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Abstract 

Refining Long-Term Analysis of AVHRR Surface Temperatures  

for the Laurentian Great Lakes 

by Charles H. White  

Inland waters across the globe have been observed to be warming more quickly than 

their regional air temperatures, and at variable rates. Variable warming is partially attributable 

to individual lake geography and morphology. In very large lakes, there is also significant 

intra-lake variability both in surface temperature and its long-term trends. Thus, neither lake-

wide mean temperatures, nor a single mid-lake sampling station are fully representative of the 

entire lake surface. While long-term in situ records are essential as benchmarks for analyzing 

water temperatures, these records are relatively scarce, and are typically available only from a 

single location per lake. Satellite data can supplement in situ records by offering spatially 

resolved views of the lake surface, albeit with gaps due to cloud interference. To date, analyses 

of lake surface temperature from satellite have largely focused on long-term trends for a 

specific portion of the year, and for a single location on the lake surface. 

 In light of the heterogeneity of lake surface water temperature (LSWT) and LSWT 

trends in large lakes, we revisit the Advanced Very High Resolution Radiometer (AVHRR) 

record for the Laurentian Great Lakes using a long-term (1986-2016) and high resolution 

(0.018°) dataset to diagnose spatial and temporal variability. While satellite data has the 

significant benefit of extensive spatial coverage, there are several hindrances that we aim to 

overcome in developing our lake surface temperature time series. Specific issues include 
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accounting for diurnal variability in LSWT, georegistration errors, and gap filling under cloudy 

skies.  

After addressing these issues we give an updated perspective on the long-term mean 

trends in LSWT in this region for the ice-free season. Additionally we attempt to quantify the 

spatiotemporal variability in lake surface temperature by finding Empirical Orthogonal 

Functions (EOFs) to the time series. An upwelling identification method is also presented to 

document the duration and frequency of large upwelling events in the Laurentian Great Lakes. 

These idiosyncratic events are responsible for a large portion of the spatiotemporal variability 

in lake surface temperatures. By accounting for both long-term trends and episodic events, our 

analyses offer insight into the shifting thermal dynamics of these irreplaceable inland seas.  
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1 Introduction 

Climate change can affect lakes both directly and indirectly, and is considered one of 

the largest threats to freshwater ecosystems (Carpenter et al. 2011). Due to their sensitivity to 

climate, in some respects, lakes can serve as sentinels of climate change (Adrian et al. 2009; 

Schindler 2009). Globally, lake surface water temperatures (LSWTs) are warming at highly 

variable rates (O’Reilly et al. 2015), with high latitude lakes generally warming the fastest 

(Schneider and Hook 2010). The warming water temperatures can have profound effects on 

freshwater ecosystems such as declining oxygen concentrations (Blumberg and Di Toro 1990), 

increasing the basal metabolic rates of freshwater species (Gillooly et al. 2001; Kraemer et al. 

2017), and facilitating the spread of invasive species (Rahel and Olden 2008; Smith et al. 

2012). The physical impacts experienced by inland waters as a result of lake warming include 

changes in wind speeds over lakes (Desai et al. 2009), decreases in ice cover (Magnuson et al. 

2000; Austin and Colman 2007), and changes in stratification of the water column (Kraemer 

et al. 2015; Winslow et al. 2017). Given the previously observed physical changes, and 

ecological implications in global lakes, a long-term monitoring system is essential to 

diagnosing the directionality, magnitude, and variability of water temperature trends. While 

long term in situ records of water temperature are ideal for detecting  such changes, these 

records are not available for most of the world’s lakes and are usually lacking significantly in 

spatial coverage of any one lake.  

Long-term satellite records of infrared imagery have the ability to overcome this data 

limitation, as illustrated in several recent global-scale studies (O’Reilly et al. 2015; Schneider 

and Hook 2010; Mason et al. 2016; Woolway and Merchant 2018; Pareeth et al. 2016; Riffler 
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et al. 2015). Schneider and Hook (2010) demonstrated rapid warming in surface waters of 167 

inland water bodies, and found good agreement between satellite and in situ records from a 

few lakes. O’Reilly et al. (2015) used a mixture of in situ data and satellite time series to reveal 

heterogeneity in warming rates among lakes across the globe. O’Reilly et al. (2015) further 

concluded that these lakes often warm more quickly or slowly relative to air temperature, 

reflecting an individual lake’s combination of both climate and geomorphic factors. This 

motivates continued regional and global scale studies of inland water temperatures since few 

assumptions can be made about how surface water temperature is changing with respect to air 

temperature trends, neighboring lakes, and other geomorphic factors.  

Satellite sensors have long been used to measure sea surface temperatures (SSTs), and 

for time series analysis of inland waters, but long-term spatiotemporal analyses of variation 

within individual inland water bodies remains scarce. Quite often, such a detailed analysis is 

hampered due to the infrequency of clear-sky observations of the surface. Further 

complicating, is the larger variability associated with daytime measurements of surface 

temperature compared to nighttime measurements (Wilson et al. 2013). Additionally, the skin-

effect and mean diurnal cycle of water temperature (Woolway et al. 2016; Wilson et al. 2013) 

can complicate trend analysis if there is substantial orbital drift of the sensor platform during 

the study period. It is suggested that nighttime observations be used to find lake surface 

temperature due to the increased variability during the day (Wilson et al. 2013). Because of 

the inconsistent availability of clear-sky, nighttime observations during the summer warm 

season, it is common to use averages across July, August, September (JAS) to assess lake 

temperature trends (Schneider and Hook 2010; O’Reilly et al. 2015; Mason et al. 2016). 
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 In the northern hemisphere JAS represents the peak of the annual cycle of lake surface 

temperature, and while JAS represents a critical portion of the annual cycle, it does not tell the 

whole story of how climate change could affect lakes (Winslow et al. 2017). There has been 

large demonstrated variability in long term mean trends between individual months in JAS for 

individual lakes. This variability has been demonstrated to surpass the heterogeneity in 

warming rates between different lakes. Depending on latitude, size, bathymetry and 

atmospheric conditions, JAS could represent a different portion of the mean annual cycle of 

lake surface temperature with respect to the warming and cooling phases of different lakes in 

the same hemisphere.  

Additionally, many studies have independently identified significant intralake spatial 

heterogeneity in JAS warming trends (Woolway and Merchant 2018; Mason et al. 2016; 

Pareeth et al. 2016). This gives motivation to attempt further investigation of lake surface 

temperature heterogeneity outside of the typical JAS seasonal average at sub-seasonal temporal 

scales and relatively fine spatial scales. In very large lakes, spatial variability in warming rates 

have been suggested to arise from a number of factors. Woolway and Merchant (2018) 

investigated the relationship between intra-lake variability in long-term trends with bathymetry 

and the date at which thermal stratification occurs. They identified correspondence between 

warming rates and bathymetry with the deeper areas of the many lakes warming more quickly 

than shallower areas in large lakes in the Northern Hemisphere. Others have attributed similar 

changes in the Laurentian Great Lakes to milder winter conditions, and a combination of 

meteorological factors resulting in earlier springtime stratification particularly in the deepest 

areas (Zhong et al. 2016).  
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In the Laurentian Great Lakes region, several in situ studies have recognized the 

significance of surface temperature heterogeneity particularly due to coastal upwelling. 

Haffner et al. (1984) observed upwelling events and investigated their ability to transport 

nutrients towards the surface in Lake Ontario, which in turn led to rapid shifts in the 

composition of zooplankton communities. Coupled general circulation and ecosystem models 

have identified upwelling as a major mechanism to supply hypolimnetic nutrients and generate 

significant productivity after offshore thermal stratification (Pilcher et al. 2015). Rao and 

Murthy (2001) made measurements of upwelling in Lake Ontario documenting upwelling 

episodes that lasted approximately 4-6 days. These events occurred under the influence of 

prevailing winds, with additional evidence for the influence of internal Kelvin waves on 

upwelling. Using satellite data from the Great Lakes Surface Environmental Analysis 

(GLSEA; Schwab et al. 1999), examples of large upwelling events have been characterized for 

Lake Michigan in the 1992 to 2000 period (Plattner et al. 2006). 

The goal of this work is to leverage the length (31-years) and spatial resolution of the 

1.1 km Advanced Very High Resolution Radiometer (AVHRR) High Resolution Picture 

Transmission (HRPT) and Full Resolution Area Coverage (FRAC) record to provide a refined 

long-term analysis of surface temperatures in the Laurentian Great Lakes. This dataset will 

provide a spatially resolved daily view of the five largest lakes in the region. In this analysis, 

we will describe the climatology of LSWT in the Laurentian Great Lakes. Intralake variability 

in surface temperature will be quantified on a sub-seasonal basis with respect to the mean 

annual cycle, and interannual changes. Given the ecological significance of surface 

temperature variation, we will identify the main modes of variability in lake surface 

temperature. In particular, we will attempt to identify and document the location, size and 



 
 
 

 

5 

frequency of large upwelling events that are large contributors to spatiotemporal variation of 

surface temperature for the largest five lakes in the region. By accounting for both long-term 

trends and episodic events, our analyses offer insight into the shifting thermal dynamics of 

these irreplaceable inland seas.  
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2 Background 

There are several satellite sensors capable of measuring sea surface temperatures 

accurately at high resolution, but there are a select few with records long enough for 

climatological analysis. The longest of these for the Laurentian Great Lakes region begins with 

the AVHRR HRPT data available continuously from NOAA-9 starting in 1986. AVHRR is a 

space-borne visible and infrared imager on the NOAA Polar-orbiting Operational 

Environmental Satellite (POES) project platforms and the European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operational (MetOp) 

satellites. The native spatial resolution of the sensor is 1.1km at nadir, with a total swath width 

of 2900km. All AVHRR-carrying satellites are in sun-synchronous orbits providing at least 

twice-daily observations for nearly all locations on earth 

The HRPT data are available only for the locations around receiving stations at the 

native 1.1 km resolution of the sensor. The HRPT record for the North American Great Lakes 

is available on a continuous basis starting in 1986 with NOAA-9, and only sparsely on previous 

platforms for this region. On MetOp satellites, the FRAC data is of 1.1 km resolution, like the 

HRPT, but is available globally starting in late 2006 with the launch of MetOp-A. Altogether, 

the AVHRR record is the longest satellite record using a consistent set of imagers with similar 

channel selection and bandwidth. A continuous 1.1 km record of the Laurentian Great Lakes 

region can be assembled by combining the regionally available HRPT, with a regional cut-out 

of the globally available FRAC. 

