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ABSTRACT

Oceanic response to decadal wind forcing is studied in a tropical–extratropical basin using two classical
theoretical shallow water wave models: the equatorial wave model and the planetary wave model. Extratropical
winds are found to generate significant thermocline variability in the tropical ocean with a spectral peak at
decadal timescale; the preferred decadal time of the response is due to the resonance of the gravest planetary
wave basin modes. The resonant response, however, is unimportant in the interior extratropical ocean, where it
is distorted by the forced response to local Ekman pumping. It is proposed that the resonance of planetary wave
basin modes may provide a mechanism for the generation of decadal variability in the tropical ocean and,
potentially, in the coupled ocean–atmosphere system.

1. Introduction

Significant decadal climate variability has been ob-
served in the tropical Pacific (e.g., Zhang et al. 1997)
and Atlantic (e.g., Hastenrath 1978; Houghton and Tour-
re 1992) Oceans. The origin of the tropical decadal cli-
mate variability, however, remains elusive. One fun-
damental difficulty is our poor understanding of the
long-term memory of tropical ocean dynamics. Unify-
ing the classical theories for the equatorial wave and
the extratropical planetary wave, we (Liu 2002, here-
after LIU) found recently that the low-frequency tropical
basin modes, or the scattering modes of Jin (2001), are
identical to the planetary wave basin modes (hereafter
PB modes) of Cessi and Louazel (2001). Furthermore,
the period of the gravest tropical basin mode equals the
cross-basin time of the planetary wave along the pole-
ward boundary of the basin.

As a follow-up of LIU, here we use both the equa-
torial and midlatitude planetary wave theories to in-
vestigate the response of a tropical–extratropical basin
to variable wind forcing. Special attention will be paid
to the response in the tropical ocean. Cessi and Louazel
(2001) have noticed that in the planetary wave model,
a basinwide extratropical wind forces a resonant re-
sponse of the gravest PB mode, with a decadal power
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spectral peak. Using the equatorial wave model, Wang
(2001, ch. 5) also suggests that the off-equatorial wind
can contribute to the decadal variability of the tropical
ocean. Our contribution here is to show, with both the
planetary wave model and the equatorial wave model,
that the resonant response of the PB mode is dominant
for the thermocline variability in the Tropics and along
the eastern boundary, but not in the interior extratropical
ocean. Instead, the extratropical interior thermocline
variability is distorted significantly by the nonresonant
response to local winds, as studied by Frankignoul et
al. (1997). The paper is arranged as follows. The models
and solutions are presented in section 2. Forced oceanic
responses are studied in sections 3 and 4 for localized
winds and in section 5 for basinwide winds. A summary
and some discussions are given in section 6.

2. Models and solutions
In the shallow-water system, oceanic responses to a

periodic, or stochastic, forcing have been studied the-
oretically in many previous works, but all separately
using either the equatorial wave theory or the planetary
wave theory. For completeness, these solutions will be
briefly described here. After the long-wave approxi-
mation, the linearized shallow water system forced by
an anomalous zonal wind stress t x can be written on
the equatorial b plane as

] u 2 yy 5 2] h 1 t , (2.1a)t x

yu 5 2] h, (2.1b)y

] h 1 ] u 1 ] y 5 0. (2.1c)t x y
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This system has been nondimensionalized by the equa-
torial deformation radius LD 5 (c0/b)1/2 for y, the basin
width L for x, the Kelvin wave crossing time L/c0 for t,
the mean depth D for h, the Kelvin wave speed c0 and
c0LD/L for u and y(c0 5 ), and L/(rD ) for tx.2Ïg9D c0

We will consider an ocean basin bounded within 0 , x
, 1 and 0 , y , YN, and, for simplicity, we only study
the hemispheric symmetric response. With typical param-
eters of b 5 2 3 10211 m s21, D 5 400 m and g9 5
0.02 m s22, LD is about 377 km. For the Pacific basin of
L ; 10 000 km, the dimensional time unit L/c0 is about
40 days.

In this paper, we will use a zonally uniform and tem-
porally periodic wind stress,

ivtt 5 t (y)e .0 (2.2)

We will mainly study the oceanic response as a function
of forcing frequency. The fact that the forcing amplitude
in (2.2) is independent of frequency assures that the
amplitude response of the ocean at different frequencies
can also be treated as the power spectrum response to
a stochastic (temporally white) forcing.

a. Forced equatorial wave solution

Assuming a forced response in (2.1) of the form of
hE 5 HE(x, y)eivt, we will expand the dependent vari-
ables on parabolic cylinder functions (Cane and Sara-
chik 1981; Battisti 1988; Wang 2001, chapter 5):

2m 2yd e2m m 21/2 y /2c (y) 5 (21) (2 m!Ïp) e .m mdy

Applying the eastern (u | x51 5 0) and western (
`

#0

u | x50dy 5 0) boundary conditions, we have the full
equatorial wave solution:

N

H (x, y) 5 0.5 [Q (x) 1 R (x)]c (y) , (2.3)OE 2n 2n 2n5 6n50

with R2(n21) 5 Q2n . HereÏ2n/(2n 2 1)

x

ivj 2ivxQ (x) 5 Q (0) 1 F (j)e dj e and0 0 E 0[ ]
0

2i(4n21)vQ (x) 5 Q (1)e2n 2n[
1

2i(4n21)vj i(4n21)vx1 F (j)e dj eE 2n ]
x

represent the contributions from the equatorial Kelvin
wave and equatorial Rossby waves, respectively. The
coefficients of the solution are

N N

G A 1 B GO O0 n n 2n
n51 n51Q (0) 5 ,0 N

1 2 AO n
n51

(2n 2 1)!!
Q (1) 5 Q (1) ,2n 0 ! (2n)!!

