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ABSTRACT

A statistical method is developed to assess the full climate feedback of nonlocal climate feedbacks. The
method is a multivariate generalization of the univariate equilibrium feedback assessment (EFA) method
of Frankignoul et al. As a pilot study here, the generalized EFA (GEFA) is applied to the assessment of the
feedback response of sea surface temperature (SST) on surface heat flux in a simple ocean–atmosphere
model that includes atmospheric advection. It is shown that GEFA can capture major features of nonlocal
climate feedback and sheds light on the dynamics of the atmospheric response, as long as the spatial
resolution (or spatial degree of freedom) is not very high.

Given a sample size, sampling error tends to increase significantly with the spatial resolution of the data.
As a result, useful estimates of the feedback can only be obtained at sufficiently low resolution. The
sampling error is also found to increase significantly with the spatial scale of the atmospheric forcing and,
in turn, the SST variability. This implies the potential difficulty in distinguishing the nonlocal feedbacks
arising from small-scale SST variability. These deficiencies call for further improvements on the assessment
methods for nonlocal climate feedbacks.

1. Introduction

One critical issue in climate dynamics is understand-
ing the feedback response of the atmosphere to its
lower boundary forcing over the ocean and land. This
feedback response is usually difficult to assess, because
of the overwhelming internal atmospheric variability
that occurs independent of the boundary forcing. In
particular, in the real world, with a single realization,
climate feedback can be assessed only statistically. In
comparison, climate feedbacks in a climate model can

be assessed dynamically with ensemble experiments to
suppress internal atmospheric variability.

Based on the stochastic climate theory of Franki-
gnoul and Hasselmann (1977), Frankignoul et al. (1998)
proposed a simple statistical method for the assessment
of midlatitude oceanic feedback to the atmosphere.
Their method takes advantage of the time-scale sepa-
ration between the rapid (�week) atmosphere and
slow (�month) sea surface temperature (SST). As
such, at a slow climate time scale, the response of an
atmospheric variable x(t) to the SST y(t) can be ap-
proximated as (Frankignoul 1985)

x�t� � by�t� � n�t�, �1.1�

with n(t) being an internal atmospheric variability.
Here, by(t) represents the quasi-equilibrium atmo-
spheric response to SST with b as the feedback param-
eter. The word “feedback” here is used because the
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SST variability is always forced predominantly by the
atmospheric variability in the first place, and therefore
its impact on the atmosphere represents a feedback to
the atmosphere. For this reason, the atmospheric re-
sponse is also sometimes called feedback response or
simply feedback. The feedback parameter b can be as-
sessed from the SST-led ocean–atmosphere covariance,
as opposed to the simultaneous covariance. A simulta-
neous covariance tends to mix the effects of the atmo-
spheric forcing with the SST feedback because part of
the SST variability is forced by, and therefore is corre-
lated simultaneously with, internal atmospheric vari-
ability. However, SST variability is not correlated with
atmospheric internal variability of sufficiently later
times, because SST cannot be forced by internal atmo-
spheric variability of later times. Therefore, we have

�n�t�, y�t � ��	 � 0, � � �n, �1.2�

where �p, q	 represents the covariance between p and q,
and 
 is a lag longer than the persistence time of the
atmospheric internal variability 
n.1 With (1.2), b can be
estimated by first multiplying y(t � 
) on both sides of
(1.1) and then ensemble averaging as (Frankignoul et
al. 1998)

b �
�x�t�, y�t � ��	

�y�t�, y�t � ��	
, � � �n. �1.3�

This approach makes use of the SST-led covariance
with the atmosphere in a quasi-equilibrium response
state and therefore will be called the equilibrium feed-
back assessment (EFA). Although the scalar formula of
EFA in (1.3) was originally used to assess the local
feedback of SST on the overlying atmosphere (Franki-
gnoul et al. 1998), it has more general applications. In-
deed, it can be used to assess the nonlocal atmospheric
feedback to any single SST index y(t), such as a region-
ally averaged SST (Liu and Wu 2004), or an SST EOF
coefficient (Ferreira and Frankignoul 2005). This
univariate EFA in (1.3) has been applied to the feed-
back of extratropical SST on atmospheric dynamic
fields (Czaja and Frankignoul 2002; Liu and Wu 2004;
Ferreira and Frankignoul 2005; Liu et al. 2007), and the
feedback of vegetation on climate (Z. Liu et al. 2006;
Notaro et al. 2006). For convenience, the lower bound-
ary variable will hereafter simply be called the SST.

To further assess the full climate feedback between
the entire SST field and an atmospheric field, including
local and nonlocal feedbacks, one may formally extend
the univariate EFA in (1.3) by performing the EFA
assessment of the atmospheric variability on the SST
variability at each point. However, as will be shown
later, the interpretation of this assessment is problem-
atic, because SST variability at different points could
covary with each other and therefore the contribution
of each individual SST point to the atmosphere be-
comes unclear. This motivated us to further develop a
more general EFA that can assess the full climate feed-
back response. The univariate EFA will be generalized
to a multivariate EFA in section 2. As a pilot study
here, the generalized EFA and its sampling error are
studied in a simple coupled ocean–atmosphere model
in section 3. A summary and further discussion are
given in section 4. The generalized EFA is shown to be
able to identify some important features of nonlocal
climate feedbacks. In the mean time, it is shown that
sampling error tends to increase significantly with the
resolution of the data and the spatial scale of the SST
variability. As a result, given a finite sample size, useful
assessment can only be made at a limited resolution.
The potential challenges and problems associated with
the assessment of nonlocal climate feedback are also
discussed.

2. The nonlocal assessment

a. The feedback response

Given the anomalous atmospheric and SST fields of
I and J points, respectively, the atmosphere and SST at
time t can be written in vectors x(t) and y(t), respec-
tively, as

x�t� � �
x1�t�

.

xi�t�.

.

xI�t�

�, y�t� � �
y1�t�

.

yj�t�.

.

yJ�t�

�.

As a direct extension of the univariate response in (1.1),
the atmospheric variability in region i is assumed to be
forced by the entire SST field as

xi�t� � �
j�1

J

bijyj�t� � ni�t�, �2.1�

with ni(t) as the local atmospheric internal variability.
The bij represents the impact of the jth SST component
on the ith atmosphere component that is independent of
other SST variability. The equilibrium atmospheric re-

1 For application to the observed climate variability such as the
North Atlantic Oscillation (NAO) and Pacific–North America
(PNA), the long persistence in the final total variability x is caused
dominantly by the response to the slow SST [by (t) in (1.1)] in-
stead of the internal variability [n(t) in (1.1)], which is unknown.
Therefore, a lag-1 month is usually sufficient to allow (1.2) to be
valid.
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sponse in (2.1) at T succeeding times can be rewritten in
the vector form as

x�t� � By�t� � n�t�, t � 1, 2, . . . , T. �2.2�

The matrix for the response coefficient,

B � I�bij�J,

is called the feedback response matrix, or simply, the
feedback matrix. It effectively acts as a Green function
for full feedback responses. Our objective is to assess
this feedback matrix.

