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ABSTRACT

Combining classic equatorial wave dynamics and midlatitude wave dynamics, a unified view is proposed to
account for the memory of tropical ocean dynamics in terms of oceanic basin modes. It is shown that the dynamic
memory of the ocean is bounded by the cross-basin time of planetary waves along the poleward basin boundary.
For realistic ocean basins, this memory originates from the mid- and high-latitude processes and is usually at
interdecadal timescales.

1. Introduction

A fundamental issue for our understanding of inter-
decadal climate variability is the dynamic memory of
the ocean. This issue is particularly unclear for the trop-
ical ocean. Earlier studies of tropical oceans have fo-
cused on the upper-ocean dynamic memory that is as-
sociated with the equatorial Kelvin and Rossby waves.
This tropical memory is less than interannual timescales
even in the large Pacific Ocean (e.g., Cane and Moore
1981) and is unlikely to contribute significantly to in-
terdecadal variability. A recent reexamination of the
classic equatorial wave dynamics (Jin 2001, hereafter
JIN) highlights the role of a class of weakly damped
low-frequency tropical basin modes, the so-called scat-
tering modes (hereafter S mode), in interdecadal tropical
climate variability. These S modes appear to form a
continuous spectrum with periods up to infinity. Al-
though these S modes have been noticed long ago
(Moore 1968), their physical nature remains unex-
plained even today. Are the S modes truly of tropical
origin? Why are the S modes weakly damped with in-
finitely long periods? These questions are fundamental
not only for the S mode itself, but also for the under-
standing of long-term climate variability. If the S mode
is indeed of tropical origin and have periods infinitely
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long, the tropical ocean itself might be able to provide
memory for climate variability on interdecadal and lon-
ger timescales.

This paper clarifies the nature of these S modes. The
classic equatorial and midlatitude wave dynamics are
reexamined from a unified perspective. We show that
the S mode is identical to the planetary wave basin mode
(hereafter P mode) that has been studied recently in
terms of classic midlatitude wave dynamics by Cessi
and Louazel (2001, hereafter CL). Therefore, in a trop-
ical–extratropical basin, the longest dynamic memory
of the ocean is associated with the P mode, whose period
is determined by the transient time of planetary waves
in the mid- and high latitudes.

2. Planetary wave basin modes

The physical nature of the P mode is well understood
(see CL) and therefore can be used later to understand
the S mode. With the long-wave approximation, the lin-
earized shallow-water system on an equatorial b plane
can be written as (JIN)

] u 2 yy 5 2] h, yu 5 2] h,t x y

] h 1 ] u 1 ] y 5 0. (1)t x y

This system has been nondimensionalized by the equa-
torial deformation radius LD 5 (c0/b)1/2 for y, the basin
width L for x, the Kelvin wave crossing time L/c0 for
t, the mean depth D for h, the Kelvin wave speed c0

and c0LD/L for u and y (c0 5 is the gravity waveÏg9D
speed). We will consider an ocean basin bounded by x
5 0 and 1 and y 5 Ys and Yn.

Replacing the u equation in (1) by geostrophy, we
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FIG. 1. The eigenvalues of the first 16 P (circles) and S modes
(asterisks) for a basin of YN 5 13.23. The P and S modes almost
coincide with each other, especially for the lower modes. (S mode 0
corresponds to the trivial P mode 0 and has a damping rate much
smaller than other S modes.) The truncation number for the S mode
is N 5 44 according to (6). With typical parameters of b 5 2 3
10211 m21 s21, D 5 400 m, and g9 5 0.02 m s22, LD is about 377
km and therefore the dimensional YN ; 5000 km. For the Pacific
basin of L ; 10 000 km, the dimensional time unit L/c0 is about 2
months. It should also be pointed out that the eigenvalues are deter-
mined mainly by planetary waves on YN. Further calculations of the
P mode find no substantial changes of the eigenvalues if YS is moved
north of the equator (not shown).

have the classic planetary wave equation in the extra-
tropics ] th 2 (1/y2)]xh 5 0, where 1/y2 is the westward
planetary wave speed along latitude y. Assuming the
form of h 5 exp(sPt)H(x, y), the eigenfunction H and
eigenvalue sP 5 lP 1 ivP are determined by the eastern
boundary condition u | x51 5 0 as

