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Abstract 

 
The recent dramatic loss of Arctic sea ice has fostered a growing interest in the 
commercial usage of the region. September, the peak of the Arctic marine navigation 
season, has lost over 60% of its sea ice volume, which has fostered an opportunity for 
an increase of marine usage. With September sea ice extents predicted to disappear 
by mid-century, several studies have indicated that polar shipping routes will be 
more beneficial than traditional Panama and Suez Canal routes. A key gap from 
previous work on sea ice projections has been a thorough investigation of sea ice 
interannual variability and its impact on marine usage of the Arctic. Here, we used 40 
realizations of a fully-coupled global climate model to investigate trends in sea ice 
variability. We determined that there is an increase in future variability of multiple 
sea ice metrics that occurs simultaneously with an increasing rate of ice loss. The Ice 
Numeral (IN), a metric designed to assess marine navigability, similarly showed an 
increase in future interannual variability. While the trend of IN clearly indicates a 
progression to open shipping lanes, there will also be some compensation from 
reduced reliability due to increased interannual variability of IN in the future. 
Additionally, it was found that interannual variability took a unique shape for each 
metric, and that the timing of peak IN variability differs by season. Finally, IN for a 
vessel with no ice-strengthening was found to align closely with sea ice concentration, 
while IN for an ice-strengthened vessel aligned more closely with sea ice thickness. 
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1. Introduction 

Recent anthropogenic warming of the Earth’s climate has had striking impacts on 

the polar regions. The Arctic has shown to be a particularly sensitive area, warming 

at a pace double that of the global average; which has often been termed as “Arctic 

amplification” (Overland et al., 2017). This has resulted in a significant perturbation 

to the natural state of the Arctic sea ice cover, namely, the rapid loss of sea ice. In 

addition to implications for the physical state of the Arctic, the changes are 

increasingly more relevant for human activities. It is not obvious how these changes 

will affect sea ice variability, although previous work has found increased variability 

associated with specific sea ice extents, this study will delve further into the 

question (Goosse et al., 2009). Particularly, the effect that variability changes on 

interannual timescales might have on marine shipping, which has a growing 

potential for expansion into the region, will be analyzed. 

 

Arctic Amplification 

The increase to the atmospheric carbon reservoir has driven a warming with a 

variety of feedbacks and responses, one of which being that the Arctic warms at a 

pace greater than the global average; this is referred to as Arctic amplification. 

Notably, the ice-albedo feedback is one of the most important feedbacks driving this 

amplification (Cao et al., 2015; Pithan & Mauritsen, 2014). This process stems 

primarily from the loss of Arctic sea ice, due to a warmer atmosphere and ocean. In 
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turn, the loss of highly reflective sea ice increases the area of dark ocean. As shown 

by Perovich (2002), the albedo of sea ice can range from 0.6 (bare ice) to 0.9 (dry 

snow cover). Contrasting this, the open ocean can have an albedo as low as 0.03 (Jin, 

2004). The increased absorption of incoming solar radiation as sea ice melts 

enhances the warming from the planet’s initial greenhouse forcing. Regionally, this 

is one of the most important factors driving Arctic amplification. However, several 

other important factors contribute to the amplification such as the lapse rate and 

Planck feedbacks, as shown by Pithan and Mauritsen (2014). 

 

Ice Loss in Recent Decades 

Sea ice loss has manifested both in extent and volume. The loss rate has changed 

throughout the past few decades, as well as displaying differing trends across 

months and seasons. The months of March and September typically represent the 

annual extremes for sea ice coverage and will be frequently referred to in this paper 

for that reason. Between the 1979-1984 and 2013-2017 periods, sea ice extent (SIE) 

decreased by 9% and 33% for March and September, respectively (Table 1) 

(Fetterer et al., 2017). September SIE has seen a much greater decrease and a loss 

rate that has grown faster than winter ice. From 1979-2000 the SIE loss in March 

and September was 0.3% per year and 0.7% per year, respectively (Meier et al., 

2014). From 2001-2013 the rate of March SIE loss decreased to 0.2% per year, 

while September’s rate ballooned to 3% per year. Figure 1 displays the September 
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median SIE from 1981-2010, alongside the observational record minimum, 2012 

(Fetterer et al., 2017; Jakobsson et al., 2012). 

