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ABSTRACT

The equilibrium feedback assessment (EFA) is combined with the singular value decomposition (SVD)
to assess the large-scale feedback modes from a lower boundary variability field onto an atmospheric field.
The leading EFA-SVD modes are the optimal feedback modes, with the lower boundary forcing patterns
corresponding to those that generate the largest atmospheric responses, and therefore provide upper
bounds of the feedback response. The application of EFA-SVD to an idealized coupled ocean—atmosphere
model demonstrates that EFA-SVD is able to extract the leading feedback modes successfully. Further-
more, these large-scale modes are the least sensitive to sampling errors among all the feedback processes
and therefore are the most robust for statistical estimation. The EFA-SVD is then applied to the observed
North Atlantic ocean—atmosphere system for the assessment of the sea surface temperature (SST) feedback
on the surface heat flux and the geopotential height, respectively. The dominant local negative feedback of
SST on heat flux is confirmed, with an upper bound of about 40 W m~2 K™! for basin-scale anomalies. The
SST also seems to exert a strong feedback on the atmospheric geopotential height: the optimal SST forcing
has a dipole pattern that generates an optimal response of a North Atlantic Oscillation (NAO) pattern, with
an upper bound of about 70 m K™ at 500 hPa. Further issues on the EFA-SVD analysis are also discussed.
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1. Introduction

One of the most challenging aspects of the climate
system is the interaction between the atmosphere and
its lower boundary ocean and land. [Hereafter, the
lower boundary will be referred to as the sea surface
temperature (SST).] It is well known that the atmo-
sphere exerts a strong control on SST variability. It is
also known that the SST variability, in turn, can gener-
ate significant feedback response in the atmosphere
through local and remote processes. This full climate
feedback, however, is difficult to quantify in the obser-
vation, or a single realization of a complex coupled
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ocean—atmosphere model simulation, because of the
complex interactions within the climate system, the
complex dynamics of climate teleconnection, and the
presence of strong internal atmospheric variability. It is
clear that a statistical approach is critical, not only for
the estimation of the climate feedback in the observa-
tion but also for the validation of climate-model feed-
back and sensitivity. This is because the observation has
only a single realization that cannot be repeated, and
therefore a statistical estimation approach is the only
way to estimate the feedback in the observation. The
statistically derived feedback from the observation
therefore provides the only parallel comparison be-
tween the feedbacks in the model and the observation.

Frankignoul et al. (1998) proposed a simple univari-
ate statistical method, known now as the equilibrium
feedback assessment (EFA), for the assessment of cli-
mate feedback. This univariate method, in essence, can
be used to assess only “local” climate feedback from a
single point, or index, of SST variability.
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Recently, Liu et al. (2008, hereafter Part I) proposed
a method that is a multivariate generalization of the
univariate EFA. This multivariate EFA directly as-
sesses the Green’s function of the atmospheric response
that is independent of the pattern of SST evolution.
Because the Green’s function allows for the assessment
of the atmospheric response to SST anomaly between
any pairs of points or patterns, the EFA estimate, in
principle, enables us to assess the full climate feedback,
local and nonlocal. Part I demonstrates, indeed, that
the multivariate EFA can extract important features of
the full climate feedback. However, one major defi-
ciency of the multivariate EFA is the sensitivity to the
spatial resolution of the SST forcing field. The sampling
error tends to increase significantly with the spatial
resolution of SST, except for the cases of very low reso-
lutions. The large sampling error at high resolution oc-
curs because the SST field tends to covary among
neighboring regions, leading to a more singular SST
covariance matrix and, in turn, a larger sampling error
on the EFA estimator.

As a follow-up to Part I, this study is motivated by
our speculation that the large-scale feedback process
should be less sensitive to resolution and, therefore,
more robust for assessment. Here, the large-scale feed-
back response modes are identified by combining the
singular value decomposition (SVD; Bretherton et al.
1992) with the EFA. The leading EFA-SVD modes are
found to be the most robust (or least sensitive to reso-
lution) among all the feedback responses. Furthermore,
the leading EFA-SVD modes are the optimal feedback
modes, in the sense that given amplitude of SST
anomaly, the SST-mode patterns generate the greatest
atmospheric feedback response. As such, the EFA-
SVD analysis provides a useful tool for identifying and
understanding large-scale climate feedbacks in the
coupled climate system. It should be pointed out that
the EFA-SVD differs significantly from the maximum
covariance analysis (MCA; Czaja and Frankignoul
2002) in that the latter only seeks the leading SVD
modes of the covariance matrix rather than quantifying
the feedback response (see appendix A for more dis-
cussions on the difference with MCA). This paper is
arranged as follows: section 2 introduces the EFA-SVD
method. The EFA-SVD is first tested in a simple
coupled atmosphere—ocean model in section 3 and is
then applied to the observed ocean—atmosphere feed-
back over the North Atlantic in section 4. A summary
is given in section 5.

2. The EFA-SVD analysis

Following Part I, the anomalous fields of atmo-
spheric total variability x(f), atmospheric internal vari-
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ability n(¢), and SST variability y(¢) are represented as
column vectors

x,(2) ny(f)
xo=| - | nw=| - |} and yo=| - |
x/(1) n,(0) ()

where the atmosphere and SST have I and J points,
respectively. The equilibrium atmospheric response at
T-succeeding time bins can be rewritten as

y1(0)

x()=By(®) +n(r), t=1,2,....,T. (2.1)

The length of the time bin, in principle, should be
longer than the time scale of the atmospheric internal
variability n(¢), such that the equilibrium response (2.1)
is approximately valid (after the neglect of the temporal
tendency of the atmospheric variability in the atmo-
spheric equations). Hereafter, for simplicity, we have
chosen the bin length as 1 month; that is, we use
monthly data.

