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ABSTRACT

Observed vegetation feedbacks on temperature and precipitation are assessed across the United States
using satellite-based fraction of photosynthetically active radiation (FPAR) and monthly climate data for
the period of 1982–2000. This study represents the first attempt to spatially quantify the observed local
impact of vegetation on temperature and precipitation over the United States for all months and by season.
Lead–lag correlations and feedback parameters are computed to determine the regions where vegetation
substantially impacts the atmosphere and to quantify this forcing. Temperature imposes a significant in-
stantaneous forcing on FPAR, while precipitation’s impact on FPAR is greatest at one-month lead, par-
ticularly across the prairie. An increase in vegetation raises the surface air temperature by absorbing
additional radiation and, in some cases, masking the high albedo of snow cover. Vegetation generally
exhibits a positive forcing on temperature, strongest in spring and particularly across the northern states.
The local impact of FPAR on precipitation appears to be spatially inhomogeneous and relatively weak,
potentially due to the atmospheric transport of transpired water. The computed feedback parameters can
be used to evaluate vegetation–climate interactions simulated by models with dynamic vegetation.

1. Introduction

Vegetation and climate interact through a series of
complex feedbacks, which are not yet fully understood.
Patterns of natural vegetation are largely determined
by temperature, precipitation, solar irradiance, soil con-
ditions, and CO2 concentration (Budyko 1974; Wood-
ward 1987; Woodward et al. 2004). Vegetation impacts
climate directly through moisture, energy, and momen-
tum exchanges with the atmosphere and indirectly
through biogeochemical processes that alter atmo-
spheric CO2 concentration (Pielke et al. 1998; Bonan
2002). The key vegetation–climate feedbacks are out-
lined in Fig. 1.

Plants regulate evapotranspiration by adjusting the

size of their stomatal openings (Shukla and Mintz 1982;
Jones 1983; Henderson-Sellers et al. 1995; Pollard and
Thompson 1995; Bonan 2002). Through this moisture
feedback, an increase in evapotranspiration potentially
leads to an increase in atmospheric column moisture
and precipitation, further enhancing plant growth.
Changes in vegetation alter the surface albedo and ra-
diation fluxes, leading to a local temperature change
and eventually a vegetation response. This albedo (en-
ergy) feedback is particularly important when forests
mask snow cover and grass spreads into desert (Rob-
inson and Kukla 1985; Bonan et al. 1992; Betts and Ball
1997; Bonan 2002). Through the momentum feedback,
variations in the surface roughness of vegetation alter
wind speeds, moisture convergence, turbulence, and
the depth of the atmospheric boundary layer, which
then affect vegetation growth (Sud et al. 1988; Buer-
mann 2002).

Most of the current understanding of these feedbacks
resulted from studies using coupled vegetation–climate
models. Foley et al. (1998) found that the northward
expansion of grasslands in an interactive vegetation
simulation of the Global Environmental and Ecological
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Simulation of Interactive Systems–Integrated Bio-
sphere Simulator (GENESIS–IBIS) led to cooling over
the southern Sahara and Arabian deserts. Using the
Community Climate System Model (CCSM2) with dy-
namic vegetation, Levis et al. (2004) concluded that soil
feedbacks, linked to surface albedo changes, contrib-
uted to the northward advance of the North African
monsoon during the mid-Holocene. Using the Fast
Ocean Atmosphere Model–Lund Potsdam Jena
(FOAM-LPJ) Gallimore et al. (2005) simulated a pole-
ward expansion of boreal forest cover and an increase
in midlatitude grasslands during the mid-Holocene,
compared to simulated vegetation under modern or-
bital forcings. The expanded boreal forest, by masking
snow cover, led to springtime warming through the
albedo feedback. Notaro et al. (2005) simulated the
impact of changes in CO2 levels during the preindus-
trial to modern period, and likewise found a poleward
shift of the boreal forest using FOAM-LPJ. Also, car-
bon dioxide fertilization produced a global greening
trend and enhanced warming over Eurasia and North
America.

Few studies have primarily applied observational
data to determine the impact of vegetation feedbacks
on the large-scale climate. Several studies determined
that springtime leaf emergence initiates discontinuities
in numerous meteorological variables (Schwartz and
Karl 1990; Schwartz 1992, 1996; Fitzjarrald et al. 2001),
while McPherson et al. (2004) showed that Oklahoma’s
winter wheat belt induces feedbacks on local tempera-
ture and moisture.

Using a satellite-based normalized difference vegeta-
tion index (NDVI) and gridded temperature data,
Kaufmann et al. (2003) applied Granger causality sta-
tistics (Granger 1969) to quantify the effects of inter-
annual variations in vegetation on temperature over
North American and Eurasian forests. They found that
increased NDVI over North America resulted in warm-
ing during winter and spring and cooling during sum-
mer and autumn. The impact on temperature was
strongest during winter, when NDVI was negatively
correlated with snow extent and weakly correlated with
vegetation.

W. Wang et al. (2005, personal communication, here-

FIG. 1. Schematic of feedbacks between climate and vegetation on seasonal to interannual time scales.
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after W05) applied Granger causality to study intrasea-
sonal interactions between NH vegetation and climate
during the growing season. They identified significant
causal relationships of vegetation on temperature and
precipitation over the central North American grass-
lands, with enhanced vegetation leading to higher tem-
peratures and reduced precipitation. This finding is not
consistent with most modeling studies, which simulate
an increase in precipitation resulting from an increase
in vegetation.

Liu et al. (2006) estimated the magnitude of observed
global vegetation feedbacks on temperature and pre-
cipitation. They used lead–lag correlations and a statis-
tical feedback parameter (Frankignoul and Hassel-
mann 1977; Frankignoul et al. 1998) to relate the satel-
lite-based fraction of photosynthetically active
radiation (FPAR) to gridded temperature and precipi-
tation data. They showed that, in the northern mid and
high latitudes, vegetation variability is predominantly
driven by temperature, while vegetation also exerts a
strong positive feedback on temperature. They found
that, while tropical and subtropical vegetation is mostly
driven by precipitation, the influence of vegetation on
precipitation is weak globally, with no evidence of a
dominant positive vegetation–precipitation feedback.

Liu et al. (2006) used a statistical technique previ-
ously applied to ocean–atmosphere feedbacks to assess
vegetation–climate feedbacks, thereby providing a
global overview of vegetation impacts with limited at-
tention given to underlying processes. This study ap-
plies the same statistical approach in a focused analysis
of vegetation–climate feedbacks in the United States.
In addition to presenting an overview of the mean and
seasonality of vegetation in the United States and as-
sessing the controls of vegetation growth, the magni-
tude of seasonal vegetation forcing on temperature and
precipitation is quantified from observational data. The
results can be applied to evaluate vegetation feedbacks
in the United States as simulated by climate models.

The key difference between studies using a feedback
parameter (present study; Liu et al. 2006) and those
using Granger causality (Kaufmann et al. 2003; W05) is
that the former is a feedback study that quantifies the
instantaneous vegetation forcing on the atmosphere,
while the latter is a predictability study of the causality
between vegetation and the atmosphere at a later time.
The present study and that of Liu et al. (2006) are the
first to quantify the observed instantaneous forcing
from vegetation. This instantaneous forcing (from feed-
back) will be greater than the lagged causality forcing
(from predictability) with the difference representing
the one-month FPAR autocorrelation (shown by Liu et
al. 2006).

