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ABSTRACT

The breaking of a monochromatic two-dimensional internal gravity wave is studied using a newly de-

veloped spectral/pseudospectral model. The model features vertical nonperiodic boundary conditions that

ensure a realistic simulation of wave breaking during the wave propagation. Isopycnal overturning is induced

at a local wave steepness of sc 5 0.75–0.79, which is below the conventional threshold of s 5 1. Isopycnal

overturning is a sufficient condition for subsequent wave breaking by convective instability. When s 5 sc, little

primary wave energy is being transferred to high-mode harmonics. Beyond s 5 1, high-mode harmonics grow

rapidly. Primary wave energy is more efficiently transferred by waves of lower frequency. A local gradient

Richardson number is defined as Ri 5 2(g/r0)(dr/dz)/z2 to isolate convective instability (Ri # 0) and wave-

induced shear instability (0 , Ri , 0.25), where dr/dz is the local vertical density gradient and z is the

horizontal vorticity. Consistent with linear wave theory, the probability density function (PDF) for occur-

rence of convective instability has a maximum at wave phase f 5 p/2, where the wave-induced density

perturbations to the background stratification are the greatest, whereas the wave-induced shear instability has

maxima around f 5 0 (wave trough) and f 5 p (wave crest). Nonlinearities in the wave-induced flow broaden

the phase span in PDFs of both instabilities. Diapycnal mixing in numerical simulations may be compared

with that in realistic oceanic flows in terms of the Cox number. In the numerical simulations, the Cox numbers

increase from 1.5 (s 5 0.78) to 21.5 (s 5 1.1), and the latter is in the lower range of reported values for the

ocean.

1. Introduction

It has long been believed that vertical mixing in the main

thermocline is a dominant factor in governing the intensity

of the large-scale thermohaline circulation (Stommel and

Webster 1962; Munk 1966). An important source of tur-

bulence and mixing is internal waves that produce signif-

icant diapycnal fluxes of momentum and heat (Gregg

* Peking University Department of Atmospheric and Oceanic

Sciences Contribution Number 11.

Corresponding author address: Wei Liu, Center for Climatic

Research, University of Wisconsin—Madison, 1225 W. Dayton St.,

1143, Madison, WI 53706.

E-mail: wliu5@wisc.edu

OCTOBER 2010 L I U E T A L . 2243

DOI: 10.1175/2010JPO4432.1

� 2010 American Meteorological Society



1987). Except in some regions with strong baroclinic

instability, the breaking of internal waves is a principal

contributor to pelagic turbulence and mixing on the ver-

tical scale of a few meters (Munk and Wunsch 1998).

The internal waves can be generated by tidal waves

interacting with rough bottom topography. Wave break-

ing caused by this type of internal waves has received great

attention in recent years (e.g., Polzin et al. 1997). In this

work, however, we will focus instead on downward-

propagating internal waves generated directly or indi-

rectly by the surface wind. Such wind-generated internal

waves radiate from near the ocean surface into the

deeper main thermocline below and may generate sig-

nificant background mixing there. They are, however,

apparently also reflected by the abyssal waters into

upward-propagating waves of comparable wavenumber

and amplitude. The model spectrum GM79, which was

formulated by Garrett and Munk (1979) to summarize

the statistics of observed internal waves throughout the

upper ocean, is symmetric between upward and down-

ward pointing wavenumbers and hence also the flux of

wave energy.

In general, the breaking of internal waves can be caused

by two types of instability (Thorpe 1978, 1979). The first

type is shear instability (Kelvin–Helmholtz instability;

Miles 1961; Howard 1961), in which disturbances grow

in the shear generated by an existing internal wave acting

on a sufficiently abrupt vertical transition in density. The

second type is convective instability (Orlanski and Bryan

1969; McEwan 1973), which is characterized by the iso-

pycnal steepness reaching and passing beyond the vertical

to generate a local density overturning followed by

Rayleigh–Taylor instability. Numerous studies have been

carried out on these instabilities, including direct nu-

merical simulation (DNS; Bouruet-Aubertot et al. 2001;

Koudella and Staquet 2006; Sutherland 2001; Fritts et al.

2003, 2006, 2009a,b). However, a detailed numerical

modeling study of the breaking of progressive internal

waves has not been published. Indeed, virtually all of

previous direct numerical simulations on the internal

wave breaking are based on a spectral model with pe-

riodic boundary conditions and are driven by a body

forcing, which is not suitable for describing the breaking

process of progressive internal gravity waves in the oce-

anic context. First, the momentum and density fields are

subject to random changes as waves break; thus, the

boundary condition in the direction of wave propagation

can no longer be assumed to be periodic. Perhaps more

important, the breaking of waves should happen natu-

rally in their propagation processes and should not be

forced by the local body force. Therefore, a new model

with nonperiodic vertical boundary condition and non-

body forcing is needed as a first step to simulate the

breaking of internal gravity waves that propagate through

the oceanic thermocline.

Here, the breaking of a monochromatic two-dimensional

internal gravity wave is studied by using a newly de-

veloped spectral–pseudospectral model based on the

‘‘Channel Flow’’ code developed by Gibson et al. (2008).

The model features vertical nonperiodic boundary con-

ditions, which ensure a realistic simulation of wave

breaking in the wave propagation. The internal wave

breaking is studied with the emphasis on the distinctive

roles of the convective instability and shear-induced

instability, with each instability dominant in different

regions of the wave field.

Our paper is organized as follows: Section 2 provides

a detailed description of our model, especially in the set-

ting of boundary conditions and the experimental design.

Section 3 studies the evolution of isopycnal overturning

and subsequent breaking of waves. Section 4 further

studies the wave breaking in terms of the convective

instability and shear-induced instability. Section 5 dis-

cusses the diapycnal mixing associated with the internal

wave breaking and its relation to the real ocean. A sum-

mary and further discussion are given in section 6.

2. Model description

In this paper, a spectral–pseudospectral model has

been applied to the ocean context for the first time. The

computational domain of the model is an arbitrary

layer in the main thermocline. A monochromatic two-

dimensional internal gravity wave is forced from the top

boundary and propagates down to the bottom. The

background field is set at rest with a constant stratifica-

tion and no mean shear flow. The model has nonperiodic

boundary conditions in the vertical. It is important to

point out that the internal gravity wave is excited by the

top boundary condition instead of a body force.

a. Model formulation

We study an incompressible fluid whose dynamics are

governed by the Navier–Stokes equations subject to the

Boussinesq approximation in Cartesian coordinates. The

x and y directions are horizontal, and z increases verti-

cally upward. The total density consists of a constant

reference part r0 and a fluctuating part r. In the non-

rotating frame, the governing equations of momentum

and density are

›u
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where p is the effective pressure that is equal to the ratio

between the fluctuating part of the pressure and the

reference density, n is the kinematic viscosity coefficient,

and k is the diffusion coefficient of density. In Eqs. (1)–

(3), the subscript i 5 1, 2, and 3 denotes x, y, and z, re-

spectively, and the Einstein summation convention is

adopted.

