

sponse to the leading SST EOFs is largely insensitive to

the EOF truncation. However, the GEFA response to

the second SST EOF was very weak in the large ad-

vection case, so that there is no guarantee that GEFA–

EOF will always identify large atmospheric signals.

Unless there is a-priori evidence that an SST EOF in-

fluences the atmosphere, MRE and MCA should be

FIG. 13. First GEFA–SVD mode between SST (K, white contour

for negative values) and Z500 (contour interval 5 m) in TR5, as-

suming a 2-month atmospheric response time: (top to bottom) lag

0 to 3. The SST anomaly time series are normalized, so that typical

amplitudes are given. Lag and statistical significance are indicated.
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favored in climate applications since they determine the

SST forcing patterns.

The three methods were applied to observed SST and

Z500 monthly anomalies in the North Atlantic during

1958–2008, using all months of the year or, for the at-

mosphere, NDJ only. Recent modeling (Ferreira and

Frankignoul 2005, 2008; Deser et al. 2007) and statistical

(Strong et al. 2009) studies suggest that the atmospheric

response only reaches its maximum amplitude after

about 2 months. This was represented by introducing

a delay in the response, assumed to be 2 months. As in

CF02 and Frankignoul and Kestenare (2005), and broadly

consistent with a delayed response, the MCA gave a

highly significant mode when SST leads Z500 in NDJ by

3 and 4 months, reflecting the forcing of the NAO by

prior NAH SST anomalies. This NAH–NAO mode was

also seen with all months of the year but with less sig-

nificance. The SST correction, which does not affect

statistical significance or the atmospheric pattern, in-

creased the estimated atmospheric sensitivity and slightly

changed the SST forcing pattern.

Because MRE and GEFA–SVD are more sensitive to

sampling errors, the most significant results were ob-

tained with all months of the year. MRE gave the NAH–

NAO mode as in the MCA, although the maximum SST

occurred southeast of Newfoundland rather than off

Africa, consistent with Wang et al. (2004). The mode

was robust to domain size and EOF truncation. Since

MRE was shown with the artificial data to provide the

best estimate of the largest true response, the resem-

blance with the MCA mode confirms that MCA is well

adapted to detecting large signals. MRE seems more

powerful than MCA when the sample is large but less

when the sample is small since the mode was not as

stable in early winter and more sensitive to truncation.

GEFA–SVD proved sensitive to lag and truncation

and should be used with caution. The NAH–NAO mode

was found with a very strong EOF truncation but not

otherwise, suggesting that the atmosphere might be more

sensitive to other, more complex SST patterns of smaller

magnitude. However, the patterns were not robust and

no coherent picture of the optimal SST forcing pattern

emerged, presumably because GEFA–SVD would re-

quire a much larger sample to provide robust results.

The three methods gave a significant mode when Z500

follows SST by 1 month. However, it broadly resembled

the mode found when SST lags the atmosphere, which

reflects the SST response to atmospheric forcing. This

resemblance suggests that the mode at lag 1 primarily

reflects, or is strongly influenced by, an oceanic response,

TABLE 2. Dependence on lag and truncation of the SST pattern

in GEFA–SVD for the North Atlantic case based on all months of

the year. Only modes that are 10% significant in at least one North

Atlantic domain are indicated. The number indicates the number

of SST poles in the pattern, except when it resembles the North

Atlantic horseshoe pattern, noted NAH. Bold symbols indicate

that the same mode is significant in the small and the large domains

and two numbers that the SST patterns differ.

GEFA TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10

Lag 2 4 4

Lag 3 3 4

Lag 4 NAH 4 3

Lag 5 3 3, 5 4

FIG. 14. As in Fig. 13, but for (left) lag 3 in TR6 and (right) lag 4 in TR3.

15 MAY 2011 F R A N K I G N O U L E T A L . 2537



consistent with the reduced thermal damping of Barsugli

and Battisti (1998).

In summary, we recommend MRE and MCA for

finding large boundary-forced signals, although large

lags should be avoided as they overestimate the atmo-

spheric response in realistic settings. MRE provides the

best estimate of the largest atmospheric response if the

sampling is sufficiently large, but it is more sensitive than

MCA to the assumed delay in the atmospheric response.

We stress that MRE only detected a significant SST in-

fluence when introducing the delay and the 2-month

delay lead to consistent results between MCA and MRE.

However, the estimated atmospheric sensitivity increased

with the lag, which suggests that the delay may have been

underestimated. A better representation of the transient

atmospheric response to boundary forcing should be

implemented in future studies.
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Marie Curie. We thank N. Sennéchael for her help and
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APPENDIX

Lagged MCA

Using (7), the homogeneous covariance map of T and

the heterogeneous covariance map of X are given for

mode k respectively by

1

L
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Scaled maps representing the amplitude of the T and X

anomalies associated with one standard deviation of

bj(t 2 t) are obtained by dividing (A1) and (A2) by the

standard deviation sbk of bk(t 2 t).

A dimensional version of the corrected SST pattern

(8) is obtained by projecting the T field onto the (non-

orthogonal) set ~qk 5 qkjqkj
�1

T(t) 5 �
K

1

~q
k
d

k
(t) (A3)

and calculating the standard deviation sdk of dk(t). Re-

lation (8) becomes
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