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Abstract 
Flash droughts are rapid onset drought events, typically defined as a two or more categorical 
increase in drought severity over a six-week period as indicated by the U.S. Drought Monitor 
(USDM).  While long-term seasonal drought prediction has been a common area of research, 
there is much work to be done on flash drought prediction.  Automated flash drought guidance 
on a weekly basis would be one way to help stakeholders, especially agriculture, prepare for 
these events in the short-term.  This research investigates the feasibility of using a 
commonly-available machine learning algorithm, support vector machines (SVM), to assist the 
short-term forecasting of flash drought events.  It finds that the use of an SVM trained with 
precipitation, evapotranspiration, and soil moisture datasets has the ability to classify gridpoints 
that will enter flash drought criteria over the following six week period with reasonable 
accuracy.  
 
 
Introduction 

In the last decade, there has been significant discussion in the scientific literature about 

flash droughts. A good number of the definitions to delineate flash droughts from seasonal-style 

droughts focus on the period of time for intensification.  This paper will use the definition of 

flash drought as a two or more category increase in drought intensity in the U.S. Drought 

Monitor within a six week period.  The human-produced U.S. Drought Monitor (USDM) product 

is a weekly analysis of drought contributions across the United States, produced as a 

collaboration between the National Drought Mitigation Center (NDMC), the Department of 

Agriculture (USDA), and the National Oceanic and Atmospheric Administration (NOAA).  The 

USDM analysis is treated as the gold-standard of drought analysis, and can be used in this 
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context to determine regions of ongoing flash drought on a week to week basis.  While this is a 

useful monitoring tool, the USDM is not a forecast, and while there is much effort put into 

seasonal drought forecasting, there is less guidance available for those forecasting flash drought 

events. 

This research seeks to investigate the novel approach of treating flash drought forecasting 

as a classification problem.   This was done by examining the potential usefulness of using a 

modern machine-learning technique, supervised support vector machines (SVM), to assist in the 

forecasting of flash drought events in the continental United States.  Using a collection of 

precipitation, evapotranspiration, and soil moisture products from the year 2000 to 2017, SVM 

models were trained on a randomly stratified set of weekly data points, and then accuracy-tested 

using a stratified random sample of weekly data points that were set aside. 

 

Literature Review on Flash Drought Prediction 

The term “flash drought” was first used in the scientific literature in 2002 by Svoboda et 

al. to describe rapid-intensification drought events that were being identified in the newly-minted 

U.S. Drought Monitor (USDM) weekly analysis product.  Research on the phenomenon was 

limited until the widespread flash drought event across the Great Plains and Midwest of 2012 

brought the topic to the forefront of the drought community.  Otkin et al. (2018) reaffirms the 

definition of a flash drought in the context of the USDM as “a two-category increase in drought 

severity over a 6-week period.”  Common datasets used in the identification and analysis of flash 

drought events include the Standardized Precipitation Index (SPI), the Evaporative Stress Index 

(ESI), and soil moisture datasets. 
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As for the development of predictive methods for forecasting flash drought forecasting, 

Otkin et al. (2014) describes a probabilistic approach to prediction through the development of 

the Rapid Change Index (RCI), which is designed to highlight regions undergoing rapid changes 

in moisture stress as inferred from weekly changes of the ESI.  Chen et al. (2018) continues the 

idea that the identification of rapid changes to evapotranspiration, precipitation, and soil moisture 

can provide early warnings of flash drought development.  They describe an experimental tool 

developed for the Climate Prediction Center (CPC) for flash drought prediction, in use at the 

center since April 2018.  This product uses the RCI method overlaid with precipitation and soil 

moisture anomaly thresholds to produce an human-interpretable operational map for forecast 

support.  However, the paper also states that the lack of incorporation of future forecasted 

precipitation data limits the effectiveness of their method except in circumstances where 

atmospheric patterns persist during the intervening time period.  

With that said, there is a recognition in the literature that there are limited operational 

products today that synthesize the available precipitation, evapotranspiration, and soil moisture 

datasets into a flash drought prediction tool.  A recent paper from Chen et al. (2019) expands on 

the team’s earlier work described above, examining the onset of flash droughts and stating that 

their team from NOAA is planning to use their results in an effort to develop a more robust 

“flash drought prediction tool.”  As of the time of this writing, the author is unaware of any 

published literature in the atmospheric sciences examining the use of modern machine learning 

(ML) techniques on the forecasting of flash drought events, although ML methods are starting to 

be examined in applications in other parts of the science.  As such, the research in this paper 
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seeks to serve as an initial investigation into the effectiveness of one particular type of machine 

learning technique, SVMs, on the short-term forecasting of flash drought events. 