In the case of a two-dimensional internal wave prop-

agating though fluid with stable stratification, r can be

further divided into two parts: the background profile

r and the wave-induced perturbation r9: that is, r 5

r(z) 1 r9(x, z, t). In the model, the background profile r

is set as linear, with dr/dz , 0 for the stable stratifica-

tion. Then a background Brunt–Väisälä frequency N is

deduced as N2 5 �(g/r
0
)(dr/dz). The wave-induced

density perturbation r9 can be estimated form linear

wave theory. By introducing a streamfunction C(x, z, t)

such that u 5 cz, w 5 2cx, and the vorticity z 5 uz 2 wx 5

=2c; hence, equations for a linear wave can be written as

(›
t
� n=2)c

z
1 p

x
5 0, (4)

(›
t
� n=2)(�c

x
)1 p

z
1

r9

r
0

g 5 0, and (5)

(›
t
� k=2)r9 1

r
0

g
N2c

x
5 0, (6)

where =2 5 ›xx 1 ›zz is the two-dimension Laplace op-

erator. For a progressive wave with wavenumber k 5 (k,

m) and frequency v, the dispersion relation is

v2 1 i(n 1 k)(k2 1 m2)v� kn(k2 1 m2)2 � k2N2

k2 1 m2
5 0.

(7)

In our study, the wave forcing is prescribed at the top

boundary with a real-valued frequency v; thus, the ver-

tical wavenumber m in Eq. (7) is a complex number that

can be written as m 5 mr 2 imi, where the real part mr

denotes the vertical wavy structure and the imaginary

part mi denotes the vertical damping of wave amplitude.

For the Prandtl number Pr 5 n/k 5 1, the group velocity is

C
g

5
kmN2n2

[A� i(B� v)]2(B 1 iA)
(k,�m)� 2in(k, m),

(8)

where A 5 n(k2 1 mr
2 2 mi

2) and B 5 v 1 2nmrmi.

In the paper, we denote Cgx and Cgz as the real parts

of the horizontal and vertical components of Cg,

respectively,

C
gx

5 Re
km2N2n2

[A� i(B� v)]2(B 1 iA)
� 2ink

( )
and (9)

C
gz

5 Re
�k2mN2n2

[A� i(B� v)]2(B 1 iA)
� 2inm

( )
. (10)

The linear polarization relations can be written as

c(x, z, t) 5
av

k
exp(m

i
z) cos(kx 1 m

r
z� vt) and

(11)

r9(x, z, t) 5
r

0
N2av

g(A2 1 B2)
exp(m

i
z)[A sin(kx 1 m

r
z� vt)

1 B cos(kx 1 m
r
z� vt)],

(12)

where a is the wave amplitude.

It should be noted that Eqs. (7)–(12) appear to imply

that the wave parameters v, k, m, A, B, etc., are all

precisely known. This is true for the horizontal compo-

nents of wavenumber, which are constrained by periodic

lateral boundary conditions to be integral multiples of a

basic unit. However, because the forcing amplitude a is

a function of time in our experiments, the effective fre-

quency and hence the vertical wavenumber are not pre-

cisely determined. However, the time scale over which

a changes by a factor of 2 is long compared to v21, which

is the relevant scale for the internal wave dynamics. Thus,

the results of the forcing resemble a wave packet rather

than a strictly monochromatic wave. Though (1/a)(da/dt)

could easily be reduced, more computer time would be

required and for studies of large-amplitude wave break-

ing the present values seem adequate.

In our study, a nondimensional form of wave ampli-

tude is employed: the wave steepness s 5 amr, which has

a physical meaning as the ratio between the maximum

wave-induced velocity umax in x direction and the phase

velocity cx in the same direction: that is, s 5 umax/cx. It

should be mentioned that Eqs. (4)–(12) are only used in

setting the top boundary condition (details in section

2c). Flows in the computation domain are still governed

by Eqs. (1)–(3).

b. Computational methods

The model is three dimensional with a computation

domain of 2 3 2 3 4 in the x, y, and z directions. A two-

dimensional (x, z) wave is forced from the top boundary

by employing a zero wavenumber in the y direction. The
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horizontal wavelength is set be equal to domain length

in the x direction (i.e., Lx 5 2), and the horizontal

wavenumber is k 5 2p/Lx 5 p. The background Brunt–

Väisälä frequency is set as N 5 0.7. In the paper, asso-

ciated variables such as vorticity will be shown with

normalized by N; hence, our results are independent on

the choice of the value of N. The forcing frequencies v of

waves are chosen between 0 and N, as v ; 0.143N–

0.429N. The vertical wavenumber m can be calculated

from the dispersion relationship Eq. (7), and the vertical

wavelength is Lz 5 2p/mr. The spatial resolution is (64,

4, 512) in the x, y, and z directions, which ensures a

comparable resolution within one wavelength along the

x and z directions. Because the flow is two dimensional

in the x–z plane, in the y direction very coarse resolution

is set to economize the computation time.

A pseudospectral solution algorithm is applied to Eqs.

(1)–(3). By using the spectral collocation method described

by Canuto et al. (1988), we employ a Fourier series repre-

sentation of field variables in the horizontal (x, y) direction

and a Chebyshev series representation of field variables in

the vertical z direction. Then the velocity and density fields

can be written into vector-valued Fourier 3 Fourier 3

Chebyshev expansions whose mathematical forms are

u 5 �
Nx/2

k
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x
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where Nx, Ny, and Nz are the number of collocation

points in x, y, and z directions; kx and ky are Fourier

wavenumbers; Tn(z) 5 cos[n arccos(z)] is the Chebyshev

polynomial of order n; and ûk
x
,k

y
,n, ŵk

x
,k

y
,n, and r̂k

x
,k

y
,n

are corresponding Chebyshev coefficients in the hori-

zontal velocity, vertical velocity and density fields. Af-

ter the Fourier–Chebyshev transform, the nonlinear

terms (advection terms) are treated explicitly and cal-

culated by collocation methods, with aliasing errors

minimized with ‘‘2/3 rule’’ (Boyd 1989; Canuto et al.