2ivQ (1) 5 [Q (0) 1 G ]e ,0 0 0

(2n 2 3)!!
2i4nvA 5 e ,n (2n)!!

(2n 2 3)!!
B 5 ,n !(2n)!!(2n 2 1)

where the forcing is projected as

1 1

ivx 2i(4n21)vxG 5 F e dx, G 5 F e dx,0 E 0 2n E 2n

0 0

`

F 5 t (y)c (y) dy,0 E 0 0

2`

`

F 5 t (y)[(2n 2 1)c (y)2n E 0 2n

2`

2 Ï(2n 2 1)(2n)c (y)] dy,2(n21)

n 5 1, 2, 3, . . . ,

and (2n)!! 5 2 3 4 3 · · · 3 (2n 2 2) 3 2n, (2n 2
1)!! 5 1 3 3 3 · · · 3 (2n 2 3) 3 (2n 2 1), (21)!!
5 1. Setting the denominator of Q0 to zero, we have
the eigenvalue equation

N (2n 2 3)!!
24ins1 2 e 5 0, (2.4)O

(2n)!!n51

which gives (complex) eigenvalues s 5 sr 1 isi for
the free modes (Jin 2001).

b. Forced planetary wave solution

The forced planetary wave response hP can be derived
following Cessi and Louazel (2001). Neglecting ]tu in
(2.1a), we have from (2.1) the planetary wave equation

2] h 2 (1/y )] h 5 w ,t P x P e (2.5)

where 1/y2 is the westward planetary wave speed along
latitude y and

w 5 2] (t/y)e y (2.6)

is the Ekman pumping. With the wind of (2.2), the Ekman
pumping is we 5 w0(y)eivt, where w0(y) 5 2]y(t0/y).
Assuming the planetary wave solution of the form hP 5
HP(x, y)eivt, the full response solution that satisfies the
eastern boundary condition u | x51 5 0 is

H (x, y) 5 H 1 H ,P 0 F (2.7a)

where
2iy v(x21)H 5 H e0 1 (2.7b)

is the contribution from the eastern boundary and
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w (y)o 2iy v (x21)H 5 [e 2 1] (2.7c)F iv

is the contribution from the local forcing. The eastern
boundary response H1 is determined by the mass con-
servation HP dx dy 5 0 asY 1N# #0 0

YN
22ivy 2w (y)[1 2 (1 2 e )/(ivy )] dyE 0

0
H 5 2 . (2.8)1 YN

22ivy 2(1 2 e )/y dyE
0

The (complex) eigenvalues s 5 sr 1 isi of the free
basin modes, or PB modes, can be obtained from

YN
22isy 2(1 2 e )/y dy 5 0, (2.9)E

0

which is derived by setting to zero the denominator of
H1.

c. Equivalence of planetary and equatorial wave
solutions

In the low-frequency limit, on an infinite beta plane,
the classical equatorial wave solution (2.3) is valid
strictly only with an infinite truncation N → `. In a
finite basin [2YN, YN], LIU showed that the truncation
N should be finite to assure the absence of mass flux
across the poleward boundaries and in turn the mass
conservation within the basin. Indeed, beyond the crit-
ical latitude of a parabolic cylinder function cM (y) of
YMC ; O( ), the amplitudes of all the lower-Ï2M 1 1
order parabolic cylinder functions cm(y) (m # M) vir-
tually diminish. In other words, with a truncation to
order M, there will be virtually no current across the
latitude YMC, assuring the mass conservation within YMC.
Specifically, LIU showed that, for a given northern
boundary of latitude YN, the truncation number N should
be

2N 5 Y /4,N (2.10a)

or, more precisely,

2N 5 [Y /4] 1 1,N (2.10b)

where brackets represent the integer part. Now, the N
slowest free equatorial wave modes (especially the first
few modes) in (2.4) (Jin 2001) correspond to the slowest
PB modes in (2.9) (Cessi and Louazel 2001). Therefore,
all these low-frequency basin modes will be called the
PB modes hereafter regardless how they are derived.
All the PB modes are weakly damped and their fre-
quencies can be approximated as vPn 5 nvP, n 5 61,
62, · · ·, 6N/2, where

2v 5 2p/YP N (2.11)

is the frequency of the first PB mode, corresponding to

the cross-basin time of the planetary wave along the
northern boundary YN. In this paper, without loss of
generality, we choose N 5 44, corresponding to YN 5
13.23. With our typical parameters that are given after
Eq. (2.1), the dimensional northern boundary is at about
508N and the first PB mode has a period about 20 yr.

The structure of the PB modes have two distinct fea-
tures, in comparison with the higher-frequency equa-
torial basin modes (Cane and Moore 1981). While the
equatorial basin modes tend to be equatorially trapped
and have node points along the equator, the PB modes
tend to have their maximum toward the northwestern
corner of the basin and have no node points along the
equator.