The feedback matrix can be estimated using a mul-
tivariate generalization of the scalar EFA in (1.3) as
follows. We define the variable matrix as

Yt � �y�1�, . . . y�t�, . . . y�T�,

Xt � �x�1�, . . . x�t�, . . . x�T�,

Nt � �n�1�, . . . n�t�, . . . n�T�,

�2.3�

where the subscript t is for the convenience of the rep-
resentation of lagged covariance to be discussed next.
The atmospheric response in (2.2) can be written as

Xt � BYt � Nt. �2.4�

Right multiplication of YT
t�
 on (2.4) yields

CXY��� � BCYY��� � CNY���, �2.5�

where the lagged cross-covariance matrices are

CYY��� � �y�t�, y�t � ��	 �
1
T

YtYt��
T

CXY��� � �x�t�, y�t � ��	 �
1
T

XtYt��
T

CNY��� � �n�t�, y�t � ��	 �
1
T

NtYt��
T

, �2.6�

with the superscript “T” standing for the transpose.
Since SST variability cannot be forced by atmospheric
variability of later times, for infinite samples, we have

CNY��� � 0 for � � �n. �2.7�

This leads to a generalized EFA (GEFA) estimator for
the feedback matrix as

B��� � CXY���CYY
�1 ���, for � � �n. �2.8�

In practice, we can take 
n � 0, if the data are binned
over a period (e.g., monthly) longer than the adjust-
ment time of the atmospheric internal variability.

For a finite sample, the sampling error is usually not
zero and varies with the lag [i.e., �(
) � CNY(
)C�1

YY(
) �
0] and therefore the estimator B(
) also varies with the
lag. The sampling error tends to increase with lag, be-
cause of the decreasing autocovariance CYY(
) and, in

turn, increasing CYY
�1 (
), with lag [as discussed for the

scalar EFA by Z. Liu et al. (2006)]. Therefore, the first
lag is usually preferred. An estimator much more stable
than (2.8) with lag turns out to be an integral estimator

B̃��� � �
s��n�1

�

CXY�s�� �
s��n�1

�

CYY�s���1, �2.9�

because the vanishing of sampling error in (2.7) is now
replaced by a weaker condition of a diminishing inte-
grated sampling error �


s�
n�1CNY(s) � 0. Hereafter,
unless otherwise specified, we only use the estimator at
the first lag 
 � 
n � 1, with the lag subscription in (2.9)
omitted. [For the first lag, (2.8) and (2.9) are identical.]

In a climate model, in principle, the matrix B can also
be obtained dynamically with ensemble experiments,
independent of any statistical assessment. This is im-
portant because it provides an independent check
against the statistical method, which is obtained under
assumptions, such as linearity. For a specific bij, we can
perform an ensemble of atmospheric model experi-
ments in which the SST anomaly is prescribed to be
nonzero only at the point j as yj(t).2 With �ni(t)	 � 0, the
ensemble mean of the atmospheric model response in
(2.1) gives �xi(t)	 � bijyj(t). Therefore, the nonlocal
feedback response can be assessed dynamically as

bij � �xi�t�	�yj�t�. �2.10�

It is now clear that the statistical method is also critical
for model–data comparison through a combined dy-
namical–statistical assessment that is potentially pow-
erful for the understanding of climate feedback (Liu
and Wu 2004; Liu et al. 2007). First, the statistical as-
sessment is applied to both the observation and the
model to evaluate the model performance on the feed-
back. If the model feedback is reasonable, we can then
perform further specific dynamic experiments in the
model to validate the method in (2.8) itself, which is
derived under assumptions, such as linearity. The dy-
namical experiments also directly shed light on the
mechanism of the atmospheric response.

b. The total feedback response

A useful feedback matrix can also be derived by di-
rectly applying the scalar EFA in (1.3) to each pair of
the response (xi) and forcing (yj) as

A � I�aij�J with aij �
�xi�t�, yj�t � ��	

�yj�t�, yj�t � ��	
. �2.11�

2 In practice, in atmospheric general circulation models, one
chooses a small region near point j, instead of the single point j
(e.g., Gritsun and Branstator 2007).
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This matrix will be called the total feedback response
matrix, or simply the total matrix, and the correspond-
ing feedback will be called the total feedback, to be
distinguished from the true feedback represented by
the feedback matrix B. (As will become clear later, the
word “total” here is reminiscent of the total derivative,
in contrast to the partial derivative analogy of the feed-
back matrix.) The two matrices A and B can be shown3

to be related to each other through the equivalence
relation:

A � BM, or aij � �
k�1

J

bikmkj. �2.12�

Here, M is a nondimensional matrix of lagged SST au-
tocovariance, called the SST mutual response matrix or
simply the mutual matrix:

M � J�mkj�J with mkj �
�yk�t�, yj�t � ��	

�yj�t�, yj�t � ��	
. �2.13�

By definition, the diagonal elements satisfy mjj � 1.
Although inaccurate, the name “mutual response” here
is meant to remind one of the analogy to the feedback
response among the SSTs themselves.4

The equivalence relation in (2.11) shows that the to-
tal matrix A, in general, differs from B. In some sense,
aij can be thought as the ith atmospheric response to the
jth SST, only if yj is the sole forcing on xi in the coupled
climate system such that

xi�t� � aijyj�t� � nij�t�. �2.14�

In a general coupled system, however, xi is also affected
by SSTs of other regions and therefore aij does not
represent the true response of xi to yj alone. Rather,
since all the SSTs vary slowly, at short lags, mkj can be
approximated as the regression coefficient rkj as

mkj �
�yk�t�, yj�t � ��	

�yj�t�, yj�t � ��	
�

�yk�t�, yj�t�	

�yj�t�, yj�t�	
� rkj.

Therefore, (2.12) suggests that aij could be thought as
the total feedback response on xi from all the SSTs that
covary with the SST yj in the coupled system. This is in
contrast to the feedback bij that identifies the SST forc-

ing impact on xi from the SST yj alone. In this sense, the
total matrix can be thought of as the total derivatives of
the feedback responses to an individual SST forcing,
while the feedback matrix B corresponds to the partial
derivative.