 

Thickness and volume loss are closely related to the change in distribution of ice 

age. Old ice is typically thicker than young ice and can hold a disproportionate 

amount of ice mass. Maslanik et al. (2011) utilized a satellite-derived ice age product 

to track the changes in the spatial distribution of ice age. For the month of March, it 

was found that multiyear ice (survived at least one thawing cycle) went from 75% of 

the total extent in 1980 to only 45% in 2011. While the loss of old ice implies a loss 

of ice volume, it is more difficult to quantify, because thickness observations are 

sparse both temporally and spatially. Estimates of ice volume loss have been 

obtained through the Pan-Arctic Ice Ocean Modeling and Assimilation System 

(PIOMAS) and from CryoSat and ICESat observations (Schweiger et al., 2011; Zhang 

& Rothrock, 2003). The volume loss between the periods of 1979-1984 and 2013-

2017 was 28% in March and 63% in September (Table 1) (Schweiger et al., 2011). 
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Table 1: Ice Loss in Recent Decades 

 SIEa (million km2) Volumeb (1000 km3) 

 March September March September 

1979-84 16.03 7.31 30 14.95 

2013-17 14.57 4.87 21.62 5.5 

Diff -1.46 -2.44 -8.38 -9.45 

% Loss 9% 33% 28% 63% 

 
 

Arctic Sea Routes 

The opening of the Arctic is of special interest to the commercial marine shipping 

industry. Commercial traffic largely follows traditional routes around the globe. For 

transoceanic voyages (Pacific-Atlantic and vice versa) this relies on congested canal 

routes, such as the Suez and Panama Canals. Additionally, continent-rounding 

routes force shipping into the often-heavy seas of the Southern Ocean. The Arctic, as 

a marine corridor, offers significant reductions to both travel time and distance. 

Specifically, the Northern Sea Route (NSR) reduces up to 47% of the distance of 

traditional routes (Rodrigue, 2017). Sailing distances, and the reductions from 

Arctic routes are displayed in Table 2. 

 

The Arctic Ocean contains three major routes, each of which provides a different 

degree of accessibility. Figure 1 shows the three idealized routes discussed here, 

taken from Ellis and Brigham (2009). The Northwest Passage (NWP) rounds North 

aFetterer, F., K. Knowles, W. Meier, M. Savoie, and A. K. Windnagel. 2017, updated daily. Sea Ice Index, Version 3. [Sea 
ice extent]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 
doi: https://doi.org/10.7265/N5K072F8. [February 1, 2018]. 
bSchweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, Uncertainty in modeled arctic sea ice volume, J. Geophys. Res., 
doi:10.1029/2011JC007084, 2011 
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America and transits through the Canadian archipelago and the Davis Strait. Of note, 

the NWP encompasses several passages and offshoots that navigate the 36,000 

islands in the archipelago (Ellis & Brigham, 2009). Each individual passage has a 

unique constraint to depth and channel width. Because of the number of islands, 

some of the oldest and thickest ice in the Arctic can be found within the confines of 

the NWP (Wadhams, 2000). Travel from Europe to East Asia by the NWP is 

approximately 13,600 km (Rodrigue, 2017). 

 

The NSR transits the northern coast of Europe and Asia, most of which is Russian 

coastline, before exiting the Arctic through the Bering Strait. The NSR is much more 

established as a navigable route by the Russian government than the NWP is by the 

Canadian administration, and it receives more traffic as a result (Ellis & Brigham, 

2009). This combined route represents a transit of approximately 12,800 km from 

Europe to Asia (Rodrigue, 2017). The Northeast Passage (NEP) is the portion of the 

NSR that transits the Kara Sea. Future references in this paper will refer to the 

combined NSR and NEP simply as the Northern Sea Route. 

 

Finally, there is one additional route, the Transpolar Sea Route (TSR), which passes 

through the Greenland Sea, the center of the Arctic Basin (near the pole), and 

through the Bering Strait. This route has been considered in climate projections of 

shipping routes but is largely hypothetical as it traverses the center of current 

summer ice extents. 
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Table 2: Sailing distances from Europe to Asia. NWP/NSR refers to the Northwest Passage/Northern Sea Route. 

  Distancea 
(km) 

% reduction from 

  Suez Panama 

Suez Canal 21,000 n/a n/a 

Panama Canal 24,000 n/a n/a 

NWP 13,600 35% 43% 

NSR 12,800 39% 47% 

 

  

History and Modern Arctic Commercial Usage 

The Arctic has long been of interest to explorers and those seeking trade routes. The 

NWP was first transited by a ship over the course of three years from 1903-1906 by 

Roald Amundsen (Ellis & Brigham, 2009). 63 years later it was traversed by a 

commercial vessel for the first time, the SS Manhattan. The NSR has maintained an 

interest from the Soviet Union’s and Russian governments. Shipping through the 

NSR peaked in 1987 with 1,306 voyages conducted by 331 vessels (Ellis & Brigham, 

2009). This peak in shipping is owed to the efforts of the Soviet Union to keep the 

route open, and not related to a favorable ice climatology at the time. An average of 

38 vessels transited the NSR annually from 2011-2016 (Protection of the Arctic 

Marine Environment, 2018). The economic viability of the NSR under recent climate 

conditions was demonstrated recently, as a liquid natural-gas (LNG) tanker became 

the first vessel to transit unassisted in winter (Darby, 2018). 