The condition (2.10) is the equivalence condition of
the low-frequency equatorial and planetary wave so-
lutions. As discussed in LIU, (2.10) assures the same
free PB modes in the equatorial and planetary wave
solutions. In the sections that follow, we will further
show that (2.10) also guarantees a similar forced re-
sponse of the equatorial wave solution (2.3) and the
planetary wave solution (2.7) at low-frequency decadal
timescales. The equivalence of the two seemingly very
different forms of mathematical solutions (2.3) and (2.7)
is not completely surprising. Neither (2.3) nor (2.7) has
short Rossby waves, because of the geostrophic ap-
proximation in the y equation (2.1b) (the so-called long-
wave approximation for equatorial waves). The only
wave component that exists in the equatorial wave so-
lution (2.3) but not in the planetary wave solution (2.7)
is the equatorial Kelvin wave. For low-frequency basin
adjustment, the role of the equatorial Kelvin wave is
included implicitly in the planetary wave solution (2.7)
with the condition of mass conservation, because the
only function of the equatorial Kelvin wave is to transfer
mass from the western to the eastern boundaries along
the equator with effectively a negligible time delay (Liu
et al. 1999).

3. Response to localized winds

The response of the equatorial ocean differs dramat-
ically between an equatorial and an off-equatorial wind
forcing. We first examine the oceanic response to a lo-
calized Gaussian wind profile:

22[(y2y )/l ]C yt (y) 5 e ,0 (3.1)

where ly 5 0.1YN and yC is the center latitude. With an
equatorial wind (yC 5 0, Fig. 1b), the power spectrum
of the equatorial thermocline at the eastern boundary
exhibits a strong resonant peak at the frequency

v 5 Nv 5 p/2,EB P (3.2)

where we have used (2.10) and (2.11). This is seen in
the equatorial wave solution HE in Fig. 1a. The fre-
quency (3.2) corresponds to a period of 4 times the
cross-basin time of the equatorial Kelvin wave. This is
because the gravest equatorial basin mode is established
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FIG. 1. Power spectra at the equatorial eastern boundary forced by the white noise wind of
the Gaussian profile (3.1): (a) the spectra of the planetary wave solution HP (solid) and equatorial
wave solution HE (dash) under (b) the wind patch centered on the equator (solid); (c) the spectra
of HP (solid) and HE (dash) under (d) the wind patch centered at y 5 0.5YN (solid). The corre-
sponding Ekman pumping velocity (normalized by its maximum magnitude) for each wind profile
is also plotted (dash) in (b) and (d). (e) The damping rate 2si and frequency sr of the eigenvalues
of the free equatorial wave solution (2.4). The circles represent the PB modes, which have no
node point on the equator, while the asterisks represent equatorial basin modes with one node
point on the equator. All the frequencies and damping rates are normalized by the frequency of
the first PB mode vP. The first two PB modes and the EB mode are also marked in (e).

after the eastward propagation of the equatorial Kelvin
wave at the speed of c0 5 and the westwardÏg9D
propagation of the reflected first mode of equatorial
Rossby wave at the speed of c0/3. This peak response
represents the resonant response of the slightly leaky
equatorial basin mode (EB mode hereafter) of Cane and
Moore (1981). This mode is of seasonal timescales and
may be of relevance to the interannual ENSO variability
(Neelin and Jin 1993). As shown in the eigenvalues of
the equatorial wave model (Fig. 1e), vEB represents the
least damped oscillating mode. The pattern of the res-
onant response of the equatorial wave solution HE at
vEB is similar to that of the free mode, with a large
amplitude near the equator and a node point in the mid-
dle of the equator (as in Cane and Moore 1981, not
shown). In comparison, no resonant peak is generated
in the planetary wave solution HP at vEB. Nevertheless,

HP simulates well the response of HE in the lower-fre-
quency range of the PB modes. This is because the PB
modes are similar in the equatorial and planetary wave
models only for modes that have frequencies no higher
than about (N/2) | vP | .

For an extratropical wind forcing (yC 5 0.5YN; Fig.
1d), in contrast, the dominant resonance peak occurs at
the frequency of the first PB mode vP, while the res-
onance of the EB mode is very weak, as seen from HE

in Fig. 1c. Again, HP is very similar to HE only at the
low-frequency range of the PB modes. The important
message is that the extratropical wind could generate
substantial equatorial decadal variability due to the res-
onant response of the PB modes, while the equatorial
wind is more effective at higher frequencies to generate
EB modes.

We now examine the evolution of forced response to
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FIG. 2. Amplitude and phase of the forced response in the planetary wave solution (2.7) with the forcing frequency of vP: (a) amplitude
and (b) phase of the full solution HP (2.7a) forced by the equatorial wind in Fig. 1b; (c), (d) as in (a) and (b) but for the locally forced
solution HF in (2.7c). (e), (f ) The full solution HP as in (a) and (b) but under the extratropical wind of Fig. 1d; (g), (h) as in (e) and (f ) but
for the locally forced solution HF. Contour intervals are 0.3 for the amplitude and 308 for the phase (negative phase in dash). Amplitudes
larger than 3 are not plotted. Contour intervals of 0.1 and 0.001 are also plotted as dashed lines. The phase has been multiplied by 21 such
that the wave propagates in the direction of increasing phase. Similar responses are found in the equatorial wave solution (2.3) (not shown).
The dimensional y that is based on the typical parameters below (2.1) is also labeled at extreme right.

a decadal wind forcing of frequency vP. With the ex-
tratropical periodic wind (Fig. 1d), the dominant re-
sponse is a dipole located in the region directly under
the Ekman pumping forcing (about 4 , y , 9) (Figs.
2e,f). The dipole consists of a southern pole and a north-
ern pole separated by the zero Ekman pumping at about
y 5 7, and the amplitude of each pole largely increases
westward. Outside the region of direct Ekman pumping,
the response has a modest amplitude that is about the
same as the eastern boundary. The phase evolution out-
side the forcing region follows the slow westward prop-
agation of planetary waves at higher latitudes (y . 9)
but is almost in phase with the eastern boundary at lower
latitudes (y , 4) because of the faster propagation of
planetary waves there. Along the northern boundary,
the phase evolves with one complete cycle (3608) of the
first PB mode, which is also one forcing period here.