It is also clear from the equivalence relation that if
the SSTs are largely independent of each other, M is
close to the identity matrix M � I, and therefore A � B.
Now, the scalar EFA and GEFA give the same results.
This also highlights the point that the total matrix can
be substantially different from the feedback matrix B if
the SST forcings are correlated.

It should be pointed out that, even if A is not the
same as B, A still provides important information on
the dynamics of the atmospheric response. This can be
seen by rewriting the equivalence relation in (2.12) as J
atmospheric response relations:

aj � Bmj j � 1, 2, . . . , J, �2.15�

where

aj � �
a1j

.

aij

.

aIj

� and mj � �
m1j

.

mkj

.

mIj

�
are the atmospheric response field and mutual response
SST field, respectively. Therefore, in a climate model, A
can also be obtained dynamically using ensemble atmo-
spheric experiments as follows. For a prescribed SST
forcing field y � mj, the ensemble mean of the atmo-
spheric experiments [in (2.2)] gives the atmospheric re-
sponse field of aj, that is,

�x	 � By � Bmj � aj, j � 1, 2, . . . , J. �2.16�

As such, both B and A provide information on the
atmospheric dynamics through the dynamic assess-
ments in (2.10) and (2.16), respectively. The feedback
matrix B contains the complete information of atmo-
spheric dynamics of I � J dynamic relations in (2.9).
Given B, we can predict the atmospheric response to
any SST field y, as in (2.10). In comparison, the total
matrix A only provides a subset (of J) dynamic rela-
tions in (2.16), which are associated with the atmo-
spheric model response to J SST fields mj that are gen-
erated in the coupled system.

As discussed in the rest of the paper, most challeng-
ing for the nonlocal feedback is the assessment of B for
a finite sample size. The GEFA in (2.8) is much more
sensitive to sampling errors than the scalar EFA used
for A in (2.13), because the sampling error can increase
dramatically in the former by the cross covariance of

3 Since �ni(t), yj(t � 
)	 � 0, multiplying yj(t � 
) in (2.1) and
ensemble averaging yield �xi(t), yj(t � 
)	 � �J

k�1bik�yk(t), yj(t �

)	. Dividing both sides by �yj(t), yj(t � 
)	, and noticing (2.10) and
(2.12), we have aij � �J

k�1bikmkj, or (2.11).
4 The mkj may appear to be derived using the scalar EFA as a

mutual response between the SST pair k and j, with yk responding
to yj, from an equilibrium response yk(t) � mkjyj(t) � n̂kj(t).
Strictly speaking, however, it is not an SST response, because the
SSTs all vary at the slow time scale and therefore the equilibrium
response is not valid.
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SST variability. The covarying SST tends to make the
SST covariance matrix CYY(
) singular, which leads
to a large CYY

�1 (
), and, in turn, a large sampling error
in (2.8).5

3. Feedback in a simple model

a. A thermally coupled model

As a pilot study, here we test GEFA by assessing the
SST feedback on surface heat flux in a simple thermally
coupled ocean–atmosphere model. This model extends
the stochastic climate model of Frankignoul and Has-
selmann (1977) by including a temperature advection in
the atmosphere model in the form of

U*�T*a ��x* � �*�T* � T*a � � n*�x*, t*�,

where T*a is the surface air temperature, T* is the SST,
and n* is a stochastic forcing associated with atmo-
spheric internal variability. With a proper nondimen-
sionalization, the coupled system can be rewritten in
nondimensional variables as

�Ta��x � ��T � Ta� � n�x, t�, �3.1a�

�T��t � H � dT, �3.1b�

where

H � Ta � T �3.2�

is the downward heat flux, d is the oceanic damping,
and the model domain is now 0 � x � 1. Since the SST
is forced locally by the heat flux as shown in the oceanic
heat budget equation in (3.1b), the only nonlocal pro-
cess in the coupled system is the atmospheric advection
�Ta/�x in the atmospheric heat budget equation in
(3.1a). The detailed form of this teleconnection is not
important for our study here. The important thing is
that our model in (3.1) reflects the fact that, at short
time scales (monthly to seasonal), remote climate tele-
connection is dominated by atmospheric processes (Liu
and Alexander 2007). The relative importance of local
coupling verse nonlocal advection is measured by �,
with a larger � representing a stronger local coupling,
or a weaker advection. In the limit of strong local cou-
pling (� → �), the atmospheric heat budget is domi-
nated by the local heat budget 0 � �(T � Ta) � n(x, t).

For convenience, � � 0 is used below such that the
direction of increasing x is downwind. For clarity of
presentation, the oceanic damping is set to d � 0, unless
otherwise specified.

At the upstream boundary x � 0, the air temperature
is set as

Ta�0, t� � Ta0�t�, �3.3�

which can be thought as a stochastic forcing generated
by atmospheric internal variability and land–atmo-
spheric interaction upstream. With this boundary con-
dition, the atmospheric equation in (3.1a) can be inte-
grated as

Ta�x, t� � Ta0�t�e
��x � �

0

x

e���x�s���T�s, t� � n�s, t� ds.

�3.4�

Dividing the model domain into I intervals of the width
�x � 1/I, (3.4) can be integrated with the “downwind”
scheme as

Tai � Ta0�t�e
��xi � �

j�1

i �
xj�1

xj

e���xi�s���T�s, t� � n�s, t� ds,

� Ta0�t�e
��xi � �x �

j�1

i

e���xi�xj���Tj�t� � nj�t�, �3.5�

where, Tai(t) � Ta(xi, t), Ti(t) � T(xi, t), and ni(t) � n(xi,
t) are the values at xi � i�x. [The result here remains
similar with the trapezoid integration scheme (not
shown).] The discrete atmospheric equation in (3.5) can
be put in the vector form as

Ta�t� � BaT�t� � N�t�, �3.6�

where

Ta�t� � �
Ta1�t�

Ta2�t�

. . .

TaI�t�
�, T�t� � �

T1�t�

T2�t�

. . .

TI�t�
�, n�t� � �

n1�t�

n2�t�

. . .

nI�t�
�,

and a transformed stochastic forcing is introduced as

N�t� � �Ba���n�t� � Ta0�t�qb, �3.7�

with

qb � �
q

q2

. . .

qI
�, �3.8�

5 Similar difficulties arise if one uses the equivalence relation
in (2.11) to estimate B as B � AM�1. Both A and M are ob-
tained with the local method. However, since the determinants of
CYY(
) and M are related to each other as det(CYY) � [�J

j�1�yj(t),
yj(t � 
)	] � det(M), an ill-conditioned CYY(
) also corresponds to
an ill-conditioned M, and in turn a greater sampling error in B.
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representing the downwind decaying effect. The feed-
back matrix for Ta is

Ba � ��
1 0 . . 0 0

q 1 . . . 0 0

. . . . . . . . . . . . . . .

q�I�1��1 q�I�1��2 . . . 1 0

qI�1 qI�2 . . . q 1
�, �3.9a�

with

� � ��x � 0, q � e�� 	 1. �3.9b�

Physically, the positive diagonal elements represent the
positive local response of air temperature to SST. The
positive off-diagonal elements represent the nonlocal
response, with the ith row representing the nonlocal
response of air temperature Tai to all the upstream
SSTs Tj (j � i), whose influence decays with distance as
represented by an increasing power of q. Alternatively,
the jth column represents the remote impacts of the
SST forcing Tj on all the air temperature downstream
Tai (i 
 j), also decaying with the distance.