 

Methods 

Datasets and Statistics 

To investigate the usefulness of support vector machines to the near-term forecasting of 

flash drought events, a collection of six datasets were used as part of the training and testing 

data.  These datasets were rasterized onto a standard 4 kilometer grid across the continental 

United States, as shown in Figure 1, with a complete dataset spanning the years 2000 to 2017. 

From this time frame, data was extracted for the goal of producing a weekly forecast for the 

warm growing season.  Weeks 12 through 47 were selected as forecast dates, corresponding to 

late March through mid-November.  These forecasts were produced using the observational and 

model data from 6 weeks prior to the forecast data (early February through early October), and 

the one week change from the week prior to the 6 week initial condition.  The datasets used 

were: 

1. Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index is a normalized, probability-based index for 

observed precipitation over a given medium-to-long range time scale.  Positive anomalies 

indicate wetter-than-normal conditions, while negative anomalies indicate 

drier-than-normal conditions.  SPI is often used as a key product in the analysis and 

forecasting of drought events, given its observational flexibility, simplistic interpretation, 

and historical context.  
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2. Evaporative Stress Index (ESI) 

The Evaporative Stress Index is a satellite-derived, normalized index of the ratio of 

observed evapotranspiration (ET) by plants to the maximum potential ET.  Thermal-IR 

data from geostationary satellites is fed into a land-atmosphere model to calculate surface 

energy and moisture fluxes on a daily basis, as described by Anderson et al. (2007a). 

These fluxes are composited and standardized through the method outlined by Anderson 

et al. (2007b) over a multi-week period to create a robust measurement of ET responses. 

ESI has received particular attention in the literature as a leading indicator to the onset of 

flash drought events, as plants will often experience a period of high ET during the onset 

of hot, dry periods before their available moisture runs out, and then experience a rapid 

decrease of ET.  This rapid decrease, shown by the ESI as a large negative anomaly, has 

been shown to proceed the analysed drought development by up to six weeks.  

3. NLDAS Soil Moisture 

Soil moisture data was provided through the use of the North American Land Data 

Assimilation System (NLDAS) model, providing interval-averaged moisture anomalies 

for three columns of soil: 

a. Surface-0.1m 

b. Surface-1.0m 

c. Surface-2.0m 

It is important to note that these three datasets are not independent of each other, as the 

deeper layer analysis includes top soil moisture.  Nonetheless, all three were included in 
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this research to determine if there was an advantage to the signals provided from any of 

the layers to predicting flash drought. 

4. U.S. Drought Monitor (USDM) 

The U.S. Drought Monitor is an expert-produced weekly analysis of drought conditions 

across the United States, published by the National Drought Mitigation Center (NDMC), 

in collaboration with the USDA and NOAA.  It takes into account precipitation and soil 

moisture data, streamflow and soil moisture data, agricultural and socioeconomic 

impacts, and citizen reports on the ground, incorporating droughts of many different time 

scales that may be occurring simultaneously.  Drought conditions range on a 6-part 

intensity scale starting with no drought (encoded as -1 in this dataset) and 

D0-Abnormally Dry (encoded as 0 in this dataset) to D4-Exceptional Drought (encoded 

as 4 in this dataset).  The USDM category at each gridpoint was used in two ways in this 

research.  One, the USDM category at the time of the production of the 6-week forecast 

was used as one of the 41 features fed into the model at each gridpoint.  Then, the USDM 

category analysed at the valid forecast week (6 weeks into the future) was used as a 

verification of the forecast, as if the category increased by 2 or more over the forecast 

period of six weeks, it was classified as a flash drought grid point.  This allows for the 

supervised training of the support vector machines to occur in the training set and for the 

calculation of forecast accuracies using the test set.  

Support Vector Machine Design 

Support vector machines (SVM) are a type of supervised machine learning algorithm that 

is suited for classification tasks.  On the whole, the SVM algorithm takes each data point in the 
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training set, and maps out a representative point in hyperspace, with each feature of the data 

point as a separate axis.  A hyperplane is generated that best separates the two categories of data 

points (in this case, flash drought develops in the following six week period or it does not), as 

calculated as the maximum margin between the line and the nearest opposite-class data points on 

each side of the line.  SVMs can be applied to any classification task in which the data set can 

become linearly separable.  In order to achieve linearly separability, the SVM applies an 

exponential kernel function that remaps all features onto their own uniform coordinate axis. 