2H 5 exp[s (x 2 1)y ],P (2a)

and furthermore by the basinwide mass conservation
## h dx dy 5 0 as

Yn

2 2[1 2 exp(2s y )]/y dy 5 0. (2b)E P

YS

The eigenvalue problem (2) formally applies to a basin
that includes the equator, because, toward the equator,
the integrand in (2) as well as all the eigenfunctions
remain finite. Below, we will set YS 5 0 on the equator
to focus on the hemispherically symmetric modes. There
are infinitely many eigenvalues sPj 5 lPj 1 ivPj(j 5 0,
1, 2, . . . `). For YN . O(1), the frequencies can be
approximated as vPj 5 jvP1, where the fundamental
frequency vP1 corresponds to the cross-basin time of a
planetary wave along YN, or

2v 5 2p/Y .P1 N (3)

Calculations show that, except for the trivial solution
sP0 5 0, all the eigenmodes are damped (lPj , 0), as
seen in the example in Fig. 1. Furthermore, these modes
are weakly damped in the sense that their damping rates

tend to be smaller than their frequencies. The eigen-
function is characterized by an increasing amplitude to-
ward the northwest corner of the basin (Figs. 2c,g). The
contribution to the mass conservation comes predomi-
nantly from the large amplitude of h at high latitudes.
This suggests that these modes originate from, or are
determined by, the planetary waves in the mid- and high
latitudes. The phase line follows the westward planetary
wave speed (Figs. 2d,h), tilting northeastward with lat-
itude. This tilting results in an apparent zonal wave-
number that increases with latitude: the zonal wave-
number is quantized along YN with little net cross-
boundary transport, but always becomes zero along the
equator with no cross-equator transport at any point.

The formation of these P modes can be understood
from the basinwide mass adjustment in terms of plan-
etary waves and coastal Kelvin waves (Liu et al. 1999).
When a planetary wave hits the western boundary, its
mass is quickly transferred to the eastern boundary by
the coastal and equatorial Kelvin waves along the basin
boundary and equator, respectively, and is then radiated
westward by the secondary planetary waves generated
along the eastern boundary. If the planetary wave speed
is independent of latitude, all the eastern boundary plan-
etary waves reach the western boundary at the same
time and the entire mass redistribution process repeats
itself exactly, forming a neutral basin mode. When the
planetary wave speed varies with latitude, the final nor-
mal mode decays, because of the distortion of the wave
front after each reflection on the western boundary. The
waves are therefore damped even without explicit in-
terior dissipation.

3. Equatorial scattering modes and its physical
nature

In classic equatorial wave dynamics (Cane and Sar-
achik 1981), the solution that satisfies eastern boundary
condition u | x51 5 0 can be represented as the sum of
one equatorial Kelvin wave and N equatorial long Ross-
by waves. Assuming the form of solution of h 5
exp(sSt)H(x, y), we have (JIN) the eigenfunction H 5
(q 1 p)/2,

N N21

q 5 q (x)c (y), p 5 p (x)c (y), (4a)O O2n 2n 2n 2n
n50 n50

q2n 5 exp{sS[4n(x 2 1) 2 x]} andÏ(2n 2 1)!!/(2n)!!
p2n 5 q2n. The eigenvalue sS 5Ï(2n 1 2)/(2n 1 1)
lS 1 ivS is further determined by the absence of net-
mass flux on the western boundary u | x50 dy 5 0 as

`
#2`

N (2n 2 3)!!
1 2 exp(24ns ) 5 0. (4b)O s(2n)!!n51

For a finite N, (4b) has infinitely many damped eigen-
modes. The N slowest modes are the S modes of k 5
0: sSj 5 lSj 1 ivSj(j 5 0, 61, 62, . . . 6N/2), which
have no node point along the equator. These modes have
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FIG. 2. Eigenfunctions of the first and second modes (eigenvalues are shown in Fig. 1): (a) amplitude and (b) phase of the first S mode;
(c) amplitude and (d) phase of the first P mode; (e) amplitude and (f ) phase of the second S mode; (g) amplitude and (h) phase of the second
P mode. Each H field has been normalized by its value as x 5 1 and y 5 0. Again, the large-scale structures of the P and S modes agree
well. Contours are 2, 5, 10, 20, 30, and 40 for the amplitude and the contour interval is 458 for the phase. The direction of increasing phase
points to the direction of wave propagation. Negative phases are in dashed lines. (The phase has a 3608 discontinuity at 61808.) The small-
scale features in the S mode imply an important contribution of higher-order meridional modes.