The SST equation in (3.1b) can also be discretized as

dT�dt � Ta � T. �3.10�

Equations (3.6) and (3.10) form a coupled system of I
atmospheric variables and I(�J) SST variables. Substi-
tuting (3.6) into (3.10), we have the equation for the
coupled system in terms of the SST as

dT�dt � BT � N�t�. �3.11�

Here, the heat flux has been derived as

H�t� � Ta�t� � T�t� � BT�t� � N�t�, �3.12�

and the feedback matrix for heat flux is

B � Ba � I � �
�� 0 . . . 0 0

�q �� . . . 0 0

. . . . . . . . . . . . . . .

�q�I�1��1 �q�I�1��2 . . . �� 0

�qI�1 �qI�2 . . . �q ��

�.

�3.13a�

Here,

� � 1 � � � 0 �3.13b�

is required for the numerical stability of the coupled
system (due to the finite difference in space), because
(3.11) has I eigenvalues of the same value as ��. Noting
Ba in (3.9), the feedback matrix for heat flux B can be
interpreted as follows. The negative diagonal elements
reflect the negative local ocean–atmosphere thermal
feedback. [Note that our definition of feedback param-

eter is of the opposite sign to that of Frankignoul et al.
(1998).] A positive SST warms the local air temperature
[by a factor of � � 0, as in (3.9)], which reduces the
air–sea temperature difference, and, in turn, the down-
ward heat flux (to � � 1 � �; Barsugli and Battisti
1998). The off-diagonal positive elements reflect the
nonlocal positive feedback response: along the jth col-
umn, a positive SST Tj warms the air temperature
downstream, and, in turn, enhances the downward heat
flux in the downstream regions (i � j).

b. The two-point model

It is instructive to start with the two-point model (I �
J � 2), with i � 1 and 2 representing the upstream and
downstream points, respectively. The feedback matri-
ces for air temperature and heat flux are now, respec-
tively,

Ba � ��1 0

q 1	, and n�t� � �
n1�t�

n2�t�

. . .

nI�t�
�. �3.14�

The SSTs and, in turn, their cross-covariance matrix
CTT(
) can be calculated analytically (see appendix A).
At the limit of short lead (
 → 0�), CTT(
) can be
obtained from (A.8) as

CTT � �C11 C12

C21 C22
	

�
1

2� � �1
2

�12 �
�q�1

2

2�

�12 �
�q�1

2

2�
�2

2 �
�q

� ��12 �
�q

2�
�1

2	�
,

�3.15�

where �2
1, �2

2, �12 are proportional to the covariance of
the internal variability as defined in (A.5). The mutual
response matrix can therefore be obtained from its defi-
nition in (2.12) as

M � � 1 C12�C22

C21�C11 1 �. �3.16�

As previously discussed, the feedback matrices in (3.14)
reflect the local response (diagonal), the downwind de-
caying of the atmospheric advection (ba21 � b21 � �q),
and the absence of an upwind atmospheric response
(ba12 � b12 � 0). Note, however, a nonzero upwind SST
“mutual response” m12 � 0, because the long persis-
tence of SST can lead to a positive covariance even for
the downwind T2 leading the upwind T1. [As lag in-
creases, however, the upwind influence decays faster
(C12 � e�2�
) than the downwind influence (C21 � e��
),
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as shown in (A.8), because of the preferred downwind
atmospheric advection.] Usually, the cross covariance
in (3.15), and, in turn, M in (3.16), are positive [see the
extreme cases discussed following (A.5)]. This reflects
the SST tendency of covariability with each other due
to the atmospheric advection.

The total response matrices for air temperature and
heat flux can be derived with (2.11), (3.14), and (3.16) as

Aa � BaM � �� 1 C12�C22

q � C21�C11 1 � qC12�C22
�, �3.17a�

A � BM � � �� ��C12�C22

�q � �C21�C11 �� � �qC12�C22
�.

�3.17b�

The difference between the total and feedback matrices
can be seen directly by comparing (3.17) with (3.14).
This difference can also be seen in the examples in Fig.
1, which show all the elements of B, Ba, A, Aa as a
function of the local coupling parameter � for air tem-
perature (Figs. 1a,c,e,g,i) and heat flux (Figs. 1b,d,f,h,j),
in the case of independent stochastic forcings of n1, n2,
and Ta0. The local response at the upwind point is al-
ways identical in the total response and feedback re-
sponse (b11 � a11, ba11 � aa11; Figs. 1a,b), because of the
absence of upwind response for air temperature, and,
in turn, heat flux (b12 � ba12 � 0). The nonlocal total
responses, however, are always more positive than
the feedback response for air temperature (aa12 �
ba12, aa21 � ba21; Figs. 1c,e). This occurs because the
nearby SSTs in the coupled model tend to covary with
each other with the same sign (mij � 0; Fig. 1i), which
reinforces each other’s warming effect on the air tem-
perature. Interestingly, this positive bias also exists for
the local response at the downwind point (aa22 � ba22;
Fig. 1g), reflecting the warm advection effect from the
upstream. This implies that the scalar EFA may bias
the local feedback in a region that is affected signifi-
cantly by remote nonlocal feedbacks. For the heat flux,
the negative local feedback at the downwind point is
reduced (a22 � b22; Fig. 1h), because the nonlocal
warming response to the upstream SST increases the air
temperature and in turn reduces the heat loss locally. In
the meantime, the positive nonlocal total response are
decreased relative to the feedback (a12 � b12, a21 � b21;
Figs. 1d,f), because of the interference of the nonlocal
impact from the negative local feedback nearby.