Since the beginning of the satellite era there has been active interest in the derivation 

and validation of sea surface temperature (SST) measurements, particularly from AVHRR. In 
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the infrared regime, there exists an atmospheric window, where continuum water vapor 

absorption is very low. In the early 1970s, the use of two infrared wavelengths in the infrared 

window region to correct for the effects of water vapor absorption in this window was 

investigated (Anding and Kauth 1970; Maul and Sidran 1972; Prabhakara et al. 1974). It was 

found that SST could be accurately determined in the cloud free atmosphere using a pair of 

wavelengths that exhibited differential absorption due to the presence of water vapor.  

After some refinement for moist atmospheres (McMillin 1975), several studies 

demonstrated the accuracy of the split window approach for the AVHRR on NOAA-7 and 

NOAA-9 to be within 1 K (McClain et al. 1983, 1985; McMillin and Crosby 1984). A history 

of the development of this approach is reviewed in (McMillin and Crosby 1984). The result, is 

the multiple-channel sea surface temperature (MCSST) stated simply as  

#$%%& = 	&) + 	+(&- −	&)) [1] 

where &- and &) are the brightness temperatures measured at two wavelengths. The gamma 

parameter accounts for the differential water vapor absorption between the two channels. The 

+(&- −	&)) term acts as a water vapor correction, where gamma is assumed to be constant. To 

correct for temperature-dependent bias and to better capture the bulk SST rather than the skin, 

a regression form of the MCSST equation is used as shown in equation 2.  

#$%%& = 	01&- +	023&- − &)4 −	05 [2] 

The coefficients can be determined by a regression to in situ measurements by ships, moored 

buoys or drifting buoys (Strong and McClain 1984).  

Further investigating the accuracy of the MCSST, Walton (1988) noted a temperature 

and water vapor dependence of +, and presented a nonlinear multichannel algorithm. This 
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nonlinear algorithm was later simplified and formalized as the Nonlinear Sea Surface 

Temperature (NLSST) as in equation 3 (Walton et al. 1998) where the gamma parameter + is 

multiplied by an estimate of the surface temperature T.  

67%%&	 = &- + 	+(&)3&- − &)4 [3] 

A correction for satellite viewing angle 8 (Llewellyn-Jones et al. 1984) can be added to the 

MCSST and the NLSST to produce equations 4 and 5, for which the coefficients can be fitted 

to in situ measurements. 

#$%%& = 01&119: + 023&119: − &129:4 +	05	3&119: − &129:4(sec 8 − 1) +	0? [4] 

67%%& = @1&119: + @23&119: − &129:43%%&ABCDD4 + @5	3&119: − &129:4(sec 8 − 1) +	@? [5] 

%%&ABCDD is an initial estimate of the sea surface temperature used to adjust the gamma 

parameter in equation 3. It is suggested in Walton et al. (1998) that this initial estimate could 

come from climatology or the MCSST. Kilpatrick et al. (2001) noted that although these 

coefficients can be fit globally, it may improve accuracy to fit the equations for two different 

water vapor regimes. They also noted that accuracy improved by fitting coefficients within a 

time-dependent window. SST measurements have also been validated for lakes and coastal 

regions under a variety of conditions documenting error standard deviations of about 1 K, and 

that morning fog in the lakes contributed significantly to the measurement error (Li et al 2001).  

When measuring SST, the depth at which the measurement is made is critical 

information due to the amount of variability that can occur in shallow temperature profiles 

(Donlon et al 2002). Particularly, distinction is made between the skin temperature measured 

by infrared radiometers, and bulk temperatures often made by in situ measurements. The 

difference between these two sets of measurements is referred to as the skin-effect (Schluessel 

et al. 1990; Minnett et al. 2011), and can have significant impact on interpretation of the 
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measurement due to thermal stratification in the water column. Oceanographers are often more 

interested in bulk measurements of surface temperature, hence the regression of SST 

coefficients to in situ measurements of bulk temperature. However, the differences between 

the skin and the bulk temperatures can add uncertainty to the measurements (Donlon et al. 

2002). In the ocean, these diurnal differences are largely a function of solar insolation and are 

lessened by mixing as wind speeds increase (Webster et al. 1996; Gentemann et al. 2003; 

Minnett et al. 2011). At low wind speeds, diurnal warming can elevate daytime surface 

temperature by 5 to 7 K above nighttime observations (Gentemann et al. 2008). 

While most work on identifying diurnal variability in SSTs has been performed using 

satellite and in situ measurements over the ocean, much of what has been identified is also 

applicable to lakes. Wilson et al. (2013) noted that cloud-cover, high humidity, and wind speed 

can impact the magnitude of the lake skin-effect and that the lake skin-effect was more variable 

in daytime observations. While the oceanic skin-effect and the lake skin-effect are 

mechanistically the same, lakes undergo a wider range of atmospheric conditions that can drive 

skin-bulk differences (Wilson et al. 2013). Woolway et al. (2016) identified an association 

between lake size and summer diurnal temperature range which could amount to 7 K for small 

lakes, and less than 2 K for very large lakes. For polar orbiting satellites, it is plausible that 

orbital drift could introduce bias to long-term analyses of lake surface temperature by failing 

to control for diurnal temperature swings. This could be particularly important for calculating 

long term trends using records from multiple satellites that view lakes at different periods of 

the day. Additionally, day-to-day variability could be affected in cases where measurements 

from successive days reflect a significantly different portion of the diurnal cycle. 
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3 Datasets 
 

The Pathfinder Atmospheres-Extended (PATMOS-x) dataset (Heidinger et al. 2014) is 

a global climate data record made up of the over 36 year-long AVHRR record (1982 to 

present). In PATMOS-x, the AVHRR GAC data are subsampled to a regular global 0.1o 

latitude/longitude grid. For each day, the ascending and descending nodes are composited to 

typically provide one daytime, and one nighttime global view per sensor. For this study, a high 

resolution version of the PATMOS-x data set was produced on a regular 0.018o 

latitude/longitude grid (roughly 2 km x 1.5 km in this region) from the HRPT and FRAC 

datasets available over the North American Great Lakes region from 1986 through 2016. This 

resolution was chosen due to the decreasing pixel density at larger viewing angles. The high 

resolution dataset was produced for the region bounded by the longitudes 95oW to 73oW, and 

the latitudes 40oN to 50oN. The specific satellite platforms used in this record all experience 

significant orbital drift over their lifetime, with the exception of MetOp-1, and MetOp-2 

(Figure 1). 

 
Figure 1. AVHRR observation times of each AVHRR sensor over Lake Ontario. Each line 
represents the 100-day rolling mean in scan-line time for the specified sensor. 

 
The Great Lakes Ice Cover Database is a dataset of ice concentration over the 

Laurentian Great Lakes since 1973. These observed and interpolated data come from a blend 
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of sources. The data from 1973-2005 (Assel 2003, 2005) are provided on an approximate 2.5 

km grid. The 2006 to 2013 data are provided on a 1.275 km grid (Wang et al. 2012). For this 

study, both of these datasets were nearest-neighbor interpolated in space and time to the 0.018 

x 0.018 degree grid at a daily time step. These data are used to remove surface temperatures 

that may be contaminated with significant ice cover where LSWT measurements may have 

low confidence.  

In situ measurements of water temperature and other buoy measurements are taken 

from the In situ SST Quality Monitor (iQuam) (Xu and Ignatov 2014). The iQuam dataset 

includes observations from several types of platforms including ships, drifters, and moored 

buoys. iQuam implements additional quality control measures to ensure the accuracy of the in 

situ measurements from these platforms. This is essential for satellite to buoy matchups, since 

a few poor measurements can significantly affect the fitted SST coefficients. The in situ data 

from the iQuam dataset provides hourly measurements of water temperature measured at 60 

cm or 100 cm depth from 8 buoys in the Great Lakes that span the entire 31-year record. 

The North American Regional Reanalysis (NARR) is a high-resolution land surface 

hydrology dataset for North America (Mesinger et al. 2006). In this work, we use the daily 10-

meter wind product provided in the NARR. These winds are interpolated from the 32 km 

NARR grid to our regular 0.018 o grid.  
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4 Methodology 
 
4.1 Geolocation Corrections 

After the initial processing of the level-1b AVHRR files obtained from NOAA CLASS, 

there remains a number of adjustments to the dataset that need to be made . There are well 

documented errors in the navigation of the AVHRR sensors, creating some uncertainty in the 

georegistration of the AVHRR images. Bordes et al. (1992) assessed these errors by identifying 

coastal landmarks over Europe and documented mean errors of 3 pixels in the cross-track 

direction, and -0.8 scanlines in the along-track direction. There are two basic sources of 

navigation errors (Baldwin and Emery 1993). The first, is associated with the oblateness of the 

earth and the geometric distribution of measurements from AVHRR. The second source of 

error comes from uncertainty in the relative positioning of the satellite. Some proposed 

methods of correcting these errors involve using better defined orbital parameters and ground 

control points (GCPs). Using these methods, some have been able to improve the AVHRR 

navigation to within one-pixel accuracy (Moreno and Melia 1993; Baldwin and Emery 1993). 

These navigation errors are most problematic along regions with well-defined boundaries, like 

coastlines. However, since analysis performed here involves subsampling the native resolution 

AVHRR to a coarser grid and coastline-adjacent pixels are removed in proceeding steps, native 

resolution sub-pixel accuracy is not necessarily required. Therefore, a simple first-order 

correction involving zonal and meridional linear displacements is applied to the time series. 

The method used is nearly identical to that of Schwab et al. (1999) with a significantly relaxed 

requirement on maximum linear displacements.  
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This simple correction is carried out by first calculating the Laplacian of the cloud-

cleared channel 4 (10.3µm-11.3µm) brightness temperatures. The resulting 2-D array, 

hereafter the edge-enhanced image, reports high values along the well-defined coastlines. A 

similar calculation is performed for the land classification variable included in PATMOS-x 

which is based on the MOD44W dataset (Carroll et al 2017) to create a reference image. Where 

changes in land classification occur, the pixel value is set to one, otherwise it is set to zero. A 

dot product is taken between the edge-enhanced image and the reference image at various 

linear displacements in the zonal and meridional directions. The combination of displacements 

that maximizes the dot product between the two images is recorded, and used to offset the 

original brightness temperatures and cloud mask. This method of addressing the uncertainties 

in the AVHRR navigation performs best in clear-sky regions where coastlines are clearly 

visible. When either 95% of the land or water in a given image is classified as cloudy, no 

adjustment is made due to the likely small amount of coastlines observed.  

 

4.2 Cloud, Ice, and Land Masking 

Cloud masking is a critical procedure when calculating SST. Clouds negatively affect 

the derivation of the SST coefficients, and thus the accuracy of SST products. In this work, 

clouds are removed using a naïve Bayesian cloud detection scheme (Heidinger et al. 2012) that 

is included in the PATMOS-x dataset. The algorithm produces a pixel-level naïve Bayesian 

probability of cloudiness. For our purposes, all pixels with >5% cloud probability were 

removed. Pixels that were not classified as water bodies were removed using the land 

classification variable. Lake ice coverage exceeding 20% in the Great Lakes Ice Atlas is 
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discarded and pixels that are immediately adjacent to those exceeding 20%, and within one 

day of exceedance are also removed. This is done in an effort to mitigate issues introduced by 

interpolation to the grid used in this analysis and to give conservative estimates of the ice-free 

lake surface.  