1988, 2007). All other linear terms, including the terms

of kinetic viscosity and density diffusion, are treated im-

plicitly. To make our simulation as close as possible to the

situation in the real ocean where the molecular viscos-

ity and diffusion are extremely weak, we set n 5 k 5 1025,

the smallest coefficients of kinematic viscosity and density

diffusion for which the model remains stable. In the initial

state, the fluid is at rest, with a linear, stable background

stratification. Solutions are advanced in time using a

third-order Runge–Kutta time stepping scheme (RK3)

with variable time steps to minimize the computational

cost of integration by maximizing the time step while

keeping the Courant–Friedrichs–Lewy (CFL) number

near a threshold of CFL 5 0.9. The wave-induced mean

flow is removed from the model in each advancing step

so that the mean flow shear remains zero during the

course of the simulation. The rationale for this removal

is given in the discussion part of section 6.

c. Boundary conditions

The boundary conditions are horizontally periodic

due to Fourier basis functions in x and y but nonperiodic

in the vertical thanks to Chebyshev basis functions in z.

A single two-dimensional wave is forced by the top

boundary condition (z 5 0) that will hereafter be re-

ferred as the surface forcing. From Eqs. (11) and (12),

the surface forcing is set in the form of

c(x, z 5 0, t) 5
a(t)v

k
cos(kx� vt 1 f

0
) and (16)

r9(x, z 5 0, t) 5
r

0
N2a(t)v

g(A2 1 B2)
[A sin(kx� vt)

1 B cos(kx� vt) 1 f
0
], (17)

where f0 is the initial phase at z 5 0 and the wave am-

plitude a(t) varies slowly with time. On one hand, by

increasing the wave amplitude, we can generate iso-

pycnal overturning with enhanced wave-induced density

perturbations. On the other hand, as a result of isopycnal

overturning and associated wave breaking during the

wave propagation, linear wave theory cannot be used to
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predict the correct bottom boundary condition at the

time when the wave reaches the bottom of the compu-

tation domain. Therefore, our model integration is ter-

minated before any wave-induced perturbation moving

at the approximate group velocity has gotten there. The

velocity and density fields at the bottom boundary are

set to zero during the integration.

As summarized in Table 1, three groups of cases have

been designed for different purposes. The first group

(A1–A5) aims to determine the critical steepness for

isopycnal overturning in different waves; thus, the sur-

face forcing is set to increase slowly and linearly with

time. In this group, the nondimensional wave amplitude

can be written as

s(t) 5 1.0 3
t

4T

� �
, (18)

where T 5 2p/v is the wave period. As shown in Table 1,

v and mr vary for different waves, but all the waves will

reach a steepness of s 5 1 at the end of the fourth wave

period.

Based on the critical steepness from group A, the sec-

ond group (B1–B5) features in flows induced by constant

surface forcing that are equal to or beyond the critical

steepness. In this group, we fix the forcing frequency of

wave as v 5 0.286N and select various constants s0 as the

steady-state amplitude of the wave. Here, s0 5 0.78 is

the critical steepness determined from group A (A3) and

s0 5 1.0 is the nominal threshold of convective instability;

s0 5 0.9 and s0 5 1.1 constitute a comparison study for

wave amplitudes both below and above nominal con-

vective instability; and s0 5 1.5 provides the case with

strongest surface forcing. In applications, we also use a

surface forcing in the following form

s(t) 5 s
0

3 tanh
t

0.25T

� �
(19)

so that the wave amplitude increases from zero to the

value s0 within one wave period and remains constant

afterward.

The third group (C1–C7), which is used for the study

of diapycnal mixing, is the ensemble group of case B3.

The estimation of diapycnal mixing needs averaging

under steady forcing for a long time. For this purpose,

the integrating period of B3 may be not long enough.

Therefore, we designed seven ensemble cases C1–C7 for

B3 and each of C1–C7 has the same setting with B3 but

a different initial phase f0 in the surface forcing (Table 1).

3. Isopycnal overturning and wave breaking

Isopycnal overturning and associated convective in-

stability arise in a progressive internal gravity wave as

soon as the wave amplitude rises above a certain

threshold, as shown in Fig. 1, which provides the depth–

time diagram of the vorticity (normalized by N) and

density fields at a sampling point of x 5 20.2Lx. From

Fig. 1, provided its amplitude is small, the primary wave is

stable and propagating downward. This behavior is dif-

ferent from results of linear stability analysis that infin-

itesimally small-amplitude waves (s � 1) are unstable

because of parametric subharmonic instability (PSI; Mied

1976; Drazin 1977; Klostermeyer 1982, 1991; Lombard

and Riley 1996; Lombard 1996; Sonmor and Klaassen

1997). However, because the growth rate of PSI is smaller

than the diffusive rate or the rate of other instabilities

such as modulation instability (Sutherland 2006a), wave

breaking occurs after the wave grows to sufficiently large

amplitude. In our study, n 5 k 5 1025, so for disturbances

with scales smaller than 1/10 of the primary wavelength,

the damping time scale is smaller than three wave pe-

riods. Thus, as shown in Fig. 1, viscosity and diffusivity

effectively dampen the small disturbances before PSI has

time to take effect. When the wave amplitude gets larger,

anomalous flows accompanied by isopycnal overturning

appear in the flow, parallel to certain phase lines. The

wave propagation becomes contaminated but is not ter-

minated by occurrences of anomalous flows and isopycnal

overturning. As shown in Fig. 1b, the first isopycnal

overturning happens at depth z 5 20.2Lz and at time

TABLE 1. Chart of experiment design. Three groups of experi-

mental cases are set as group A (A1–A5), group B (B1–B5), and

group C (C1–C7). Here, N is the Brunt–Väisälä frequency; v is the

forcing frequency of wave and T 5 2p/v is the wave period; mr and

mi are the real and imaginary parts of m in Eq. (7), respectively; s(t)

is the nondimensional wave amplitude; f0 is the initial phase at

x 5 0 in Eqs. (16) and (17); and Cgz is the vertical group velocity

as calculated from Eq. (10).