Finally, some insight can be gained on sampling error
by examining the magnitude of the SST covariance ma-
trix CTT. As discussed for (2.8), sampling error tends to
increase when CTT becomes more ill conditioned. The
determinant of CTT is therefore a useful measure of the

potential sampling error. For the two-point model,
(3.15) gives

det�CTT���1
2�2

2 � �12
2 � ��q�1

2�2��2. �3.18�

This shows that sampling error tends to increase with a
stronger advection or a more coherent forcing pattern.
A stronger advection (relative to local coupling) in-
creases the sampling error because it reduces det(CTT),
as seen in the example of Fig. 1j with an increasing �.
This occurs because an increased advection enhances
the SST correlation downstream. A more spatially co-
herent stochastic forcing also increases the sampling
error. Indeed, in the limit of a perfectly correlated sto-
chastic forcing, one can show [from (A.5)] that �2

1�
2
2 �

�2
12 � 0. Therefore, det(CTT) reaches the minimum

�(�q�2
1/2�)2. Furthermore, if the advection intensifies

FIG. 1. Feedback matrices in the two-point model [(3.6), (3.11)]
as a function of the local coupling strength � in (3.9b). (a), (c), (e),
(g) The elements of (1, 1), (1, 2), (2, 1), and (2, 2), respectively, of
the feedback matrix Ba (circle) and total matrix Aa (plus) for the
air temperature response as in (3.14) and (3.17a). (b), (d), (f), (h)
The same as (a), (c), (e), (g), respectively, but for the response
matrices of the heat flux B and A, as in (3.14) and (3.17b).
(i) The mutual matrix m12 (square) and m21 (asterisk) and
(j) 1/det[CTT(1)], with CTT(
) given in (A.8). The stochastic forc-
ing is assumed of the same variance, but independent of each
other, for the two interior points and the boundary point.
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with � → 0, we have det(CTT) → 0. In this limiting case,
it is no longer possible to recover the feedback matrix
statistically from a coupled simulation. Physically, with
all the forcing perfectly correlated, and a strong advec-
tion, the SSTs over the entire domain become perfectly
correlated. This made it impossible to distinguish the
SST impacts from one region to another from a single
coupled simulation. In contrast, the covariance of SST
does not have obvious impact on the sampling error of
A, because the local estimation in (2.10) does not in-
volve the cross covariance of SST. This suggests that the
estimation of A is much more stable than that for B, as
will be seen later.

c. Multipoint models

Now, we study the multipoint models numerically,
with the focus on the potential sampling error. With our
application to the North Atlantic heat flux feedback in

mind, we will use a sample size of T � 400, with the
data binned in a nondimensional time interval of 0.5,
which corresponds roughly to a monthly dataset of 30–
40 yr. [The observed SST persistence time is about 2
months in the midlatitude, which corresponds to our
model SST persistence time of 1/(1 � �) � O(1).]6

We first study a six-point model with � � 2. The
stochastic forcings are chosen to be independent of
each other, with a standard deviation of �(ni) � 10 (i �
1, . . . , 6) in the interior and �(Ta0) � 1 on the bound-
ary. Figure 2a shows the evolution of three SSTs (at
upstream i � 1, midbasin i � 3, and downstream i � 6)
in one realization. In spite of the independent forcings,

6 Nevertheless, one should be cautious about the direct impli-
cation of the simple model results here to the observed North
Atlantic in the next section, because the parameter regimes and
the physical processes may differ significantly.

FIG. 2. Two examples of the six-point model with � � 2, �(ni) � 10 (i � 1, 6), and
�(Ta0) � 1. In the first example [(a)–(c)], the stochastic forcing is independent of each other.
(a) Time series of SSTs at the most upstream point i � 1 (dash–dot), the midbasin i � 3 (dash),
and the most downstream point i � 6 (solid). (b) The first (solid) and second (dash) PCs of
the SST. (c) The true feedback matrix B (solid line), the GEFA estimator B6 with the full data
(circle), and the estimated total matrix A (plus), with the x axis for the matrix indices in the
order of k � i � 6(j � 1). (d) Three feedback matrices B for the second example, which is the
same as the first example, except for a tripole forcing (n1 � n2, n3 � n4, and n5 � n6): the true
B [solid, the same as in (c)], the GEFA estimators B6 with the full data (circle) and B3 with
the leading 3 SST EOFs (asterisk). The GEFA estimator B6 is seen deteriorating severely
when the independent forcing [in (c)] is replaced with a tripole forcing [in (d)], but is im-
proved significantly when only three EOFs are retained in B3.
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the SSTs show a strong correlation with each other,
with the amplitude increasing downstream. The domi-
nant slow variability is well captured by the first prin-
cipal component (PC), which accounts for 80% of the
total variance (Fig. 2b). This strong correlation of SST
is caused by the nonlocal atmospheric advection. Oth-
erwise, with independent forcings, the SST variability
would have varied independently from each other, with
each EOF explaining about 1/6 of the total variance.

The true feedback matrix for heat flux B is shown in
Fig. 2c (solid line): the elements bij are ordered in a 1D
array bk with k � i � 6(j � 1), increasing first with row
i, then with column j. The negative local feedbacks can
be seen in the negative spikes, which represent the di-
agonal elements bjj � ��x � 1 � 2 � (1/6) � 1 � �2/3;
the positive nonlocal downwind impact is seen as the
positive bk that decreases following each negative
spike, representing the decay with distance; the absence
of nonlocal impact in the upwind direction is repre-
sented by the zeros preceding each negative spike. The
GEFA estimator B with the full data (circles) shows a
good agreement with the true B in the dominant nega-
tive local feedback and the positive downwind impact.
The absence of upwind impact is also captured by the
small values that are statistically indistinguishable from
zero (at the 90% level according to the Monte Carlo
test). For comparison, the corresponding total matrix A
is also plotted (pluses). The strong negative local feed-
back in B becomes weaker in A, and the nonlocal posi-
tive feedback in B become significantly negative in A.
These differences are caused by the positive covariabil-
ity of SST as seen in the time series in Fig. 2a as well as
the significant positive off-diagonal elements in

M � �
1 0.5 0.4 0.2 0.2 0.1

1.3 1 0.7 0.4 0.3 0.2

1.7 1.3 1 0.7 0.5 0.3

2 1.6 1.3 1 0.7 0.5

2.6 2 1.6 1.3 1 0.7

2.9 2.3 2 1.7 1.3 1

� .

Given a finite sample, the sampling error of the
GEFA estimator tends to increase with the resolution,
because the SST field becomes more correlated and
therefore the SST covariance matrix CTT becomes
more ill conditioned. One way to reduce the sampling
error is to first estimate B in the truncated SST EOF
space, and then to recover it back into the physical
space. This EOF truncation filters out small eigenval-
ues of CTT and therefore allows for a better conditioned
CTT in the EOF subspace.