The low-frequency response discussed above can be
understood approximately from the Sverdrup balance.
A planetary wave crosses the basin on the northern
boundary YN in one forcing period 2p/vP. In the rest
of the basin (which is located south of YN), planetary
waves are faster and therefore would have crossed the
basin by this time. This leaves behind an approximate
Sverdrup balance

22(1/y )] h 5 2w ,x e (3.3a)

or after integration from the eastern boundary as

h 5 h 1 h ,1 F (3.3b)

where the full response h is the sum of the eastern
boundary induced response h1 5 h | x51 and the locally
forced response hF 5 (x 2 1)y2 we. [Equations (3.3a)
and (3.3b) can also be derived directly from (2.5) and
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(2.7) at the low-frequency limit.] According to (3.3a,b),
in the region directly forced by the local Ekman pump-
ing dipole (dash in Fig. 1d), the amplitude of the re-
sponse increases westward. Outside this direct forcing
region, oceanic variability is caused completely by that
on the eastern boundary.

Thermocline variability on the eastern boundary is
important for the basin-mode response outside the forc-
ing region but is not important in the forcing region.
These can be seen in the locally forced solution HF of
(2.7c), which has no variability on the eastern boundary.
Like in the full solution H (Fig. 2e), the amplitude of
HF (Fig. 2g) remains almost unchanged in the forcing
region (4 , y , 9) and diminishes outside. The small
effect of the eastern boundary thermocline on the re-
sponse of the forcing region is due to the usually much
weaker eastern boundary variability than that locally
forced by the Ekman pumping (see the appendix).

The response along the eastern boundary H0, and in
turn in the Tropics, is almost in phase with the locally
forced response HF of the southern pole, but opposite
to that of the (central and western part of the) northern
pole (Fig. 2f). This occurs because mass conservation
requires the eastern boundary thermocline to vary op-
posite to the net mass of HF, which is contributed pre-
dominantly by the northern pole response (see the ap-
pendix for more discussion). A direct consequence of
this eastern boundary phasing is a reinforcement of H0

and HF in the southern pole but a cancellation in the
northern pole (in the eastern basin). Therefore, in spite
of a stronger locally forced response HF in the northern
pole than in the southern pole (Fig. 2g), the full solution
has a response stronger in the southern pole than in the
northern pole (Fig. 2e) in the eastern part of the basin.

In the case of an equatorial wind (Fig. 1b), no res-
onant spectrum peak occurs on decadal timescales along
the equator, as seen in Fig. 1a. The equator is now under
direct wind forcing. The equatorial response shows a
westward intensification (Fig. 2a) and an almost uniform
phase (Fig. 2b), both reminiscent of the response of the
northern pole under the extratropical forcing (Figs. 2e,f).
Outside the equatorial forcing region, the amplitude of
the response is about the same as that on the eastern
boundary (about 0.07 in Fig. 2a); the phase follows the
westward planetary wave radiating from the eastern
boundary, again spanning one complete cycle at the
northern boundary (Fig. 2b). As in the case of the ex-
tratropical forcing, in the region of Ekman pumping (y
, 3), the locally forced response is dominant, while
outside the forcing region the eastern boundary influ-
ence is necessary (Figs. 2c,d).

4. Resonance of planetary wave basin modes

To better understand the resonance of the PB modes,
we examine the forced response to a set of Gaussian
wind (3.1) that has the central latitude yC shifting from
the equator toward the northern boundary. The power

spectra of the planetary wave solution HP for different
wind forcings are plotted on the equator and a subtrop-
ical latitude in Figs. 3a–d and Figs. 3e–h, respectively.

On the equator, for a given forcing frequency, the
amplitude of the eastern boundary response tends to
reach a maximum for an off-equatorial wind, with the
central latitude of the maximum forcing increasing from
yC ø 3 at higher frequency (ø5vP) to yC ø 6 at the
low-frequency limit (Fig. 3a). Similar maximum re-
sponse to the off-equatorial wind can be found in the
midbasin (Fig. 3b) and in the zonal-mean response (Fig.
3c) on the equator. This is consistent with Wang (2001,
ch. 5), who has found that, for certain decadal forcing,
the equatorial response is maximum to an off-equatorial
wind centered around 118 (yC ø 3 in our nondimensional
y). Here, however, we should point out that this latitude
of most effective wind forcing is valid only at frequen-
cies higher than about 3vP. At lower frequencies, the
maximum forcing has a much broader frequency range
from yC ø 3 to 10 (Figs. 3a–c). Therefore, practically,
all the extratropical forcings are effective in generating
equatorial variability.