The data is outlined in section 2 and the methodology
in section 3. Section 4 describes the mean, variance, and
persistence of U.S. land cover and FPAR. Instanta-
neous and lead/lag correlations between FPAR and
temperature/precipitation are the focus of section 5.
Computed feedback parameters are presented in sec-
tion 6. The conclusions are in section 7.

2. Data

Vegetation is assessed using the Pathfinder Version 3
Advanced Very High Resolution Radiometer (AVHRR)
FPAR data (Myneni et al. 1997) on a 0.5° � 0.5° grid.
FPAR is the fraction of photosynthetically active radia-
tion absorbed by the green parts of vegetation and rep-
resents a measure of vegetation activity. FPAR is de-
rived from satellite-measured NDVI through a linear
relationship (Myneni et al. 1997); FPAR can be directly
computed from the model output, making it easier to
use than NDVI to later assess model feedbacks. All
data is obtained for 1982–2000. When computing cor-
relations and feedback parameters, the data is interpo-
lated to a 2.5° � 2.5° grid, converted to monthly anoma-
lies by removing the annual cycle, and linearly de-
trended.

Satellite-derived vegetation data contains certain
known biases. Wintertime FPAR of high latitude for-
ests is likely biased too low owing to the high albedo of
snow cover and limited available sunlight for vegetation
use or detection by remote sensing (Los et al. 2000;
Buermann 2002; Tian et al. 2004). Pathfinder NDVI
data is corrected for Rayleigh scattering (Gordon et al.
1988), ozone absorption, and instrument degradation,
but not for aerosols or viewing geometry. Kaufmann et
al. (2000) found that the data was not contaminated by
trends associated with changes in solar zenith angle re-
lated to changing satellites or orbital decay. Huete
(1988) and Kaufmann et al. (2000) determined that
NDVI is sensitive to soil characteristics over partially
vegetation regions. The vegetation feedback param-
eters in section 6 could include some signature of soil
characteristics or snow cover. Model simulations can
serve to further isolate actual vegetation feedbacks.

The sources of 2.5° � 2.5° monthly climate data are
the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) reanalysis (Kalnay et al. 1996) for surface air
temperature and Climate Prediction Center (CPC)
Merged Analysis of Precipitation Dataset (Xie and Ar-
kin 1997). FPAR, temperature, and precipitation data
are used throughout sections 4–6. Mean tree cover frac-
tion (total, deciduous, and evergreen) and grass, crop,
and shrub cover fraction are retrieved from the Global
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Continuous Fields of Vegetation Cover Dataset (De-
Fries et al. 1999, 2000). Crop cover fraction is obtained
from Ramankutty and Foley’s (1998) cropland dataset.
The AVHRR-based biome distribution is retrieved
from the Earth Resources Observation and Science
(EROS) Data Center’s Global Land Cover Classifica-
tions dataset (Loveland et al. 2001), which applies the
International Geosphere–Biosphere Discover (IGBD)
land cover legend (Loveland and Belward 1997). The
forest cover fraction, crop cover fraction, and biome
distribution datasets are applied in section 4.

3. Methods

Section 4b presents mean FPAR and computes the
magnitude of FPAR’s seasonal cycle and year-to-year
variability using standard deviations. Unrotated (EOF)
and rotated (REOF) empirical orthogonal functions
are calculated using June–August (JJA) FPAR to in-
vestigate interannual variability. In section 4c, autocor-
relation functions and decorrelation times are com-
puted for FPAR, temperature, and precipitation
anomalies. Decorrelation time represents memory or
persistence and is computed by the following equation
(von Storch and Zwiers 1999):

Td �
1 � �1

1 � �1
, �1�

where �1 is the one-month autocorrelation.
Instantaneous and lead–lag correlations between

FPAR and both temperature and precipitation are pre-
sented in sections 5a–c, using both data from all months
and by season. The lead–lag correlations are extended
in section 5d to regional analyses of Wisconsin and the
central/northern Rockies, where significant correla-
tions are identified with FPAR leading the atmosphere.
Finally, feedback parameters are presented in section 6
as a measure of instantaneous forcing from FPAR.

The methodology of computing the feedback param-
eter for vegetation forcing on the atmosphere is out-
lined by Liu et al. (2006). It was initially proposed by
Frankignoul and Hasselmann (1977) and later applied
to study SST feedback on air–sea heat flux (Franki-
gnoul et al. 1998; Frankignoul and Kestenare 2002) and
the atmosphere’s response to extratropical Atlantic
(Czaja and Frankignoul 2002) and Pacific (Liu and Wu
2004; Lee and Liu 2005, manuscript submitted to Cli-
mate Dyn.) SSTs. As with SST, FPAR exhibits a longer
memory than the atmosphere. In the present study, the
impact of changes in monthly FPAR on temperature
and precipitation are assessed over the United States.
While feedback represents a two-way interaction, this

study primarily focuses on the component of feedback
with the vegetation forcing the atmosphere.

As shown by Liu et al. (2006), atmospheric variables
such as temperature or precipitation can be divided into
two components:

A�t � dta� � �AV�t� � N�t � dta�. �2�

Here A(t) is the atmospheric variable at time t, V(t) is
FPAR at time t, �A is the feedback parameter, dta is the
atmospheric response time (about one week), and N(t)
is the climate noise generated internally by atmospheric
processes that are independent of FPAR variability.
The atmospheric variable is determined by �AV(t),
which is its feedback response to changes in FPAR, and
N(t � dta), which is atmospheric noise. As derived by
Liu et al. (2006) and Frankignoul et al. (1998), the feed-
back parameter can be determined as

�A �
covar	A�t�, V�t � ��


covar	V�t�, V�t � ��

, �3�

where � is the time lag, which is longer than the persis-
tence time of atmospheric internal variability. The
feedback parameter is estimated as the ratio of the
lagged covariance (covar) between A and V to the
lagged covariance of V. Following Frankignoul et al.
(1998), the feedback parameter is computed as the
weighted average from the first three lags (weights of
1.0, 0.5, and 0.25 for lags of 1, 2, and 3 months, respec-
tively).

The feedback parameter quantifies the instantaneous
feedback response of the atmosphere to changes in
FPAR based on monthly data. For surface air tempera-
ture, �T is given in units of °C (0.1 FPAR)�1, repre-
senting the change in observed temperature due to an
increase in monthly FPAR by 0.1. For precipitation, �P

is given in units of cm month�1 (0.1 FPAR)�1. Positive
values of � indicate a positive forcing of FPAR on the
atmospheric variable. To estimate the statistical signifi-
cance of the feedback parameters, a Monte Carlo boot-
strap approach is applied in which 1000 individual � are
computed at each grid point from shuffled series (Czaja
and Frankignoul 2002). The significance is determined
by the percentage of these � that are smaller in magni-
tude than the actual computed feedback parameter for
that grid cell.