At a lead time 7 longer than the persistence time of
the atmospheric internal variability, the SST variability
y(t — 7) is uncorrelated with the internal variability n(z).
Therefore, with right multiplication of y(r — 7) on the
equilibrium response (2.1), the feedback matrix B =
7[b;]; can be estimated in the EFA estimator as (see
Part I for details)

B(1) = Cyy(7)Cyy (1), for 7>0; (2.2)
where
1 T
CYY(T) = <y(l)7 Y(t - T)) = TYterw
1
Cyy(m) = &x(),yt — 1) = TX,Y,T,T, and
1

Crvy (1) = (0, ¥t ~ D)= TN/ ;

with the variability matrix as
Y. =[y@D),...,y(D)],

X, = [x(1),...,x(T)],
N, =[(),...,n(T)];

and

and the superscript T indicating the transpose. In prin-
ciple, the EFA estimator (2.2) should be independent
of 7 for the atmospheric system (2.1), which has a con-
stant matrix B (as long as 7 is longer than the persis-
tence time of the internal variability). In practice, for a
given sampling size, a longer 7 reduces the SST auto-
covariance Cy (1) and therefore leads to an increased
sampling error in (2.2) [a more detailed discussion is
given in Part I for the multivariate case, and in appen-
dix A of Liu et al. (2006) for the univariate case].
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Therefore, the rule of thumb is to use a short 7, as long
as it is longer than the atmospheric internal variability.
For monthly data, 7 is usually chosen to be 1-3 months
(Frankignoul et al. 1998).

Assuming the rank of B as R, the SVD decomposi-
tion of B leads to

R
B=LSR" = D sl,rf, (2.3)

k=1
where L consists of the orthonormal left vectors 1; for
the atmospheric response, R consists of the orthonor-
mal right vectors r; for the SST forcing, and S is a
diagonal matrix with positive singular values in de-
scending order as s; > ... >s; > ... sp > 0. Right
multiplication of (2.3) with r; and noticing the ortho-
normality of r; yield

s;1; = Br,. (2.4)

This can be interpreted, in light of the atmospheric
response of Eq. (2.1), as the equilibrium atmospheric
response s1; to the SST forcing r;. Therefore, (x;, 1, s,)
represent the ith optimal feedback modes for a unit
magnitude of SST anomaly, with r; as the forcing pat-
tern, 1; as the response pattern, and s; as the response
magnitude. For a finite sample size, the optimal modes
can be estimated with the SVD decomposition of the
EFA estimator (2.2) of the feedback matrix, with the
ith SVD mode as the estimation of the ith optimal feed-
back mode. In particular, the first SVD mode repre-
sents the most optimal feedback mode, with the singu-
lar value s; as the upper bound for the feedback re-
sponse under any SST pattern of the same magnitude.
Given a general SST anomaly, the atmospheric re-
sponse can be obtained, in principle, by first projecting
the SST anomaly onto all the forcing modes {r;}, and
then deriving the corresponding atmospheric response
by summing up the responses to each forcing mode in
terms of the singular values {s;} and the response mode
{1} as in Eq. (2.4).
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using the statistical method can be checked indepen-
dently with a dynamical assessment, which uses an en-
semble of simulations. For the ith optimal mode, the
ensemble experiment will be forced by the ith SST forc-
ing pattern r;, and then the ensemble atmospheric re-
sponse will be compared with I; for the response pat-
tern, and with s, for the response magnitude.

3. A simple model study

a. The advective stochastic climate model

As the first illustration, we apply EFA-SVD to the
SST feedback on air temperature in a conceptual sto-
chastic climate model that includes nonlocal atmo-
spheric advection. The model is described in detail in
Part I and will only be described briefly here for com-
pleteness. The coupled model, in the nondimensional
form in the model domain 0 = x = 1, consists of the
atmospheric equation

aT,/ox = T — T,) + n(x, t) (3.1)
and the oceanic equation
aT/ot = H — dT, (3.2)

where T, is air temperature, Tis SST, H = T, — T'is the
downward heat flux, and d is the oceanic damping. The
relative importance of local coupling versus nonlocal
advection is measured by A, a smaller A representing a
stronger advection or, equivalently, a weaker local cou-
pling.

The atmospheric response to any SST anomaly T(7)
can be obtained by integrating the equilibrium atmo-
spheric Eq. (3.1) downwind along x. After a spatial
discretion into [ intervals, the atmospheric response can
be put in the vector form as (see Part I for more details)

T, (1) = BT() + N(), (3.3)

In a climate model, these optimal modes estimated where
T (1) T,(1) ny(1)
o= - |T1o=| - ] and nw=| -
T,,(1) T,(0) n (1)
The N is a transformed stochastic forcing, which can be q
shown as N(t) = (B/M)n(t) + T,(f)q,. Here, the air .
q, = s

temperature at the upstream boundary x = 0 is 7T,(¢),
which decays downwind following
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where g = e *** < 1. The feedback matrix for T, can be
shown as

1 0 0
q 1 0

B = \Ax . . (3.4)
ql—l q1—2 1

This feedback matrix can be interpreted as follows: the
positive diagonal elements represent the positive local
response of air temperature to SST. The positive off-
diagnoal elements represent the nonlocal response,
with the ith row representing the response of the air
temperature 7, to all the upstream SSTs 7; (j = 1i),
whose influence decays downwind with the distance fol-
lowing an increasing power of g. Alternatively, the jth
column represents the remote impacts of the SST forc-
ing T} on the air temperatures of all downstream points
T,; (i = j), which also decay downwind with the dis-
tance.

The coupled system in terms of SST can be obtained
by inserting (3.3) into the discretized SST Eq. (3.2) as

dT/dt = (B — NT(t) + N(t) — dT, (3.5)

where AAx < 1 is required for the Courant-Friedrichs—
Lewy (CFL) numerical stability criterion.

b. The EFA feedback matrix

We will study the feedback in a 12-point model that
is forced by independent stochastic forcings in the in-
terior (n) and the boundary (7,,). With our next appli-
cation to the observed North Atlantic in mind, a sample
size of T = 500 will be used. The data are binned in a
time interval of 0.5, corresponding roughly to a monthly
dataset of 40 yr. We will discuss two cases, a weak
advection case and a strong advection case.