 

aRodrigue, J-P et al. (2017) The Geography of Transport Systems, Hofstra University, Department of Global Studies & 
Geography, https://transportgeography.org. 
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While commercial interest and usage of the Arctic has been variable through time, 

the opening of the basin is likely to foster a greater use in the future. A study on 

traffic from vessel automatic identification system (AIS) by Pizzolato et al. (2016) 

revealed significant increases to marine usage of the Arctic since 1990. 

 

Ice Numeral 

This study will largely utilize a marine shipping metric, the Ice Numeral (IN), which 

was first prescribed by Transport Canada as part of the Arctic Ice Regime Shipping 

System (AIRSS) (Timco et al., 2005). The purpose of the IN is to give mariners a 

simple metric for determining if ice conditions are safe for transiting. The Ice 

Numeral is of interest for several reasons. First of all, it has a legal basis in the 

Canadian Arctic, where vessels are mandated to not proceed through certain IN 

regimes. Secondly, it is a seemingly simple metric that takes into account ice 

thickness and concentration, but it also has interesting non-linearities apparent 

when scrutinized. Finally, it has recently received attention from members of the 

scientific community when investigating the future climatology of polar sea routes 

(Melia et al., 2016; Smith & Stephenson, 2013; Stephenson & Smith, 2015). 

 

Previous Work 

A great deal of research has been focused on the timing of Arctic sea ice loss, as well 

as the implications for marine transportation. Utilizing seven ensembles members 

from the Community Climate System Model, version 3 (CCSM3), Holland et al. 
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(2006) found that September Arctic SIE loss was punctuated by events of rapid ice 

loss. Under representative concentration pathway (RCP) 8.5 forcing (high 

greenhouse gas emissions), they also determined that September ice-free conditions 

could be expected as soon as 2040. Utilizing the Community Earth System Model, 

version 1 (CESM1) Jahn et al. (2016) sought to answer a similar question. Here, two 

scenarios were analyzed: RCP8.5 (40 ensembles) and the lower-emissions RCP4.5 

(15 ensembles). The internal variability of the model generated a spread in the 

timing of the first ice-free (SIE < 1 million km2) summer, which ranged from 2032-

2053 for RCP8.5 and 2043-2058 for RCP4.5. 

 

The timing of a seasonally ice-free Arctic also motivated another question: when will 

Arctic shipping lanes be navigable? Smith and Stephenson (2013) recently tried to 

answer this question by utilizing the IN with output from seven coupled 

atmosphere-ocean general circulation models (GCM), under RCPs 4.5 and 8.5. 

Breaking the model runs into three time periods, 1979-2005, 2006-2015, and 2040-

2059, the authors determined the feasibility of vessels with no and moderate ice 

strengthening (open-water and polar class 6, respectively) transiting each sea route. 

During the historical period (1979-2005), only the NSR was feasible for either type 

of vessel, with a success rate of about 40%. However, in the early 21st century, polar 

class 6 (PC6) vessel transits began to migrate northward under both forcing 

scenarios. In the mid-century, the NWP became feasible for both vessel types under 
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both forcing scenarios, and the TSR opened for open-water (OW) vessels under 

RCP8.5. 

 

In a follow-on study, Stephenson and Smith (2015) investigated the importance of 

model choice on shipping projections. The authors chose 10 models from the 

Coupled Model Intercomparison Project (CMIP5) and performed an analysis similar 

to that of Smith and Stephenson (2013) (Taylor et al., 2012). It was verified that the 

TSR, the shortest Arctic route, would gradually become more important than the 

NSR as ice conditions allowed. Most importantly, it was identified that the variance 

among the 10 models was non-trivial. Simply put, this finding meant that the model 

chosen for an analysis altered the results, which stems from the unique mechanics, 

assumptions, and sensitivity of each model. 

 

Melia et al. (2016) performed an analysis similar to those by Stephenson and Smith, 

but using three ensembles each from five member models (15 realizations total) of 

CMIP5. A key finding was the reduction in sailing time offered even by the low 

emission scenario, RCP2.6. On average, a 30-day Suez Canal trip from Europe to East 

Asia would be lowered to 22 days under RCP2.6 and 17 days under RCP8.5 by the 

end of the century. Additionally, the authors made note of considerable interannual 

variability in Arctic sea route accessibility, but little was done to quantify this. 

Interannual variability is a key concept that impacts the feasibility of Arctic shipping 

and deserves a more detailed investigation, because variability is inherently tied to 
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reliability, which is an important factor in the operational planning of shipping 

strategy. 