 

4.3 Lake Surface Water Temperature Calculation 

LSWT is calculated using a nonlinear split-window equation using channels 4 

(10.3µm-11.3µm) and 5 (11.5µm-12.5µm) from the AVHRR sensor, and the sensor viewing 

angle. This is found by the NLSST (equation 5), for which, the MCSST (equation 4) is used 

as the initial guess. For this analysis, coefficients are fitted by a least-squares regression to 

moored buoy measurements in the Laurentian Great Lakes. The AVHRR measurements are 

collocated in space (nearest pixel) and time (<15 min) to buoy measurements. A separate set 

of coefficients is fit for each year of the record for each AVHRR sensor. Others have found 

increased accuracy using smaller temporal windows for fitting coefficients (Kilpatrick et al. 

2001). We fit coefficients on a yearly basis because the in situ measurements, made in off-

shore locations, do not experience the same range in temperatures as the in-shore locations in 

smaller temporal windows. 
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4.4 Diurnal Correction and Compositing 

To reduce the bias associated with the time of day a measurement was made, a diurnal 

correction is applied to the calculated LSWT. The goal of this correction is to remove the bias 

from these data associated with the mean diurnal variability. The method described in Foster 

and Heidinger (2013), is used in our analysis with some modification in the selection of the 

data used to fit the diurnal cycle. 

To empirically determine the timing and amplitude of the mean diurnal cycle, 

differences at all times of day are calculated between all LSWT values and the LSWT at some 

reference time. For all days, provided that there are two clear sky observations, and one is in 

the reference time window, the difference is recorded. The differences are centered around 

zero, and are used to fit the coefficients of the diurnal cycle function of Foster and Heidinger 

(2013). The diurnal cycle is modeled by a two-harmonic sine function. The reference was 

chosen to be the LSWT measured between 8UTC and 11UTC since there is an AVHRR 

overpass in this window each day for nearly the entire record. The diurnal cycle in this window 

is also relatively flat compared to other windows during the day. 

The observations are discarded if the surrounding 20x20 LSWT array is more than 50% 

cloudy or if the standard deviation of the 20x20 array differs from that of the reference by more 

than 1 K. This calculation is performed at all buoy locations for each month of the year even 

when the buoy was not present. This is done to ensure a variety of weather conditions were 

considered and that the measurements are not affected by near-shore variability. Other methods 

were attempted, such as only considering days where at least 6 clear-sky observations were 

obtained and subtracting out the average. These other methods resulted in diurnal cycles with 
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shapes that were largely inconsistent with buoy measurements likely due to relatively small 

amount of cases with entirely clear skies for the whole day. In contrast, the method used here 

only requires two clear-sky observations with one occurring during the reference time window 

to be included in the diurnal cycle fit.  

 

4.5 Gap Filling 

After the daily compositing, there still existed frequent gaps in the daily LSWT field. 

These gaps were typically over areas of the lakes that have experienced persistent cloudiness, 

but sometimes occur because the data were not available for that day from the NOAA CLASS 

archive. Some previous studies have aimed to estimate the surface temperatures using purely 

time-series based interpolation techniques like LOESS (Schneider and Hook 2010; Riffler et 

al. 2015), or harmonic analysis (Pareeth et al. 2016). However, there are some unique cases in 

this dataset where spatial information can improve the interpolated estimates. These cases 

involve situations where a given time series at a pixel has a significant multi-day gap, but a 

neighboring or nearby pixel does not have an identical gap. Most frequently, this occurs along 

cloud or AVHRR swath edges. 

The goal of this interpolation scheme is to give greater weight to values that, in a 

climatological context, have small differences compared to the location of the missing value. 

Taking advantage of both spatial and temporal information to make estimates of LSWTs in 

these gaps, a weighted average of surrounding neighbors in a local spatiotemporal 

neighborhood is used. First, the seasonality is removed from the time series using a smoothed 

average across all years for each Julian day. When a missing value is encountered, a search is 
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made for values in a local spatiotemporal neighborhood. Here, only values within a radius of 

13 grid cells, and 5 days are considered. The missing value is replaced by a weighted average 

of its neighbors. The average is weighted by the inverse of the climatological mean squared 

error at the corresponding spatial and temporal lag from the origin described in equation 6. 

EF,H,I =
1

J
K

1

(7%L&M − 7%L&F,H,I)2

N

O

 [6] 

In equation 6, LSWTo is the sea surface temperature at the location of the missing value. 

SSTx,y,t is the sea surface temperature at spatial lag of x grid cells in the zonal direction, y grid 

cells in the meridional direction and t days before or after LSWTo . n is the number of cases in 

the record where there are observations of both LSWTo and of LSWTx,y,t. wx,y,t, is the computed 

weight at the corresponding spatiotemporal lags. The values of w are calculated separately for 

each month of the year. x and y range from -13 to 13 grid cells, and t ranges from -5 to 5 days. 

The weights are normalized and multiplied by the neighboring deseasonalized observations the 

result of which, if determined to be reliable by metrics described later, replaces the missing 

value.  

This is attempted for each occurrence of a missing value. In cases where there is not a 

sufficient amount of neighboring observations, or if the neighboring observations are 

determined to be poor estimators, the gap remained. The remaining gaps were filled using a 

locally weighted regression (LOESS; Cleveland 1979; Cleveland et al. 1988). A locally 

weighted polynomial is fit within a moving temporal window to both smooth existing 

observations, and predict missing ones. This local regression, along with other time series 

smoothing and interpolation methods has the significant disadvantage of dampening short term 
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variability. This dampening is somewhat reduced by performing this interpolation on a moving 

window of 20 days, and deseasonalizing the LSWT time series prior to interpolation.  

In order to justify the computational expense of calculating the weights in equation 6 

explicitly for all locations and in all months, a simple cross-validation of these methods is 

performed. A one-year time series of lake surface temperature observations is taken from all 

locations on Lake Michigan. Ten observations from each time series are removed. The 

removed observations are interpolated using three methods: LOESS, a locally weighted 

average, or a combination of both where some select values are calculated using a locally 

weighted average prior to using LOESS. When the combination is used, the locally weighted 

average estimate is only inserted in the time series where there is a large number of 

observations in the local neighborhood, and the standard deviation of the available 

observations is low. These two metrics are used to inform where we can have high confidence 

in the locally weighted average because they are computationally inexpensive, and indicate 

homogeneity in the observations (i.e. where an average might be an appropriate estimate).   
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5 Results 

5.1 Geolocation Corrections 

 

Figure 2. Example of the original and adjusted georegistration of a channel 4 brightness 
temperature image over Lake Michigan. The red outline indicates the actual coastline. A 
zonal offset of -4 grid cells, and a meridional offset of -5 grid cells is made between the 
original and the corrected image.   

An example of an adjustment made to a single image can be seen in Figures 2a and 2b. 

In most cases adjustments were small, although 2.4% (3.6%) of images required a zonal 

(meridional) offset of the same magnitude or larger as shown in Figures 2a and 2b. The largest 

adjustments appear to be in the meridional direction, however the small zonal adjustments are 

more frequent (Figure 3). Given that the zonal distance of one grid cell (~1.5 km) is smaller 

than the meridional distance (~2.0 km) at this latitude, it is surprising that the meridional 

corrections are more often larger than the zonal ones when expressed as 0.018° grid cells. Table 

1 shows the mean and standard deviation of the adjustments for each AVHRR platform. The 
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largest adjustments are made to the earlier sensors (NOAA-9, NOAA-11, and NOAA-12). The 

largest mean bias also occurs in the earlier platforms, but no platforms launched after NOAA-

14 show a bias greater than a single grid cell (0.018°). 

 
Figure 3. Number of georegistration corrections applied to each of  the regridded HRPT 
images in this record expressed in units of 0.018° grid cells 

Table 1. Zonal and Meridional georegistration adjustments for each AVHRR platform. The 
mean and standard deviations are expressed in units of 0.018° grid cells. Values for ascending 
and descending nodes are expressed separately with descending nodes in parentheses. 

Platform Number of 
Adjustments 

Zonal Offsets Meridional Offsets 
Mean Std. Dev. Mean Std. Dev. 

NOAA-9 1205 (1117) -0.92 (-0.80) 1.76 (1.65) -1.51 (1.76) 2.85 (1.73) 
NOAA-11 1809 (1754) -1.23 (-0.45) 1.82 (1.49) -2.52 (1.92) 3.15 (3.04) 
NOAA-12 2355 (2694) -1.22 (-0.19) 1.72 (1.30) -2.37 (2.05) 3.47 (3.16) 
NOAA-14 2994 (2793) -1.21 (0.03) 1.58 (1.19) -0.15 (0.22) 1.05 (1.10) 
NOAA-15 7381 (7534) -0.24 (0.12) 1.46 (1.52) -0.14 (-0.14) 1.13 (1.25) 
NOAA-16 2183 (1981) -0.82 (-0.36) 1.07 (1.26) 0.06 (-0.11) 0.97 (1.10) 
NOAA-17 1862 (2868) -0.36 (-0.02) 0.91 (1.16) -0.37 (0.28) 0.80 (0.96) 
NOAA-18 4498 (4203) -0.08 (0.18) 1.08 (1.34) 0.15 (-0.18) 1.00 (1.25) 
NOAA-19 3110 (2965) 0.11 (0.19) 1.25 (1.34) -0.19 (-0.13) 1.11 (1.28) 
MetOp-A 3432 (3366) 0.18 (0.20) 1.01 (1.10) -0.71 (0.23) 1.00 (1.17) 
MetOp-B 1103 (1237) 0.27 (0.04) 1.08 (1.20) -0.92 (0.33) 1.02 (1.17) 
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Mean adjustments less than a single grid cell could be attributable to the grid 

resampling by the PATMOS-x processing and not indicative of any navigational errors. 

However, in the earlier sensors, there are differences in sign of the mean zonal and meridional 

offsets between the ascending and descending nodes of each platform. This happens because 

AVHRR approaches the region from the opposite direction for each node. For platforms where 

the magnitude of the mean offsets of the ascending and descending nodes are similar, larger 

than a single grid cell, and have opposite signs, we attribute these adjustments to a mean bias 

in AVHRR navigation and not purely a factor of the grid resampling. This is particularly clear 

for the meridional offsets in NOAA-9, NOAA-11, and NOAA-12. Similarly, to some degree, 

the standard deviations of the adjustments can be attributed to uncertainties in our methods in 

cloudy scenes. However, comparison of the standard deviations between the early sensors and 

the more recent ones (such as NOAA-18, and NOAA-19) suggest larger variability in the 

georegistration of the early sensors.  