For the weak advection case (A = 4.8, d = 0), the
feedback matrix is estimated using the lag-1 EFA esti-
mator (2.2) as B = CTHT(l)C}}(l). To reduce the sam-
pling error, the EFA estimator for each realization is
obtained using the leading f SST EOFs as B, where f =
1,2...12 [see Eq. (B.4) of appendix B]. As pointed out
in Part I (also appendix B), at a high resolution, a trun-
cation of high-SST EOFs reduces the sampling error by
suppressing the singularity of the SST covariance ma-
trix C,p.

The EFA matrix B,is compared with the true matrix
B .. [in (3.4)] in terms of its pattern and magnitude,
with the pattern measured by the pattern correlation of
the two matrices (denoted as cor(B;, Br,,.)) and the
magnitude measured in terms of the standard devia-
tions of each matrix as the amplitude ratio o(B;)/
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1} K Amplitude Ratio
0.8¢
0'6;: / Correlation
0.4%
0.2¢

2 4 6 8 10
f=EOF modes

FiG. 1. The EFA feedback matrix in the 12-point model (3.1)
and (3.2) for the weak advection case: A = 4.8,d = 0, o(n;) = 10
(I =1,...,12), and o(T,,) = 1. The matrix correlation
cor(By, Byy,) (solid line without marker) and amplitude ratio
a(By)/o(Br,,.) between the estimated feedback matrix B, and the
true feedback matrix B, (solid line with asterisks) are shown as
functions of the truncation number of SST EOF f. An ensemble of
1000 members are used. The ensemble mean of the matrix corre-
lation is shown by a solid line; the ensemble spread (one std dev)
is shown by a dashed line for correlation and a dotted line for
amplitude ratio.

12

0(B1ue). (Here, the standard deviation is calculated
with the elements of the matrix ordered in a single
series, and the correlation is calculated between the
corresponding elements of the two matrices.) If the two
matrices are identical, the correlation and amplitude
ratio are both 1. A 1000-member ensemble is per-
formed with the ensemble mean and ensemble spread
(one standard deviation of ensemble spread) of the pat-
tern correlation and amplitude ratio plotted in Fig. 1. It
is seen that an initial increase of EOF truncation f im-
proves B, with an increasing correlation and amplitude
ratio toward 1. However, B, peaks at the best truncaton
f =5 (with a correlation 0.78 and amplitude ratio 0.9).
A further increase of f leads to a deteriorated assess-
ment, with a decreased correlation, excessive amplifi-
cation, and increased ensemble spread. As discussed in
Part I, the matrix correlation increases initially due to
the increased signal of smaller-scale SSTs, but it de-
creases eventually because of the increased sampling
error associated with high EOFs and, in turn, a singular
SST covariance matrix. The amplitude of B, always in-
creases with f, because of a more singular C.

Figure 2 shows examples of the feedback matrix for
the weak advection case, with the elements. Here, b;; is
ordered in a 1D array b, with k = i + 12(j — 1), in-
creasing first with column j, then with row i. In the true
matrix B, (solid), the strong local response can be
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Fi1G. 2. Examples of the feedback matrix for the weak advection case (in Fig. 1), with the
elements b; arranged along the x axis as b, in the order of k = i + 6(j — 1). The true feedback
matrix B is shown by a solid line; one ensemble member for B5 and B, is in circles and dashes,

respectively.

seen in the positive spikes of the diagonal elements,
which according to (3.4) are b; = AAx = 0.4. The posi-
tive nonlocal downwind impact is seen as the positive b,
that decreases following each spike because of the de-
cay with distance; the absence of nonlocal impact in the
upwind direction is represented by the zeros preceding
each spike. Two examples of the EFA estimations are
shown, one for Bs (circles) and the other for B, (dash).
The B; shows modest agreement with B, in both the
dominant positive local feedback and positive down-
wind impact. The absence of the upwind impact is also
captured by the small values preceding each spike,
which are statistically indistinguishable from zero (at
the 90% level according to a Monte Carlo test). The B,
is not as good as Bs because the former exhibits an
excessively smooth large-scale feature. These results
are similar to those in Part L.

¢. The EFA-SVD analysis and optimal feedback
modes

Now, we apply SVD to the estimated feedback ma-
trix B to estimate optimal feedback modes. Figure 3a
shows SVD1s for each B;in comparison with the truth.
With EOF1 retained (B;), SVD1 is poorly estimated,
with a mode pattern correlation between the estimated
and the true SVDI1s as ¢!, = 0.4 for the atmospheric
response and ¢y, = 0.43 for the SST forcing. Here, in
c/y,. and c%,,, the subscripts A and T stand for the
atmospheric response (left) vector and SST forcing
(right) vector, respectively, the subscript m stands for
the SVD mode number, and the superscript f stands for
the SST EOF truncation number. The response ampli-
tude is underestimated by 20% as seen in the ratio of
singular values 7] = s1/s;1u = 0.8, where the subscript
and superscript refer to the SVD mode and EOF trun-
cation, respectively. However, when two EOFs are re-

tained (B,), SVD1 is improved dramatically, becoming
almost perfect (¢4, = 0.98, ¢%; = 0.93, and r7 = 1.0).
The excellent recovery of mode 1 can be seen clearly in
Figs. 4a,b, in which the estimated mode 1s (gray) are
seen to cluster around the truth (heavy line). Each
SVDI1 is seen to exhibit a pair of monopoles, and the
response is shifted downwind relative to the forcing due
to the advection, with the maximum air temperature (at
x = 0.75) shifted downwind of the maximum SST (at
x = 0.55) by 0.2.

The successful estimation of optimal feedback mode
1 from the SVD1 of B, is in contrast to B, itself, which
is poorly estimated (cor(B,, Br.,.) ~ 0.5, Fig. 1). One
reason for the poor B, is that the EOF truncation (f =
2) filters out, and therefore distorts, the feedbacks from
the SST variability with scales smaller than that of
EOF2. Nevertheless, even for the best EFA matrix B,
the matrix correlation (0.78) and amplitude ratio (0.9)
are still substantially lower than the best estimation of
the EFA-SVD mode 1 (¢4, = 0.98, ¢, = 0.93, and r3 =
1.0). This suggests that mode 1 is estimated more accu-
rately than the feedback matrix itself, with the best
estimation obtained at a low EOF truncation of f = 2
here. Eventually, however, as more EOFs are included,
the estimated SVD1 deteriorates (Fig. 3a), as does the
matrix itself (Fig. 1), with a decreased correlation and
excessive amplitude. This can be understood as follows:
the feedback matrix itself contains the feedback infor-
mation of all the scales. Feedbacks of smaller scales are
likely to be subject to greater sampling errors, because
they involve SST variability of stronger neighboring co-
variability and, in turn, a more singular SST covariance
matrix.