Case v mr mi s(t) f0 Cgz

A1 0.429N 6.62 0.01 1.0 3 (t/4T) 0 0.0370

A2 0.357N 8.22 0.03 1.0 3 (t/4T) 0 0.0265

A3 0.286N 10.54 0.07 1.0 3 (t/4T) 0 0.0174

A4 0.214N 14.31 0.21 1.0 3 (t/4T) 0 0.0100

A5 0.143N 21.62 1.05 1.0 3 (t/4T) 0 0.0046

B1 0.286N 10.54 0.07 0.78 3 tanh(t/0.25T) 0 0.0174

B2 0.286N 10.54 0.07 0.9 3 tanh(t/0.25T) 0 0.0174

B3 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) 0 0.0174

B4 0.286N 10.54 0.07 1.1 3 tanh(t/0.25T) 0 0.0174

B5 0.286N 10.54 0.07 1.5 3 tanh(t/0.25T) 0 0.0174

C1 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) p/4 0.0174

C2 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) p/2 0.0174

C3 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) 3p/4 0.0174

C4 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) p 0.0174

C5 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) 5p/4 0.0174

C6 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) 3p/2 0.0174

C7 0.286N 10.54 0.07 1.0 3 tanh(t/0.25T) 7p/4 0.0174
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t 5 3.3T, which corresponds to the phase of the strongest

velocities downward and to the right and also the largest

wave-induced density perturbations to the background

stratification (Fig. 2a). This first isopycnal overturning

occurs before the time t 5 4T when the surface forcing

reaches s 5 1, and there are no anomalous flows hap-

pening in the period t 5 3.3T–4T (Figs. 2a,b). Anom-

alous flows appear and develop after t 5 4T, such as

a counterrotating vortex pair appearing at t 5 4.7T (Fig.

1a). The upper vortex centers at x 5 20.25Lx, z 5 20.5Lz

with anticlockwise rotation, and the lower vortex centers

at x 5 20.2Lx, z 5 21.1Lz with clockwise rotation (Fig.

2c). The vortex pair centers about the phase of the largest

isopycnal distortions and results from the opposite wave-

induced shears across the center phase. After continuous

isopycnal overturning, the structure of counterrotating

vortex pairs ceases to be distinguishable. The density field

becomes finely structured and the flow becomes disor-

dered (Fig. 2d), with corresponding continuous transfer

of primary wave energy to smaller scales.

To examine isopycnal overturning in different waves,

an overturning ratio is calculated in cases A1–A5 and

shown in a depth–time (wave steepness) diagram (Fig. 3).

The overturning ratio is defined as the ratio of the num-

ber of points having dr/dz $ 0 (indicating isopycnal

overturning) in the x–y plane on each z level to the total

number of points within the x–y plane. As illustrated in

Fig. 3, the critical steepness sc is smaller than 1 in all the

waves, which is likely due to the nonlinearity in the flows.

Also, the critical steepness sc varies little with different

forcing frequencies. Specifically, sc 5 0.75 as v 5 0.429N,

sc 5 0.78 as v 5 0.214N–0.357N, and sc 5 0.79 as v 5

0.143N, indicating that isopycnal overturning occurs

slightly later in a forcing wave with lower frequency. In

addition, Fig. 3 shows a downward penetration of iso-

pycnal overturning in the process of the wave propaga-

tion. However, as a result of damping by kinetic viscosity

and density diffusion, the wave amplitude decreases

vertically so that it no longer produces isopycnal over-

turning beyond a certain depth. As shown in Fig. 3, the

penetration depth of isopycnal overturning relative to

a vertical wavelength decreases with the forcing fre-

quency. It extends over z 5 3Lz when v 5 0.429N,

extends over z 5 2.5Lz when v 5 0.286N, and is least

FIG. 1. Depth–time diagrams of (a) normalized vorticity z/N and (b) density r at the point x 5 20.2Lx in case A3

(v 5 0.286N). Vorticity z in (a) is normalized by Brunt–Väisälä frequency N. In (b), isopycnal is contoured with interval

of 2 3 1024 and labeled with interval of 1 3 1023. Areas of dr/dz $ 0 are shaded to indicate isopycnal overturning. In

both plots, line (black solid) is plotted in each case with its slope equal to the vertical group velocity Cgz by Eq. (10).
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at z 5 0.5Lz as v 5 0.143N. Such a dependence on v

may be inferred from Eq. (12) and Table 1, where the

wave-induced density perturbation has a greater damping

coefficient mi for smaller v. This reduces the chance in

generating isopycnal overturning at deeper depths and

finally leads to a shallower penetration depth.

As mentioned before, the development of anomalous

flows indicates that the primary wave breaks into higher

mode harmonics and transfers wave energy from the

primary scale into smaller scales (Figs. 1, 2c,d). Now, we

will examine the energy transfer among different modes

by examining the energy spectrum. The kinetic energy

per unit volume are Eu 5 u2/2 and Ew 5 w2/2 for the

horizontal and vertical velocity, respectively, and the

potential energy is defined as E
p

5�(1/2)[g/(dr/dz)]r92

(Holliday and McIntyre 1981; Gill 1982). Also, we will fo-

cus on the integrated energy over the domain [22Lz, 0]

in cases A1–A4, because most of isopycnal over-

turning and wave breaking happens in this range (Fig. 3).

Figure 4 shows the normalized energy spectrum as the

FIG. 2. Cross sections of the flows at (a) t 5 3.3T, (b) t 5 4T, (c) t 5 4.7T, and (d) t 5 6.7T in case A3 (v 5 0.286N). Isopycnal is contoured

with interval of 1 3 1023. Velocities are plotted in vectors (u, w) in which u is normalized by the horizontal group velocity Cgx by Eq. (9)

and w is normalized by the vertical group velocity Cgz by Eq. (10).
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FIG. 3. Depth–time diagrams of overturning ratio in case (a) A1 (v 5 0.429N), (b) A2 (v 5 0.357N), (c) A3 (v 5

0.286N), (d) A4 (v 5 0.214N), and (e) A5 (v 5 0.143N). Diagrams are also plotted against the surface forcing s,

because s is set to be linear with time in group A. The overturning ratio is defined as the ratio between the number of

points having dr/dz $ 0 in each horizontal plane and the total number of points within the plane. Line (black solid) is

plotted in each case with its slope equal to the vertical group velocity Cgz by Eq. (10).
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FIG. 4. Normalized energy spectrum as s 5 sc, s 5 1, and s 5 1.3 in cases A1–A4. Shown are (left)–(right) the horizontal kinetic energy