been suggested as important for tropical interdecadal
variability by JIN. Calculations show that, for N . O(1),
the frequencies of these modes can be approximated as
vSj 5 jvS1, where the fundamental frequency is

v 5 p/(2N).S1 (5)

The frequencies of the S modes are bounded by half of
vSN 5 p/2, where p/2 corresponds to 4 times the tran-
sient time of the equatorial Kelvin wave and is the fre-
quency of the slightly leaky equatorial basin mode of
Cane and Moore (1981). When N → `, all the lSj ap-
proach zero, such that these S modes form an infinite
set of almost-neutral modes.

The major contribution of this paper is to demonstrate
that these slow S modes are of the same nature as the
P modes discussed before. The key condition for the
existence of the P mode is the basinwide mass conser-

vation. Since the equatorial wave solution (4) already
satisfies no-net transport across the eastern, western, and
southern (equator) boundaries, the mass conservation
can be achieved by an additional constraint of no-net
transport across YN. This can be accomplished by lim-
iting N such that 2N 1 1 is O( ); that is, only summing2Y N

up Rossby waves with critical latitudes south of YN. [In
previous works (e.g., Cane and Sarachik 1981), a similar
N was selected, but according to frequency, not the lat-
itude of the northern boundary.] Since the amplitude of
the Rossby waves of n (#N) virtually vanish beyond
YN in the interior ocean, this finite truncation guarantees
no-net-mass flux across YN. More precisely, N should
be (the integer part of )

2N 5 Y /4,N (6)

such that the fundamental frequencies of the S and P
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FIG. 3. Normalized eigenvalues of the first two modes for different northern boundaries: (a) damping rates and (b)
frequencies for the P mode (first mode, circle; second mode, square) and S mode (first mode, plus sign; second mode,
asterisk). The eigenvalues are normalized by the fundamental frequency (3) for the P mode and (5) for the S mode.
The truncation numbers of the S mode are calculated following (6) as N 5 [ /4] 1 1, where [ ] is the integer part.2Y N

The good agreement between the P and S modes is clearly shown. The most important feature is the implied diminishing
of eigenvalues with increased YN. Similar results are obtained by direct numerical eigenvalue calculation of the linear
shallow-water system in its finite difference from Yang and Liu (2002, manuscript submitted to J. Phys. Oceanogr.).

modes are identical: vS1 5 vP1 As such, the jth S mode
would have approximately the same frequency as the
jth P mode. Calculation further shows that the damping
rates of the jth S and P modes are also almost identical
(see the example in Fig. 1). The large-scale structures
of the S mode 1 and P mode 1 are also in good agreement
(Figs. 2a–d): both have an amplitude increasing toward
the northwest corner, a westward propagation, and a
zonal wavenumber 1 along the northern boundary. A
similar agreement can be found between the second S
and P modes (Figs. 2e–h). Finally, the S and P modes
also show good agreement for basins of different north-
ern boundaries. For YN increasing from about 3 to 24,
the damping rate (Fig. 3a) and frequency (Fig. 3b) of
P mode 1 and 2 remain almost unchanged, after being
normalized by the fundamental frequency (3). For a
given P mode, therefore, its damping rate and frequency
diminish as 1/ when YN → `. These fundamental2Y N

features are also captured by the S mode for a wide
range of truncation N (from 3 to 143). The agreement
between the S and P modes are especially good for a
basin whose northern boundary extends beyond the
Tropics (YN . 5).

The agreement between the S and P modes suggests
that the two modes are of the same nature [as long as
YN . O(1)]. Therefore, major features of the S mode
can be easily understood in terms of the P mode. It is
now clear that the S modes are well-defined for a basin
of a finite size. The continuous spectrum of S modes as
N → ` is an artifact of the P mode on an infinite b
plane with YN → ` and will never be realized in a finite
basin. Most importantly, the longest period of a non-
trivial S (or P) mode is the cross-basin time of the plan-
etary wave on YN. This longest memory of the ocean
basin is usually at interdecadal or longer timescales for

a realistic tropical–extratropical basin whose poleward
boundary is located at the mid- to high latitudes.