The discussion above on mode 1, in principle, applies
to other leading modes. This is confirmed for mode 2,
which is estimated almost perfectly at B; (¢}, =~ ¢} ~
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FIG. 3. The optimal feedback modes of the feedback matrix B, for the weak advection case in Fig. 1.
(a), (b) Mode 1 (SVD1) is shown. (a) Pattern correlations with the truth for the atmospheric response
¢’y (left vector, triangle), SST forcing ¢4 (right vector, circle), and the ratio of the singular values
between the estimate and truth r/ (asterisk) as functions of the EOF truncation f. (b) Successive mode
pattern correlations for the atmospheric response ¢/i{~! and SST forcing ¢! as functions of EOF
truncation number f. A 1000-member ensemble is used. The ensemble mean is indicated by a solid line,
the ensemble spread is indicated by dashes for the atmospheric response correlation, dashes—dots for the
SST-forcing correlation, and dots for the amplitude ratio s}/s; - (), (d) Same as (a) and (b), respec-
tively, but for mode 2 (SVD2). (e), (f) Same as (a) and (b), respectively, but for mode 3 (SVD3).

o~ 1; Fig. 3c), and mode 3, which has the best esti-
mation at B, (c%; =~ ¢} ~ 0.85,r5 ~ 1; Fig. 3e). The
good modal estimation can also be seen clearly in their
patterns in Figs. 4c,d for mode 2 and in Figs. 4e.f for
mode 3. In both cases, the estimated dipoles (triples)
cluster around the truth, and the response shows a
downwind shift relative to the forcing. Therefore, all
three leading modes can be estimated better than the
feedback matrix itself.

The accuracy of all the feedback modes can be seen
systematically in Fig. 5a, which shows, for each SVD
mode m, the best correlations from the estimations of
all of the 12 EOF truncations. As the mode number m
increases, the best mode correlations, for both the re-
sponse and the forcing, decrease initially to about mode
8 and then eventually flatten and increase modestly.
The best mode correlations for the first three SVD
modes are all higher than the best matrix correlation

(dash). In addition, the EOF truncation number f for
the best correlation is usually not much larger than the
SVD mode number m (Fig. 5b). For example, for SVD
mode m = 1, 2, and 3, the best correlations are achieved
at f = 2, 3, and 4, respectively, for both the response
and the forcing. This suggests that the leading SVD
modes are best obtained without too much smaller-
scale SST variability.

The robust estimation of the optimal feedback modes
can also be seen in the case of strong advection, which
is the same as the weak advection case above, except
for an advection 4 times stronger (A = 1.2). Now, the
true feedback matrix exhibits a much smaller decay
downstream (not shown). This feedback matrix is now
poorly estimated, with the best matrix correlation of
only 0.55 at B, with a large spread (Fig. 6). As discussed
in Part I, a stronger atmospheric advection forces
larger-scale covariance in SST variability, which leads
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a) SVD1: Atmos b) SVD1: SST
0.2 0.2
0 0
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c) SVD2: Atmos d) SVD2: SST
0.5 0.5
0 0
-0.5 -0.5
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e) SVD3: Atmos f) SVD3: SST
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grid point

2 4 6 8 10 12
grid point

FI1G. 4. Patterns of (a) the atmospheric response (left vector) and (b) the SST forcing (right
vector) for the best estimate of the optimal mode 1 (SVD1) at the truncation of f = 2. The
truth is indicated by a heavy solid line and the 1000-ensemble members are indicated by gray
lines. (c), (d) Same as (a) and (b), respectively, but for mode 2 at the EOF truncation f = 3;

(e), (f) Same as (a) and (b), respectively, but for mode 3 at the EOF truncation f = 4.

to a more singular SST covariance matrix and, in turn,
a greater sampling error. In spite of this poor matrix
estimation, the two leading SVD modes can still be
estimated rather accurately: mode 1 is best at B,, with
¢4, ~ 0.8, ¢3, ~0.82,and r? ~ 1.1 (Fig. 7a); mode 2 is

a) Best SVD Correlation

best at B,, with ¢, ~ 0.78, ¢%, ~ 0.8, and r3 ~ 0.92
(Fig. 7c), both having a higher correlation than the best
matrix correlation (0.55). An examination of the pat-
terns of mode 1 (mode 2) also shows a pair of mono-
poles (dipoles), with a downwind shift of the response

b) EOF Truncatioon for Best Corr

Best Matrix C¢

12
10

D

m=SVD mode

m=SVD mode

F1G. 5. Best mode correlations for the case of weak advection (in Fig. 1). (a) The best mode
pattern correlations with the truth for each optimal feedback mode m. The atmospheric
response is shown with triangles and the SST forcing is shown with circles. The best matrix
correlation is shown with dashes (for Bj). (b) The EOF truncation f at which the best mode
correlations in (a) are achieved.
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1.5

Amp Ratio

F1G. 6. The EFA feedback matrix as in Fig. 1, but for the case
of a strong advection with A = 1.2.

more than double that of the weak advection case in
Fig. 4 (not shown). Also similar to the weak advection
case discussed in Fig. 5, the best mode correlation tends
to decrease with the mode number such that they be-
come less than the maximum matrix correlation beyond
optimal mode 2 (Fig. 8a); the EOF truncation for the
best correlation of the first few leading SVD modes m
are not much larger than the SVD mode number f (Fig.
8b).