Eu 5 u2/2, the vertical kinetic energy Ew 5 w2/2, and the potential energy Ep 5 �(1/2)[g/(dr/dz)]r92. All energies are integrated over the

domain [22Lz, 0]. The critical steepness sc equals 0.75 in case A1 and equals 0.78 in other cases.
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surface forcing is equal to s 5 sc, s 5 1, and s 5 1.3. In the

initial isopycnal overturning (s 5 sc), there is no gener-

ation of any high-order harmonic in the kinetic and

potential energy spectrum. All the wave energy is con-

centrated on the primary scale k 5 p, which indicates

that isopycnal overturning does not always imply si-

multaneous wave breaking but is a sufficient condition

for subsequent wave breaking. As the surface forcing

reaches s 5 1, the energy spectrum changes little in the

faster forcing waves (v 5 0.429N and v 5 0.357N) but

changes much more in the slower forcing waves (v 5

0.286N and v 5 0.214N). The harmonic k 5 3p arises in

the Ew spectrum of wave v 5 0.286N with 15% of the

primary wave energy transferring to high-order har-

monics. The harmonic k 5 4p arises in the Ew spectrum

of wave v 5 0.214N at a cost of 18% primary wave en-

ergy transferred. When the surface forcing enhances to

s 5 1.3, more high-order harmonics become significant in

the spectra of all the waves. High-mode harmonics ap-

pear more energetic in the Ew spectrum, which indicates

that the wave energy is more inclined to transfer from

the primary mode to the higher modes through the

vertical velocity. Also, the energy transfer is more ef-

fective in the slower forcing wave. For example, 22% of

the primary wave energy Ew is transferred in wave v 5

0.429N, whereas 63% of the primary wave energy Ew is

transferred in wave v 5 0.214N.

As illustrated in both physical (Fig. 2) and spectral

(Fig. 4) fields, high-mode harmonics do not arise im-

mediately after occurrences of isopycnal overturning.

This is confirmed by Fig. 5 in another respect, the evo-

lution of high-mode harmonics k 5 2p–6p in cases A1–

A4. As shown in Fig. 5, most high-mode harmonics have

rapid growth after the surface forcing reaches s 5 1,

which indicates that the nominal convective instability

s 5 1 acts as a precondition for the development of high-

mode harmonics. Besides, harmonics of higher modes

are more apt to develop in the slower forcing waves. In

the wave of frequency v 5 0.429N, harmonics k 5 2p and

k 5 3p dominate the high-mode harmonics, with the

harmonic k 5 4p being less significant. However, the

harmonic k 5 4p becomes one of the dominant high-

mode harmonics for wave v 5 0.214N. Here, our calcu-

lations are two dimensional. However, Andreassen et al.

(1998) has shown that the fully three-dimensional motions

may be critical at the stage of initial convective instability.

4. Convective instability and wave-induced shear
instability

Because an increasing surface forcing is employed in

group A, the flow cannot reach a steady state during the

integration period of the model. Therefore, a new group

of cases (group B) with constant surface forcing is

designed for the study of steady wave-induced flows.

Figure 6 displays the evolution of flows with constant

surface forcing of various magnitudes. The left column

shows the evolution of normalized vorticity fields at

a sampling point x 5 20.2Lx, and the right column

shows the evolution of the overturning ratio in the do-

main. With the weakest surface forcing (s 5 0.78) that

just reaches the threshold of isopycnal overturning, only

a few points of overturning appears in the flow, within

a narrow phase range around the largest isopycnal dis-

tortions. As a result, the stratification is little changed

from the initial, and the wave propagates at a speed

following the vertical group velocity as estimated from

the linear theory [Eq. (10)]. As the surface forcing be-

comes stronger (s 5 0.9–1.5), isopycnal overturning

happens in a much broader phase range. The overturning

ratio increases with enhanced surface forcing so that the

density field is greatly modified and becomes finely

structured. Anomalous flows are produced as a result,

with strong positive and negative vorticities to disturb

the flow. The wave no longer propagates with the group

velocity but at a faster speed. Similar characteristic of

the increase in vertical advance is also posed in a study of

modulationally unstable wave packet (Sutherland 2006b).

It needs pointing out that most of isopycnal overturning is

concentrated within three wavelengths from the surface

in all cases B1–B5.

Then we selected case B3 as the control, together with

another seven ensemble members (C1–C7), for a further

study of instabilities in the flow under the surface forcing

s 5 1. Here, leaving the computational domain un-

altered, we limit the study domain to [23Lz, 0] for two

reasons: 1) most of isopycnal overturning happens in this

domain (Fig. 6) and 2) a steady flow can be achieved

after the wave has passed through this domain. As ver-

ified in Fig. 7, the integrated wave energy increases at first

as deeper flows are induced by the progressing wave and

then becomes steady after t 5 3.3T when the wave has

propagated through the domain. It is interesting to note

that the wave energy is initially the same among the en-

semble members but turns out to be diverse after passage.

Now we study the instability in the steady wave-

induced flow. On one hand, our previous results (Fig. 1)

show that convective instability comes from isopycnal

overturning and appears along the constant phase lines

of large density perturbations, which is consistent with

the analysis by Thorpe (1994). On the other hand, shear

instability is also expected in our simulation, as a result

of strong self-induced shears at the wave crests and

troughs. Hence we, examine these two stabilities in our

simulation, by means of a local Richardson number Ri 5

2(g/r0)(dr/dz)/z2. Straightly speaking, for the density
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FIG. 5. Energy evolutions of high-mode harmonics Ew 5 2p–6p in cases A1–A4. Shown are (left)–(right) kinetic energy Eu, Ew, and

potential energy Ep of the high-mode harmonics integrated over the domain [22Lz, 0].
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FIG. 6. (left) Depth–time diagrams of normalized vorticity z/N at the point x 5 20.2Lx in cases (top)–(bottom) B1–

B5. (right) As in (left) but for overturning ratio in cases. Line (black solid) is plotted in each case with its slope equal

to the vertical group velocity Cgz by Eq. (10).
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gradient in the Richardson number definition, a de-

rivative normal to the plane of the wave front would be

more appropriate than the one used here in the vertical

direction. However, for waves with moderately low fre-

quencies as in our study, the differences between these

two options in the density gradient are negligibly small.

Convective instability corresponds to Ri # 0, which

comes from dr/dz $ 0 as a local isopycnal overturning.

Shear instability corresponds to 0 , Ri , 0.25, which

indicates strong self-induced shears overcoming the sta-

ble stratification. Figure 8 shows the convective instability

and wave-induced shear instability in the steady flow at

FIG. 7. Time series of volume-averaged energy for Eu (light gray, solid line), Ew (dark gray,

solid line), and Ep (light gray, dotted line) over the domain [23Lz, 0] in eight ensemble cases

(B3 and C1–C7). The ensemble mean is plotted in black.