For this research, the Python module scikit-learn was used to train and evaluate the 

accuracy of using support vector machines.  Scikit-learn is an openly available, “off-the-shelf” 

style approach to machine learning algorithms, which makes it well-suited for research 

application to large atmospheric science datasets. 

Encoding 

For each time step, the entire unfiltered domain, including land and ocean surfaces of and 

adjacent to the continental United States, comprised 910,000 grid points.  However, the full 

dataset was reduced through a series of quality-control functions, to eliminate points with invalid 

data across any of the 42 variables extracted.  This process first eliminated any point that had a 

variable with a null value (missing data).  Next, it searched through all standardized 

anomaly-based variables, such as the SPI, ESI, and soil moisture, and eliminated grid points 

where one or more of the fields had a raw dataset value less than -10 or greater than +10.  As 

these datasets are standardized, this is functionally equivalent to eliminating values beyond 10 

standard deviations of their respective mean, and allowed for a masking of all water-based grid 

points, in addition to locations where satellite measurements could not make observations over 
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that period (such as snow cover in the northern U.S.).  This resulted in an average of 434,000 

valid data points for any given week, with an average of 17,000 of these points matching flash 

drought criteria, about 4% of valid points.  Figure 2 shows the number of valid flash drought 

grid points as a function of week for each year included in the analysis, highlighting the 

differences of seasonality and geographic extent between years.  Two years are highlighted in 

this figure.  In the summer of 2012, a widespread flash drought impacted a large swath of the 

central United States, an event that stimulated discussion in the drought community about 

rapid-onset, high impact events.  Additionally, in the summer of 2017, a localized flash drought 

impacted eastern Montana and the western Dakotas.  These two events were pulled out as case 

studies for examining the practicality of using a CONUS-wide model on large and small scale 

events prior to using the entire 18 year archive. 

As the goal of this research was to train a model to forecast flash droughts six weeks into 

the future, data was extracted for the goal of producing forecast data for weeks 12 through 47, 

using data from 6 weeks prior to the forecast data, and the one week change from the week prior 

to the 6 week initial condition.  For example, this means that the week 12 USDM category was 

matched with the week 6 SPI, ESI, and soil moisture data and their changes (also referred to here 

as deltas) between week 5 and 6. 

The SVMs used for this research are binary classifiers that use discrete values for each 

feature.  Thus, thresholds were devised to encode the continuous data points into a handful of 

classes.  USDM classes were left unchanged as they were already integers from -1 to 4.  The SPI, 

ESI, and soil moisture data, already encoded as standardized anomalies, were run through a 

custom encoding function.  This function, outlined in Table 1, returned a positive class “p” for 
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values greater than or equal to 0.1; a negative class “n” for values less than or equal to -0.1; and a 

zero class “z” for values in the middle.  This scheme was straightforward and easy on compute 

power, allowing for preprocessed datasets to be used as inputs into SVM models. 

Range of Discrete Anomaly Value Encoded Class 

x >= 0.1 p 

-0.1 < x < 0.1 z 

x <= -0.1 n 

Table 1: Encoding Scheme for turning continuous anomaly values into three discrete classes for 
use in the SVM. 

Results 

2017 Case Study 

As a precursor to the SVM training, the relative importance of variables as a predictor of 

future flash drought was examined through the use of a basic linear regression technique.  This 

analysis used data to determine the relationship of data from week 24 of 2017 to the actual flash 

drought status of the grid points 6 weeks later, at week 30.  Figure 3 shows the progression of 

the USDM drought severity from week 24 to week 30, with a flash drought developing over this 

time period across parts of eastern Montana and the western Dakotas.  The predictive analysis 

was run over the entire domain to determine the correlation between each of the 41 predictive 

variables (excludes final USDM category) at every gridpoint and the flash drought status of the 

gridpoint at week 30.  Figure 4 shows the correlation of each product for this single timestep 

forecast to the binary development/non-development of flash drought, separated by the number 

of weeks the given data point is averaged over, with the predictiveness of the initial USDM 

category used as a baseline.  It would be expected that this type of correlation would pose a 

considerable challenge to our SVM model, given that most of the dataset does not experience a 
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flash drought, but may experience a wide variety of changes to SPI, ESI, and soil moisture. 