Kaufmann et al. (2003) noted that conventional
lagged correlations are insufficient to determine causal-
ity within the fully coupled earth system owing to issues
of persistence. Kaufmann et al. (2003) and W05 applied
Granger causality statistics in order to better isolate
cause and effect in the coupled climate–vegetation sys-
tem. Granger causality incorporates lagged cross-
correlations and autocorrelations, thereby attempting
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to extract causality without false signals from persis-
tence. However, this methodology is new to climate
studies (Kaufmann and Stern 1997) and has received
some criticism regarding the interpretation of its results
for a multivariate system (Triacca 2001). The feedback
parameter in the present study also considers both
lagged cross-correlations and autocorrelations, provid-
ing a higher order statistical analysis to supplement the
basic correlations in section 5. Nonetheless, without us-
ing a climate model, it is difficult using pure statistical
methods to extract causality within a fully coupled
earth system due to numerous feedbacks and persis-
tence. The present study offers a statistical approach to
quantify observed vegetation forcing on the atmo-
sphere but does not attempt to explain all the mecha-
nisms involved.

4. U.S. land cover and FPAR

a. Land cover dataset description

Figure 2 presents the percent coverage of deciduous
trees, evergreen trees, grass/herb/shrubs, and crops
across the United States, while the IGBD biome distri-
bution is shown in Fig. 3. Total tree cover is limited to
35% of the United States. Evergreen forests cover 21%
of the country, including the coastal plain evergreens of
the Southeast, Pacific Coast evergreens of the North-
west, and boreal forest extending into Minnesota,
Michigan, and New England. Deciduous forests extend
across 14% of the United States, predominantly in the
Mid-Atlantic, Northeast, and Midwest states.

The majority of the country, 52%, is covered by
grassland, shrubland, and cropland. The mountainous
land between 120° and 105°W is predominantly shrub-
land and grassland. The Great Plains prairie, which
today is largely cropland and pastureland, lies from
the eastern slope of the Rockies to about 94°W, the
western edge of the eastern U.S. mixed forest. The
Corn Belt, with mostly maize and soybean, stretches
from the Dakotas to Ohio. Substantial amounts of
spring (winter) wheat are grown in the Dakotas
and Montana (Kansas, Colorado, Oklahoma, and
Texas).

b. Mean, seasonality, and interannual variability of
FPAR and climate variables

Mean FPAR is greatest over the deciduous and ev-
ergreen forests of the East and the Pacific Northwest
evergreen forests (Fig. 4). While evergreen forests
maintain the highest wintertime FPAR values (0.5–0.7),
the thick leaf cover of deciduous forests in the eastern
United States leads to higher summertime FPAR val-
ues (0.7–0.9). Year-round warm, wet conditions in the
Southeast and wet, relatively mild winter conditions in
the Pacific Northwest help maintain evergreen forests.
A strong southerly low-level jet advects warm, moist
Gulf air across the central U.S. prairie during summer.
The eastern edge of this prairie represents a climatic
boundary where precipitation exceeds evaporation to
the east and vice versa to the west. Across the north
United States, limited growing degree-days and sun-

FIG. 2. Percent coverage of (a) deciduous trees, (b) evergreen trees, (c) crops, and (d) grasses/crops/shrubs. The data source for (a),
(b), and (d) is the Global Continuous Fields of Vegetation Cover Dataset (DeFries et al. 1999, 2000) and for (c) Ramankutty and
Foley’s (1998) cropland dataset.
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light contribute to low wintertime FPAR values (except
the Pacific Northwest). The southern extent of the
North American boreal forest follows the mean winter
position of the Arctic front (Bryson 1966). Poleward of
36°N, FPAR peaks during summer at most locations
within the United States. In the Southeast and the
Southwest monsoon region, FPAR typically peaks in
autumn, although its seasonal cycle is quite weak. Iso-
lated areas of the southern prairie and southern Cali-
fornia achieve maximum FPAR in spring.

FPAR, temperature, and precipitation are averaged
over each season and the interannual variability for
each season is shown in Fig. 5. Two centers of high
interannual variance in FPAR are identified over the
northern (Dakotas/Montana) and southern (Texas)
Great Plains, connected by a saddle of high variance
across the plains, while interannual variability is mini-
mal to the east of 95°W and across the Southwest. The
interannual standard deviation of FPAR reaches 0.06 at
both centers in summer, although the northern center is
more distinct in winter and corresponds to the location
of largest temperature variance (Fig. 5). Grasslands and
shrublands support substantial year-to-year summer-
time FPAR variance, while agricultural regions of the

eastern Dakotas/Minnesota and eastern Texas exhibit
less variance. Previous studies have noted large inter-
annual variability in aboveground net primary produc-
tivity (Knapp and Smith 2001) and fractional vegetation
cover (Myneni et al. 1998; Zeng et al. 2003) of grass-
lands. The Pacific Coast evergreen forests exhibit large
year-to-year FPAR variance, mostly between winters,
due to large precipitation variance.

Across the northern United States, FPAR exhibits a
strong seasonal cycle (Fig. 6b) associated with a distinct
temperature seasonal cycle. The standard deviation of
the climatological monthly mean FPAR, representing
its seasonal cycle, exceeds 0.3 over North Dakota and
Minnesota where temperature variance is particularly
large in winter and spring (Fig. 6b). The standard de-
viation of monthly FPAR anomalies (after removing
the seasonal cycle) is mostly less than 0.1 and peaks in
the northern prairie and the Northeast, due to tempera-
ture variance and in the Northwest and southern prai-
rie, due to precipitation variance (Fig. 6c). It is substan-
tial in comparison to the amplitude of FPAR’s seasonal
cycle over the southern prairie, Southeast coastal plain
evergreens, and Pacific Coast evergreens (Fig. 6d). In
these coastal areas, there is large year-to-year variance

FIG. 3. Biome distribution from EROS Data Center’s Global Land Cover Classifications dataset (Loveland et al. 2001), which was
derived from AVHRR data for 1992–93 and applies the IGBD land cover legend (Loveland and Belward 1997). Classifications are
merged into seven categories for simplification. Boxes indicate the eight regions in Table 1.
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associated with ENSO, as well as a weak seasonal cycle;
in the Great Plains, year-to-year monthly variability of
FPAR is also high due to large variance in temperature
and precipitation. Consequently, in these regions the
yearly variability of monthly anomalies is more compa-
rable with the amplitude of the seasonal cycle than is
the case over much of the country.

The interannual variance of FPAR is investigated
with unrotated and rotated EOFs (Fig. 7). Based on
REOF-1 and EOF-1 for JJA, the centers of enhanced
FPAR anomaly variance over the northern prairie and
southern prairie/Mexico act as a dipole. The dipole pat-
tern of REOF-1 comprises 30% of the variance in
FPAR anomalies across the United States. This north–
south dipole signature in FPAR is distinct in the El
Niño summer of 1987 and La Niña summer of 1998. A
somewhat similar north–south pattern is observed in
REOF-1 and -2 for JJA surface air temperature. W05
identified the area of this northern dipole center as a
region of significant vegetation feedbacks. The large
FPAR variance over the prairie (Figs. 5 and 7) reflects
the high biomass turnover rate of grasslands compared
to forests, which allows for rapid response to interan-
nual atmospheric variability.

c. Persistence

Spatial maps of the FPAR decorrelation time and
autocorrelation are produced to investigate its memory,
or persistence (not shown). The decorrelation time of
monthly FPAR anomalies is typically two to four
months across the prairie and Rocky Mountain shrub-
lands and grasslands, but is mostly less than two months
over the Corn Belt and eastern deciduous forest. One-
month autocorrelations exceed 0.4 across the prairie
and the West, suggesting a strong short-term memory
for grasslands and shrublands. However, six-month au-
tocorrelations are largest over the Southeast coastal
plain evergreens. Based on the statistical significance of
autocorrelations at different lags, the average U.S.
FPAR memory is four months.