To illustrate the effect of the EOF truncation, we

discuss four cases of resolutions I � 3, 6, 12, and 24,
with the stochastic forcings independent between dif-
ferent points (Fig. 3).7 For each resolution, we perform
a 20-member ensemble experiments. For each en-
semble member experiment, B is estimated I times us-
ing (2.8) as Bf ( f � 1, . . . , I), with Bf obtained with the
leading f SST EOFs. The accuracy of each Bf is mea-
sured against the true B using the ensemble mean of the
pattern correlation cor(Bf, B) (Fig. 3a) and the ampli-
tude ratio �(Bf)/�(B)(Fig. 3b). For I � 3, 6, and 12, the
estimator with the full data ( f � I) is the optimal esti-
mator. The pattern correlation increases with the num-
ber of EOFs, peaking with all the EOFs at the value of
about 0.8–0.9; the amplitude ratio of Bf also increases
toward the true B (ratio 1) when almost all the EOFs
are retained. In contrast, for the high-resolution case of
I � 24, the accuracy of Bf decreases after f � 15, as seen
in both the pattern correlation and amplitude ratio.
Therefore, given a sampling size T, for sufficiently high
resolution, the optimal estimator for B is obtained with
a truncation of SST EOFs.

It, however, remains unclear to us how to determine
the optimal EOF truncation if the true B is unknown, as
in the case of the observation or a complex coupled
model. One possible measure is the successive conver-
gence, based on the successive pattern correlation
cor(Bf�1, Bf) (Fig. 3c) and amplitude ratio �(Bf�1)/
�(Bf) (Fig. 3d). Overall, the successive pattern correla-
tion and amplitude ratio appear to increase with the
number of EOFs and converges toward 1. Although
there is no clear indication of the optimal truncation,
the successive pattern correlation and amplitude ratio
seem to plateau when the EOFs are increased near the
optimal truncation (in the case of I � 24).

It is also interesting to examine the corresponding
total matrix Af with f SST EOFs retained. As expected,
Af differ significantly from the true B at all the resolu-
tions, as seen in pattern correlation (Fig. 3e) and am-
plitude ratio (Fig. 3f). Nevertheless, Af converges rap-
idly with the number of EOF. Indeed, Af remains vir-
tually the same after the first 3 EOFs, as seen in the
successive pattern correlation (Fig. 3g) and amplitude
ratio (Fig. 3h). As discussed before, this rapid conver-
gence occurs because the estimation of Af does not rely
on the SST covariance matrix, and therefore, is insen-

7 An increase in resolution also reduces the accuracy of the
estimation of B by reducing the persistence time of the SST (Liu
et al. 2006), which is proportional to the reciprocal of � � 1 � ��x.
To separate this effect from the truncation of SST EOFs, we set
the effective persistence time the same as in the case of a three-
point model by introducing a negative ocean damping in (3.1b) as
d � �(�x � 1/3).
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sitive to the correlation of SSTs, and, in turn, the reso-
lution.

The accuracy of GEFA also depends on the spatial
coherence of the stochastic forcing. This is potentially
an important problem for ocean–atmosphere interac-
tion, because of the large spatial scale of intrinsic at-
mospheric variability. As discussed for the two-point
model case, a perfectly correlated stochastic forcing
leads to a decreased det(CTT), and in turn a greater
sampling error. Figure 2d shows an example of the six-
point model similar to that discussed in Fig. 2c. In con-

trast to the case in Fig. 2c that is forced by independent
stochastic forcings, however, this case is forced by a
“tripole” stochastic forcing in the interior (with n1 � n2,
n3 � n4, and n5 � n6). Now the estimated B6 with the
full data (circles in Fig. 2d) becomes much noisier than
in the case of independent forcing (circles in Fig. 2c).
The estimation, however, is improved significantly with
a truncation to three EOFs (asterisk in Fig. 2d), al-
though the EOF truncation seems to smooth the esti-
mation, especially on the negative local feedback
spikes.

FIG. 3. The impact of resolution on the feedback matrix and total matrix with different truncations of SST EOFs, Bf and Af (f � 1,
2, . . . , I). The model parameter � � 2. The stochastic forcings are independent of each other, with �(ni) � 10 (i � 1, . . . , I ) and
�(Ta0) � 1. Four resolutions are shown, I � 3 (circle), 6 (square), 12 (triangle), and 24 (plus). For each resolution, 20-member ensemble
experiments are performed, with the ensemble-mean plotted here. The relation with the true B is shown: (a) the pattern correlation
cor�Bf, BTrue	 and (b) the amplitude ratio �(Bf)/�(BTrue); the stability of the estimate with EOFs is shown: (c) pattern correlation
cor�Bf�1, Bf	 and (d) the amplitude ratio �(Bf�1)/�(Bf). (e)–(h) The same as (a)–(d), but for the total matrices Af. To eliminate the
effect of different SST persistence time for different resolution, a negative SST damping d � ��x � 1/3 is added in (3.1b) for each case,
such that the effective persistence time remains the same as in the three-point case.
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To illustrate the effect of the pattern of stochastic
forcing systematically, we show in Fig. 4 the response
matrices forced by three patterns of stochastic forcing:
an independent forcing (circle), in which the stochastic
forcings are completely independent in the interior and
boundary, a tripole forcing (square), (as in Fig. 2d), and
a monopole forcing (asterisk), in which n1 � n2 � n3 �
n4 � n5 � n6. Each pattern of forcing is used to generate
a 20-member ensemble simulations. For each ensemble
member, six Bf s ( f � 1, . . . , 6) are estimated with
successive truncations of the SST EOF. The accuracy of
Bf is measured against the true B using the ensemble
mean of the pattern correlation (Fig. 4a) and amplitude
ratio (Fig. 4b). With the independent forcing, Bf im-
proves monotonically with the addition of EOF, con-
verging toward 1 in both the pattern correlation and
amplitude ratio (circle), as in the six-point model case
in Fig. 3. In the meantime, Bf becomes more sensitive to
the EOF truncation, as indicated by the increased en-
semble spread of the pattern correlation. Most dramati-
cally, Bf deteriorates significantly when the forcing be-
comes a tripole forcing (square): the maximum pattern
correlation decreases from over 0.8 to below 0.6, and

the optimal truncation for Bf changes from 6 to 3. The
ensemble spread seems to also increase with the num-
ber of EOFs, significantly when the truncation is be-
yond the optimal truncation. With a monopole forcing,
Bf further deteriorates (asterisk), with the maximum
pattern correlation reduced to 0.4 and the optimal trun-
cation is limited to only two EOFs. These examples
show that Bf deteriorates when the pattern of the sto-
chastic forcing becomes more spatially coherent. This is
consistent with earlier discussions in that a more coher-
ent pattern of forcing generates more coherent SST
variability, and, in turn, a more ill-conditioned CTT, and
eventually a greater sampling error. (The increased
spatial coherence of SST can be seen from the leading
EOF1, which explains about 78%, 84%, and 95% of the
total variance for the cases of independent forcing, tri-
pole forcing, and monopole forcing, respectively.)