Looking at the standard variables, there is indication that the Standardized Precipitation Index 

(SPI) is the most valuable variable to flash drought prediction.  The SPI is one of the primary 

datasets used by the authors of the USDM to produce their drought analysis, so there is 

confidence that the approach outlined above works well to determine relative importance of 

drought prediction variables.  The 2 and 4-week composite Evaporative Stress Index (ESI) and 

0-10 cm soil moisture analysis are also among the top predictors.  Beyond the 8-week composite, 

only SPI has an advantage over the predictiveness of the initial USDM category.  There is an 

overall trend that the short-term composite products are more predictive than the long-term 

composite products, which may be due to a stronger signal from current conditions developing 

during the warm season. 

This analysis was also extended to the 1-week change of each variable, in order to 

introduce an aspect of progression into the forecast.   There is a remarkable stability in the 

correlation of the 4, 8, and 12 week average soil moisture delta datasets, with all three values 

being more predictive than the initial USDM category.  This is evidence that a rapid change to 

soil moisture content is a good predictor of flash drought onset.  On the other hand, weekly 

changes of long-term SPI and ESI composites are more predictive than their short-term deltas, 

indicating that large-magnitude changes in these indices are signals to pay attention to when 

forecasting flash droughts. 

A single SVM was trained on this sample dataset as an initial indicator of the 

effectiveness of the model on a well-known flash drought event, using all 41 predictive variables 

investigated above.  Of the valid CONUS grid points available for week 24, a stratified random 
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sample of 8% of those points were used to train the model, and a separate grouping of 2% was 

used to test the model.  This approach yielded promising results on the testing set, as summarized 

in Table 2: 

Portion of Test 
Sample 

Raw # of grid points Percentage of grid 
points 

Categorical 
(FD/NFD) Accuracy 
Scores 

Overall Accuracy 9822 100.0%  96.0% 

True Positive (FD 
forecasted as FD) 

342 3.5%  
 
81.1% 
 False Positive (FD 

forecasted as 
non-FD) 

27 0.3% 

True Negative 
(Non-FD forecasted 
as non-FD) 

9097 92.6%  
 
 
96.1% 
 False Negative 

(Non-FD forecasted 
as FD) 

356 3.6% 

Table 2: A truth table for the 2017 flash drought week 30 case study SVM model’s test set. 

2012 Case Study 

A single SVM approach identical to the 2017 case study was used again to investigate 

six-week forecast accuracy for the continental U.S.’s most widespread flash drought event to 

date in the 21st century, during the summer of 2012.  During week 29 of that year, nearly 

150,000 grid points had reached flash drought criteria, about 31% of all valid CONUS land grid 

points; this progression is shown in Figure 5.  Table 3 summarizes the SVM’s results: 
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Portion of Test 
Sample 

Raw # of grid points Percentage of grid 
points 

Categorical 
(FD/NFD) Accuracy 
Scores 

Overall Accuracy 9552 100% 87.6% 

True Positive (FD 
forecasted as FD) 

2134 22.3%  
 
82.7% 
 False Positive (FD 

forecasted as 
non-FD) 

446 4.7% 

True Negative 
(Non-FD forecasted 
as non-FD) 

6232 65.2%  
 
 
89.4% 
 False Negative 

(Non-FD forecasted 
as FD) 

740 7.7% 

Table 3: A truth table for the 2012 flash drought week 29 case study SVM model’s test set. 

Accuracy scores were nearly identical between the two case studies for the grid points 

that did actually reach flash drought status, in the low-80s.  However, this widespread case 

showed a jump in the percentage of non-flash drought grid points incorrectly classified as flash 

drought grid points.  This additional uncertainty could be due to an underrepresentation of the 

full extent of flash drought conditions during this high-magnitude event, leading to grid points 

that were actually experiencing flash drought conditions by the indicators but not in the USDM 

analysis.  Nonetheless, these findings show that widespread events can also be forecast with 

reasonable skill using the SVM method. 

Independent weekly SVM 

To evaluate the effectiveness of SVM-based prediction on the broad scale, the same 

approach that was applied to the 2017 and 2012 case studies was applied for the entirety of the 
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18 year dataset spanning from the year 2000 to the year 2017.  10 percent of each weekly dataset 

was randomly pulled out in a stratified manner, such that the ratio of flash drought and no flash 

drought points remained the same between the entire weekly dataset and the training and testing 

sets.  8% of the overall set was used as training, and 2% as testing examples.  As SVMs are 

limited to training sets of fewer than 50,000 examples, these percentages enabled feasible 

training times on the order of minutes for each individual model on workstation-grade hardware. 