The United States is divided into eight regions based
on biome classifications and geography, and the
memory (based on autocorrelation) of FPAR, tempera-
ture, and precipitation is determined from area aver-
ages for each region (Table 1). One-month autocorre-
lations are low for temperature (0.10–0.30) and precipi-
tation (0.04–0.20), although regions of the West exhibit
memories of 1–2 months. Since the true atmospheric

FIG. 4. Mean (a)–(d) FPAR (Myneni et al. 1997), (e)–(h) surface air temperature (°C) (Kalnay et al. 1996), and (i)–(l) precipitation
(cm month�1) (Xie and Arkin 1997) for the four seasons.
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memory is less than one week, these longer memories
perhaps reflect contributions from soil moisture, veg-
etation, and SSTs.

FPAR exhibits a longer memory than the atmo-
sphere, with statistically significant one-month autocor-
relations ranging from 0.24 in the Corn Belt to 0.51 in
the southern prairie. One-month autocorrelations are
weakest across the eastern forests and Corn Belt and
strongest across the prairie and Rockies, where mostly
grass and shrubs grow. The low one-month autocorre-
lations of eastern biomes reflect ample moisture supply,
limited sensitivity to climatic variability, and low FPAR
variability. FPAR has a significant memory of at least
four months in the Southeast, southern prairie, and
southern Rockies, suggesting a longer memory across
the southern states. The enhanced sensitivity of north-
ern biomes to instantaneous temperature variability
supports their limited memory. The substantial FPAR
memory across the prairie is surprising, but could partly
reflect the ongoing influence of precipitation across
several preceding months, the substantial memory of
the groundwater system, and the resilient nature of
grass (Risser 1985). Likewise, other studies have found
substantial soil moisture memory over the western half

of the United States (Maurer et al. 2002; Wu and Dick-
inson 2004).

The Southeast coastal plain evergreens have a rela-
tively weak, yet significant, one-month autocorrelation
of 0.28, but exhibit significant memory beyond ten
months. Within a forest, FPAR is comprised of both a
relatively fast-changing leaf coverage and slow-chang-
ing total vegetation coverage; this partly explains the
sudden drop in autocorrelation after one month and the
continued weakly significant autocorrelations over
many monthly lags. The opposite is noted for the Pa-
cific Coast evergreens, where the FPAR one-month au-
tocorrelation reaches 0.43 but significant memory is
limited to one month. The FPAR autocorrelation curve
for the Southeast evergreens shows a relative peak at
lags of four to six months (Fig. 8), implying enhanced
cross-seasonal memory.

The memory computed in this section can potentially
reflect the influence of local forcings, such as soil mois-
ture, or remote forcings, such as SST and teleconnec-
tions. Walsh et al. (1985) showed that SST, soil mois-
ture, and sea ice have a substantial memory compared
to atmospheric circulation. These slow-changing vari-
ables, in addition to vegetation, largely explain the ap-

FIG. 5. As in Fig. 4 except for the standard deviation.
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parent memory of temperature and precipitation be-
yond a few days. Since such variables influence vegeta-
tion, it is likely that they maintain a signature in the
FPAR data that is difficult to separate within observa-
tional data.

5. Relationship between FPAR and atmospheric
variables

a. Instantaneous correlations

Previous studies have correlated global NDVI to
both temperature and precipitation. Vegetation changes
in northern temperate climates were linked to tempera-
ture by Los et al. (2001) and Ichii et al. (2002) and to
both temperature and precipitation by Schultz and

Halpert (1993). Here, the approach is extended by cal-
culating instantaneous (same month) correlations be-
tween monthly FPAR and both temperature and pre-
cipitation anomalies in the United States for each sea-
son (Fig. 9). While these instantaneous correlations
primarily reflect the response of vegetation to atmo-
spheric conditions, a portion of the instantaneous rela-
tionships can be attributed to vegetation forcing the
atmosphere. On time scales of less than one month, the
large internal atmospheric variability exceeds the slow
variance in FPAR, supporting the atmosphere as an
important “instantaneous” driver of vegetation.

The instantaneous relationship between FPAR and
temperature is stronger than for precipitation. Monthly
FPAR anomalies are significantly correlated with tem-
perature throughout most of the country, except in the
far South where there is sufficient warmth and limited
temperature variability. In warm regions, temperature
exceeds the minimum needed for vegetation growth
and therefore does not substantially impact the vegeta-
tion seasonal cycle (Schultz and Halpert 1993). Across
all months, the correlation between monthly FPAR
anomalies and temperature anomalies exceeds 0.4 in
the croplands of the upper Midwest (Fig. 9e).

The strongest positive correlation between FPAR
and temperature is found over the northern half of the
United States during December–February (DJF) and
March–May (MAM) (Figs. 9a,b). While it is unclear if
the DJF correlation is mostly a snow signature, the
positive MAM correlation likely reflects the sensitivity
of vegetation phenology to temperature. Temperature
regulation of phenology is an important process except
during peak growing season. It is particularly critical
during spring, affecting spring budburst and leaf senes-
cence, and across the northern regions (snow masking
and melting are also important). The positive correla-
tion between FPAR and temperature during JJA and
September–November (SON) in the northern Rockies
indicates reduced vegetation activity during cooler and/
or shorter growing seasons (Figs. 9c,d). Vegetation in
cold regions is typically limited by temperature (Schultz
and Halpert 1993). The positive instantaneous correla-
tions between growing season FPAR and temperature
anomalies across the North and West agree with W05.

Monthly FPAR anomalies are positively correlated
with instantaneous precipitation anomalies in the
southern prairie but only weakly significant (Fig. 9j).
FPAR typically responds to precipitation with a one-
month lag (section 5b). The statistically significant,
positive instantaneous correlation is strongest over
Texas as the low-level jet (LLJ) supplies Gulf of
Mexico moisture to the southern prairie. This suggests
that gulf transport is variable and affects the southern

FIG. 6. (a) Mean annual FPAR, (b) standard deviation of the
FPAR’s seasonal cycle, and (c) standard deviation of monthly
FPAR anomalies (seasonal cycle removed); (b) and (c) compare
the strength of FPAR seasonal cycle to the variability of its
monthly anomalies. The ratio of the standard deviations of
monthly FPAR anomalies and FPAR seasonal cycle is shown
in (d).
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prairie ecosystems. Neither temperature nor precipita-
tion significantly force FPAR in the Southeast due to
year-round warm, wet conditions, while partly reflect-
ing limited FPAR variance (Fig. 6). East of the prairie,
precipitation typically exceeds evaporation and is more
than sufficient to maintain higher FPAR, thereby ex-
plaining an absence of positive correlations between
FPAR and precipitation. Also, forests are efficiently
buffered against climatic fluctuations due to their deep
roots and access to deep-soil moisture (Wang et al.
2003). Across the West, instantaneous correlations sug-
gest that FPAR is negatively correlated with precipita-
tion (Fig. 9j) but positively correlated with temperature
(Fig. 9e) (Schultz and Halpert 1993), particularly early
in the growing season (MAM) when temperature
largely determines plant growth. There is an intrinsic
negative correlation between temperature and precipi-
tation in the West that is not easily separated in obser-

vations. Vegetation in the Northwest United States is
temperature driven, and an increase in precipitation
and clouds can reduce photosynthesis (Schultz and
Halpert 1993).