5.2 Cloud, Ice, and Land Masking 

As noted in (Ackerman et al. 2013), there is strong seasonality to cloudiness in the 

North American Great Lakes Region that has been recognized in the PATMOS-x AVHRR 

dataset. This leads to a larger amount of clear-sky measurements during boreal summer, and a 

relative scarcity of clear-sky measurements during boreal winter. As an example, Figure 4 

shows the percentage of the lake surface obscured by clouds that are removed over the surface 

of Lake Ontario for each month averaged over all observations between 1986-2016. Together, 

cloud and ice masking result in a much higher observation density of LSWT during the spring 

and summer compared to the winter. 
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Figure 4. Percent of surface of lake Ontario obscured by clouds (blue), covered by ice (orange), 
and free of both ice and clouds (green). The values indicated by the lines represent the average 
fraction of all overpasses in each month averaged for the whole record. Values do not 
necessarily sum to 100% due to viewing angles >45° being discarded for the mean cloud-free 
and ice-free amount, that aren’t discarded when computing mean cloud or ice cover, and the 
coincidence of ice-cover and cloud-cover. 

5.3 LSWT Errors  

The results of the LSWT coefficient fitting are shown in Table 2. The root mean 

squared error (RMSE) the AVHRR LSWT and the in situ measurements is determined to be 

0.588 K across all sensors (Figure 5). Eight buoys in the Laurentian Great Lakes are used that 

span the entire 1986-2016 record are used in this analysis. Fewer AVHRR to buoy matchups 

are made between 280 K and 285 K due to relatively rapid warming and cooling that typically 

occurs during the spring and autumn. The RMSE of the LSWT equation changes slightly 

between each individual sensor. For example, earlier sensors on NOAA-12 have an RMSE as 

large as 0.706 K (Table 2). More recently launched sensors like NOAA-19 and MetOp-1 have 

a lower RMSE of 0.514 K and 0.541 K respectively. Comparing the annual mean RMSE from 

1986-2016 confirms the elevated RMSE during the period covered by the first three sensors 

(NOAA-9, NOAA-11, and NOAA-12; Figure 6).  
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Table 2. Root mean squared error between the AVHRR LSWT, and the in situ water 
temperature reported for the entire lifetime of the sensor. 

Platform LSWT RMSE Matchups 
NOAA-9 0.690 K 583 

NOAA-11 0.694 K 1,327 
NOAA-12 0.706 K 1,387 
NOAA-14 0.619 K 2,017 
NOAA-15 0.586 K 6,685 
NOAA-16 0.628 K 1,881 
NOAA-17 0.618 K 1,523 
NOAA-18 0.559 K 3,083 
NOAA-19 0.514 K 3,397 
MetOp-A 0.541 K 1,227 
MetOp-B 0.563 K 4,547 

 

 
Figure 5. Comparison of the AVHRR LSWT measurements to their corresponding in situ 
buoy matchups for all platforms combined. Colored is the point density of observations with 
cooler colors (purple) indicating the lowest point density and warmer colors (red) indicating 
the highest point density. The dashed line indicates 1 to 1 correspondence.  
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Figure 6. Yearly averaged RMSE for all sensors (black), and each individual sensor (colored) 
plotted for the lifetime of each sensor 

The time of day in which a measurement is made could also impact the calculated 

RMSE. Larger uncertainties occur in daytime measurements where wind speeds are less than 

2ms-1 compared to measurements made during the night when wind speeds are greater than 2 

m s-1 (Wilson et al 2013). Figure 7 shows the average, and standard deviation of the errors a 

various wind speeds separated by day and night. At low wind speeds, daytime measurements 

show a positive bias and nighttime measurements show a negative bias relative to the buoy 

water temperature. Additionally, low wind speeds resulted in a larger variability in the daytime 

errors relative to the night. These effects become smaller when wind speeds are larger 2 m s-1. 

18.5% of all the AVHRR observations with buoys matchups in the region occur at wind speeds 

less than 2.5 m s-1. 
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Figure 7. Differences between the AVHRR measured LSWT and the buoy water temperature. 
Filled circles indicate the mean bias, the error bars indicate the standard deviation of the errors, 
and the overlaid histogram represents the percent of observations occurring at each wind speed 
in 1 m/s bins centered on each value. Wind speeds are measured at 3-meters on the buoys.  

The NLSST and MCSST equations yielded temperatures that were quite similar (Figure 

8). The NLSST was developed to address the nonlinearity in water vapor absorption and at 

high temperatures. The summertime mean total precipitable water is 29.9 kg m-2 for the study 

region (data from North American Regional Reanalysis). It could be that typical atmospheric 

profiles in the study region are not moist enough, nor temperatures warm enough for the 

nonlinearity to greatly affect LSWT calculations here. Of the 18,680 matchups, 92.75% of the 

differences were below 0.05 K, and the maximum NLSST to MCSST difference was 0.24 K. 

The largest positive differences between the MCSST occurred at very high (>295 K), and at 

very low (<275 K) water temperatures. More commonly, the NLSST showed only a very small 

negative difference (roughly -0.02 K) at more moderate water temperatures. The differences 
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between the NLSST and MCSST were not found to vary greatly with year, viewing angle, or 

satellite platform. 

 

Figure 8. Broad agreement between SST estimates based on the NLSST and MCSST 
equations applied to AVHRR data from 1986-2016. Bin widths are 0.0025 K. Total n=18,680.  

5.4 Diurnal Correction and Compositing 

Altogether, the resulting independently calculated diurnal cycles from the buoy data 

and the AVHRR data show good agreement. The diurnal cycle amplitude in the buoys was 

expected to be dampened relative to that of skin temperatures observed by AVHRR because 

the surface is more sensitive to diurnal variability. However, the buoy measurements could 

perhaps still reproduce the shape of the average diurnal cycle and serve as a reference to ensure 

realistic results for the timing of the maximum and minimum of the fitted curve for the satellite 

observations. We characterized the buoy diurnal cycle for each month by calculating the 

departure from the daily mean for all measurements made between 1986 and 2016. The 

amplitude of the diurnal cycle changes significantly between months, reaching its maximum 

amplitude in July (Figure 9). Since the buoys are removed from the lakes during the winter 
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months, mean diurnal cycles are only shown when there were at least four years where the 

buoy was present for the entire month.  

 
Figure 9. Average diurnal cycles found in the buoy observations for the Laurentian Great 
Lakes plotted as a function of departure from the daily average temperature. The blue lines 
indicate the mean for individual years for the specified month, while the black line indicates 
the mean across all years. The range indicates the difference between the maximum and 
minimum values of the mean across all years. 
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Figure 10. Average diurnal cycles found in the AVHRR observations for April through 
November. The blue points  indicate the individual differences calculated between an 
observation at the  specified time and the observation in the reference window (8-11 UTC). 
The black line indicates the diurnal cycle function fitted to the centered differences.  The range 
indicates the difference between the maximum and minimum values of diurnal cycle function. 

The AVHRR-derived diurnal cycles of LSWT are readily discernable after 

standardizing, and centering differences to the 8-11 UTC window (Figure 10). There is some 

agreement between the AVHRR derived cycles, and the buoy derived cycles in the timing 

between the minima and maxima with a couple of exceptions. The differences between the 
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maxima and minima are generally only slightly larger for the AVHRR diurnal cycles. 

Noteworthy exceptions occur for June and July which are 0.45 K and 0.38 K larger. There 

were not enough differences to fit diurnal cycles for the more cloudy months, so the 

observations for November and December were combined. The same was done for January 

and February. This could increase the error in our process, but the minimal diurnal variability 

in the colder months makes large errors unlikely. Nonetheless, this should be noted when 

calculating trends for wintertime LSWT.  

 

Figure 11. Mean differences between AVHRR SST and buoy water temperature in June, July 
and August. Each filled circle represents the mean error for the 3 hour window centered on the 
circle. 
 

To examine the differences between the amplitude of the buoy and AVHRR diurnal 

cycles, mean summertime differences are calculated at different times of day (Figure 11) 

between the AVHRR LSWT and buoy water temperature measurements. AVHRR LSWT 

exhibits a positive bias during the day, and a negative bias during the night relative to the buoy 

measurements. When comparing the AVHRR SST and buoy diurnal cycles, the former has a 

slightly large amplitude. The mean JJA differences (Figure 11) are relatively small compared 
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to the AVHRR diurnal cycle amplitude because they are occurring on-top of the observed buoy 

diurnal variability.  

The fitted diurnal cycle functions are then used to create daily composites as is done in 

Foster and Heidinger (2013). Individual SST measurements are used to estimate the hourly 

measurements of LSWT throughout the day according to the fitted diurnal cycles and the time 

the measurement was made. The hourly estimates are then used to compute a daily average. 

This reduces the total number of images in the time series from 63,470 ascending and 

descending node composites from all sensors to 11,323 daily images. Daily LSWT composites 

are only reported where there is at least one clear-sky and ice-free observation of the lake 

surface. The number of all-sky views, and the number of days with at least one clear-sky and 

ice-free view of the lake increases throughout the record with the number of operational 

AVHRR sensors (Figure 12).  

 
 

Figure 12. (a) Number of all-sky views of Lake Ontario, and (b) the number of calculated daily 
composites 
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5.5 Gap Filling and Cross Validation 

 
Figure 13. The calculated mean squared errors between a location (a) near the western 
shoreline of Lake Michigan, and (b) towards the middle of Lake Michigan plotted for time lags 
of -6,-3,0,3, and 6 days in July. The grey point indicates the location from which mean squared 
errors from all other locations are calculated to. 

An example of the mean squared errors used to calculate the weights in equation 6 are 

shown in Figure 13a for a location close to the western shoreline of Lake Michigan and in 

Figure 13b for a location in the middle of the lake for the month of July. As expected, 

differences typically increase as the spatial and temporal separation between two observations 

increases. However, there are many cases where distant observations have lower errors than 

nearby ones. This scenario commonly arises along shorelines, where points just offshore have 

much lower errors than those adjacent to the shoreline.  

During the month of February, deseasonalized LSWT is much more homogenous than 

during the warmer months, resulting in spatiotemporal variation being relatively low. Despite 
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there being a greater reliance on interpolation to fill missing values in the colder months, a 

given observation is likely to have only a small difference to its neighbors in across space and 

time. (Figure 14).  

 
Figure 14. Same as Figure 13, but for the month of February for a mid-lake point. For some 
locations, values are not computed due to an infrequency of clear-sky and ice-free observations 
of the lake during the winter.  