 

Purpose of Study 

This study seeks to fill knowledge gaps remaining from the notable previous work 

(Melia et al., 2016; Smith & Stephenson, 2013; Stephenson & Smith, 2015). While 

much has been done with the IN to determine marine accessibility, the IN itself has 

not been dissected. Although the IN is a seemingly simple combination of thickness 

and concentration, the role that each term plays temporally, spatially, and by vessel 

class is interesting and worth analyzing. Each of the stated factors has a unique 

effect on IN and the impact to shipping, as will be described in Section 3. Next, we 

will seek to quantify the interannual variability of key ice metrics in the warming 

Arctic. The reductions to ice cover and average vessel travel times tell an inviting 

story for marine shipping. However, superimposed interannual variability is an 

important additional factor that could affect expectations of navigable shipping 

lanes. The reduction to sea ice cover is often taken to represent a future that is 

increasingly more hospitable to transportation. However, while the overall trend in 

sea ice points towards sea routes that are more open, an increase in variability 

would mean that sea routes are less reliable, and thus less predictable for planners. 

The timing and amplitude of interannual variability will be addressed for a variety 

of sea ice metrics including the IN. Finally, it will be determined how interannual 
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variability in the IN relates to other sea ice metrics, such as concentration, thickness, 

area, and volume. 
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2. Data 

2.1. Sea Ice Metrics 

Sea ice can be quantified in basic terms of its concentration (SIC) and thickness 

(SIT). Both measures are important for scientific and marine use. SIC refers to the 

amount of ice cover within an arbitrary area, expressed as a percentage, decimal, or 

fraction. Additionally, horizontal coverage can be expressed as either sea ice extent 

(SIE) or total sea ice area (SIA). Total SIA is the actual horizontal area occupied by 

sea ice, while SIE is the area of the ocean’s surface within a boundary that 

encompasses some minimum threshold for ice, typically taken to be a concentration 

of 15% (Comiso et al., n.d.; Fetterer & Knowles, 2004). This means that total SIA is a 

better metric than SIE for the “amount” of ice and is practically always smaller than 

SIE. Total SIA is easier to compute, particularly with modelled data, and as such this 

study will give it preference over SIE. However, SIE has been frequently used with 

satellite-derived data and has been the standard for communicating the amount of 

ice in the Arctic; therefore, some discussion will also be given to SIE. Satellite 

products have given preference to SIE because there is some error during melt 

seasons associated with distinguishing between open ocean and melt ponds, as well 

as a variable gap in coverage near the pole. Horizontal ice coverage is much easier to 

measure than is SIT and thus has been more widely used by the scientific 

community. 
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Total Arctic sea ice volume (SIV) represents the total amount of ice in the Arctic and 

cannot be determined without knowledge of thickness distribution. However, 

details of sea ice thickness, and by extension volume, are limited by sparse spatial 

and temporal observations. 

 

2.2. The Community Earth System Model 

To investigate ice climatology, output was used from the National Center for 

Atmospheric Research’s (NCAR) Community Earth System Model, version 1 

(CESM1) configured with the Community Atmosphere Model, version 5 (CAM5) 

(Hurrell et al., 2013). The sea ice component of CESM1 is the Los Alamos National 

Laboratory Sea Ice Code, version 4 (CICE4) (Hunke et al., 2017). CESM1 has shown 

to be successful at capturing sea ice trends on an annual scale, as well as trends 

associated with climatic changes (Stroeve et al., 2012). CESM1 features several 

improvements over predecessor models (such as CCSM4), notably land use and 

cycles of carbon and vegetation. The sea ice component also received improvements 

in the handling of shortwave radiation physics related to melt ponds and aerosols 

(Holland et al., 2011). 

 

2.3. The Large Ensemble 

The CESM1 Large Ensemble (LENS) project is a publicly available dataset of CESM1 

simulations. (Kay et al., 2015). Each of the 40 ensemble members are initialized with 

round-off differences in air temperature (on the order of 10-14 K), and subsequently 
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receive an external forcing that is identical among ensembles. The historical portion, 

1920-2005, is subjected to observed solar and atmospheric forcing as set forth by 

Lamarque et al. (2010). These assume well-mixed greenhouse gases and short-lived 

aerosols that include anthropogenic emissions, biomass burning, and volcanic 

activity. From 2006-2100, the high-emissions scenario, RCP8.5 is the prescribed 

greenhouse gas forcing (Lamarque et al., 2011; Meinshausen et al., 2011). 

 

The slight differences in initialized temperature generates variability among the 

ensemble members, which varies temporally and spatially, as the result of internal 

climate variability. The benefit of the LENS is the large number of ensemble 

members, which dwarfs the size of previous ensemble projects. Both the ensemble 

average and the trajectory of individual ensemble members are useful for 

investigating climate. The ability to assess internally generated variability is another 

key advantage of the LENS dataset. The spread in LENS is preferable to the spread in 

CMIP5, which is the result of different models with different internal processes and 

parameterizations. 