The convergence of Bf also deteriorates when the
forcing becomes more spatially coherent as seen in the
successive pattern correlation and amplitude ratio
(Figs. 4c,d). The ensemble spreads increase signifi-
cantly for both the correlation and amplitude ratio,
from the case of independent forcing toward the case of

FIG. 4. The impact of the pattern of stochastic forcing on the feedback matrices with
different truncations of SST EOF Bf ( f � 1, . . . , 6) in six-point models with � � 1, �(ni) �
10 (i � 1, . . . , 6), and �(Ta0) � 1. Three patterns of stochastic forcing are used, the inde-
pendent forcing (circle with dotted line), the tripole interior forcing (square with solid line),
and a monopole interior forcing (asterisk with dash–dot line). For each pattern, 20-member
ensemble experiments are performed, with the ensemble mean and ensemble spread (��)
plotted. The relation with the true B is shown: (a) the pattern correlation cor�Bf, BTrue	 and
(b) the amplitude ratio �(Bf)/�(BTrue); the stability of the estimator with EOFs is shown: (c)
pattern correlation cor�Bf�1, Bf	 and (d) the amplitude ratio �(Bf�1)/�(Bf).
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tripole forcing and then the monopole forcing. In the
latter two cases, the successive pattern correlation and
amplitude ratio exhibit a maximum near the optimal
truncation, indicating a minimum sensitivity of the
GEFA estimator B with respect to the EOF truncation.
Therefore, the optimal truncation appears to be the
case near the maximum successive pattern correlation.
As discussed in Fig. 3, the total matrix A differs sub-
stantially from the true B, but converges rapidly as
EOFs are added (not shown).

In short, the simple model study shows that, for a
finite sample size, GEFA provides a reasonable estima-
tion of B at low resolutions. With a sufficiently high
resolution, or large-scale stochastic forcing, however,
the accuracy of GEFA decreases significantly due to
the nature of nonlocal estimation. Nevertheless, an op-
timal estimator seems to be available, in principle, with
certain truncation of SST EOFs. In comparison, the
total matrix A is stable due to the nature of the local
estimation, but it could differ from the feedback matrix
B substantially.

4. Summary and discussion

Due to nonlocal climate dynamics, a general atmo-
spheric feedback response to SST (or other lower
boundary) forcing consists of nonlocal as well as local
responses. In the context of linear dynamics, this gen-
eral feedback, in principle, can be represented by a
feedback matrix B—effectively the response of the
Green function. This matrix provides important infor-
mation on the dynamics of the atmospheric response,
and, in turn, the feedbacks in the coupled system. The
major objective of this paper is to develop a statistical
method to assess both nonlocal and local climate feed-
backs, with the focus on the estimation of B. Here, the
univariate EFA of Frankignoul et al. (1998) is general-
ized to a multivariate EFA as GEFA. GEFA is then
used to assess ocean–atmosphere thermal feedback in a
simple ocean–atmosphere model. It is shown that
GEFA is able to extract the nonlocal feedback associ-
ated with the downstream atmospheric teleconnection.
Furthermore, physical insight can also be gained by
comparing the feedback matrix B with the total matrix
A. Unlike the feedback matrix that identifies the non-
local feedback response to independent SST variability
at different regions, A represents the total feedback
impact from all the covarying SSTs, and therefore its
implication on nonlocal dynamics needs to be treated
with caution.

Given a finite sample size, it remains challenging to
obtain the optimal estimator for the feedback matrix B
in a coupled climate system and the observation. In

general, sampling error increases significantly with the
spatial resolution of the data. Therefore, in a coupled
system with highly correlated SST variability, the accu-
racy of the GEFA estimator can be limited intrinsically.
Of course, for the application to a complex system such
as the real world or a general circulation climate model,
the method itself is also limited by its assumptions, no-
tably linearity.

The GEFA has also been applied to the assessment
of nonlocal feedback between turbulent heat flux and
SST for the observed North Atlantic. At low resolu-
tions (three–six regions over the North Atlantic),
GEFA confirms the dominant local negative SST feed-
back on heat flux, and, furthermore, identifies a nonlo-
cal feedback, with a warm Gulf Stream SST enhancing
the downward heat flux downstream in the subpolar
region. The detailed results will be presented else-
where.

It is important to point out that the nonlocal assess-
ment can be applied to much more general issues to
understand the climate feedback to multiple factors, if
the boundary variable is replaced by a mixture of vari-
able factors. In particular, when these factors are cor-
related with each other, the scalar EFA is no longer
valid. For example, we can study the atmospheric re-
sponse to Niño-3 SST, North Pacific SST, Indian Ocean
SST, and Eurasian land vegetation cover. Since the
North Pacific SST and tropical Indian Ocean SST in-
clude some responses to, and therefore are correlated
with, Niño-3 SST, a scalar EFA may not produce the
correct estimate of nonlocal feedbacks. Instead, GEFA
provides a promising method. It is also sometimes more
relevant to perform the nonlocal feedback analysis in
the EOF space itself, instead of the physical space, be-
cause some major climate modes are better defined
with EOFs. In these cases, even with a small number of
degrees of freedom, the feedback matrix will provide
great insight into the roles of forcing of different cli-
mate factors. All these suggest the need for further
improvement on the assessment methods for nonlocal
climate feedbacks in the future.

Finally, it is important to compare and evaluate
GEFA with other relevant statistical methods for non-
local feedbacks, such as the maximum covariance
analysis (MCA; Czaja and Frankignoul 2002), and es-
pecially the linear inverse method (LIN; Penland and
Sardeshmukh 1995), or more generally, the fluctuation–
dissipation theorem (FDT; Leith 1975; von Storch 2004;
Kirk-Davidoff 2005, manuscript submitted to J. Cli-
mate; Gritsun and Branstator 2007). These works are in
progress. Here, a brief discussion based on our prelimi-
nary results is given in appendix B.
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APPENDIX A

The Two-Point Coupled Model Solution

With two points, the coupled system in (3.11) is re-
duced to

dT1�dt � ��T1 � N1, �A.1a�

dT2�dt � ��T2 � �qT1 � N2, �A.1b�

where the transformed stochastic forcing is related to
the stochastic forcing in the interior and upstream
boundary as