One advantage of the EFA-SVD analysis, as specu-
lated in the introduction, is the reduction of sensitivity
of large-scale feedback processes to the spatial resolu-
tion of SST, relative to that for the EFA feedback ma-
trix itself. This is confirmed in the simple model for
different resolutions. The leading optimal feedback
modes remain robust for different resolutions in both
the pattern and amplitude, when the model resolution
is doubled and even quadrupled (not shown).

d. The EFA-SVD analysis for a single realization

For the observation (or a complex climate model
simulation), the true feedback matrix is unknown and
our estimate has to be based on a single realization.
This poses a major problem to the EFA-SVD applica-
tion as to how to determine the best EOF truncation f
for each optimal feedback mode m. As in Part I, this
best truncation problem remains the major unresolved
problem. In the meantime, similar to Part I, our expe-
rience with the idealized model suggests an empirical
“rule of convergence,” which is based on the conver-
gence of the estimated SVD mode m with successive
SST EOF truncations. The convergence will be mea-
sured by the pattern correlation of the mth SVD modes
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estimated at the EOF truncations f and f-1, denoted as
cfif 71 and %" for the atmosphere and SST, respec-
tively. A visual observation of the convergence for the
first three SVD modes in both the weak (Figs. 3b,d,f)
and strong (Figs. 7b,d,f) advection cases seems to indi-
cate an approximate rule of convergence, similar to the
matrix case discussed in Part I: the best mode correla-
tion is achieved when the mode correlation first
converges, that is, at the EOF truncation f beyond
which the successive mode correlation ratio plateaus
near 1.

Another empirical rule may also be useful. As ob-
served in best mode correlations in Figs. 5b, 8b, the
EOF truncation f corresponding to the best mode cor-
relation tends to increase with the optimal mode num-
ber m, with best truncation number f slightly exceeding
the mode number m. (Although there are occasions
when substantially more EOFs are needed for the best
correlation of a low-optimal mode.) This implies, per-
haps, that to obtain the best estimation of a specific
optimal mode, it is necessary to retain at least those
SST EOFs that are needed to resolve the optimal
modal structure.

The significance of the SVD modes at each EOF
truncation can be tested with a Monte Carlo approach
similar to the MCA analysis of Czaja and Frankignoul
(2002). This significance test will also be seen to help
the selection of the best EOF truncation. The Monte
Carlo test is illustrated for the case of weak advection
(Fig. 3) in Figs. 9a—c. First, one realization of air tem-
perature and SST is selected randomly from those in
Fig. 3 as the “observation.” Applying the EFA-SVD
analysis to the observation leads to the singular values
under successive SST EOF truncations as plotted in
Figs. 9a—c for SVD1, SVD2, and SVD3, respectively.
Second, the observational air temperature is randomly
scrambled in time to give an ensemble of 1000 random
realizations of the atmosphere. The EFA-SVD is then
applied to each random realization of air temperature
and the original observational SST to give the spectrum
of singular values under each EOF truncation. The en-
semble of singular values for SVD1, SVD2, and SVD3
are shown in gray lines in Figs. 9a—c, respectively. The
entire ensemble of singular values can be used to con-
struct (one tailed) significance levels (e.g., 95% and
99% levels in heavy dashes in Figs. 9a—c) for testing
those observed. The SVD1 is significant at a 99% level
for the first four EOF truncations (f = 4). With a fur-
ther increase of EOF truncation, the singular value of
each random ensemble member continues to increase
rapidly, much faster than that of the observation, such
that the latter becomes insignificant at a 95% level for
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Fi1G. 7. Correlation and amplitude of the optimal feedback modes as in Fig. 2, but for the case of
strong advection in Fig. 6.

EOF truncation beyond f = 4. Furthermore, the signifi-
cance test is consistent with the selection of the best
EOF truncation for SVD1 discussed in Fig. 3a, because
the best selection of f = 2 (see Fig. 3a) is also highly
significant in the Monte Carlo test. In addition, the
SVD1 is also highly significant for truncations near the
best truncation (f < 4). Therefore, the Monte Carlo test
effectively narrows the range for best EOF truncations

a) Best SVD Corr

to a small subset 1 = f < 4 that is highly significant for
SVDL. In other words, the Monte Carlo test also helps
the selection of the best truncation by narrowing down
the range of truncation to a small subset. The tests for
SVD2 and 3 can be discussed similarly. Now, the sin-
gular values are significant at a 99% level for a subset of
EOF truncations of 2 < f = 5 (Fig. 9b) and 3 = f < 8
(Fig. 9¢) for SVD2 and 3, respectively. These subsets

b) EOF Truncatioon for Best Corr
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Fi1G. 8. (a) Best mode correlation and the (b) corresponding EOF truncation as in Fig. 5, but
for the case of strong advection in Fig. 6. The best matrix correlation [dashed line in (a)] is now

for B,.
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FI1G. 9. Monte Carlo test of the singular values of SVD1, SVD2, and SVD3 for the cases of (a)-(c) weak
advection (in Fig. 3) and (d)—(f) strong advection (in Fig. 7). In each case, the observation is a single
realization randomly selected in Fig. 3 or Fig. 7. (a) Singular values of SVD1 of the observation (asterisk
with solid line) for different EOF truncations for the weak advection case. The gray shading is formed
by 1000 lines that represent the singular values for the random ensemble of 1000 members, in which the
atmosphere is randomly scrambled in time. The 99% and 95 % significance levels (one tailed) are marked
by heavy dashed lines. (b), (c) Same as (a), but for SVD2 and SVD3. (d)—(f) Same as (a)—(c), respec-

tively, but for the case of strong advection.

clearly include the true best truncations f = 4 for both
cases (see Figs. 3c.e).

The strong advection case can be discussed similarly
(Figs. 9d—f): it has a much smaller range of subset of
EOF truncations with significant leading SVDs than
does the weak advection case. For example, at the 95%
level, the subset of significant EOF truncationsis 1 =< f
=2,2=f=2 and 3 = f = 4 for SVDI1, SVD2, and
SVD3, respectively. The much-less-significant singular
values overall (relative to the weak advection case) are
consistent with the strong noise in the estimation in the
strong advection case discussed previously (cf. Figs. 7,
3). Nevertheless, this subset of significant truncations
still captures the best truncations of f = 2, 2, and 3, for
SVD1, SVD2, and SVD3, respectively (see Figs. 7a,c.e).
Therefore, in both the weak and strong advection cases,
the Monte Carlo test serves dual roles: it provides a
significance test for the SVD modes, and it can also
help the selection of the best EOF truncations by se-
lecting a subset of significant truncations for a given
SVD mode. The latter, combined with the rule of con-
vergence discussed above, can enhance our confidence
of the selection of the best EOF truncation significantly.