Since clouds often result in multi-day gaps spanning a large portion of the lake surface, 

a weighted average of local anomalies is not always optimal. Here, we have performed a simple 

cross validation to illustrate how a combination of local averaging and LOESS can give 

improved estimates of LSWT under cloudy conditions (Table 3). The reported errors show that 

using LOESS alone (RMSE = 1.26K) is suboptimal compared to selectively inserting locally 

weighted averages prior to using LOESS (RMSE = 1.10 K). All of these methods demonstrate 

low bias (≤0.1K), and a moderate correlation between the estimated and observed residuals 

(⍴≥0.67). The local averages perform relatively poorly where there are very few observations 
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in a local neighborhood, and where heterogeneity is large in the neighboring observations. No 

metric is used to assess the confidence of individual LSWT measurements, so the local 

averages can tend to propagate erroneous values when they are present. Thus, the aim is use 

local averages where there is small chance they will propagate erroneous values, and improve 

the resulting LOESS fit by only inserting local averages into the time series where there the 

local neighborhood is spatially and temporally homogenous.  

Table 3. Results from the cross-validation. Root mean squared error (RMSE), mean bias, and 
Pearson correlation coefficient (⍴) are calculated between the three different methods used: a 
locally weighted average (LWA), LOESS, and a combination of selective LWA and LOESS. 
n=33,593. 

Gap Filling Method RMSE Bias Correlation 
Coefficient (⍴) 

LWA 1.57 K 0.10 K 0.67 
LOESS 1.26 K 0.04 K 0.75 

LOESS + Selective LWA 1.10 K 0.05 K 0.86 
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6 Analysis of the Record 

6.1 Mean Intra-annual Variation  

 
Figure 15. Climatology of the mean lake temperature, and the range of temperatures in each 
of the five lakes. The thick line represents the 31-year climatology of lake-wide mean 
temperature. The top and bottom of the shaded areas represent the climatology of the  95th and 
5th percentile of the lake-surface temperature distribution across each lake. Julian days between 
0 and 50 are not shown due to frequent ice cover.  

A climatology of lake surface temperature is created by calculating the lake-wide mean 

temperature for each Julian day for the entire 31-year record. The five lakes demonstrate a very 

wide range of temperatures across space for the average year (Figure 15). The shallowest lake, 

Lake Erie, warms much faster, reaches a higher maximum temperature, and cools more quickly 

than the other 4 lakes. In contrast, Lake Superior, the largest lake in this study, warms and 

cools more slowly, and reaches a much lower maximum temperature and cools more slowly 
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compared to the other lakes. Additionally, Lake Superior reaches its maximum lake-wide mean 

temperature much later in the year compared to the other four lakes. 

 

Figure 16. Climatological mean rate of change of like-wide mean surface temperature (1986-
2016). The rate of change is calculated by a 30-day moving linear regression. 

The rate of change of the mean lake surface temperature is calculated by a moving 30-

day linear regression (Figure 16). The largest lakes with the deepest bathymetry, reach peak 

mean intra-annual warming much later in the year, than Lake Erie (the smallest and 

shallowest). On average, all lakes begin warming between February and March, begin cooling 

between mid-August and mid-September, and reach peak mean intra-annual cooling in 

October 

To further investigate the differences in the mean intra-annual variation of the lake 

surface temperature, the intra-annual rate of change of lake surface temperature is separated 

for the shallowest and deepest 10% of each lake (Figure 17). There are pronounced differences 

between the two areas of these lakes. The deepest areas reach slightly larger peak warming 

rates that occur later in the year compared to the shallower areas. This occurs despite the 

shallowest areas reaching higher temperatures earlier in the year compared to the deeper areas.  
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Figure 17. Climatological (1986-2016) mean intra-annual rate of change of the shallowest 
10% (dashed line), and the deepest 10% (solid line) of each lake. The rates of change are 
calculated by a 30-day moving linear regression. 

The annual cycle of lake surface temperature is also accompanied by a seasonal 

variation in surface temperature heterogeneity (Figure 18). The timing of the maximum within-

lake thermal heterogeneity varies significantly between lakes. The deepest lakes, reach peak 

heterogeneity later in the year than the shallowest lakes. The seasonal cycles of heterogeneity 

in Lake Ontario, and Lake Erie are bimodal and reach a second, smaller local maximum in late  

autumn. A similar analysis was performed using the range (maximum-minimum) of surface 

temperature and the same pattern as the one shown in Figure 18 was found for all lakes.  

The climatology of lake surface temperature also indicates a strong seasonality to the 

magnitude of interannual variability of mean lake surface temperature (Figure 19). The lake-

wide mean temperature is variable between years and the maximum interannual variation 

typically occurs in spring and early summer. This maximum in interannual variation matches 

very closely in date to the maximum in mean lake heterogeneity for all lakes except Erie. All 

lakes show relatively low interannual variability during the fall, winter and early spring.  
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Figure 18. Climatological standard deviation of temperature across the lake surface for a given 
day of the year. 

 
Figure 19. Interannual variation of mean lake temperature. The values of indicated by each 
line indicate the standard deviation of 31 mean lake temperatures (1 per year) for each day of 
the year for five lakes. 
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Figure 20. Bathymetric and thermal properties of the Laurentian Great Lakes. (a) 
Bathymetry, with increasing positive values indicating deeper locations (b) Mean Julian day 
of crossing the 4℃ threshold (c) Mean Julian day of reaching 31-year mean maximum 
temperature.  

A summary of the bathymetric and mean intra-annual thermal properties of the five 

largest lakes in this region is shown in Figure 20. We take the date of crossing 4 degree celsius 

threshold as a proxy for the timing of stratification as is done previously (Woolway and 

Merchant 2018). The date at which stratification occurs (Figure 20b) varies with the depth of 

the lake in almost all cases. This is relationship is most apparent in Lake Huron. The 

relationship to bathymetry is still present in the date of reaching maximum temperature (Figure 

20c), but is less apparent compared to the date of stratification. Lake Superior has marked 

differences from the other lakes in a number of ways. Lake Superior exhibits a larger range of 

dates of maximum temperature, which could be a function of its wider range in bathymetry. 

Lake Superior also reaches stratification much later than the other four, the dates of maximum 

temperature are typically later, and temperatures much cooler than the other lakes which could 

be attributed to its slightly higher latitude, and greater mean depth. Larger maximum 
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temperatures are typically reached in the southernmost areas of these lakes, and the shallower 

bay areas such as Green Bay, Saginaw Bay, and western Lake Erie.  

6.2 Long-Term Trends 

Trends in July-August-September (JAS) mean surface temperatures are found by calculating 

linear regression slopes on the yearly mean temperature for these months (as done in Schneider 

and Hook 2011; O’Reilly et al. 2015; Mason et al. 2016). Lake Superior shows the largest 

warming rates of roughly 0.8 degrees per decade in the deeper areas of the lake (Figure 21). 

Large heterogeneity in warming rates is shown both within each lake individually and between 

lakes.  

 
Figure 21. 31-year (1986-2016) linear regression slopes for mean July-August-September 
(JAS) surface temperatures plotted in degrees Celsius per decade. 

These warming rates can be calculated separately on a monthly basis to further examine 

this apparent heterogeneity. There are large differences in trends depending on the portion of 

the year examined (Figure 22). The variation of trends across months in many cases is 

comparable to, or larger, than the spatial variation of trends within months. While July, August 

and September do indicate warming that is apparent in Figure 21 there is large variability in 
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these warming rates between the three months ranging from 0.8 degrees Celsius per decade to 

no trend at all. For Lake Michigan a JAS average does not capture the warming that is occurring 

in the deeper areas of the lakes in June and fails to capture the largest warming signal observed 

in October.  

 
Figure 22. Trends in monthly mean temperature for Lake Michigan. Trends are only shown 
for months and locations where more than 28 years are ice-free. 

This pattern observed in lake Michigan, with the largest warming occurring in the early 

autumn, also applies to the other large lakes in this region (Figure 23). Across all lakes, 

September and October are the fastest warming months, and far exceed the trends in late spring 

and early summer.  
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Figure 23. Surface temperature trends (1986-2016) across all Laurentian Great Lakes for each 
month of the year. The orange line indicates the median trend, box edges indicate the 25th and 
75th percentile, and the whiskers indicate the last values within one interquartile range of the 
25th and 75th percentiles. 

 
Figure 24. Same as Figure 23, but each box is shown for individual lakes. 

The 31-year trends are further separated out for the five largest lakes in the domain to 

prevent overrepresentation of larger lakes (Figure 24) . In many of the months, there are inter-

lake differences between in warming trends. Most notably is Lake Superior in July and August, 



 
 
 

 

42 

where the 25th percentile of trends is higher than the 75th percentile in the other four lakes. 

However, the general pattern of largest warming in October, and November still holds for all 

lakes individually. 

Pearson correlation coefficients between the warming rates at every location on each 

of the lakes to the climatological mean monthly temperature, and the bathymetry are 

calculated. There is a general negative association between warming and mean temperature 

(Figure 25a). This illustrates that, with some exceptions, much of the warming is occurring in 

areas of the lakes that have lower mean temperatures. A related pattern is found when 

comparing to the bathymetry of these lakes, with the deeper areas warming more quickly than 

the shallower areas (Figure 25b).  

 
Figure 25. Pearson correlation coefficient between the monthly 1986-2016 trends, and the (a) 
climatological mean monthly temperature and (b) bathymetry. 

It has been previously suggested that spatial variability in warming rates during the 

JAS period could be attributable to earlier spring stratification, particularly in deeper areas of 

these lakes. Here, we find long-term trends in our stratification proxy. Linear regression slopes 

are computed in stratification date at all locations across all five lakes. In all locations, but for 

a few exceptions in the shallowest areas (<50 meter depth), the lake surface is becoming 
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stratified earlier in the year. The largest trends are occurring the in deepest areas of the lakes, 

with some variability between lakes. (Figure 26).  

 

Figure 26. Trends in stratification date as a function of lake depth. Values indicated by the 
black and colored lines represent means calculated in 7.14 meter intervals. A negative trend 
implies stratification is occurring earlier in the year with respect to the mean date. 

6.3 Spatiotemporal Variability 

To further investigate the spatiotemporal variability in the Laurentian Great Lakes, 

Empirical Orthogonal Functions (EOFs) are found. The lake surface temperature time series is 

first deseasonalized by subtracting out the 31 year climatology. The climatology is found in 

the same way as the values plotted in Figure 15, except it is performed separately for every 

grid cell in the domain. A linear trend in the 31 year time series is then removed, and the EOFs 

are found to the time series using only days where an individual lake is completely ice-free.  
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Figure 27. The first four empirical orthogonal functions (EOFs) calculated for the 
deseasonalized and detrended surface temperature time series. The EOFs are plotted as a 
function of correlation coefficient between their corresponding principle component, and the 
surface temperature time series at each grid point. Each EOF is calculated independently for 
each lake. 