b. Correlations with atmosphere leading

While temperature has a more instantaneous rela-
tionship with FPAR (W05), precipitation generally ex-
hibits its strongest forcing when leading by one month.
Figure 10 shows the correlations between temperature/
precipitation and FPAR, with the atmospheric vari-
ables leading by one month. Across all months, tem-
perature imposes a weak positive forcing on FPAR
when leading by one month for most of the country
(Fig. 10e). This positive forcing is greatest during MAM
in the Midwest (Fig. 10b), where a rise in temperature
accelerates the onset of the growing season. The MAM
correlations for temperature are typically positive

FIG. 7. REOF and EOF patterns for JJA FPAR anomalies: (a) REOF-1, (b) REOF-2, (c) EOF-1, and (d) EOF-2. The percent
explained variances are 30%, 10%, 38%, and 19%, respectively. Shading indicates positive values.

TABLE 1. Estimations of observed FPAR, surface air temperature, and precipitation persistence in eight regions of the United States.
For each variable, the maximum lag, in months, that achieves statistical significance (90%) in an autocorrelation curve (“FPAR
memory”) (significant at that lag and all shorter lags) and the one-month autocorrelation value (FPAR AC) are provided. One-month
autocorrelations in bold have achieved 90% significance. The map shows the location of the eight regions.

Region

FPAR Temperature Precipitation

Memory AC Memory AC Memory AC

Northeast (NE) 1 0.25 0 0.10 0 0.04
Southeast (SE) 10� 0.28 1 0.19 0 0.08
Corn Belt (CB) 1 0.24 1 0.15 0 0.08
N. Prairie (NP) 2 0.41 1 0.23 0 0.05
S. Prairie (SP) 4 0.51 1 0.19 1 0.12
N. Rockies (NR) 2 0.41 2 0.22 1 0.17
S. Rockies (SR) 4 0.45 2 0.30 2 0.20
Northwest (NW) 1 0.43 2 0.22 1 0.18
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(negative) over the coldest (warmest) regions. The
higher correlations in MAM than in SON agree with
W05, suggesting that temperature imposes a stronger
control on vegetation earlier rather than later in the
growing season. During JJA (Fig. 10c), temperature
leading by one month is negatively correlated with
FPAR in the prairie (significant in the southern prai-
rie); precipitation is the primary forcing on FPAR when
leading by one month, and temperature and precipita-
tion are inversely related in the prairie. This inverse
relationship is strongest over the western prairie. A sta-
tistically significant positive correlation is found be-
tween precipitation and the following month’s FPAR
across the southern prairie in every season and much of
the prairie during JJA, during which precipitation pro-
vides the soil moisture needed for plant growth to this
moisture-limited region (Figs. 10f–j). The advection of
Gulf moisture into the midcontinent is an important
control of FPAR. Both instantaneous and one-month
lead correlations reveal the strongest temperature forc-
ing on FPAR in MAM (e.g., Midwest) and strongest
precipitation forcing during the growing season in JJA
(e.g., southern prairie).

While FPAR is most related to instantaneous tem-
perature and the previous month’s precipitation,
anomalies of either variable over previous seasons can
contribute toward summertime FPAR anomalies.
FPAR anomalies for JJA are correlated against tem-

perature and precipitation anomalies during time peri-
ods of varying length up to and through summer (Fig.
11). Much of the East/Southeast and West shows no
significant relationship between FPAR and tempera-
ture due to limited temperature variability, sufficient
warmth, and the influence of relatively warm winter
and spring SSTs. Across the northern prairie and Corn
Belt, the highest correlation is achieved between JJA
FPAR anomalies and March–August temperature
anomalies with a warm spring and summer supporting
above-normal summertime FPAR. The North Ameri-
can boreal forest is the only vast forest region with
significant FPAR correlation to spring–summer mean
temperature anomalies. Summertime FPAR of most
forests in the United States is either independent of
temperature or best correlated with summertime tem-
perature only, while FPAR in grasslands/shrublands is
best correlated with temperature anomalies averaged
through late winter to summer.

Across the prairie and portions of the West, JJA
FPAR exhibits the strongest correlation with precipita-
tion anomalies averaged over the summer and several
preceding months; in these relatively drier regions,
positive precipitation anomalies are needed over an ex-
tended period to supply sufficient soil moisture for sus-
tained, widespread plant growth. The hydrological res-
ervoirs in plants and soil serve as critical buffers, mak-
ing plants relatively insensitive to brief wet and dry
periods but vulnerable to the cumulative effect of mul-
timonth droughts. Grass exhibits several adaptive strat-
egies, including stomata closure and leaf curling during
drought (Risser 1985). Wang et al. (2001, 2003) and
Adegoke (2000) likewise found that vegetation growth
is most influenced by precipitation during a preceding
period of multiple months for Kansas and the Midwest,
respectively. The eastern forests show little relationship
with precipitation owing to sufficient soil moisture from
ample precipitation.

c. Correlations with FPAR leading

Correlations with FPAR leading temperature and
precipitation by one month hint at observed vegetation
impacts on climate (Fig. 12). Across all months (Fig.
12e), FPAR is significantly positively correlated (p �
0.05) to the next month’s temperature across the north-
ern United States. Globally, positive correlations ex-
tend across the boreal forests (Liu et al. 2006), with the
positive correlations over northern United States rep-
resenting the southern edge of the Canadian boreal for-
est correlation maximum. Vegetation cover at the mid
and high latitudes masks the high reflectivity of snow,
leading to higher temperatures than if the vegetation
was absent (Fig. 1) (Bonan et al. 1992; Betts and Ball

FIG. 8. Temporal autocorrelation of monthly FPAR anomalies
for the southern prairie (solid) and Southeast evergreen forests
(dash). Correlation coefficients are shown at different time lags up
to 10 months. Shading indicates 90% significance level. The au-
tocorrelation is a measure of memory or persistence.
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1997). The albedo of snow cover reaches 35%–90%,
compared to 10%–20% for most vegetation (Hartmann
1994). Even in the absence of snow cover, higher FPAR
leads to greater energy absorption by lowering albedo,
and thus higher temperatures; this largely explains the
positive correlations in Fig. 12 over the Midwest in
MAM and the Rockies in JJA.