4. North Atlantic ocean—atmosphere interaction

a. Thermodynamic interaction

We now apply EFA-SVD to study the most optimal
feedback mode (mode 1) of ocean—atmosphere inter-
action over the North Atlantic. Here, we will focus on
the application of EFA-SVD, with the details of poten-
tial mechanisms left for future studies. The monthly
heat flux and SST data are from the Comprehensive
Ocean-Atmosphere Data Set (COADS; Woodruff
1985), while the monthly geopotential height is from
the National Centers for Environmental Prediction
(NCEP) reanalysis, all data in the period of 1957-93.
(We also used data entirely from NCEP reanaly-
sis and the results are similar.) All the variables
are anomalies from their seasonal cycle; they are
area weighted and linearly detrended before the analy-
sis.

As a case of dominant local feedback, we first study
the thermal feedback between the SST and the air-sea
heat flux (downward positive). It is known that heat
flux-SST interaction is dominated by a negative feed-
back arising from local air-sea interaction. The SST



5412 JOURNAL OF CLIMATE VOLUME 21
a) Correlation b) Singular Value c) Q/SST SVD1
i 60N
1
>
) 100 "
£
. z 40N
60
0.2
—pP— HFlux 204
—e—ssT 20N
2 5 10 15 1 5 10 15
f f -0.3-0.25-0.2-0.15-0.1-0.050.05 0.1 0.15 0.2 0.25 0.3

F1G. 10. The most optimal feedback mode (SVD1) for thermal feedback between the SST and surface turbulent heat flux over the
North Atlantic. (a) Successive SVD-mode pattern correlations and (b) singular values as functions of the EOF truncation f. In (b), the
gray lines indicate those singular values from 1000 random realizations in the Monte Carlo test, and the two heavy dashed lines are the
95% and 99% significance levels. (c) The pattern of the SVD1 of SST (shade) and surface turbulent heat flux (contour) over the North

Atlantic selected at f = 5. (Positive in solid contours and negative in dashed contours.)

variability is first generated by the atmospheric internal
variability and is then damped by the surface turbulent
heat flux (Frankignoul et al. 1998), with an upward heat
flux response (heat loss) to an SST forcing (warming).
This simple damping response provides a clear target to
test EFA-SVD in the observation. The area of the
North Atlantic (20-60°N, 80°W-0) is divided into ~170
boxes, each 4° X 4°. The EFA-SVD analysis is applied
to the heat flux (left) and SST (right) fields. Because
the true feedback matrix is unknown, we select the best
EOF truncation using our empirical rule of conver-
gence and the Monte Carlo test. Figure 10a shows the
successive mode correlations for both the heat flux and
SST fields of SVDI1 as a function of the truncation f.
The mode correlation shows a modest convergence
with the correlation peaking around f = 5-6 and de-
creasing sharply beyond f = 8. Therefore, the rule of
convergence suggests the truncation f = 5 (explained
SST variance about 60%) as the best truncation for
SVD1. This best truncation seems also to be consistent
with the convergence of response amplitude (or singu-
lar value), which also flattens around f = 5 from a small
initial increase (Fig. 10b). Furthermore, the Monte
Carlo significance test shows that the SVD1 is signifi-
cant at the 99% level for the subset of truncations of
f = 8, which clearly includes our best truncation f = 5.!
Therefore, the SVD1 at truncation f = 5 likely provides

! The best EOF truncation for SVD1 is much higher in the
observation than the idealized cases (Figs. 3, 7), because of a much
lower explained variance of leading EOFs in the former (17%,
16%, 10%, . . . for EOF1, 2, 3, ...) than in the latter (65%, 15%,
5%, ...).

a significant true feedback signal in the observation.
Figure 10c shows the patterns of mode 1 for the heat
flux response (contour) and SST forcing (shading). The
SST anomaly is dominated by a dipole in the subtropics
and subpolar North Atlantic. These two poles are col-
located with the two dominant heat flux centers, with a
positive SST forcing an upward heat flux to the atmo-
sphere. This is consistent with the dominantly local
negative feedback nature of air—sea thermal feedback.
The amplitude of the feedback, at f = 5, is about 40 W
m~ 2 K~! (Fig. 10b). This feedback magnitude is consis-
tent with the upper bound obtained from local (univar-
iate) EFA feedback analysis for basin-scale anomalies
(Frankignoul et al. 1998). The mode patterns of SST
forcing and, especially, heat flux response bear a strong
resemblance to the EOF1s of SST and heat flux, re-
spectively (not shown). This suggests that the dominant
local-feedback mode accounts predominantly for the
SST and heat flux variability over the North Atlantic.
The estimated mode 1 also remains robust for different
resolutions (not shown). This is in contrast to the EFA
feedback matrix itself, in which the local-feedback (di-
agonal) elements become noisy before the resolution is
increased beyond 10 boxes (not shown).

The patterns of SVDI1s are rather similar from trun-
cation f = 1 to 8 (not shown but implied by the succes-
sive pattern correlation in Fig. 10a). The major change
with the increase of f is the disappearance of a third
pole of SST in the tropics (south of 25°N), which was
present in the EOF1 of SST as part of the classical
tripole SST pattern (not shown). The absence of this
tropical SST anomaly pole creates a disparity between
SST anomaly and the heat flux there: in spite of the
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F1G. 11. The optimal feedback mode (SVD1) is the same as Fig. 10, but for the atmospheric dynamic height response at 500 hPa
(Zsgo) to SST over the North Atlantic. (c) This pattern is for EOF of truncation f = 5.