 

Sea ice in LENS shares a grid with the ocean and features a displaced pole over 

Greenland, which ensures that grid cells near the pole are not trivially small. 

Horizontal resolution of all components is approximately 1, while the atmosphere 

consists of 30 levels. LENS output is available to the community at multiple 

temporal resolutions, including monthly, daily, and 6-hourly (for selected years). 
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Because of the climatic scales of this study, and the considerable amount of 

variability in ice conditions associated with weather events on daily and finer 

timescales, monthly resolution will be analyzed. 

 

The LENS dataset includes a variety of variables related to sea ice, including SIT and 

SIC. Thickness output is given as the area averaged volume of a grid cell, i.e. the 

product of thickness and grid cell area is the volume of ice within that cell. 

Concentration output is the measure of the horizontal coverage of ice within a grid 

cell, ranging from 0% to 100%. 

 

2.4. Observational Concentration/Extent Data 

The Sea Ice Index, Version 3 is a long term observational dataset of ice 

concentration derived from passive satellite instrumentation (Fetterer et al., 2017). 

The full observational history ranges from October 1978 until the present. 

Observation platforms that have contributed to the dataset included the Nimbus-7 

Scanning Multi-Channel Microwave Radiometer (SMMR), Special Sensor Microwave 

Imagers (SSM/I), and Special Sensor Microwave Imager/Sounders (SSMIS); the 

latter two are part of the Defense Meteorological Satellite Program (DMSP) (Curtis & 

Adams, 1987; Gloersen & Barath, 1977). From 1978 until 1987 Nimbus-7 returned 

SIC once every two days, which increased to daily when succeeded by DMSP 

satellites. Horizontal resolution is approximately 25 km. The resulting gridded ice 

concentration is also the primary source for determining observed total SIE and SIA 
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in this study. Finally, the Sea Ice Index contains a gap in coverage near the pole 

(“pole-hole”) due to satellite orbital inclination, which has ranged in radius from 

611 km in 1978 to 94 km at present. 

 

2.5. Modelled Thickness/Volume Data 

Observations of sea ice thickness are limited spatially and temporally, as well as by 

quality. This applies to total SIV as well, since volume can only be calculated with 

the inclusion of a vertical ice thickness. The best observations are those made by 

upward looking sonar onboard US Navy submarines, however these records are not 

complete spatially or temporally, and future cruise plans are not revealed as a 

matter of security (Kwok & Rothrock, 2009). Additionally, thickness has been 

derived from freeboard measurements by the ICESat and CryoSat programs (Laxon 

et al., 2013). In order to use a consistent and complete dataset to compare with to 

LENS thickness/volume, this study will utilize output from PIOMAS (Schweiger et 

al., 2011; Zhang & Rothrock, 2003). PIOMAS is a coupled ice-ocean model that 

assimilates ice concentration and sea surface temperature observations, along with 

atmospheric forcing from NCAR and National Center for Environmental Prediction 

(NCEP) reanalysis datasets. Horizontal resolution is approximately 0.8 and is 

available for download as monthly averages. The model has been shown to capture 

more than 50% of the SIT variance along submarine tracks (Schweiger et al., 2011). 

Because of the model’s skill at accurately assessing ice conditions, and its complete 

record since 1979, it has been used as the best ground-truth for SIT, such as in 
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Zhang et al. (2013). Finally, Labe et al. (2018) found that PIOMAS could be used 

satisfactorily as a reanalysis dataset, and that multiple modes of real physical 

variability were expressed concurrently by PIOMAS and LENS. 
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3. Methods 

3.1. Climatology Calculations 

Climatologies have been calculated for SIC, SIT, and IN. Observations and PIOMAS 

data were used for comparison with LENS for SIC and SIT, respectively. LENS 

climatologies were calculated for SIC, SIT, and IN (for OW and PC6 vessels). 

Climatologies were calculated as a monthly average at each grid cell for the period 

of interest. For LENS climatologies, the ensemble average was used. The difference 

between LENS and the sea ice index/PIOMAS are used to show spatial bias in LENS. 

 

Extensions of these climatologies are the time series of SIA and SIV, which are 

compared to the sea ice index/PIOMAS. These are shown as one-year running 

averages, and the difference is used to show total bias in LENS. 

 

3.2. The Ice Numeral 

The equation for Ice Numeral is: 

 

Equation (1) 

𝐼𝑁 =∑𝐶𝑖 × 𝐼𝑀𝑖

𝑛

𝑖=1

 

 

where Ci and IMi are the concentration and Ice Multiplier of ice type i, respectively, 

for n ice types. Here, concentration ranges from 0 to 10, such that open water is zero 
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and 100% ice cover is 10. Ice Multiplier is an integer that is a function of a vessel’s 

ice capability and the age and thickness of the ice. The summation accounts for the 

fact that multiple types of ice can occur together, in addition to open water that 

exists when total SIC is less than 100%. Ice multiplier ranges from -4 (thickest ice, or 

greater than ~1.5 meters for a vessel with no ice strengthening) to 2 (open water). 