The positive correlation with FPAR leading tem-
perature is weakly significant (p � 0.10) over the upper
Midwest in MAM (Fig. 12b) and the northern Rockies
in JJA (Fig. 12c). The positive FPAR forcing on tem-
perature in MAM is greatest over the croplands (and
forests) of the upper Midwest and larger than the
nearby Canadian boreal forest and the eastern decidu-

FIG. 9. Instantaneous correlations between monthly FPAR anomalies and monthly anomalies of (a)–(e) surface air temperature and
(f)–(j) precipitation. Correlation coefficients are shown for (a), (f) DJF; (b), (g) MAM; (c), (h) JJA; (d), (i) SON; and (e), (j) all months.
For example, for each grid point the JJA correlation coefficients for temperature are computed as the average of three correlation
coefficients: June temperature vs June FPAR, July temperature vs July FPAR, and August temperature vs August FPAR.
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ous forests. An increase in FPAR over the Corn Belt
can mask springtime snow cover, producing substantial
positive feedback on temperature. Likewise, partial
correlations, which remove the effects of temperature
persistence, reveal significant positive forcing (p �
0.10) of April FPAR on May temperature in the upper
Midwest and Great Lakes Basin and of July–August

FPAR on August–September temperature over the
northern Rockies.

Correlations with FPAR leading precipitation (Figs.
12f–j) fail to show substantial areas with FPAR signifi-
cantly impacting precipitation. These findings suggest
the importance of vegetation albedo feedback while
hinting at a weaker than expected moisture feedback. It

FIG. 10. As in Fig. 9 except that the atmospheric variables lead by one month. For example, for each grid point, the JJA correlation
coefficients for temperature are computed as the average of three correlation coefficients: May temperature vs June FPAR, June
temperature vs July FPAR, and July temperature vs August FPAR. These correlations suggest atmospheric forcing on vegetation.
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is possible that the hydrological impact of vegetation
has been largely overstated in modeling studies or that
limited data availability is partly responsible for failure
to achieve a statistically significant correlation between
FPAR anomalies and subsequent month’s precipita-
tion. Advection by the atmospheric circulation can
transport the transpired moisture downstream, where it
precipitates, resulting in a nonlocal feedback that
would be missed by these correlations. Brovkin (2002)
suggested that vegetation imposes a substantial local
forcing on temperature by modifying the local radiative
budget, while its impact on atmospheric moisture is po-
tentially remote due to transport. While the forcing of
FPAR on precipitation one month later appears weak,
it is also possible that this forcing is more substantial on
a different time scale (e.g., instantaneous or at a longer
lag).

d. Regional analyses

Regional interactions between the atmosphere and
vegetation are investigated over Wisconsin, the central/
northern Rockies, and the two FPAR dipole centers.
The first two regions are selected based on relatively
strong FPAR-leading temperature correlations (Fig.
12) and mostly uniform biome classifications, while the
dipole centers are investigated to determine the source

of their FPAR variability and possible vegetation feed-
backs.

Wisconsin is characterized mainly by croplands, with
some mixed forests in the northern part of the state.
The instantaneous correlation between Wisconsin’s
monthly FPAR and temperature anomalies is largest,
while correlations with either FPAR or temperature
leading by one month are also significant (p � 0.10)
(Fig. 13). There is evidence of two-way forcing between
the atmosphere and vegetation. The instantaneous cor-
relation between FPAR and temperature anomalies is
significant during spring and autumn (p � 0.05) but
minimal during summer, suggesting that high tempera-
tures in the transition seasons encourage vegetation
growth. Temperature forcing of FPAR is greatest in
spring, with springtime temperatures significantly cor-
related (p � 0.05) with spring–summer FPAR anoma-
lies. The onset of the growing season depends on
springtime temperatures and the accumulation of grow-
ing season warmth. Positive significant (p � 0.10) forc-
ing of vegetation on temperature is noted in spring and
autumn, particularly between April FPAR anomalies
and May temperature anomalies (also Fig. 12b). There
is evidence of a positive forcing of the preceding July–
October FPAR anomalies on October temperature,
suggesting a possible crop feedback on surface albedo.

FIG. 11. (a) Period with maximum correlation between JJA FPAR anomalies and tempera-
ture anomalies. Shading represents periods ranging from June–August to January–August,
with nonsignificant correlations left in white. (b) As in (a) except correlating JJA FPAR
anomalies with precipitation anomalies of different periods.
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The substantial temperature forcing on FPAR in spring
and FPAR forcing on temperature in autumn reflects
the findings of Liu et al. (2006) for eastern Siberia.
Precipitation fails to significantly force FPAR in Wis-
consin during any season (also Fig. 10). The lead–lag
correlations between FPAR and precipitation suggest a
weak relationship in Wisconsin, although a negative

correlation is identified between August–September
FPAR and September precipitation (p � 0.10).

A similar analysis is performed for the central/
northern Rockies (Fig. 14), which encompasses south-
ern Idaho, southeastern Oregon, western Wyoming,
northern Utah, and northern Nevada and is mostly
shrubland and grassland. Correlations of monthly

FIG. 12. As in Fig. 10 except FPAR leads the atmospheric variables by one month. These correlations suggest vegetation forcing on
the atmosphere.
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FPAR and temperature anomalies suggest a moderate
instantaneous relationship along with significant tem-
perature forcing at one-month lead and vegetation forc-
ing at one-month lead (p � 0.10), with evidence of
two-way vegetation–atmosphere forcing. Temperature

forcing by FPAR is weaker across the central/northern
Rockies than Wisconsin, particularly during spring. JJA
FPAR anomalies are significantly positively correlated
(p � 0.10) to late summer–early autumn (JAS) tem-
perature in the central/northern Rockies. In general,

FIG. 13. (a) Lagged correlations between monthly anomalies of FPAR and surface airtemperature in Wisconsin (42.5°–47.5°N,
87.5°–92.5°W) for 1982–2000. (top) The annual mean of the FPAR–temperature lagged correlation with negative (positive) lags for
temperature (FPAR) leading. The dash line indicates the 90% significance level. (bottom left) The seasonal evolution of the lagged
correlation, with the months on the y axis designating the month for temperature. The light (dark) shading indicates the 90% (95%)
significance level. The area-averaged climatological annual cycles of FPAR (solid) and temperature (dash) are also shown on the right
panel. (b) As in (a) except for precipitation.

FIG. 14. As in Fig. 13 except for the central/northern Rockies (parts of OR, ID, WY, NV, and UT) (37.5°–45.0°N, 110.0°–120.0°W).
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temperature forcing leads springtime FPAR, while
FPAR forcing leads summer–autumn temperature in
the central/northern Rockies (Fig. 14a). The negative
correlations between FPAR and precipitation (p �
0.10) reflect the year-round inverse relationship be-
tween temperature and precipitation. FPAR anomalies
during the late summer–autumn positively force Octo-
ber precipitation (p � 0.05), potentially through in-
creased evapotranspiration (Fig. 1). Also, springtime
FPAR is negatively correlated (p � 0.05) with precipi-
tation in the subsequent late summer (dry season), al-
though the mechanism is unclear. As with Wisconsin,
there is generally not strong evidence of vegetation
feedbacks on precipitation.