The most important result of this work is that the
equatorial response to extratropical forcings has a dom-
inant resonant peak (Figs. 3a–c). As yC moves away
from the equator to yC . 4, the resonance frequency
decreases toward the first mode (at vP) and the power
spectral peak becomes more and more distinguished.
This resonant response is rather uniform along the equa-
tor, as seen in the similar spectra at the eastern boundary
(Fig. 3a), the midbasin (Fig. 3b), and of the zonal mean
(Fig. 3c). This uniform resonant response to the extra-
tropical wind is also seen in the almost zero phase dif-
ference between the responses at the eastern and western
boundaries (Fig. 3d) and is consistent with the example
in Figs. 2e,f.

Equatorial wind (say, yC , 1), although inefficient in
generating variability on the eastern boundary (Fig. 3a),
can generate substantial variability away from the east-
ern boundary, as shown by a secondary maximum re-
sponse in the midbasin (Fig. 3b) and in the zonal mean
(Fig. 3c; for yC 5 0). Different from the extratropical
wind, however, the equatorial wind does not generate
resonant equatorial peak responses at the decadal PB-
mode frequencies (Figs. 3a–c); instead, it generates a
power spectrum that increases toward higher frequen-
cies (and resonates toward the EB mode, as shown in
Fig. 1a). The interior equatorial ocean has a response
that is larger than that on the eastern boundary because
of a nonuniform zonal response to the equatorial wind.
Indeed, the east–west phase difference increases (from
about zero at yC . 2) to about 1208 when yC ø 0 (Fig.
3d), indicating an apparent eastward propagation. It
should, however, be noticed that this eastward propa-
gation occurs only near the eastern boundary in a narrow
region, as seen in the sharp phase change there in the
example of Fig. 2b. As a result, the equatorial ocean
remains largely in phase with the amplitude increasing
toward the west. This can be seen in the example of
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FIG. 3. Low-frequency power spectra of the planetary wave model solution HP in (2.7) for Gaussian wind (3.1) centered at different
latitudes yC. (a),(b),(c) The equatorial power spectra at the eastern boundary (x 5 1), midbasin (x 5 0.5), and for the zonal mean, respectively;
(d) the phase difference between the eastern (x 5 1), and western (x 5 0) boundaries (positive means eastward propagation). (e)–(h) As in
(a)–(d) but for the responses in the subtropics at y 5 0.5YN. The contour intervals are 0.1 for the amplitude and 308 for the phase difference.
Before the calculation of the phase difference, a continuous phase is obtained at each point by an adjustment of the phase discontinuity that
appeared in Fig. 2.

Figs. 2a,b. The in-phase change on the equator (away
from the eastern boundary) results in a similar response
of the zonal mean (Fig. 3c) and at the midbasin (Fig.
3b).

The equatorial wave solution HE (Figs. 4a–d) shows
a similar equatorial response to the planetary wave so-
lution HP discussed above (Figs. 3a–d). The planetary
wave solution HP is expected to simulate the equatorial
response at decadal timescales. Indeed, given a forcing
frequency, the planetary wave solution (2.7) has the
limit HP(x, y) 5 H0 1 t x(0)(x 2 1) toward the equator,
where we have used w0(y) 5 2]y(t0/y). Therefore, the
equatorial wind is always balanced by the pressure gra-
dient as in the Sverdrup balance (A.1). In other words,
for the low-frequency PB modes, the adjustment of the
equatorial Kelvin wave is infinitely fast and its role is
negligible. Indeed, at such low frequencies, the equa-
torial Kelvin wave contributes little to the mass redis-

tribution and then mass conservation of the basin modes
(Liu et al. 1999).

In contrast to the tropical ocean, which is dominated
by the resonant response of the lowest PB modes to
extratropical winds, the extratropical region is affected
little by the resonant PB modes, as shown in Figs. 3e–
h on a subtropical latitude of y 5 0.5YN. Along the
eastern boundary, the subtropical response (Fig. 3e) is
the same as on the equator (Fig. 3a) because of the
constant h along the eastern boundary. In the interior
ocean (Fig. 3f) (and in turn the zonal mean; Fig. 3g),
however, the response differs dramatically from that on
the eastern boundary. Most important is the lack of a
resonant peak of the PB modes in Figs. 3f,g. In the
latitudes directly under the wind forcing (roughly 4 ,
yC , 9), the midbasin and zonal mean responses are
dominated by a red spectrum. This response is forced
mainly by the local Ekman pumping on the same lati-
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FIG. 4. As in Fig. 3 but for the equatorial wave model solution HE in (2.3).

tude, as discussed by Frankignoul et al. (1997), and is
affected little by the resonance of the PB modes. This
difference of the interior and eastern boundary response
has been noticed by Cessi and Louazel (2001). Indeed,
this red spectrum response remains almost the same for
the locally forced response HF (not shown). The results
here are consistent with the example in Figs. 2e–h,
which show little influence of the eastern boundary on
the locally forced response. The east–west phase dif-
ference shows a distorted structure (Fig. 3h) because of
the superposition of free wave and locally forced re-
sponses, as seen in the example of Fig. 2f. Forced by
wind patches on the equatorial side, the subtropical in-
terior ocean has a power spectrum that increases toward
higher frequencies (Fig. 3f), and the negative east–west
phase difference (Fig. 3h) indicates a westward prop-
agation of the planetary wave, as discussed in the ex-
ample in Fig. 2f. It is nevertheless interesting to see a
broad and weak resonant peak in the zonal mean re-
sponse near the frequencies of the first and second PB
modes, when forced by winds on the equatorial side (2
, yC , 4) (Fig. 3g). Overall, the east–west phase dif-

ference is negative (Fig. 3f) due to the westward prop-
agation of planetary waves. As in the case of the equa-
torial response (Figs. 3a–c and Figs. 4a–c), the sub-
tropical responses are similar between the equatorial
wave solution HE (Figs. 4e–h) and the planetary wave
solution HP (Figs. 3e–h).