FIG. 8. Cross sections of normalized vorticity (colors) z/N and (a) Ri # 0 (contours) and (b) 0 , Ri , 0.25 (contours) at t 5 5T in case B3.

A local gradient Richardson number is defined as Ri 5 2(g/r0)(dr/dz)/z2; Ri # 0 indicates convective instability and 0 , Ri , 0.25 indicates

wave-induced shear instability.
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time t 5 5T. Convective instability occurs along the phase

line between positive and negative vorticities where the

wave-induced shears are weakest. Wave-induced shear

instability is mostly generated at the wave crests and

troughs, corresponding to billows with anomalous strong

vortices.

From Fig. 8, convective instability and wave-induced

shear instability have distinct characteristics in the phase

distribution. These characteristics are further illustrated

in Fig. 9, which displays probability density functions

(PDFs) of both instabilities and strong self-induced

shears (jz/Nj$ 2) against the wave phase. In Fig. 9, 1) the

self-induced shears are represented by the normalized

vorticity z/N, and the referenced values of z6/N 5 62

correspond to the shears at the wave crests and troughs

under the background stratification, as calculated from

FIG. 9. PDF of (a) convective instability (Ri # 0), (b) with the strong positive self-induced shear indicated by the

normalized vorticity z1/N $ 2, (c) with the strong negative self-induced shear indicated by the normalized vorticity

z2/N # 22, and (d) wave-induced shear instability (0 , Ri , 0.25) against wave phase in case B3. The referenced values

of normalized vorticity z6/N 5 62 are used to represent strong self-induced shear and equal to shears at the wave crests

and troughs under the background stratification in linear wave theory. PDFs (gray colored) are calculated from the flow

fields t 5 4T–7T in case B3, with an interval of 0.25T. The averaged PDFs are plotted in black.
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linear wave theory, and 2) PDFs (gray colored) are cal-

culated from the flow fields t 5 4T–7T in case B3, with an

interval of 0.25T. The averaged PDFs are shown in black.

Obviously, PDFs of both instabilities in Fig. 9 have several

characteristics consistent with linearly wave theory. For

example, convective instability has a peak in probability

at phase f 5 p/2 where the largest density perturbations

are induced by the wave to undermine the background

stratification (Fig. 9a). Wave-induced shear instability

has a saddle pattern between f 5 p and f 5 0 (Fig. 9d),

as a result of combined effects from reducing stratifica-

tion toward f 5 p/2 (Fig. 9a) and increasing self-induced

shears toward f 5 p and f 5 0 (Figs. 9b,c). However,

nonlinearities in the flow make PDFs of both instabilities

deviate from linear wave theory. As seen from Fig. 9a,

PDF of convective instability drops smoothly from the

center phase f 5 p/2 on both sides, covering most of the

wave phases. However, the corresponding PDF from

linear theory should appear as a delta function at f 5 p/2,

because convective instability can only happen at the

phase f 5 p/2 as s 5 1. Also, in the simulation, wave-

induced shear instability can still be generated in the

phases dominated by convective instability (around f 5

p/2) but in a lower probability (Fig. 9d), which is im-

possible in linear theory because wave-induced shear is

zero at f 5 p/2.

Figure 10 shows that PDFs of both instabilities have

a characteristic transition from linearity to nonlinearity

with increasing surface forcing. Convective instability

(s 5 0.78) has the PDF closest to the delta function at s 5

0.78. With increasing surface forcing, convective in-

stability has a flatter PDF peak at f 5 p/2 and a broader

coverage of wave phases. As s 5 1.5, convective in-

stability can be generated in all wave phases. For wave-

induced shear instability, it has the most distinct saddle

shape of PDF between f 5 p and f 5 0 as s 5 0.78,

which is most consistent with the estimation from linear

wave theory. This saddle-like distribution is undermined

by the nonlinear effects as the surface forcing becomes

stronger. Here, it merits attention that PDFs of both in-

stabilities change little from s 5 0.9 to s 5 1.0 but alter

much from s 5 1.0 to s 5 1.1, which is quite different from

the result from linear stability analysis (Lombard and

Riley 1996) that no major qualitative differences exist in

instabilities between s 5 0.9 and s 5 1.1. This is consistent

with the results shown in section 3 that most high-mode

harmonics did not grow rapidly until the surface forcing

goes beyond s 5 1.0, which actually addressed the dif-

ference in instabilities between s 5 0.9 and s 5 1.1 here.

Finally, characteristics in the phase distribution of both

instabilities are summarized in a concept diagram (Fig. 11).

In linear wave theory, convective instability is confined

within the overturning area and distinctly separated from

wave-induced shear instability. Nonlinearities in the flow

expand the phase range of both instabilities. As illus-

trated in Fig. 11, with nonlinearities included, there are

some overlapping phases in PDFs of both instabilities,

which indicated that both convective instability and

wave-induced shear instability can occur in these phases.

5. Diapycnal mixing

The breaking of internal waves is accompanied by

isopycnal distortions, leading to an irreversible diapycnal

transfer of heat and salinity: that is, diapycnal mixing in

the stably stratified fluid. Consistent with the estimation

of diapycnal mixing in the oceanographic studies, we

combine density fields for time t 5 4T–7T in eight en-

semble cases (B3 and C1–C7) to enable stable averaging

and then compute the average as the final stratification

rm for examining the diapycnal mixing. Figures 12a,b show

a significant diapycnal mixing in the region [22.5Lz, 0],

as indicated by a density flux of heavier water moving

upward and lighter water moving down. Diapycnal mix-

ing has a maximum modification of the initial stratifica-

tion at z 5 20.5Lz, corresponding to an enhanced vertical

gradient of density flux there.

To quantify this mixing, an eddy diffusivity Kr is cal-

culated from the vertical density flux �r9w and the

mean vertical density gradient drm/dz using the formula

of K
r

5 �r9w/(drm/dz) (Osborn 1980; Winters and

D’Asaro 1996; Barry et al. 2001). As shown in Fig. 12c,

strong diapycnal mixing of Kr ; 1 31024 occurs beneath

the surface and decays rapidly below z 5 20.5Lz. This

vertical decay of diapycnal mixing results from the ki-

netic viscosity and density diffusion in the model, which

acts as a damping factor in the wave amplitude and

undermines the wave breaking in the deeper depths.