The EOFs reveal the statistical modes that explain the largest amount of variance in the 

deseasonalized and detrended time series. The first four modes are found separately for each 

lake (Figure 27). A large majority of the variance in these time series are explained by the lakes 

being uniformly warmer or cooler compared to climatology across the entire lake surface 

(Table 4). This pattern is true for the first EOF mode across all lakes in this domain. All other 

modes explain less than 6% of the variance.  

Table 4. Percent of variance in the surface temperature time series that is explained by each 
of the EOF modes shown with the associated errors in the eigenvalues expressed as a percent. 

Mode Michigan Erie Ontario Huron Superior 
EOF 1 78.81 ±	0.013 % 85.05 ±	0.013 % 77.25 ±	0.011 % 78.15 ±	0.014 % 78.97 ±	0.017 % 
EOF 2 4.03 ± 0.001 % 3.53 ± 0.001 % 5.85 ± 0.001 % 3.80 ± 0.001 % 5.82 ± 0.001 % 
EOF 3 3.72 ± 0.001 % 1.37 ± <0.001 % 3.01	± <0.001 % 3.13 ± 0.001 % 3.07  ± 0.001 % 
EOF 4 2.67  ± <0.001 % 1.21 ± <0.001 % 2.26  ± <0.001 % 1.74  ± <0.001 % 1.27  ± <0.001 % 
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The other modes appear to share some commons attributes. The second mode for Lake 

Huron and the fourth mode for Lake Michigan show a strong correlation to bathymetry. Other 

modes show moderate correlation in areas of frequent coastal upwelling, like the second mode 

of Lake Michigan and the third mode of Lake Ontario. The approximate errors of each of the 

EOF modes are calculated by the method of North et al. (1982). These errors, shown in Table 

3, suggest that all of the first four EOFs for all of the lakes in this domain are distinct and do 

not overlap. 

 
6.4 Upwelling 
 

In order to document the frequent coastal upwelling events in the Laurentian Great 

Lakes, we have developed an upwelling identification algorithm from the daily lake surface 

temperature time series. This algorithm largely builds from the algorithm developed in Plattner 

et al. (2006). The criteria used to identify upwelling during the stratified season are described 

in Table 4. Given that all three tests in Table 5 are satisfied for a grid cell , and the lake is ice-

free, then the grid cell is flagged as having been effected by upwelling. To illustrate how these 

three tests and their corresponding thresholds behave, two time series are extracted from 

different locations in Lake Michigan for 2015 (Figure 28). The three tests described in Table 

5 are performed on both of these time series and the results are plotted for the inshore location 

in Figure 29 and an offshore location in Figure 30.  
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Table 5. The tests used to determine areas effected by large upwelling events, their physical 
reasoning for inclusion in this algorithm, and  their quantitative implementation. 

Test 
Name 

Qualitative Reasoning Quantitative Implementation Notes 

Cooling When upwelling 
begins, the temperature 
at the surface will 
decrease as cooler 
water from the bottom 
of the lake is 
transported upward 
towards the surface.  

Linear regression slopes are 
calculated for a 14-day moving 
window for each grid cell, and for 
the lake-wide mean. This test is 
passed for the proceeding 30 days 
when the regression slopes for a 
grid cell are 0.25°C/day lower than 
the lake-wide mean trend.  

A difference is taken 
between the local 
change and the lake-
wide change to 
distinguish temperature 
changes due to local 
upwelling from lake-
wide changes in 
temperature. 

Contrast When looking spatially 
across the lake surface, 
upwelling areas have 
significantly lower 
temperatures than other 
areas.  

At each grid cell, the median 
temperature from the surrounding in 
the surrounding 2°latitude/longitude 
region is calculated. This test is 
passed when the temperature of the 
grid cell is 2.5° lower than the 
calculated median.  

This test has been 
adapted from the 
classification presented 
in Plattner et al (2006). 

Coastal Upwelling events are 
often confined or 
contiguous to the 
coastline, where there is 
a vertical boundary.  

A Pearson correlation coefficient is 
computed between the temperatures 
in the surrounding 2° 
latitude/longitude region, and the 
distance from the shoreline in the 
same region. 
This test is passed when the 
correlation is <0.5. 

This test is included to 
filter out cases where 
the inner, deeper areas 
of the lakes warm more 
slowly that the 
shallower areas during 
the spring. 

 

 
Figure 28. Surface temperature image from Jun 21 2015. Shown are the two points, one 
inshore, and one offshore, that are referenced in Figure 30 and Figure 31 
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The time series analysis for the inshore point (Figure 29) indicates four distinct 

upwelling events that occur between mid-July and mid-November. These events correspond 

to local minima in the temperature time series, large negative differences compared to the 

regional median, and were preceded by abrupt cooling indicated by strong negative linear 

regression slopes compared to the lake-wide trend. The timing and duration of these inshore 

events are almost entirely specified by the Contrast test in Figure 29c where the local 

temperature is much lower than the regional median temperature. One event at a Julian day of 

260 that was flagged by the Contrast test was not classified as upwelling because it did not 

meet the requirement set by the Cooling test. 

 
Figure 29. Surface temperature time series and the upwelling tests for the inshore point 
indicated in Figure 29. The dashed grey lines indicate the thresholds defined in Table 5. The 
grey shading in (a) indicates where upwelling is occurring defined by this algorithm. The same 
shading in  (b), (c), and (d) are where the individual tests are passed. 
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There is a roughly 60 day period where the Coastal test threshold was exceeded. This 

is caused by the shoreline warming more quickly than the innermost areas of the lake. This 

pattern, of which the lake surface temperature distribution in Figure 29 is indicative, can be 

seen in the temperature time series in Figure 30a. The selected grid cell along the shoreline had 

a higher temperature compared to the lake-wide mean which was lower due to the cold inner 

lake.  

While the Cooling test (Figure 29b) and the Coastal test (Figure 29d) have clear 

physical justification, their inclusion in this algorithm is not appropriately justified by 

examining a single inshore location. For the inshore case, they provide very little information 

with the exception of preventing one relatively small event from being flagged as upwelling.   

 
Figure 30. Same as Figure 30 but for the offshore point indicated in Figure 29 
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The reason for including the Cooling and Coastal tests becomes apparent after 

examining the offshore time series. It is very uncommon for regions of upwelling to extend 

offshore into the middle of the lake. However, there are many cases throughout this record 

where false positives for coastal upwelling occur in the middle of the lake. Figure 30 shows an 

example of one of these false positives detected by the contrast test. The lake surface 

temperature image from this false positive is displayed in Figure 28. This pattern occurs when 

the surface at the shoreline warms more quickly than the surface at the inner portion of the 

lake. 

Figure 30a shows how the lake wide mean warm relatively quickly relative to the local 

temperature between the Julian days of 130 and 180. This spatial pattern causes the Contrast 

test to flag a false positive. In this particular case the Coastal test prevented the classification 

of this false positive due to the low correlation between the regional temperature and shoreline 

distance, because the cold water was located near center of the lake–which is uncharacteristic 

of coastal upwelling. The Cooling test was passed because lake-wide mean rate of change was 

much larger than the local rate of change, the former being driven by the quickly warming 

coastal areas. 
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Figure 31. The number of discrete upwelling events identified. Only locations with more than 
five events are shown. 

 
Figure 32. The average duration, in days, of the discrete events shown in Figure 32. Only 
locations that had more than five documented upwelling events, and are within 5 grid cells of 
a shoreline are shown. 

The tests described above are then applied to all time series across all five lakes on a per lake 

basis. Discrete upwelling episodes are defined here as consecutive days where a given location 

passes all the tests. The number of discrete episodes for each location is plotted in Figure 31, 

and the mean length of these episodes is plotted in Figure 32. From Figure 31, there appears to 

be several locations where upwelling is relatively frequently detected including the western 
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and eastern shorelines of Lake Michigan, northern Lake Huron, the northwestern shoreline of 

Lake Ontario, and the northwestern shoreline of Lake Superior. It also appears that the 

conditions that make upwelling more frequent in some areas also act to make them last longer.  

 
Figure 33. Mean wind direction in each shaded region when an increase in upwelling area 
occurs in a few selected regions. The wind roses indicate the direction where the wind is 
coming from. 

In an effort to determine whether or not the events that are being documented are 

actually upwelling, the daily mean 10 meter winds from days where abrupt increases in 

upwelling area occur are taken from the North American Regional Reanalysis. An abrupt 

increase in upwelling area is defined as when there is a one-percent increase in the lake 

surface area classified as upwelling per day in the regions show in Figure 33. The winds are 

generally parallel to the coastline with the water to the right of the mean wind direction.  
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7 Discussion  

In this work, we have developed a high-resolution, long-term daily surface temperature 

record for the largest lakes in the Laurentian Great Lakes region. These daily composites were 

constructed from 11 different AVHRR sensors over the entire 31-year HRPT and FRAC 

record. LSWT was calculated using coefficients fit on a yearly basis to in situ measurements 

made in this region. The are several potential explanations for differing errors among the 

sensors (Table 2). Reynolds (1993) noted a negative bias in SST errors associated with the 

eruption of Mt. Pinatubo in 1991 during the lifetime of NOAA-12. However, these effects were 

mostly confined to the tropics and the southern hemisphere. Cloud detection plays a prominent 

role in assessing the accuracy of SST/LSWT measurements. Clouds that are not screened out 

can contribute significantly to the calculated RMSE. The noise in channel-3 of AVHRR has 

been documented to be larger in earlier sensors (Dudhia 1989; Warren 1989), and could 

negatively impact cloud detection. The resulting higher frequency of missed clouds on the 

earlier sensors could decrease the accuracy of their measurements. The relatively small 

differences between the NLSST and MCSST are in good agreement with Li et al. (2001) which 

found a similar result for the Great Lakes.  

To account for the navigational errors in the HRPT data, linear adjustments were made 

to the regridded images in order to align them with a static land-classification field. Overall, 

the largest impact of these geolocation errors occurs along the coastline where brightness 

temperature gradients can be large. When these errors are left uncorrected, they can result in 

abrupt increases and decreases in sea surface temperature for land-adjacent pixels. Since the 

largest errors occur in the earlier sensor records, the largest impact of these corrections occurs 
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between 1986 and 1999. For images with extensive cloud cover where no adjustment is made, 

the impact of poorly georegistered brightness temperatures can be mitigated by discarding 

values with extremely large and abrupt departures from the climatological mean for a given 

date. 