In short, with localized wind forcing, the tropical
ocean is dominated by the resonant response of the PB
modes to extratropical forcing, while the extratropical
response is dominated by the locally forced response to
Ekman pumping forcing. With an equatorial wind, the
tropical response no longer exhibits resonant peak re-
sponse of the PB modes but resonates with the EB
modes at much higher frequencies. It is conceivable that,
with a basin-scale wind, the response of the tropical
ocean could be complicated by the competition of the
equatorial and off-equatorial winds. This will be dis-
cussed below.

5. Response to basin-scale wind
Figure 5 shows the power spectra of the eastern

boundary equatorial response under four different wind
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FIG. 5. (a),(c),(e),(g) Low-frequency power spectra at the equatorial
eastern boundary forced by (b) a localized equatorial Gaussian wind;
(d) a uniform wind; (f ) a half cosine wind t0 5 cos(p y/YN); and (h)
a half sine wind t0 5 sin(p y/YN), respectively. For the power spectra,
the planetary wave solution HP and equatorial wave solution HE are
plotted in solid and dash, respectively. For each wind profile (solid),
the corresponding Ekman pumping is also plotted (dash) after nor-
malized by its maximum magnitude.

forcings. With a localized equatorial wind (Fig. 5b, the
same as Fig. 1b), no resonance peak occurs for the PB
modes (Fig. 5a). As seen previously in Fig. 1a, this
localized equatorial wind favors resonant EB-modes at
higher frequencies. With a uniform wind (Fig. 5d), the
power spectrum shows almost a white spectrum for the
first few PB modes (Fig. 5c), with weak resonance peaks
discernable for the first and second PB modes.1 This is
different from Cessi and Louazel (2001), who studied
the response to the same uniform wind but in an off-
equatorial basin. In their case, a distinctive resonant
peak occurs for the first PB mode on the eastern bound-
ary (their Fig. 5a). The much suppressed resonance peak

1 With explicit mixing, the spectral peak is likely to favor the large-
scale gravest PB mode.

in our case is due to the inclusion of the equator into
the basin and the presence of the equatorial wind: the
former increases the damping rate of the free PB mode2

and the latter favors resonance of the higher-frequency
EB mode, instead of the PB modes.

Similar to the uniform wind, with a half cosine wind
profile in which the equatorial and midlatitude winds
are of comparable magnitude but opposite signs (Fig.
5f), no clear resonance of PB modes occurs (Fig. 5). In
contrast, with a half sine wind profile (Fig. 5h) in which
the wind vanishes toward the equator, clear resonance
peak response occurs for the first PB mode (Fig. 5g) as
for the localized extratropical winds (Fig. 1c).

The spatial evolution of the forced response is also
complicated by the simultaneous presence of extratrop-
ical and equatorial winds. For a basinwide extratropical
wind such as the half sine wind in Fig. 5h, resonance
occurs at the forcing frequency vP, with the maximum
response in the northwest corner (Fig. 6a). The phase
diagram shows a basinwide westward propagation (Fig.
6b), reminiscent of the propagation of planetary waves.
The pattern of the amplitude resembles that of the first
free PB mode (see Fig. 2 of LIU), with one important
difference: the decrease of the amplitude from the north-
ern boundary toward the equator is much smaller in the
forced response than in the free mode. This difference is
caused by the damped nature of the free PB modes. In
the interior ocean toward the western boundary x 5 0,
the forced response may be approximated from (2.7) as
HP ø w0e , while the free mode has the form HPfree

2iv yP

5 e 3 e , where s1 . 0 is the damping rate of the2 2s y iv y1 P

first PB mode. The ratio of the equatorial response to the
northern boundary response is therefore 1/w0e and

2iv YP N

(1/e )e for HP and HPfree, respectively. The latter
2 2s Y iv Y1 N P N

has a much reduced amplitude toward the equator be-
cause of the exponential factor e [assuming w0(y) is

2s Y1 N

relatively uniform]. Noticing s1 ø 0.65vP (Cessi and
Louazel 2001; LIU) and (2.11) this factor can be esti-
mated as e ø e0.6532p ø 55. Therefore, relative to

20.65v YP N

the free PB mode, the equatorial response is much more
significant in the forced resonant response.