This yields a range of IN from -40 (100% coverage of thickest ice) to 20 (100% 

coverage of open water). IM values are prescribed in a table format by AIRSS (Table 

3). The Ice Numeral is designed for use by ship’s transiting the Arctic, on site. A 

vessel’s bridge watch-stander is expected to continually calculate the IN when ice 

conditions are perceived to change. In the Canadian Arctic, a vessel is not permitted 

to transit a negative IN regime, but may proceed through positive or neutral regimes 

(Transport Canada, 2010).  
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Table 3: Ice multipliers as specified by AIRSS. Types A and E refer to PC6 and OW, respectively. 

CIS/WMO 
Ice Codes 

  Ice Multipliers for each Ship Category 

Ice Types Thickness 
Type 

E 
Type 

D 
Type 

C 
Type 

B 
Type 

A 
CAC 4 CAC 3 

7• or 9• Old/Multi-Year Ice   -4 -4 -4 -4 -4 -3 -1 

8• Second-Year Ice   -4 -4 -4 -4 -3 -2 1 

6 or 4• Thick First-Year Ice > 120 cm -3 -3 -3 -2 -1 1 2 

1• 
Medium First-Year 
Ice 

70-
120 cm 

-2 -2 -2 -1 1 2 2 

7 Thin First-Year Ice 30-70 cm -1 -1 -1 1 2 2 2 

9 
Thin First-Year Ice - 
2nd stage 

50-70 cm        

8 
Thin First-Year Ice - 
1st stage 

30-50 cm -1 -1 1 1 2 2 2 

3 or 5 Grey-White Ice 15-30 cm -1 1 1 1 2 2 2 

4 Grey Ice 10-15 cm 1 2 2 2 2 2 2 

2 Nilas, Ice Rind < 10 cm 2 2 2 2 2 2 2 

1 New Ice < 10 cm " " " " " " " 

 Brash (Ice fragments 
< 2 m across) 

  " " " " " " " 

=Δ Bergy Water   " " " " " " " 

| | | | Open Water   " " " " " " " 

 

 

A team from the National Research Council of Canada investigated a sample of ship 

transits, corresponding INs, and whether or not ice damage was sustained (Timco & 

Kubat, 2001). They determined that the system performed “reasonably well,” 

although damage was also shown to be correlated to vessel speed, which is not 

included in the IN calculation.  
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Note that Table 3 differentiates vessels by a “Ship Category” that is utilized in 

Canada. This study will utilize the International Maritime Organization’s (IMO) Polar 

Class system, namely PC6 and OW vessels, which correspond to Type A and Type E, 

respectively (Smith & Stephenson, 2013). Whereas Table 3 has values dependent on 

ice age, this study will make IM entirely a function of SIT, using the method of Smith 

and Stephenson (2013). While IN takes into account the different ice types that exist 

within a given visible area, we will assume that inside a grid cell there is only one 

type of ice, with the possibility of open water. The average SIT for a grid cell will be 

used with the SIC of that grid cell, and the remaining area of each grid cell will be 

taken as open water. Although the model includes sub-grid-scale SIT, the output is 

only available as the grid average. The equation for IN is now altered so that it may 

be calculated with one value for each grid cell in time, space, and ensembles, as 

follows: 

 

Equation (2) 

𝐼𝑁 = 𝐶𝑔𝑟𝑖𝑑 × 𝐼𝑀𝑆𝐼𝑇 + (10 − 𝐶𝑔𝑟𝑖𝑑) × 𝐼𝑀𝑂𝑊 

 

where the first term represents the ice component and the second term represents 

the open water component. Because the IM for open water is always 2, regardless of 

vessel type, the equation becomes: 

 

Equation (3) 

𝐼𝑁 = 𝐶𝑔𝑟𝑖𝑑 × 𝐼𝑀𝑆𝐼𝑇 + 20 − 2 × 𝐶𝑔𝑟𝑖𝑑 
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3.3. Determination of Interannual Variability 

In this study interannual variability was derived for all relevant ice metrics from 

time series of the LENS output from 1920-2100. These are completed using either 

an Arctic average (for SIC and SIT) or total values (for SIV and SIA). Determining this 

variability among sea ice metrics is challenging due to the strong signal of climate 

change. To avoid spurious interannual variability in the data arising from a strong 

trend, the difference between one year and the next is calculated for each month. In 

this way, if an interval of rapid ice loss (or gain) resulted in a large but constant 

annual change, the interval would be represented by a constant year-to-year 

difference and therefore no interannual variability. From this annual difference time 

series, a three-year running standard deviation was performed, which is the 

variability that will be interpreted in this study. The three-year running standard 

deviation is a representation of four years of raw sea ice data. The use of three years 

in the standard deviation was somewhat arbitrary, as utilizing different windows 

produced very similar results, albeit larger windows produced smoother curves. 