N1 � n1 � qTa0, N2 � n2 � qn1 � q2Ta0. �A.2�

Denote the cross covariance of the stochastic forcings as

�n1�t�, n1�t � ��	 � �n2�t�, n2�t � ��	 � 2����,

�Ta0�t�, Ta0�t � ��	 � a
2����,

�n1�t�, n2�t � ��	 � 12����,

�n1�t�, Ta0�t � ��	 � 1a����,

�n2�t�, Ta0�t � ��	 � 2a����. �A.3�

The cross covariance of the transformed stochastic forc-
ing can be derived as

�N1�t�, N1�t � ��	 � �1
2����,

�N2�t�, N2�t � ��	 � �2
2����,

�N1�t�, N2�t � ��	 � �12����, �A.4�

with

�1
2 � 2 � q2a

2 � 2q1a,

�2
2 � �1 � q2�2 � q4a

2 � 2q12 � 2q22a � 2q31a,

�12 � q2 � q3a
2 � 12 � 2q21a � q2a. �A.5�

In the extreme case of independent stochastic forcings,
�12 � �1a � �2a � 0, (A.5) is simplified to �2

1 � �2 �
q2�2

a, �2
2 � (1 � q2)�2 � q4�2

a, and �12 � q�2 � q3�2
a. In

another extreme case with all the stochastic forcings
perfectly correlated, �12 � �2 and �1a � �2a � ��a,
(A.5) degenerates to �2

1 � (� � q�a)2, �12 � (� �
q�a)[(1 � q)� � q2�a], and �2

2 � [(1 � q)� � q�a]2.
The two SSTs can be solved from the coupled equa-

tions, first from (A.1a) and then from (A.1b), as

T1�t� � �
��

t

e���t���N1��� d�, �A.6a�

T2�t� � �
��

t

e���t����N2��� � �qT1��� d�. �A.6b�

From (A.4) and (A.6a), we can show for 
 � 0 that

�T1�t�, N1�t � ��	 � �1
2e���,

�N1�t�, T1�t � ��	 � 0,

�T1�t�, N2�t � ��	 � �12e���,

�N2�t�, T1�t � ��	 � 0. �A.7�

With the aid of (A.7), the cross covariance of SST for
lags 
 � 0 can be calculated from (A.4) and (A.6) as

C11 � �T1�t�, T1�t � ��	 �
�1

2

2�
e���,

C12 � �T1�t�, T2�t � ��	 � ��12 �
�q�1

2

2�
	 e�2��

2�
,

C21 � �T2�t�, T1�t � ��	

� ��12 � �q�1
2� 1

2�
� �	� e���

2�
,

C22 � �T2�t�, T2�t � ��	

� ��2
2 � �q�1

�
� �	��12 �

�q

2�
�1

2	� e���

2�
.

�A.8�

APPENDIX B

Relation of GEFA with Other Methods

Although a detailed comparison is beyond the scope
of this paper, here, we briefly discuss the relation be-
tween the GEFA and other relevant statistical meth-
ods.

a. Relation with multivariate regression

Following Z. Liu et al. (2006), the feedback matrix
estimated using GEFA in (2.8) can be shown to be
related to the regression as

R��� � B�������, �B.1�
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where R(
) � CXY(
)C�1
YY(0) is the multivariate regres-

sion matrix of the predictive equation Xt � R(
)Yt�
 �
E and �(
) � CYY(
)C�1

YY(0) is the autocorrelation ma-
trix of the SST, all at the same lag 
. Physically, (B.1)
states that the predictability of the atmospheric re-
sponse to SST with a lead 
equals the instantaneous
atmospheric response multiplying its persistence of lag

 following the SST. The relation in (B.1) can also be
obtained by assuming the SST as a first-order autore-
gressive process (AR-1). This relation may be useful for
studying the statistical properties of the feedback ma-
trix.

b. Relation with MCA

Czaja and Frankignoul (2002) studied the feedback
of SST on the atmospheric geopotential height field
using an MCA analysis, in which the singular value
decomposition (SVD; Strang 1976; Bretherton et al.
1992) is applied to the lagged cross-covariance matrix
CXY(
) between the atmosphere and SST. The MCA
analysis provides feedback information very different
from the feedback matrix B(
) � CXY(
)C�1

YY(
). The
former is specific to a coupled system because the SST
variability is determined by the coupled system, some-
what similar to the total matrix A, while the latter only
concerns the atmospheric dynamics, and is discussed
below.

c. Optimal feedback response

One can show that the SVD decomposition of the
feedback matrix B gives the optimal SST forcing fields
(right vectors) and the corresponding optimal atmo-
spheric response (left vectors). Therefore, with B, one
can identify the optimal SST pattern that generates the
maximum atmospheric response. Furthermore, this op-
timal feedback decomposition provides another pos-
sible filter of the noise of the feedback matrix B. Our
preliminary analysis suggests that, at high resolution,
while the B itself becomes noisy, its leading SVD modes
remain relatively stable. Therefore, in spite of the noisy
B, large-scale feedback responses may still be extracted
from it with reasonable accuracy.

d. Relation with LIN/FDT

In principle, the feedback matrix can be derived di-
rectly from the coupled system

dx
dt

� GXXx � GXYy � fX, �B.2a�

dy
dt

� GXXx � GYYy � fY. �B.2b�

At climate time scales longer than the rapid atmo-
spheric adjustment, the atmosphere equation in (B.2a)
can be approximated as a quasi-equilibrium state

0 � GXXx � GXYy � fX, �B.3�

which then leads to the feedback matrix as B �
�G�1

XXGXY. The matrix for the coupled system G, in
principle, can be obtained using the LIN (Penland and
Sardeshmukh 1995), or more generally, the FDT (Leith
1975; von Storch 2004; Kirk-Davidoff 2005, manuscript
submitted to J. Climate; Gritsun and Branstator 2007).
It is therefore interesting to compare GEFA with LIN/
FDT. Our preliminary study suggests that, for the same
accuracy, the LIN/FDT requires data of higher tempo-
ral resolution (e.g., daily) that resolves the fast tempo-
ral dynamics of the atmosphere [such as (B.2a)].
GEFA, however, only makes use of the low-frequency
data (e.g., monthly) as it only deals with the quasi-
equilibrium response [such as (B.3)]. In the meantime,
GEFA cannot assess the full temporal dynamics of the
atmosphere. Rewriting the full atmospheric equation in
(B.2a) as

dx
dt

� GXX�x � By� � fX,

the LIN/FDT estimates both GXX and B, while GEFA
is only able to assess B.

Finally, we point out an interesting difference be-
tween the feedback matrix B and the total matrix A
from the perspective of the full coupled equations in
(B.2a, b): B is determined by the atmospheric dynam-
ics, GXX and GXY, while A usually depends on the en-
tire coupled system (i.e., the entire G). Given an atmo-
sphere (GXX and GXY), B is determined uniquely, but A
may be different for different ocean dynamics (GYX and
GYY).
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