In comparison, with a half cosine wind (Fig. 5f),
which includes the competition of the equatorial and
off-equatorial winds, the evolution of the response is
completely different from the free mode. Now the am-
plitude shows little signature of any free PB mode (Fig.
6c), consistent with the lack of PB-mode resonance (Fig.
5e). It is interesting to see an eastward propagation in
a broad tropical region, similar to those found in coupled
GCM simulations (Liu et al. 2002). This eastward prop-
agation is unrelated to the equatorial Kelvin wave,
which has been filtered out in our planetary wave model:
Instead, it is due to the interference between the locally
forced response and the eastern boundary induced free

2 Roughly speaking, the damping rate of the PB modes increases
with the difference of the maximum and minimum planetary wave
speeds (or latitudes) in the basin (not shown).
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FIG. 6. Similar to Fig. 2, the spatial distribution of the (a) amplitude
and (b) phase of the planetary wave solution HP forced by the basin-
wide half sine wind in Fig. 5h of frequency vP. (c),(d) As in (a) and
(b), respectively, but under the half cosine forcing in Fig. 5f. Contour
intervals are 0.2 for the amplitude and 308 for the phase. The phase
is multiplied by 21 such that the signal propagates in the direction
of increasing phase. The results are similar in the equatorial wave
solution HE (not shown).

FIG. 7. A numerical solution of the full linear shallow water system
[Eqs. (2.1) with an additional very small linear momentum damping,
but without the long-wave approximation in (2.1b)]. The model is
solved using the finite difference scheme of C grid. The equations
are nondimensionalized similar to that in (2.1). The forcing has the
form of (2.2) with t0(y) being a sine wind profile as in Fig. 5h. The
basin dimension is similar to our standard case with a nondimensional
domain of 0 # x # 1, and 0 # y # 14, with 18 and 30 grid points
in the x and y directions. Power spectra of the oceanic variability are
shown along (a) the equator (y 5 0) and (b) subtropics (y 5 7) near
the eastern boundary (x 5 1, solid), midbasin (x 5 0.5, dash), and
western boundary (x 5 0, dot).

wave propagation. A similar eastward propagation can
also be seen in the case of the localized equatorial forc-
ing (Fig. 2b), where the eastward transition occurs rap-
idly in a narrow zone near the eastern boundary.

6. Summary and discussion

In this paper, we studied the oceanic response to ex-
ternal wind forcing in a tropical–extratropical basin with
the focus on the tropical response to decadal forcing.
Two classical theoretical wave models are used: the
equatorial wave model and the planetary wave model.
Both models produce the same result at decadal fre-
quencies: under an extratropical wind forcing, the oce-
anic response in the Tropics, and the eastern boundary,
is dominated by a resonant spectrum peak of the gravest
PB modes. This resonant PB-mode response, however,
is unimportant in the interior extratropical ocean, be-
cause of the overwhelming effect by local Ekman pump-

ing. In contrast to the extratropical wind, an equatorial
wind tends to generate resonance at much higher fre-
quencies of the EB mode. The competition of the ex-
tratropical and equatorial wind may result in complex
responses in the Tropics.

Our theoretical results are confirmed numerically in
the full linear shallow water system that is solved using
a finite-difference scheme (Yang and Liu 2002, manu-
script submitted to J. Phys. Oceanogr.). Figure 7 shows
one example of the power spectra of the oceanic vari-
ability from a numerical solution of the shallow water
system forced by the sine wind profile shown in Fig.
5h. On the equator, oceanic responses are dominated by
a resonance peak at the frequency of the first PB mode
in the eastern boundary, midbasin, and western bound-
ary (Fig. 7a). The shape of the power spectra of the
equatorial response resembles closely to that of the plan-
etary wave solution in Fig. 5g, although the amplitude
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of the numerical solution is somewhat weaker.3 In the
subtropics (Fig. 7b), the eastern boundary response (sol-
id) is characterized by the same spectral peak as that
on the equator, while the interior responses (in the mid-
basin and western boundary) no longer have a fixed
frequency of resonant peak. These subtropical responses
are also consistent with the theoretical solutions.

Our conclusions here can be applied to a general ba-
sin, although we have limited our discussions to those
symmetric about the equator. In a more general tropical–
extratropical basin that is not asymmetric about the
equator, the northern boundary and the southern bound-
ary can be of different distances from the equator. Now,
the slowest free PB mode is determined primarily by
the cross-basin time of the planetary wave along the
boundary that is farther away from the equator (not
shown). For the forced response here, the resonant peak
in the Tropics would still occur at this gravest PB mode
frequency.

Our mechanism of resonant PB modes provides a new
paradigm for decadal oceanic variability in the Tropics,
with the extratropical wind providing the forcing and the
extratropical ocean providing the memory, or preferred
timescale. There have been some recent studies on de-
cadal variability, mostly focusing on the midlatitude. In
the linear context, two groups of mechanisms have been
proposed for the generation of resonant spectral peak
response. In the first group, analogous to the delayed
oscillator for ENSO variability (Suarez and Schopf
1988), the delayed negative feedback is important (e.g.,
Latif and Barnett 1994; Gu and Philander 1997; Czaja
and Marshall 2000). In this case, the preferred timescale
is determined mainly by the delay time. In the second
group, spatial resonance occurs for temporally stochastic
forcing that varies spatially periodically (with at least one
full cycle) down the direction of the signal propagation.
In the case of current advection (Saravanan and Mc-
Williams 1998), the forcing needs to change sign down
the direction of the current; in the case of planetary wave
propagation (Jin 1997), the forcing needs to change sign
westward across the basin. The peak time is now deter-
mined by the half wavelength of the forcing and the speed
of the signal propagation [planetary wave speed for Jin
(1997) and advective speed for Saravanan and Mc-
Williams (1998)]. In the Tropics, the importance of the
off-equatorial wind on the low-frequency tropical modes
have been recognized (Jin 2001; Wang 2001, ch. 5). How-
ever, it has remained unclear if there is a preferred re-
sponse timescale. Here, we find that the extratropical
stochastic wind can generate a tropical response with a
decadal spectral peak. The spectral peak is due to the
resonance of PB modes, whose timescale is determined
by the basin geometry only. Therefore, the preferred re-