We now examine the relationship between the strength

of diapycnal mixing and surface forcing. As shown in

Fig. 13, the Kr maximum increases from 1.5 3 1025 as s 5

0.78 to 2.15 3 1024 as s 5 1.1, which suggests that en-

hanced diapycnal mixing is generated in the flow induced

by the stronger surface forcing. However, the strongest

forcing (s 5 1.5) does not lead to the strongest mixing,

as the Kr maximum is 7.5 3 1025. This can be explained

from Fig. 6 that considerable overturning occurred in the

earlier stage t 5 T–4T because of the forcing being so

strong. As a result, some mixing is induced and the basic

stratification is moderately modified. The modified strat-

ification further inhibits the occurrence of overturning,

finally resulting in a moderate mixing.

To compare our results with realistic oceanic flows,

consider some nondimensional numbers such as the

Froude number Fr 5 mrU/N and Reynolds number Re 5

UL/n, where U denotes the root-mean-square magnitude
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of the horizontal velocity. In our study, we take L 5 Lx 5

2 and calculate U as the average horizontal velocity in the

flow t 5 4T–7T. As shown in Table 2, in our numerical

simulations (B1–B5), the Froude numbers vary from

0.508 to 0.772, which is within the value range of the

ocean (Fr 5 0.1–1). On the other hand, the Reynolds

number in the numerical simulation is at least two or-

ders smaller than that in the ocean. As shown in Table 3,

Re ; O(104) is currently the biggest Reynolds number

our model can achieve, which is still far from the Reynolds

number Re ; O(107) in the real ocean. This may be be-

cause our simulation is restricted to two dimensions so that

FIG. 10. As in Fig. 9, but for cases B1–B5. Only the averaged PDFs are plotted and colored in blue (B1), red (B2), black (B3), green (B4),

and magenta (B5).
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no isotropic turbulence develops and there is little energy

transfer through the Kolmogorov cascade to smaller scales

on which the molecular viscosity dominates dissipation.

In Table 2, diapycnal mixing is calculated in terms

of the Cox number Cox 5 Kr/k (eddy diffusivity Kr

normalized by molecular diffusivity k) for comparison

with such diapycnal mixing in the ocean. As shown in

Table 2, when the surface forcing just reaches the mag-

nitude to generate isopycnal overturning (s 5 0.78),

wave breaking is little induced in the flow and diapycnal

mixing of Cox 5 1.5 is as weak as in a laminar regime. As

the surface forcing reaches and exceeds s 5 1.0, enhanced

FIG. 11. Concept diagram of a large-amplitude wave (s . 1) with isopycnal (deep gray),

velocity (black vectors), and overturning area (deep gray shaded). Two groups of PDFs are

drawn; PDFs of convective instability and shear instability estimated from linear theory are

plotted as solid lines and PDFs of convective instability and shear instability with nonlinearities

included are plotted as dotted lines, and as summarized from cases B1–B5.

FIG. 12. (a) The final density profile rm (gray solid) and initial density profile rini (black dotted); rm is

obtained by averaging the combined density fields t 5 4T–7T of eight ensemble cases (B3 and C1–C7).

(b) Difference between rm and rini (black) and the opposite of mean vertical density flux �r9w (gray);

�r9w is calculated from the combined velocity and density fields t 5 4T–7T of eight ensemble cases (B3

and C1–C7). (c) The profile of turbulent diffusivity K
r

5 �r9w/(dr
m

/dz) formulated as the ratio of the

vertical density flux �r9w to the mean vertical density gradient drm/dz.
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wave breaking induces stronger mixing. When s 5 1.1, the

Cox number amounts to 21.5, which is in the lower range

of reported values for the ocean Cox ; O(102) (Ivey et al.

2008).

Table 3 projects our nondimensional results (cases B1

and C1–C7) to their dimensional counterparts in the real

ocean. For this purpose, we use representative oceanic

values chosen to be consistent with the GM79 model

developed by Garrett and Munk (1979) and Munk (1981).

The Brunt–Väisälä frequency in the oceanic main ther-

mocline is taken to be NO 5 5 3 1023 s21.

Table 3 shows that our model can be treated as the

simulation of the breaking of a primary wave with mod-

erately low frequency of v 5 1.429 3 1023 s21, horizontal

wavelength of 200 m, and vertical wavelength of 60 m.

The wave frequency v is selected to be 0.286NO to match

the available numerical simulations. The vertical wave-

length of 60 m was chosen from those represented in

GM79 as giving a 10-m vertical scale typical of wave-

induced fine structure. Also from Table 3, the maximum

horizontal velocity umax 5 0.05 m s21 is realistically

achieved in the oceanic thermocline. That is to say, the

condition s $ 1 can be satisfied for the wave breaking. In

addition, it should be pointed out that the primary wave

with moderate frequency v 5 0.286NO is not commonly

matched to an obvious generation mechanism, but it can

be generated by the superposition of many small-slope

waves with different frequencies. From the mechanism

described in Bell (1978), a broad range of internal wave

(with frequencies between the earth rotation f and NO)

could radiate from the base of mixed layer, and v 5

0.286NO is in the middle of the range between f and NO.

On the lower end, the passing storms generate waves

with low frequency close to f ; on the upper end, Lang-

muir circulations can induce the high-frequency waves

close to the buoyancy NO (Polton et al. 2008). As a result

of the superposition of waves with different frequencies,

the primary waves v 5 0.286NO can be obtained.

Therefore, our results may shed some light on wave

breaking in the real ocean.

6. Conclusions and discussion

This study sheds light on the breaking of large-amplitude

progressive internal gravity waves. Using a newly devel-

oped spectral–pseudospectral model, a monochromatic

two-dimensional primary wave of chosen frequency and

horizontal wavenumber and with slowly increasing wave

steepness is prescribed at the top boundary as forcing and

propagates downward. For waves with forcing frequen-

cies v 5 0.143N–0.429N, the wave-induced density

perturbations result in isopycnal overturning and asso-

ciated convective instability when the steepness reaches

FIG. 13. Scatterplot of the turbulent diffusivity Kr maximum

against the surface forcing. The Kr maximum corresponding to

s 5 1 is calculated from cases B3 and C1–C7. Other Kr maximums

are calculated from cases B1, B2, B4, and B5.