Overall, the average accuracy of the weekly models was 96.6%.  The total average model 

performance is summarized in Table 4: 

Averages for Each Test Sample Average Categorical (FD/NFD) Accuracy 
Scores 

Overall Accuracy 87.6% 

True Positive (FD forecasted as FD) 82.7% 

False Positive (FD forecasted as non-FD) 9.2% 

True Negative (Non-FD forecasted as 
non-FD) 

97.5% 

False Negative (Non-FD forecasted as FD) 2.5% 

Table 4: A truth table for the overall averages of the independent weekly SVM models for the 
entirety of the 2000-2017 period. 

 
These accuracy scores appear to be quite high, given that this method is using three 

classes of state variables and three classes of one-week rate of change variables to forecast a time 

rate of change in the USDM category, while treating it as a binary classification problem.  This 

data can be examined further on a weekly timescale, with Figure 6 showing the week-to-week 

accuracies for each year of data, averaged by tertiles based on the cumulative number of flash 

drought grid points that year.  Ordered by most cumulative yearly flash drought points to least 
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number of points, Tertile 1 includes the six years with the greatest cumulative spatial extent of 

flash drought: 2012, 2000, 2007, 2006, 2002, and 2003.  Tertile 2 includes the middle of the 

pack: 2001, 2011, 2016, 2017, 2005, and 2015.  Tertile 3 includes the years with the smallest 

cumulative geographic extent of flash drought: 2010, 2013, 2008, 2009, 2014, and 2004.  There 

is a small but clear trend to overall accuracy scores for the SVM in that higher-extent flash 

drought years have slightly lower scores overall, and the difference is maximized in 

mid-summer, when flash drought grid points numbers are typically highest.  

A common trend across all models trained was that the percentage of flash drought points 

misclassified was nearly always higher than the percentage of non-flash drought points 

misclassified.  This systemic rate may mean that there is some aspect of flash drought 

development that is not properly captured in the variables used in this analysis.  Nonetheless, 

there is an effectiveness uncovered in this straightforward approach to applying machine learning 

to flash drought forecasting. 

 

Conclusion 

In conclusion, this research goes to show that there is considerable effectiveness in the 

application of support vector machines to forecasting the onset of flash drought events in the 

short term.  There is potential in a future study on applying the SVM method in an ensemble 

fashion, with multiple classifiers trained on fully random data and combined into a single 

predictive model, much in the same way that numerical weather prediction ensemble models are 

used in the operational space today.  Regional and seasonal patterns could be examined as a 

potential avenue of improving specific model improvements.  Additionally, the methods 
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investigated in this paper could feasibly be turned into an operational weekly product, allowing 

for real-time flash drought forecasting guidance. 
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Figures 

 

Figure 1: Extent of data domain across the continental United States analyzed in this project. 
 

 
Figure 2: Number of valid flash drought grid points by week for the years 2000-2017.  Case 

study years highlighted; 2012: Red, 2017: Blue 
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Figure 3: U.S. Drought Monitor analysis for week 24 (left) and week 30 (right) of 2017.  Note 
the severe flash drought development across eastern Montana and the western Dakotas, and the 

less intense flash drought development over Nebraska and Iowa over this 6-week time frame. 
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Figure 4: Line charts showing the correlation of the 41 predictive variables (week 24) to the 
final USDM category six weeks later (week 30) for the 2017 case study.  Each dataset used came 

in 4 flavors: 2, 4, 8, and 12 week averages, as shown on the x-axis.  On top, the standard 
variables plotted alongside the initial USDM category as a baseline of effective prediction. 2 and 

4 week SPI and ESI at the time of forecast creation are the most predictive.  On bottom, the 
predictiveness of one-week changes between week 23 and 24 for all the variables.  Changes of 4, 

8, and 12 week column soil moisture are most predictive. 
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Figure 5: U.S. Drought Monitor analysis for week 23 (left) and week 29 (right) of 2012.  Note 
the widespread drought intensification across the central Plains and Upper Midwest.   

 

 
Figure 6: Overall average accuracy for SVMs trained and tested as weekly forecasts for each 

year of the entire dataset from 2000 to 2017.  Split and averaged into tertiles based on the 
cumulative number of flash drought grid points.  
Tertile 1: 2012, 2000, 2007, 2006, 2002, 2003.  
Tertile 2: 2001, 2011, 2016, 2017, 2005, 2015.  
Tertile 3: 2010, 2013, 2008, 2009, 2014, 2004.  
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