absence of an SST anomaly, the heat flux anomaly is
modest and of the same sign as that in the subpolar
region (Fig. 10c). This heat flux-SST-pattern mis-
match may indicate a weak nonlocal heat flux response
to SST. A preliminary interpretation of this nonlocal
response is associated with a midlatitude SST forcing
on the North Atlantic Oscillation (NAO) atmospheric
response. The latter is coherent in the tropical and the
subpolar North Atlantic and therefore has a nonlocal
impact on the tropics. To identify the nonlocal im-
pact unambiguously, one has to assess the feedback
matrix itself. A preliminary study of the EFA feedback
matrix does indicate some weak nonlocal feedback on
tropical heat flux as discussed above. However, the re-
sult is significant only for very low resolutions (3-6
boxes, not shown). This example also illustrates
one major difficulty for nonlocal feedback assess-
ment: the EFA feedback matrix is good to identify
nonlocal feedback, but it is sensitive to resolution. In
contrast, the optimal mode identified by EFA-SVD
is more robust to resolution, but its low EOF and SVD
truncation tends to maintain basin-scale patterns, and
it is therefore difficult to isolate a regional forcing
effect. One alternative may be to perform the EFA
analysis in the space of the leading rotated EOF (as
opposed to EOF) of SST (see an example in Zhong and
Liu 2008). The rotated EOFs tend to be more localized
such that they can be linked to localized regional forc-
ing/response more clearly. In the meantime, the pat-
terns of the leading rotated EOFs, although not per-
fectly orthogonal as the EOFs are, are usually not
highly correlated and therefore should still be effective
in reducing the sampling error in the inversion of the
SST covariance matrix, similar to the EOFs as dis-
cussed in appendix B.

b. Atmospheric dynamic response

We now study the SST feedback to the atmospheric
geopotential height at 500 hPa (Z5,,) as a case of
strongly nonlocal feedback. In general, atmospheric re-
sponse to midlatitude SST remains poorly understood
(see the review of Kushnir et al. 2002). The mechanism
of the atmospheric response is understood to involve
nonlinear wave-mean flow interactions (Peng and
Whitaker 1999). However, it has remained a great chal-
lenge to identify the atmospheric response from the
observations, because the strong internal atmospheric
variability tends to overwhelm the weak atmospheric
response signal. Recently, the EFA (Liu and Wu 2004;
Liu et al. 2007) has been used to assess the atmospheric
response to extratropical SST anomaly. In spite of the
strongly nonlocal nature of atmospheric response, all
these applications have used essentially the univariate
EFA. It is therefore possible that the atmospheric re-
sponse is not properly assessed. The MCA analysis
(Czaja and Frankignoul 2002), although useful in illus-
trating the nonlocal nature of the response, does not
assess the atmospheric response explicitly (see appen-
dix A). Here, we will use the multivariate EFA-SVD to
identify the dominant modes of atmospheric response
to North Atlantic SST. The analysis domain is now 20—
70°N, 100°W-20°E for the Z5,, with ~240 boxes, each
5° X 5°. The SST data are confined to the North At-
lantic, the same as the heat flux analysis discussed pre-
viously.

The successive mode correlations of Zs,, and SST for
SVD1 suggest that the best truncation for mode 1 is
about f = 5. This is because the successive mode cor-
relation (Fig. 11a) and the singular value (Fig. 11b) start
to plateau at f = 4-5. Furthermore, the Monte Carlo
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test shows that f = 5 is the only truncation that shows
significant SVD1 at the 99% level (Fig. 11b).” The pat-
tern of mode 1 (Fig. 11c) shows roughly a north-south
dipole in SST within the Atlantic basin and a north—
south dipole in Zs,,, both between the subtropical and
subpolar regions. The sign is such that a cold SST in the
Gulf Stream region generates a low in the Iceland Low.
This is consistent with more recent high-resolution at-
mospheric model simulations (Kushnir et al. 2002).
Some longitude variations are also apparent here, with
the south pole of SST weakest in the central ocean and
the south pole of Z5, shifted eastward toward southern
Europe. The dipole SST pattern is rather stable from
f = 4-9 (not shown but implied in the correlation in Fig.
11a), which originates from an initial tripole pattern at
f=11in EOF1 of SST with the southern pole vanishing
at f = 4. The dipole Zs,, pattern is also stable between
f = 4-9, somewhat resembling the NAO pattern as de-
rived from the EOF1 of Zs,.” Initially at f = 1, the Zsq,
pattern exhibits a zonal tripole centered along 50°N,
which collapses quickly to a meridional dipole after f
increases beyond 3. The magnitude of the response is
70 m K~ ! at f = 5 (Fig. 11b), which seems to be con-
sistent with previous works as being an upper bound of
the atmospheric response (Czaja and Frankignoul 2002;
Liu and Wu 2004; Liu et al. 2007).

This optimal dipole SST forcing has not been identi-
fied in previous work. In a recent MCA analysis, Czaja
and Frankigoul (2002) identified a horseshoe pattern of
later summer SST forcing early winter NAO. The
horseshoe SST pattern differs from the dipole here
mainly in the southern pole in the tropics. This differ-
ence may be due to the different seasonality between
the two analyses. More importantly, the optimal mode
identified here does not represent the dominant MCA
mode in the couple system (see appendix A). It is also
possible that the horseshoe pattern is distorted by the
tropical Atlantic forcing (Peng et al. 2005). The identi-
fied optimal feedback mode may have implications for
ocean—atmosphere coupling over the North Atlantic.
The NAO atmospheric variability tends to force a triple
SST anomaly through mainly the turbulent heat fluxes
(Cayan 1992), and this tripole SST anomaly is the dom-
inant EOF mode for SST over the North Atlantic. It is

2The SVD2 and SVD?3 are no longer significant at a 95% level
for Zs,, but they are still significant for heat flux (not shown). The
high SVDs for the heat flux/SST still show a dominant local re-
sponse but with some interesting phase shifts. These will not be
discussed here.

3 Different from the classical NAO, which is derived from the
winter months, the Zs,, pattern in Fig. 11c is derived for year-
round.
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therefore interesting that the NAO atmospheric re-
sponse is optimal to a dipole SST forcing, instead of the
tripole SST. If true, it implies that the coupling between
the atmosphere and SST in the North Atlantic may not
form a simple stationary feedback. Instead, some phase
shifting will be involved. All these issues remain to be
studied in the future.