3 At zero frequency, the power of the equatorial wave solution in
Fig. 5g diminishes. This feature is likely to be wrong because it differs
from both the planetary wave solution and the numerical solution,
both of which tend to have a finite power at the zero frequency.

sponse time is robust and inherent to the basin-scale oce-
anic variability. The use of the zonally uniform forcing
(2.2) in our shallow-water system, which has a westward
wave propagation, excludes the mechanism of spatial res-
onance. Instead, our resonant mechanism relies on the
extratropical wind on the PB mode, whose timescale is
determined by the slow planetary wave propagation on
the northern boundary and whose basinwide structure is
established by the rapid communication of coastal and
equatorial Kelvin waves within the basin. Unlike in Cessi
and Louazel (2001), who have focused on the midlatitude
response in the context of the resonant PB modes, we
found that the resonant PB mode is of fundamental im-
portance for the Tropics but not for the extratropics.

The resonance of the PB mode provides a potential
mechanism for the generation of decadal variability in
the tropical ocean. For example, the strong stochastic
forcing in the midlatitude could excite a resonant PB
mode and produce a dominant decadal variability in the
tropical ocean. This decadal equatorial oceanic vari-
ability may further affect the atmosphere and finally
generate decadal variability in the coupled ocean–at-
mosphere system. This resonance of the PB mode may
also shed light on some previously proposed mechanism
of tropical decadal climate variability. For example, the
resonance of the PB mode may be relevant to the decadal
variability generated in the intermediate coupled model
of Kleeman et al. (1999), which has found that the cou-
pled decadal variability is determined by the perturba-
tion advection [as opposed to the mean advection as
proposed by Gu and Philander (1997)]. Much work is
needed for a better understanding of the role of the
resonant PB modes for coupled climate variability. In
particular, the response of the tropical ocean could be
complicated, as studied in section 5, because the at-
mosphere responds to a tropical SST anomaly both lo-
cally and remotely, and therefore the tropical ocean re-
sponse depends on the winds in the equatorial as well
as extratropical regions.
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APPENDIX

Eastern Boundary Response to Local
Extratropical Forcing

Under a local extratropical forcing (Figs. 2e,f), oce-
anic responses in the eastern boundary and the Tropics
are almost in phase with that in the locally forced south-
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ern pole, but opposite to that in the (central–western
part of the) northern pole (Fig. 2f). This may seem coun-
terintuitive because the locally forced response HF (Fig.
2g) is stronger in the northern pole than in the southern
pole.

The phase of the eastern boundary response can be
understood as follows. With the low-frequency limit of
the Sverdrup balance (3.3b), the mass conservation

Y 1 Y 1N N

0 5 h dx dy 1 h dx dyE E 1 E E F

0 0 0 0

gives
Y 1N

h Y 5 2 h dx dy1 N E E F

0 0

Y NN1 1
2 x x5 y w dy [ (2y] t 1 t ) dy,E e E y2 20 0

(A.1)

where we have used h1YN 5 h1 dx dy. With aY 1N# #0 0

symmetric Gaussian wind patch (3.1) in the extratropics,
the wind curl [2y]yt x in (A.1)] generates a dipole,
which is stronger in the northern pole because of the
factor of y. The Ekman transport [t x in (A.1)] further
enhances the wind curl in the northern pole but reduces
the wind curl in the southern pole. (For example, an
eastward wind jet produces a cyclonic curl and up-
welling Ekman in the northern part, but opposite in the
southern part. The westerly wind also forces an equa-
torward Ekman transport that diverges because of the
reduced Coriolis parameter toward the equator. This di-
vergence enhances the upwelling Ekman pumping in
the north but cancels the downwelling Ekman pumping
in the south.) As a result, the locally forced response
hF is always larger in the northern than in the southern
pole (Fig. 2g). The stronger hF in the northern pole
dominates the net mass of the locally forced solution

hF dx dy. Since mass conservation requires theY 1N# #0 0

eastern boundary mass contribution to cancel the net
mass of the forced solution, the eastern boundary re-
sponse is always the opposite sign to that of the net
mass, or the northern pole mass, of the locally forced
solution hF as shown in (A.1).

The amplitude of the eastern boundary response is
also determined by the magnitude of the net mass of
the locally forced response hF dx dy as shown inY 1N# #0 0

(A.1). Therefore, the amplitude of the eastern boundary
variability is usually smaller than the local response in
the extratropics for two reasons. First, a localized wind
jet, as in (3.1), always produces a dipole of Ekman
pumping that has opposite signs in the two poles. The
net mass contribution of the locally forced response
therefore is the small residual after the cancellation of
the mass contribution of the two poles (e.g., Figs. 2e–

h). Second, even for an Ekman pumping patch of the
same sign, the eastern boundary response would still be
small relative to the locally forced response, if the Ek-
man pumping is localized only in a small area (relative
to the basin). This follows because the eastern boundary
response is determined by the basin average of the lo-
cally forced response—a point that is discussed in the
basin adjustment study of Liu et al. (1999).
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