The resulting variability curves can be used for identifying peak variability, as well 

as its timing and amplitude. 

 

To verify that any variability changes detected in the analysis were not the result of 

the trend in the data, the analysis was repeated with the use of Gaussian white noise 
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(GWN). The ensemble average sea ice trend was combined with a GWN signal, which 

created a data-set with a strong trend as well as random input. The original analysis 

was then repeated on 10,000 random generations of the trended GWN signal.  

 

Comparison of variability curves of different ice metrics was accomplished by 

normalizing them for each month. For each month, the time series mean was 

subtracted and then divided by the time series standard deviation. The end result is 

a dimensionless variability curve for each metric that can be compared to other 

metrics for the same month. This is useful for identifying the timing of peak 

variability amongst the several metrics. 
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4. Results 

4.1. Model Performance 

4.1.1. Model Climatology 

A climatology of simulated sea ice conditions is presented in Figures 2 and 3 for SIC, 

and Figures 4 and 5 for SIT. These climatologies are 40-year ensemble averages, and 

they represent “typical” ice conditions present during different periods. These 

climatologies also help display the patterns of sea ice retreat over time. Notably, the 

decrease in ice extent occurs earlier in summer than in winter. Additionally, in the 

summer, the ice largely retreats from the Eurasian coast and central Arctic basin 

towards the Canadian archipelago. For much of the 21st century, winter SIA only 

sees meager declines near the marginal ice zones. SIT shows a visible decline in all 

months, with summer transitioning to ice-free conditions in mid-century. The 

winter months show SIT declining at all spatial points, but never reaching ice-free 

conditions within the LENS run. 

 

Limited IN climatologies are also presented in Figure 6. These represent only the 

months of September (annual minimum ice extent) and March (annual maximum), 

for the period of 1960-1999. IN can range from -40 (worst conditions) to 20 (open 

water). These climatologies illustrate the typical “go/no-go” (navigation 

permitted/not permitted) zones for the two vessel types considered in this study. In 

March, the entire Arctic was highly inaccessible (ensemble average close to -40).  In 

September, the accessible areas were greatly expanded, however the climatology 
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still indicates that all shipping routes were inaccessible through the 20th century on 

average, even with a moderately ice-strengthened ship. 

 

4.1.2. Area/Concentration Bias 

To evaluate the CESM sea ice simulation, beyond that shown by Stroeve et al. (2012) 

and Hurrell et al. (2013), the model’s output was compared against other sources. 

Figure 7 shows 12-month running means of SIE for each ensemble and the satellite-

derived Sea Ice Index. Boxplots illustrate the ensemble spread of the bias of each 

calendar year. The model consistently produces a greater amount of ice than 

observed. Early in the record, the median ensemble bias is less than 5% of the 

observational value (both positive and negative), but a general trend can be 

discerned of rising positive bias throughout the observational record. This implies 

that the model is not fully representing the recent loss of sea ice. Several CMIP5 

have been shown to have a similar, or worse, bias (Stroeve et al., 2012). 

 

SIA displayed in two-dimensional space becomes SIC (an arbitrary horizontal area 

occupied by some area of ice). The spatial structure to this bias is displayed in 

Figures 8 (late 20th century) and 9 (Early 21st century) as the difference in SIC (LENS 

minus observations). In the interior of the Arctic, LENS has little bias during the 

winter months, but tends to overestimate ice in the summer. Year round, there is an 

overestimation of ice in the marginal ice zones, and in the winter in the Sea of 

Okhotsk. In the later period (Figure 9), the overestimation of the marginal ice zones 
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(particularly in the Atlantic region) increases, which corresponds to the increasing 

positive bias of SIA in Figure 7. 

 

4.1.3. Volume/Thickness Bias 

Figure 10 displays the comparison of LENS total SIV to PIOMAS, as 12-month 

running means. As with SIA, LENS tends to overestimate the ice volume given by 

PIOMAS, but there is no noticeable temporal trend in the bias of SIV. However, the 

downward trend in volume means that the relative bias, as a percentage of the 

volume, is increasing, rising from ~28% to ~50% of the PIOMAS volume. 