5. Summary

As an extension of Part I, the SVD decomposition is
used on the EFA estimator of the feedback matrix. This
EFA-SVD analysis identifies robust large-scale feed-
back modes with the greatest feedback responses. An
application to a simple coupled model suggests that
EFA-SVD is able to estimate large-scale, optimal feed-
back modes more accurately than the smaller-scale
feedback modes and, in turn, the overall feedback ma-
trix itself. This suggests that large-scale optimal modes
are more robust to the resolutions than the overall
feedback matrix itself. The EFA-SVD is then applied
to the observed North Atlantic to study ocean-—
atmosphere feedbacks. The application to the North
Atlantic thermal feedback confirms the strong local
negative feedback of SST on heat flux with an upper
bound of ~40 W m~2 K. The application to the North
Atlantic atmospheric geopotential height response
identified a strong NAO response to a North Atlantic
dipole SST, with an upper bound of ~70 m K~' for
Zs00-

As in the case of the feedback matrix in Part I, it
remains an issue how to select the best estimator for the
optimal feedback modes, especially the best truncation
of SST EOFs. The essence of the sampling error with
resolution is the covariability of SST among different
regions. Both the SST EOF truncation and the SVD
decomposition are used to constrain the scales of the
feedback fields and therefore constrain the sampling
error. So far, this constraint is somewhat ad hoc and
subjective. Nevertheless, our empirical rule of conver-
gence, when combined with the Monte Carlo test,
seems to be rather effective in selecting the best trun-
cation of EOF. Ultimately, it is highly desirable to de-
velop an assessment method that can take into account
the SST spatial correlation objectively. It is also impor-
tant to better understand the physical mechanism for
the identified feedback-response modes, preferably
with direct dynamic modeling simulations in climate
models.

Acknowledgments. This work is supported by DOE,
NOAA, Chinese NSF, and the Ocean University of
China. We thank three anonymous reviewers and Dr.



15 OCTOBER 2008

D. Straus, whose comments have helped improve the
manuscript significantly.

APPENDIX A

EFA-SVD and MCA

In an attempt to identify the full climate feedback,
including local and nonlocal responses, Czaja and
Frankignoul (2002) used MCA to identify the leading
coupled ocean—-atmosphere modes, with the patterns of
the leading pairs of the response and forcing as the
leading pairs of the SVD modes of the covariance ma-
trix Cyy(7) between the atmospheric response field
(left field) and the SST forcing field of an earlier time
(right field). Note, however, that these leading MCA
modes depend not only on the atmospheric response
sensitivity but also on the SST variability, because the
covariance matrix depends on the SST variability in the
coupled system as well as on the atmospheric variabil-
ity. Therefore, the MCA modes mix the atmospheric
response with the SST variability in the coupled system.
In comparison, the EFA-SVD modes are the SVD de-
composition of € (7)Cyy(7), which is a statistical es-
timator of the feedback matrix B as shown in (2.2). The
former is specific to the coupled system because the
SST variability is determined by the coupled system,
while the latter depends only on the atmospheric dy-
namics. Furthermore, given an SST anomaly field in
general, the atmospheric response can be predicted di-
rectly by the projection of the SST onto the EFA-SVD
SST modes, but the atmospheric response cannot be
predicted by the projection onto the MCA SST modes.
Finally, even if an SST anomaly has the pattern as, say,
the SST pattern of the first MCA SST mode, the cor-
respoinding first atmospheric mode only represents the
pattern that has the largest covariance with the SST
rather than the true atmospheric response pattern to
this SST anomaly. In spite of all the desirable advan-
tages of the EFA-SVD, for a finite sample size, the
EFA-SVD is much more sensitive to estimation than
the MCA, because the MCA does not involve the in-
verse of the SST covariance matrix as in the EFA esti-
mator (2.2).

APPENDIX B

EFA in the EOF Space

EFA can be performed in the EOF space or sub-
space. In general, the atmospheric field x(f) and SST
field y(¢) can be expanded on thelr EOF subspaces
as X(r) = E’ wi(De; and §(1) = Z/_,q;(nf;, where e,
and f; are the orthonormal EOFs, pl(t) = e/x(¢) and
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q,(1) = £ly(1) are the corresponding principal compo-
nents (PCs), and / = I and J = J represent the number
of EOFs in the subspaces. Define the EOF and PC
matrices as E = ;[e,,..., e;];, F = /[f,..., fj]; and
P, = i[p;(t)]7, Q, = j[q(t)]7. The synthetic atmospheric
and SST matrices are

X, —EP, and Y, =FQ, (B.1)

The equilibrium atmospheric response (2.1) is there-
fore

X, =BY,+N,

Substituting in (B.1), and with the orthonormal condi-
tion ETE = I, we have

P, = BrorQ, + Neor,
where

E'BF (B.2)

BEOF

is the feedback matrix in the EOF subspaces and
Ngor = ETN, is the internal variability projection on the
EOF space. Right multiplication of Q) . and ensemble
averaging yield

CPQ(T)CQQ(T) (B.3)

where we have used (N,, Q,_.) = 0. Using (B.2) and the
orthonormal condition F'F = I, we recover the feed-
back matrix in the physical space reconstructed from
the EOF subspace of the leading I atmospheric and J
SST EOFs as

BEOF

B;;= EBroF'. (B.4)

Notice that the truncation of the SST EOF subspace
makes C, () less singular at small lags. Indeed, at lag
0, we have from the orthorgonality of the PCs

A 00
Coo=Q'@=| 0 --- 0|
0 0 N

where A, is the jth leading eigenvalue of Cy (0). There-
fore, Cyp(0) will no longer be singular if high SST
EOFs of nearly zero eigenvalues are neglected. Fur-
thermore, since SST usually has a long persistence time,
we would expect Cy,(1) to be similar to Cy,(0) at
small lags, being not very singular. Therefore, the sam-
pling error of the estimation is reduced in the subspace
of SST EOFs in (B.3). It should also be noted that to
reduce the sampling error, we only need to reduce the
singularity of the SST field, not the atmospheric field.
Therefore, in Part I and herein, we only applied the
EOF truncation to the SST field.
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