The two FPAR dipole centers are comprised mostly
of shrubland and grassland (Fig. 15). FPAR at the
northern center, centered on western South Dakota, is
largely temperature driven, with a maximum correla-
tion at zero lag. Correlations between FPAR and tem-
perature anomalies are strongly positive from autumn
to early spring (p � 0.05) but insignificant during sum-
mer. There is evidence of positive vegetation forcing on
temperature in spring and late summer–early autumn.
FPAR at the southern center, around Texas, is strongly
determined by precipitation, with the maximum corre-
lation when precipitation leads by one month. Correla-
tions with precipitation leading are largest at lag 1 but
statistically significant from lags 1–5, stressing the im-
portance of the previous month’s precipitation to sup-
ply sufficient soil moisture for plant growth. The south-
ern center shows little evidence of significant vegeta-
tion feedbacks. Weak positive correlations with FPAR
leading precipitation during spring reflect the findings
for the Sahel by Liu et al. (2006), although the Sahel’s
correlations are statistically significant (p �0.10); in
both cases, positive FPAR anomalies support increased
precipitation during the dry season, likely through en-
hanced evapotranspiration. At the southern center,
FPAR imposes a weak negative forcing on growing sea-
son temperatures.

6. Feedback parameters

The feedback parameter described in section 3 is
computed for all months and individual seasons to as-
sess the magnitude of the impact of FPAR on surface
air temperature (Fig. 16). Across the northern United
States this feedback parameter is most positive, ap-
proximately 1°–2°C (0.1 FPAR)�1. A weaker, negative
feedback parameter of �0.2° to �1°C (0.1 FPAR)�1

characterizes the croplands of the south-central United
States, where FPAR positively forces precipitation. The
separation between positive and negative feedback pa-

rameter for all months approximately follows the 12°C
isotherm with the most positive forcing on temperature
in the coldest regions. The forcing on temperature is
strongest and most positive in MAM and JJA, averag-
ing 1.2°C (0.1 FPAR)�1 across the United States; this
feedback parameter is only 0.3°C (0.1 FPAR)�1 in DJF
and close to zero in SON, due to nearly equal areas of
feedbacks with opposite signs. During MAM, the posi-
tive vegetation forcing on temperature is locally weaker
over the prairie than over croplands and forests.

The percent variance in temperature attributed to
forcing from FPAR is shown in Fig. 16, based on mul-
tiplying the feedback parameter squared by a ratio of
FPAR variance to temperature variance and converting

FIG. 15. As in Fig. 13 except for (a) the north dipole center
(40.0°–50.0°N, 97.5°–110.0°W) (temperature) and (b) the south
dipole center (25°–35°N, 97.5°–110.0°W) (precipitation).
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to percentage. Across all months, this percentage is
mostly 1%–10% south of 43°N but reaches 10%–50%
across the upper Midwest and North. The feedback-
induced variance accounts for the largest percentage of
monthly temperature variance in MAM (30%), particu-
larly over the Corn Belt and the northern United

States. During JJA, the vegetation parameter for tem-
perature is negative (though not significant) over the
southern croplands and the Mississippi River valley;
this hints at a possible feedback whereby increased veg-
etation in this region could lower the air temperature
either by increasing latent heat flux or by increasing

FIG. 16. (a)–(e) Vegetation feedback parameter [°C (0.1 FPAR)�1] for monthly temperature anomalies and (f)–(j) percent explained
variance of the feedback-induced variability (computed as the ratio of the variance of the feedback to the total temperature variance),
both by season and for all months: dotted pattern indicates p � 0.10; regions with very small temperature autocorrelations are masked
out.
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precipitation and consequently reducing surface solar
radiation. Similarly, Snyder et al. (2004) concluded, us-
ing CCM3–IBIS, that the removal of the boreal forest
produced the largest temperature signal globally and
the removal of grasslands/steppe resulted in summer-
time warming and drying in central United States.

While numerous modeling studies have suggested
that an increase in vegetation leads to cooling during
summer (e.g., Bounoua et al. 2000), some have sug-

gested similar vegetation impacts on temperature to
those computed here. In a simulation with the boreal
forest removed, Bonan et al. (1992) found year-round
cooling that maximized in spring. The snow albedo ef-
fect was responsible for the cooling in winter and the
transition seasons, while Bonan et al. (1992) attributed
most of the summertime cooling to interactive SSTs
and sea ice feedbacks. The present observational study
agrees with the sign of this feedback during summer,

FIG. 17. As in Fig. 16 but for precipitation: units of the feedback parameters in (a)–(e) are cm month�1 (0.1 FPAR)�1.
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with increasing FPAR corresponding to increasing tem-
perature across much of the United States. Bonan et al.
(1992) proposed that increased summertime vegetation
lowers the albedo and results in warming. Both Wohl-
fahrt et al. (2004) and Ganopolski et al. (1998) simu-
lated positive vegetation forcing on temperature in the
midhigh latitudes.

In an observation-based statistical analysis, Kauf-
mann et al. (2003) concluded that an increase in NDVI
over North America results in significant warming dur-
ing DJF and MAM, in agreement with the present
study. They found that a NDVI increase in JJA pro-
duced weak cooling over North American forests; yet
the present study concluded that increasing vegetation
produced warming across much of North America ex-
cept the southern United States. Kaufmann et al. (2003)
did find that an increase in NDVI over broadleaf de-
ciduous forests resulted in warming across all seasons in
North America.

Figure 17 presents the vegetation feedback param-
eter for precipitation across all months and for each
season, along with the percent variance in monthly pre-
cipitation associated with monthly FPAR feedbacks.
The influence of FPAR on precipitation appears to be
weak on these time scales, although stronger signals are
noted during individual seasons. Few areas in Fig. 17
achieve statistical significance (p � 0.10) and, since the
amount of significant areas is generally less than 10%,
their significance might be the result of chance and
therefore not statistically valid. Across all months,
FPAR surprisingly exhibits a weak negative forcing on
precipitation of �0.6 cm month�1 (0.1 FPAR)�1 when
averaged across the United States owing to the pres-
ence of vast areas with both positive and negative feed-
backs. The feedback parameter is negative across the
western shrublands/grasslands and eastern forests. This
area of negative forcing on precipitation includes the
region of winter wheat across western Kansas and
Oklahoma, the Texas panhandle, and eastern Colorado.

Over the agricultural areas with corn and soybeans,
which extend across the Corn Belt, northern plains, and
Mississippi River valley, a positive feedback parameter
of 0.05–2 cm month�1 (0.1 FPAR)�1 is computed. It is
likely that increased crop growth over this region en-
hances evapotranspiration and precipitation; summer-
time corn and soybean crops should be a greater source
of evapotranspiration than winter wheat. Crop irriga-
tion in the lower Mississippi River valley potentially
contributes positive feedback on precipitation (Fig.
17e) (Rosenan 1963; Schickedanz 1976).

Although the mean feedback parameter for precipi-
tation is negative across the United States, there are
regions of substantial positive forcing [exceeding 2–4

cm month�1 (0.1 FPAR)�1] during individual seasons
and most regions that achieve statistical significance ex-
hibit positive forcing. SON is characterized by the most
positive vegetation feedback parameter, averaging
�0.9 cm month�1 (0.1 FPAR)�1. During JJA, the mean
feedback parameter is �0.6 cm month�1 (0.1 FPAR)�1,
largely due to a strong negative forcing of �2 to �4 cm
month�1 (0.1 FPAR)�1 across the Northeast and upper
Midwest and moderate negative forcing of �0.05 to �2
cm month�1 (0.1 FPAR)�1 across the remaining north-
ern United States. The positive feedback parameter for
temperature and negative for precipitation during JJA
over the former region suggests a warming and drying
effect from increased FPAR within this area of mixed
needleleaf and deciduous tree cover. W05 identified the
northern grasslands/steppe (40°–50°N, 100°–115°W) as
a key region of positive causal relationship from NDVI
to temperature and negative causal relationship from
NDVI to precipitation during the growing season. The
present study’s analysis of JJA produces similar results
for this region, with mean feedback parameters of
�1.1°C (0.1 FPAR)�1 and �0.4 cm month�1 (0.1
FPAR)�1; however, in the transition seasons strong
positive forcing of FPAR on precipitation is also found.
Local regions of positive vegetation influence on pre-
cipitation, averaging 1–4 cm month�1 (0.1 FPAR)�1,
overlap the winter wheat crops of the south central
United States in DJF and spring wheat crops of the
northern plains in MAM.