We have attempted to remove the effects of diurnal variability on our dataset by 

empirically determining and subtracting the mean diurnal cycle. The differences between the 

maxima and minima are generally only slightly larger in the AVHRR measurements compared 

to the buoys. The differences between diurnal cycle amplitudes from the two platforms could 

be exaggerated because the AVHRR LSWT diurnal cycles are biased towards clear-sky 

observations, whereas the buoy diurnal cycles represent a wider range of conditions and are 

more representative of the bulk temperature. This correction performs best where atmospheric 

and limnological conditions don’t stray far from the mean. As illustrated in Figure 7, low wind 

speeds increase the disparity of daytime and nighttime observations. Under circumstances 

where the climatological surface wind speed changes, the diurnal correction employed in this 

record would not account for the increase or decrease in the amplitude of the mean diurnal 

cycle. The same might occur for a change in mean cloud cover. Furthermore, the diurnal 

correction we have applied ignores possible variation across space. Lake surface area, and light 

attenuation (albeit much less so than surface area) have influence over the diurnal temperature 

range of many lakes (Woolway et al. 2016). It seems plausible that smaller bay areas of these 

lakes (i.e. Green Bay, Travers Bay, Saginaw Bay,…) could have mean diurnal cycles larger 

than those calculated using offshore time series due to spatial variation of mean mixed layer 

depth. Additionally the spatial variation and long-term changes in water clarity experienced in 
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these lakes (Binding et al. 2015) could perhaps alter the vertical heating profile resulting in 

changes in mean diurnal variability at the surface. 

The examination of the mean AVHRR bias during June, July and August as a function 

of the time of day (Figure 11) justifies the marginally larger range in the AVHRR LSWT 

diurnal cycles. The small differences between them are explained by examining the error as a 

function of the time day, and suggests that diurnal variability is, as expected, larger at the 

surface. Nonetheless, it is surprising that diurnal variability can be observed in a satellite record 

in which measurements are taken irregularly and sometimes infrequently. This is made 

possible by the length of the AVHRR record and the fact that many of the sensors undergo 

significant orbital drift so that almost all hours of the day are observed. 

Gaps due to cloud cover were filled using a combination of locally weighted methods. 

The calculated weights for one inshore location and one offshore location demonstrate that 

there are distinct differences in the relationship between a given location on the lake surface, 

and its neighboring observations. These relationships vary with the reference location, and the 

zonal, meridional, and temporal separation. Therefore, weighted averages using these 

empirically determined weights should produce a better result than an unweighted average that 

ignores these subtleties. It should be noted that the RMSEs reported here may not necessarily 

be indicative of the errors when interpolating missing values. In practice, interpolation is 

needed more often in data-sparse regions and times that may not be well represented in our 

cross-validation. The cross-validation employed here neglects the fact that interpolation is 

most needed during the winter months where the lake is more homogenous. When the lake is 

more homogenous, errors from all methods will be lower. Thus, the RMSE values in Table 3 

should only be interpreted in a relative sense, to indicate that LOESS supplemented by select 
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locally weighted averages typically results in smaller errors than using LOESS, or locally 

weighted averages alone. Due to the low frequency of observations (particularly in the early 

portion of the record), care should be taken when using the gap-filled product in the winter 

months where cloud-cover is frequent. When possible, wintertime LSWT features observed in 

the gap-filled product should be verified in the original daily LSWT composites. 

Using this spatially and temporally complete dataset, we have determined the 

climatology, long-term surface temperature and stratification trends, and some aspects of 

spatiotemporal variability in surface temperatures of the Laurentian Great Lakes. The lakes 

analyzed in this work demonstrate varied mean seasonal cycles. The largest and deepest lakes, 

warm more slowly, reach their maximum temperature and reach peak warming later in the 

year, and cool more slowly. The maximum warming rates occur during the same time period 

as the maximum in lake-wide heterogeneity, and maximum interannual variability. The largest 

values in lake-wide heterogeneity seen are usually during periods of the year where the shallow 

areas  have become stratified and has warmed relatively rapidly, compared to the deepest areas 

of the lake. This can be identified by comparing the mean date of stratification (Figure 20b) 

and the climatological difference between the temperature in the shallow and deep areas of the 

lake (Figure 34). The shallow/deep difference begins to increase sharply around the date in 

which the shoreline becomes stratified. The difference typically reaches its maximum around 

the date in which the deeper portions of the lake become stratified and the difference decreases 

thereafter. Similarly, the negative difference seen in Lake Erie and Lake Ontario in late autumn 

occur when the shoreline has cooled and the inner region of the lake remains relatively warm. 

This implies that a large portion of the spatial variability of spring lake surface temperature 
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(Figure 17) could be associated with the varied bathymetry, and date of stratification in these 

lakes. 

 

Figure 34. Climatological (1986-2016) mean temperature difference between the shallowest 
10% and deepest 10% of each lake. 

The long-term trends calculated for summer (July, August and September means), indicate a 

large degree of variability in warming rates both within and between lakes. Lake Superior 

summertime surface waters are warming more quickly than the other lakes and demonstrate a 

larger amount of spatial variability in warming rates. All lakes show indications of slightly 

enhanced warming of the lake surface over the deeper areas of the lakes with colder surface 

temperatures (Figure 25).  

The values for 1986-2016 JAS warming trends shown here do not agree in magnitude 

and only moderately agree spatial distribution with those calculated in Mason et al. (2016) for 

1994-2013 and in Woolway and Merchant (2018) for 1992-2010. We calculated trends for 

1994-2013, and 1992-2010, to compare to our 1986-2016 JAS trend. Across all lakes in this 

study the 1994-2013 trends are 1.65 times larger than 1986-2016, and the 1992-2010 trends 

are 2.26 times larger than 1986-2016. The spatial distribution is also affected (Table 6). Lake 

Superior is relatively unimpacted, but the spatial distribution of the warming trends varies 
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largely for Lake Huron (only showing a correlation coefficient of 0.29 between 1986-2016 

JAS trends and 1995-2013 JAS trends), and Lake Ontario.  

Table 6. Pearson correlation coefficient of 1986-2016 trends to the trends calculated for 
1995-2013 and 1992-2010 periods using the same AVHRR HRPT dataset. 

Lake 
Correlation Coefficient to  

1986-2016 JAS trend 
JAS 1995-2013 JAS 1992-2010 

Michigan 0.58 0.51 
Erie 0.69 0.57 
Ontario 0.55 0.39 
Huron 0.29 0.42 
Superior 0.80 0.85 

 

However, when the trends are recomputed so that the time-periods analyzed are the 

same, there is very good agreement between our JAS trends and those published in the other 

two works discussed here. This indicates a large sensitivity of magnitude and spatial 

distribution of JAS warming trends to the start and end dates of the record and the length of 

the record. The fact that the trends calculated in Figure 35b and Figure 35c match those in 

Mason et al. (2016), and Woolway and Merchant (2018) very well indicates little to no impact 

of using a different observation platform (whether it’s AVHRR or ATSR) and gap-filling 

method (whether it’s the method used here or an EOF based reconstruction).  
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Figure 35. JAS mean trend calculated for three periods (a) the 1986-2016 AVHRR dataset 
used in this work (b) the 1994-2013 window used in Mason et al. 2016 and (c) the 1992-2010  
window used in Woolway et al. 2018. 

As presented in Austin and Colman (2007), the distribution of warming rates in Lake 

Superior appear to be strongly correlated with the bathymetry of the lake. It was further 

identified in Woolway and Merchant (2018) that surface temperature anomalies persist longer 
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in the deeper areas of large lakes perhaps contributing to the larger summertime trends seen 

away from the shoreline in Lake Superior. We have illustrated moderate variability in the 

correlation of late spring and summertime warming trends and bathymetry between different 

months of the year. Due to the differing dates of stratification between lakes, the enhanced 

warming associated with earlier stratification occurs in different months for each lake. For 

example, there is enhanced warming in the deepest area of lake Michigan in June (Figure 22) 

relative to shallower areas in June, and the deepest areas in neighboring months. The 

connection being that the period of maximum intra-annual warming for the deepest areas of 

Lake Michigan also occurs in mid-to-late June. This same logic follows for Lake Superior. The 

July warming rates for Superior are largest in the deepest areas (Figure 25 and Figure A.3) and 

larger than neighboring months . The mean intra-annual warming rates are maximized in mid-

to-late July for Lake Superior, and when stratification occurs earlier in the year, the greatest 

interannual warming are seen in July. To emphasize this point, we expand upon a portion of 

the analysis in Woolway and Merchant (2018). When comparing the monthly trends between 

the shallowest 10% and the deepest 10% of for each lake, a similar pattern is observed. For 

Lake Michigan and Lake Huron, the largest difference in trends during the warming phase of 

these lakes occurs in June, where the mean intra-annual maximum in warming rate occurs 

(Figure 16). In August, the differences in trends are small when the maximum temperature is 

reached (Figure 15), but the overall trend is still positive (Figure 23). The largest difference 

between the deep and shallow areas of Lake Superior occur in July, again, during the period of 

maximum intra-annual warming (Figure 16).  
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Figure 36. Monthly mean trends (1986-2016) in lake surface temperature shown for each lake 
for the shallowest 10% and the deepest 10% of the five lakes. 

It can be identified in Figure 16 and Figure 17, that the July-September window 

represents a conceptually different portion of the mean seasonal cycle with respect to intra-

annual rates of change for the different lakes in this region. This is particularly the case when 

comparing the timing of the warming phases of the deepest areas in Lake Michigan and Huron 

to Lake Superior (Figure 17). A JAS mean would not account for the largely bathymetrically-

associated interannual warming occurring in June for Lake Michigan and Lake Huron. Thus, 

comparing interannual JAS warming rates from Michigan and Huron to Lake Superior, a lake 

in which the effects of earlier spring stratification are potentially observed in the JAS window, 

could be misleading in some respects.  

The distribution of monthly warming rates shows much more rapid warming trends in 

specifically September, October and November. This is in agreement with the conclusions of 

Winslow et al. (2017), which show a similar pattern for much smaller lakes in the same region 

from 1981 to 2015, but receives relatively little attention in other literature compared to JAS. 
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In Huron, Superior, and Lake Michigan, there is a second local maximum in correlation 

between monthly warming rates and bathymetry occurring in October. This is confirmed by 

examining the difference in October trends between the deep and shallow areas of Superior 

and Huron. This pattern is relatively muted for Lake Michigan. 

The large warming rates that occur during the late summer and early autumn could 

arise from one of the same mechanisms resulting in enhanced warming in the late spring and 

early summer. Thermal anomalies tend to persist longer in the deeper areas of the lakes. The 

period of most rapid cooling is between late September and early October for all five lakes. 