The agreement between the P and S modes are ex-
pected, physically, in spite of the dramatic difference
in their mathematical appearances [(2) versus (4)]. In-
deed, the only large-scale S-mode component that is
missing in the P mode is the equatorial Kelvin wave.
At very low frequencies, however, the role of the equa-
torial Kelvin wave is limited mainly to the eastward
mass transfer along the equator, analogous to what a
coastal Kelvin wave does along the southern boundary
of a midlatitude basin (Liu et al. 1999). At higher fre-
quencies [v . O(p/2)], the equatorial Kelvin wave be-
comes distinctively important. Now, there are infinitely
many higher-frequency equatorial modes that are con-
tained in the equatorial eigenvalue problem (4) (see
JIN), but are absent in the P-mode equation (2). These
high-frequency modes have zonal wavenumbers larger
than 1 and their formation depends critically on the
reflection of equatorial Kelvin and Rossby waves within
the equatorial waveguide (Cane and Moore 1981).

The S mode, in a sense, is an inefficient representation
of the P mode, because of the critical importance of the
higher meridional modes in the representation of the P
mode. For example, in the case of N 5 44, major con-
tributions to the eigenfunction maximum near the north-
ern boundary come from the modes higher than 20–30
(Fig. 4). This is in contrast to those equatorial basin
modes of higher frequencies that are contributed mostly
by the first few meridional modes and tend to be equa-
torially trapped (Cane and Moore 1981).

4. Summary
We have focused on the nature of the ultra-low-fre-

quency basin modes in a tropical–extratropical basin.
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FIG. 4. The (a) real and (b) imaginary parts of the eigenfunction h across the midbasin at x 5 0.5 of the S mode
according to (6) with a different number of meridional modes of summation (for the first mode in Figs. 2a,b). The
eigenvalue is calculated with N 5 44 and the summation for h is to 10, 20, 30, and 44 as labeled. The P-mode
solution (in Figs. 2c,d) is also plotted (dashed line) for comparison. It is seen that higher modes play the most
important role for the maximum h at high latitudes.

With the truncation number of the equatorial Rossby
waves determined by the northern boundary as in (6),
the equatorial wave dynamics is unified with the mid-
latitude wave dynamics in the low-frequency limit. A
low-frequency basin mode can be represented either as
the P mode from the perspective of midlatitude wave
dynamics, or as the S mode from the perspective of the
equatorial wave dynamics. The longest period of the
basin modes equals the transient time of the planetary
wave at the northern boundary (more precisely, at the
northernmost latitude that the eastern boundary coastal
Kelvin wave can reach). Therefore, the maximum mem-
ory of the tropical ocean is always finite and is deter-
mined by the extratropical Rossby waves. One can con-
clude that, for climate variability of timescales longer
than interannual (or several transient times of the equa-
torial Kelvin wave), the contribution of the ocean dy-
namic memory can come only from outside the Tropics.
This conclusion, of course, is valid in the context of
linear ocean dynamics and for a fixed baroclinic mode.
The tropical ocean may also gain memory locally from
higher baroclinic ocean modes (e.g., Liu et al. 2002),
nonlinearity (e.g., Munnich et al. 1991) and ocean–at-
mosphere coupling (e.g., JIN). The relative contribution
of these elements to the observed interdecadal climate
variability remains to be studied.

There are now two mechanisms proposed that em-
phasize the role of extratropical–tropical oceanic tele-
connection in providing the memory for tropical decadal
variability in the coupled ocean–atmosphere system: the
mean advection mechanism (Gu and Philander 1997)
and perturbation advection mechanism (Kleeman et al.
1999). The former is associated with higher baroclinic
planetary wave modes in the presence of mean ther-
mocline flow, while the latter, perhaps, the first baro-
clinic planetary wave mode (Liu 1999). The basin mode
proposed here is related to the first baroclinic mode,

because of its independence of the mean thermocline
flow, and therefore can perhaps shed light on the mech-
anism of Kleeman et al. (1999) from the perspective of
ocean dynamics. Nevertheless, the Gu and Philander
(1997) mechanism could be related to basin modes of
higher baroclinic modes in the presence of mean flow,
if they do exist.
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