Monthly FPAR variance explains the largest percent-
age of precipitation variance during DJF, averaging
24% across the United States and exceeding 50% in the
central prairie. During JJA, this percentage is under
10% nearly everywhere across the country with nega-
tive forcing on precipitation to the north of approxi-
mately 42°N and positive to the south. During MAM,
the positive FPAR forcing over the southeast Canadian
boreal forest and the spring wheat belt of the northern
prairie explains 25%–50% of the precipitation vari-
ance. A similar percentage of variance is explained by
positive FPAR forcing during SON from the northern
Rockies into the western Corn Belt. The feedback pa-
rameter likely inflates the explained variance by includ-
ing some effects from soil moisture and other external
influences.

Based on the feedback parameters, the impact of
vegetation is strongest on temperature during MAM
and on precipitation in SON across the United States.
Vegetation can mask high snow albedos and induce
warming, while crops at harvest time are potentially
significant sources of evapotranspiration and can en-
hance precipitation. For most of the country, vegetation
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feedback parameters for precipitation fail to achieve
statistical significance.

GCMs generally simulate a positive vegetation feed-
back on precipitation, with an increase in vegetation
cover producing enhanced evapotranspiration and
leading to increased precipitation, which then can in-
crease vegetation amount (Shukla and Mintz 1982; No-
bre et al. 1991; Kutzbach et al. 1996; Kleidon et al. 2000;
Bonan 2002). However, W05 concluded that observed
increases in vegetation lead to decreased precipitation
during the NH growing season. They suggested that
increased vegetation cover enhances evapotranspira-
tion, which can reduce soil moisture (Adegoke 2000;
Heck et al. 2001). The additional moisture in the atmo-
sphere column can be transported away by the atmo-
spheric circulation, resulting in a net loss of soil mois-
ture from that region. The stomata close in response to
drier soil and thereby reduce water flux into the atmo-
sphere, leading to diminished precipitation and higher
temperatures (Bonan 2002). Similarly, the present ob-
servational analysis found that the local impact of
FPAR on precipitation is spatially inhomogeneous and
relatively weak although, during JJA and for the yearly
average, increased FPAR led to reduced precipitation
for the United States, consistent with the results of
W05. It is possible that increased vegetation may in-
duce increased precipitation on a different time scale or
that the transpired water is transported downstream by
the atmospheric circulation, though we note that some
caution should be applied in interpreting these results
as the feedback parameter for precipitation is only sta-
tistically significant locally during JJA.

To test the robustness of the results, the lead/lag cor-
relations and feedback parameters are also computed
using the University of Delaware surface air tempera-
ture (Willmott and Robeson 1995) and the Global Pre-
cipitation Climatology Project (GPCP) (Huffman et al.
1997) datasets. The FPAR feedbacks agree quite well
with those computed from the NCEP–NCAR reanaly-
sis and Xie–Arkin datasets, with some differences
noted spatially. The feedback estimates appear to be
robust and not dataset dependent.

7. Conclusions

This study is the first to quantify observed vegetation
feedbacks over the United States. Analogous to SSTs,
FPAR typically has a persistence of a few months,
longer than the atmosphere, and can interact with the
atmosphere via several possible feedback mechanisms.
Instantaneous correlations show that temperature is a
significant control of FPAR for much of the United
States, particularly in MAM. Unlike temperature, cor-

relations between FPAR and precipitation anomalies
are larger when the atmospheric variable leads by one
month. Much of the prairie has a statistically significant
correlation between JJA FPAR anomalies and precipi-
tation anomalies from the previous month. The largest
interannual FPAR variability occurs over the central
U.S. prairie where a north–south dipole is identified.
Correlations with FPAR leading by one month suggest
a positive influence of vegetation on temperature over
the upper Midwest in MAM and northern Rockies in
JJA. An increase in FPAR produces both decreased
surface albedo and increased latent heat flux; the
former increases temperature and the latter decreases
temperature. This study suggests that the albedo feed-
back is stronger since increases in FPAR generally lead
to higher temperatures. Correlations fail to identify sta-
tistically significant feedbacks of FPAR on precipita-
tion.

In addition to lead–lag correlations, Liu et al. (2006)
computed a statistical feedback parameter to relate
global satellite-based FPAR and observed temperature
and precipitation. The present study continues this
methodology and focuses on the United States, quan-
tifying the influence of monthly FPAR on temperature
and precipitation. The mean vegetation feedback pa-
rameters for temperature and precipitation average
0.9°C (0.1 FPAR)�1 and �0.6 cm month�1 (0.1
FPAR)�1, respectively, across all months. Increases in
FPAR therefore result in net warming and drying,
though the effect of FPAR on precipitation is weaker
than for temperature and the feedback parameter for
precipitation is not generally found to be statistically
significant. The mean feedback parameter for tempera-
ture is most positive during MAM and JJA, with
monthly FPAR anomaly variance explaining 30% of
monthly temperature variance in MAM. Maps of veg-
etation feedback parameters for precipitation are spa-
tially complex, although a positive forcing over the corn
and soybean belt and negative forcing over the winter
wheat belt are identified when computed across all
months. W05 concluded that an increase in growing
season NDVI in the NH leads to an increase in tem-
perature and decrease in precipitation. This finding
agrees with the present observational study but con-
flicts with most modeling studies.

Several limitations are identified in this observational
study (Liu et al. 2006). FPAR data contain some biases,
particularly a snow cover signal during the colder
months. The data is limited to 19 years, thereby reduc-
ing the amount of statistical significant results achieved.
The methodology is based on linear statistics, although
the relationship between vegetation and climate is po-
tentially nonlinear (Zhou et al. 2003). The approach
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assumes vegetation interacts with the atmosphere lo-
cally, although the atmospheric circulation can trans-
port transpired water to other regions (Zhang et al.
2003). Since the computed feedbacks might contain a
signature of other slow changing climate components,
such as soil moisture and SST, the feedback parameters
in a sense represent an upper limit to the magnitude of
vegetation feedbacks. We expect that a longer time se-
ries of data would likely yield more areas of statistically
significant vegetation forcing on precipitation, although
the local response might continue to be weak.

By quantifying the observed vegetation impacts on
temperature and precipitation, the present regional
study and the global analysis of Liu et al. (2006) estab-
lish a benchmark against which GCM-simulated feed-
backs can be evaluated. Following the approach of
Frankignoul et al. (2004), these estimated observed
vegetation feedback parameters can be applied to
evaluate model-simulated vegetation feedbacks and
perform model intercomparisons, both globally and re-
gionally.
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