TABLE 2. Nondimensional number in flows under different

constant forcing s: the Froude number Fr, the Reynolds number Re,

and the Cox number. Diapycnal mixing is shown by the Cox

number, which is defined as eddy diffusivity Kr normalized by

molecular diffusivity k.

s Cox Fr Re

0.78 1.5 0.508 6.8 3 103

0.9 6.3 0.592 7.8 3 103

1.0 10.9 0.648 8.6 3 103

1.1 21.5 0.772 1.0 3 104

1.5 7.5 0.595 7.9 3 103

TABLE 3. Comparison between physical variables in the DNS of

our study and those in the real ocean. In the DNS, variables are

dimensionless and associated values are calculated from cases B3

and C1–C7. Values in the real ocean are consistent with GM79

model developed by Garrett and Munk (1979) and Munk (1981).

The wave frequency is v 5 0.286NO, where NO 5 5 3 1023 s21 is

the Brunt–Väisälä frequency adopted for the oceanic thermocline.

DNS Ocean

v 0.2 1.429 3 1023 s21

Lx 2.0 200 m

Lz 0.596 60 m

U 0.043 0.05 m s21

n 1.0 3 1025 1.0 3 1026 m2 s21

Re 8.6 3 103 1.0 3 107
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the range sc 5 0.75–0.79. Isopycnal overturning is a

sufficient condition for subsequent wave breaking, be-

cause when s 5 sc no primary wave energy is being

transferred to high-mode harmonics, but high-mode

harmonics grow rapidly beyond s 5 1. In addition, lower-

frequency primary waves showing a more efficient trans-

fer of wave energy from the primary mode to higher

modes.

A local gradient Richardson number is defined as

Ri 5 2(g/r0)(dr/dz)/z2 to separate convective instability

(Ri # 0) from wave-induced shear instability (0 , Ri ,

0.25). Consistent with linear theory, convective instability

has a maximum in PDF at wave phase f 5 p/2 where the

greatest density perturbations are induced by wave to

counteract the background stratification, whereas shear

instability has double maxima around f 5 0 (wave

trough) and f 5 p (wave crest) saddled by a minimum at

f 5 p/2. For both instabilities, however, the phase

ranges are broadened significantly by nonlinearities in-

troduced by the breaking waves.

Comparisons of our results with realistic oceanic flows

are made through a similarity in the nondimensional

numbers Fr and Re. Diapycnal mixing is shown by the

Cox number Cox 5 Kr /k, which is defined as eddy dif-

fusivity Kr normalized by molecular diffusivity k. The

Cox numbers increase from 1.5 (s 5 0.78) to 21.5 (s 5 1.1),

and the latter is in the low range of values in the ocean.

A monochromatic internal gravity wave whose am-

plitude can steepen over s 5 1 probably never occurs in

the ocean thermocline. There, internal gravity wave

trains typically disperse until their steepness is small

(s� 1) and wave breaking is more likely to be generated

by a local superposition of multiple small-amplitude

waves of comparable frequencies but different wave-

lengths, creating a patch of steepness s comparable to or

greater than 1 that then evolves with its own, nonlinear

dynamics. This situation may perhaps be simulated in

our model by forcing from the top boundary with mul-

tiple, small-amplitude waves with random phase.

Also, no earth rotation f is included in present study.

Actually, f is much smaller than the wave frequency v in

our study; thus, it is valid to neglect f. However, for the

waves with very low frequency so that f is comparable to

v, rotation will introduce a velocity component trans-

verse to the direction of wave propagation and associ-

ated transverse shear instability in convectively stable

waves (Dunkerton 1984; Fritts and Rastogi 1985) and also

will result in shear instability parallel to wave propagation

by reducing the vertical wavelength (Dunkerton 1997).

There is no preferred phase in the low-frequency waves

at which the instability is mostly likely to occur (Lelong

and Dunkerton 1998). Based on the conclusions from

these previous researches, with rotation included, the PDF

of wave-induced instabilities in the current study would

be totally changed and need examination in future

work.

The present study of the mechanisms and signatures for

the breaking of approximately monochromatic downward-

propagating waves was intended as preparation for what

would be a computationally much more demanding sim-

ulation of randomly superimposed waves, each indi-

vidually of only moderate amplitude but collectively

intermittently combining to exceed some threshold that

triggers breaking and consequent turbulence. One po-

tential issue in interpreting the present results is our

treatment of the horizontal momentum associated with

a downward-propagating wave. Theory requires that

a linear internal gravity wave is associated with a hor-

izontal momentum equal to its wave action times the

horizontal component of its wavenumber (Bretherton

1969). Here, the wave action is the wave energy divided

by the intrinsic frequency (i.e., its frequency relative to

a frame of reference moving with the local average ve-

locity of the fluid particles involved in the wave) and is

a positive multiple of the wave amplitude squared,

rather than of the wave amplitude itself. Because, unlike

surface waves, internal gravity waves have no Stokes

drift, when a wave packet propagates into a region that

is otherwise at rest this wave momentum must be man-

ifested as an O(a2) change in the average horizontal

velocity within the volume occupied by the packet. In

the vertical direction, the wave momentum is negated by

the gravitational force associated with a vertical dis-

placement of magnitude O(a2). However, for this study

of downward-propagating progressive waves, the hori-

zontal average velocity was maintained everywhere at

zero.

The rationale for this decision was as follows: The best

available dynamically consistent characterization of typ-

ical internal wave activity observed at many locations

worldwide in the main thermocline is the GM79 model

developed by Garrett and Munk (1979) and Munk

(1981). This wave spectrum is everywhere horizontally

isotropic, and at all wavenumbers the vertical wave en-

ergy fluxes are symmetric between upward and down-

ward. These symmetries imply that at every location the

net wave momentum and hence the wave-induced hor-

izontally averaged velocities cancel out completely.

Because the primary purpose of studying downward-

propagating progressive waves of large amplitudes was

to identify signatures of wave breaking and subsequent

turbulence that might be useful in a numerical study

simulating circumstances characteristic of the main ther-

mocline, it seemed sensible to ignore such secondary ef-

fects of a coherent, large-amplitude, directional wave

train.
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Stimulated by the comments of an anonymous re-

viewer, a preliminary numerical experiment has revealed

that retaining the horizontally averaged velocity associ-

ated with a downward-propagating progressive wave of

significant amplitude can indeed make a large difference

to the distributions of isopycnal overturning and fully

developed turbulence. This difference appears to be

related to the growth with time of a discrepancy in phase

between the imposed forcing at the top boundary and

that of the existing wave in the fluid below, and it may

not be physically realistic. Further study will be neces-

sary to resolve this issue.
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