Given the warming that occurs in the earlier portion of the year we might expect the positive 

thermal anomalies (with respect to climatology) to persist longer into this mean intra-annual 

cooling period in the deepest areas. The autumn months also demonstrate lower interannual 

variability (Figure 18)  which could contribute to the differences in long-term trends between 

JAS and SON given the observed sensitivity to the length, start-year, and end-year of the record 

(Figure 36). Nonetheless, it is intriguing that the largest trends in lake surface temperatures are 

observed in the portion of the year with relatively low interannual variability compared to JAS. 
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Figure 37. July-September (JAS) and September-November (SON) mean trends in lake 
surface temperature across the entire Laurentian Great Lakes region calculated for (a) varying 
start years, (b) varying end years, and (c) a rolling 20-year time series shown at the start year. 

To further investigate this sensitivity to the time period examined we calculate both 

JAS and SON trends for varying start years, end years, and 20-year window for the entire 

region. Results show a wide range of calculated trends in all of the cases examined. Particularly 

striking is the JAS trend for 1995-2014, and the JAS trend for 1994-2013, in which starting a 

time series 1-year earlier results in a 4.5 times increase in the calculated trend (0.853 °C per 

decade from 0.19 °C per decade). Despite the low interannual variability in lake-wide mean 

autumn surface temperatures, the SON trends show similar amounts of variability to changing 

the time window, start year, and end year. However, it is promising the SON trend is  less 

variable when using a longer time series in Figures 37a and 37b. 
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There are some potential confounding factors in our analysis of long-term trends. The 

typical temporal separation between clear-sky observations of the HRPT record decreases with 

the number of operational sensors. This could perhaps result in better capturing nearshore 

variability later on in the record. At this relatively fine resolution it is plausible that better 

resolved coastal upwelling events could introduce a negative bias to the trends. This could also 

affect the spatial patterns seen in warming trends. If small upwelling events are observed more 

frequently in the latter portion of the record, this could lower the warming trends near the 

shoreline. However, given the mean duration and frequency of detected events throughout the 

record, this is unlikely to have a large impact. Most shorelines indicate less than 1 upwelling 

event per year, and a mean duration of less than 8 days. The largest exception to this is the 

western shoreline of Lake Michigan where a large number of upwelling events were detected 

with a mean duration exceeding 10 days.  

Table 7. Details of the five datasets from which long term trends are found in Figure 38 

Scenario Diurnal 
Correction (DC) 

Gap Filling 
(GF) 

Observations Included 
Day Night 

GF-DC-all X X X X 
DC-all X  X X 
No DC-all   X X 
No DC-day   X  
No DC-night    X 

 In an attempt to address these potentially confounding factors related to diurnal 

variability and interpolation, we have calculated long-term trends in Lake Michigan under five 

scenarios. The five scenarios are described in Table 7. The distribution of warming rates across 

Lake Michigan on a monthly basis are plotted for each of the scenarios in Figure 38. The 

general monthly pattern of more rapid warming in the September-November portion of the 

year still holds across all scenarios, albeit there is small disagreement in magnitude. The largest  
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Figure 38. Long-term trends for Lake Michigan using the five different methods detailed in 
Table 4. Box edges indicate quartiles, the middle line indicates the median, and the whiskers 
indicate the last values within one interquartile range of the 25th and 75th percentiles. 

differences in trends occurs between the use of exclusively daytime and exclusively nighttime 

imagery. These differences are largest during the summer months and could be a factor of the 

number of operational AVHRR sensors available in the latter portion of the record that are, as 

a result, better capturing the peak of the diurnal cycle. Another reason for these differences 

could be the uneven sampling of the temperatures within months due to the amount 

observations being effectively halved. The distribution of trends across space appears to be 

slightly narrower for the gap-filled, diurnally corrected product. This is to be expected since 

the weighted averages and LOESS will tend to smooth outliers and noise from the time series, 

and also dampen real observed variability. Overall, there appears to be only small differences 

between the gap-filled, diurnally-corrected scenario and the scenario with no gap-filling or 

diurnal correction using the same set of observations. This is unsurprising given our favorable 

comparison to long-term trends computed in other studies (Mason et al. 2016; Woolway and 

Merchant 2018).  
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Spatiotemporal variation was diagnosed by finding EOFs in the deseasonalized and 

detrended time series. These results show that most of the variation across space is uniform as 

indicated by the first mode. The implication is that if one region of a lake is warmer or colder 

than the climatological average, it is more likely than not that the rest of the lake shows a 

similar pattern. In other words, when the EOF1 index is high, this does not indicate that the 

entire lake surface is the same temperature, rather, it indicates the lake surface shows somewhat 

similar departures from climatology. The second mode in Lake Huron and the first mode in 

Lake Michigan show interesting patterns that appear to be related to the bathymetry of these 

lakes. This could be representative of the relative response times of the surface temperature 

anomalies to the forcing acting on them. Woolway and Merchant (2018), as previously 

mentioned, identified that anomalies tend to persist longer in the deeper areas of the lake. These 

EOF modes could be a manifestation of this during periods of abrupt warming or cooling, 

where the deeper areas of the lake tend to respond more slowly than the shallower regions. 

Other modes, such as EOF2 in Lake Michigan show strong indication that they are 

related to coastal upwelling. Examination of the surface temperature anomalies for large 

positive and large negative values of the EOF 2 index for lake Michigan (not shown) reveals 

cold anomalies confined to coastal areas on the western and eastern shorelines respectively. 

This suggests that upwelling could play a large role in enhancing spatiotemporal variation in 

Lake Michigan. 

Motivated by these findings, we developed an upwelling identification scheme adapted 

from Plattner et al. (2006). Here, we have added a spatial dependence on the region selected 

for the local temperature distribution used in the Contrast test, rather than predefining the 

regions as is done in Plattner et al. (2006). We have also added the Cooling and Coastal criteria 
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for two reasons: first, so we can decrease the threshold for the contrast test— aiming to make 

this algorithm more sensitive to upwelling, and second, to filter out false positives that are 

common during the spring onset of stratification along the shoreline.  

These criteria suggest that there are several locations on these lakes that experience a 

high frequency of the large, long-lasting upwelling episodes that are identifiable from satellite 

imagery. It should be noted that this algorithm does not directly identify the presence of upward 

vertical motion in the water column. Instead, this algorithm aims to identify regions where 

upwelling has resulted in abrupt cooling of surface temperatures along the coastline. The 

distinction between the two being that relatively cold surface temperatures can remain after the 

upward vertical motion has ceased. It is likely that many upwelling events go undetected by 

this algorithm for a number of reasons. Most upwelling events have very small spatial extent 

lasting around 1-2 days (Troy et al. 2012). Overall, this algorithm will only identify 

extraordinarily large upwelling events resulting in large abrupt surface temperature 

depressions along the shoreline. 

While this method leaves many events undetected, we can be fairly confident that those 

that are identified are indeed areas where upwelling as occurred, and are forced by the surface 

wind stress. A cursory analysis of the daily mean wind where increases in upwelling occur, 

agree with the standard argument of mean Ekman transport to the right of the mean wind stress 

in large northern hemisphere mid-latitude water bodies. The most convincing portion of this 

analysis occurs in Lake Michigan. There, the daily mean winds during increases upwelling are 

almost exclusively parallel to the shoreline with the water to the right of the mean wind 

direction. These results are in good agreement with a similar, more thorough validation 

performed for Lake Michigan in Plattner et al. (2006). 
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We caution against any trend analysis in upwelling, duration, or spatial extent using 

this dataset. The issue of changing temporal resolution results in a spurious large positive trend 

in upwelling frequency, and duration. Due to the heavy reliance on interpolation during the 

earlier portion of this record, it is probable that some upwelling events went unobserved or 

were smoothed over by the LOESS fit. Therefore this dataset is unlikely to give reliable results 

on a trend analysis related to the identified upwelling events. Here, we have relied on analysis 

that examines spatial variability of upwelling frequency and duration that will be less affected 

by this issue. 
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8 Conclusions  

A long-term (31 years), fine-resolution (0.018°) dataset of daily lake surface water 

temperature (LSWT) was developed from the Advanced Very High Resolution Radiometer 

(AVHRR) record for the Laurentian Great Lakes region. In this work, we have made three 

significant adjustments to the AVHRR LSWT record. Errors in the AVHRR navigation have 

been identified to be particularly large in the earliest sensors, amounting to a mean bias of over 

two 0.018° grid cells in the meridional direction in some cases. The removal of these navigation 

errors results in more accurate LSWT measurements near shorelines. A mean diurnal cycle 

was found, and subtracted from the LSWT time series to mitigate bias associated with 

including measurements made at different times of day. Missing LSWT values were filled 

using a combination of locally weighted interpolation schemes. We have additionally 

characterized the LSWT observations to have a root mean squared error of 0.588 K compared 

to buoy measurements. Both the original daily LSWT composites and the gap-filled product 

will be made available to support fine-scale physical and environmental research in this region. 

These data can be found through the University of Wisconsin-Madison’s Space Science and 

Engineering Center at ftp://ftp.ssec.wisc.edu/pub/cwhite/. 

Analysis of the record demonstrates a large amount of variability in warming rates both 

within and between lakes in this region. When long-term trends are examined on a monthly 

basis, the largest warming rates are observed to occur in September, October and November, 

across all five lakes. This has been identified previously in Winslow et al (2017), but shown 

across space for the largest lakes in this region as is done here. Our results suggest that a 

comparison of JAS mean trends between different lakes may be somewhat misleading, because 
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they may represent conceptually different stages of the mean intra-annual variability of surface 

temperature. Furthermore, the JAS time window does not capture the largest warming trends 

that are observed in other months. and in some instances there is moderate correlation between 

the temperature trends and bathymetry, or climatological mean monthly temperature. In all but 

the shallowest areas of some lakes, we have observed earlier spring stratification. However, a 

trend sensitivity analysis indicates a large degree of variability in long term trends of surface 

water temperature.  

We have additionally examined spatiotemporal variability in the Laurentian Great 

Lakes, and found that a large amount of variance in the surface temperature dataset is 

manifested as spatially uniform departures from climatology. The modes that explain smaller 

amounts of variability appear to be related to bathymetry, and coastal upwelling. Finally, we 

have adapted a coastal upwelling identification algorithm, and applied it to the five largest 

lakes. Here, we have documented the frequency and duration of exceptionally large upwelling 

events in the Laurentian Great lakes from 1986 to 2016. 
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10 Appendix 

 
Figure A.2. Trends in monthly mean temperature for Lake Erie. Trends are only shown for 
months and locations where more than 28 years are ice-free. 

 
Figure A.2. Trends in monthly mean temperature for Lake Huron. Trends are only shown for 
months and locations where more than 28 years are ice-free. 
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Figure A.3. Trends in monthly mean temperature for Lake Superior. Trends are only shown 
for months and locations where more than 28 years are ice-free. 

 
Figure A.4 Trends in monthly mean temperature for Lake Ontario. Trends are only shown 
for months and locations where more than 28 years are ice-free. 

 



   
 

 