 

When SIV is considered spatially, it becomes SIT (volume divided by an area). As 

with the bias in ice volume, the spatial bias of SIT is very consistent month-to-month 

and between the early (Figure 11) and late record (Figure 12). Here, the source of 

the greatest thickness bias in LENS becomes apparent: ice trapped within the 

Canadian Archipelago, which in LENS, reaches a maximum thickness of 63.4 meters 

and a maximum age of 478 years, which are physically unrealistic. However, this 

extremely thick ice regionally does not dominate total SIV across the basin. Table 4 

shows the minimal effect on Arctic SIV when grid cells are capped at specific values 

of thickness. Figures 11 and 12 are shown with a 5-meter maximum thickness to 

better illustrate the rest of the Arctic, however the saturated red areas often greatly 

exceed 5 meters in bias. It has been shown, however, that PIOMAS underestimates 
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total SIV, particularly thickness in the Canadian archipelago and near the Greenland 

coast (Labe et al., 2018). 

 

Table 4: The effect on LENS averaged total Arctic SIV, when a thickness cap is placed on all gridcells. 

 Thickness Capped at (m): 

 No Cap 40 20 10 

Mean SIV (1000 km3) 2.13 2.11 2.06 1.98 

Percent Change  1% 3% 7% 

Max SIV (1000 km3) 4.97 4.93 4.81 4.65 

Percent Change  1% 3% 6% 

 

 

4.2. Variability of Sea Ice Metrics 

Figure 13 displays a simple approach to viewing sea ice variability and offers some 

motivation for further investigation. The checkerboard plot shows the time-series 

anomaly (September only) of each of the 40 ensemble members of total SIA. Even at 

first glance, it is apparent that there is an interval of high variability in the early to 

mid-20th century. The period in the vicinity of peak ice-loss in the ensemble-mean, 

near 2020, appears to have very high variability, which has been displayed in 

greater detail in the lower plot. Finally, there is little variability late in the LENS run, 

as SIA approaches zero. The checkerboard plot is also useful for viewing the 

ensemble variability, which can be seen easily by comparing ensemble members 15 

(positive anomalies begin in 2018) and 13 (negative anomalies persist until 2026) 

for example. 
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Figures 14-17 represent the year-to-year difference and corresponding derived 

variability for four ice metrics. The thin blue curve represents the actual year-to-

year change, and the thick blue line is the five-year running change. In SIA (Figure 

14), several features become apparent: variability in SIA has a shape that repeats in 

most months; variability peaks at different times in different months; and variability 

peaks coincide with peak ice loss. In every month, there is an increase in SIA 

variability in the future. The typical shape (as exemplified by November) of the 

variability curve consists of five stages: 

 

1.) fairly constant baseline variability before the onset of anthropogenic ice loss 

2.) a gradual rise in variability 

3.) a peak that coincides with peak rate of ice loss 

4.) a steeper downward slope of decreasing variability 

5.)  little-to-no variability associated with an ice-free Arctic ocean in that month 

 

September, the annual ice minimum, experiences this peak variability first, 

occurring around 2030. At the other extreme are the late winter/early spring 

months, which display only modest rises at the end of the century. This suggests 

that the characteristic evolution exhibited by warmer months might occur in the 

winter as well, but past the end of the LENS run. Here, it is important to reinforce 

that the variability expressed here is not an artifact of the ice loss trend; the effect of 

taking the year-to-year difference removes the effect of a large but constant change 
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during a rapid-loss interval. This was additionally verified by repeating the analysis 

10,000 times on a trended GWN signal, which resulted in no peaks in variability.  

 

Figure 15 displays the same curves for year-to-year difference and associated 

variability in total SIV. Interestingly, SIV shows a much different response than SIA. 

Unlike the five stages of SIA variability listed above, SIV variability exhibits a pattern 

with a broad peak that is smaller in amplitude. 

 

The absence of a pronounced peak in SIV variability is the first large contrast that 

can be drawn between the two metric’s variability curves. Secondly, there is a 

difference in timing. Peak variability occurs earlier in SIV than in SIA in all months 

except April (December being a prime example). The year-to-year differences (blue 

curves), of both SIA and SIV, display several pronounced but short-term increases in 

sea ice during the 20th century. These correspond to volcanic eruptions (notably 

Mount Pinatubo in 1991) and has been described in Gagne et al. (2017). There is a 

noticeable step-like change in the year-to-year difference of SIV in the early 1990s 

that is mainly resultant from the Pinatubo eruption, which acts to interrupt the 

beginning of significant ice-decline and resumes promptly following the conclusion 

of the volcanic forcing. 

 

Figure 16 is the corresponding variability of the Arctic-averaged change in Ice 

Numeral for open-water vessels, IN_OW. Its shape is very similar to the five stages of 
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SIA variability identified above. However, some key differences from SIA can be 

discerned: 

 

1.) peak variability is much broader 

2.) timing of the peak is shifted earlier (~6 years) 

 

These are the first indications that, like IN itself, IN variability is shaped by both SIC 

and SIT. By comparison, the peak variability of IN_PC6 occurs earlier time than for 

an open-water vessel and the peak is become broader (Figure 17). This mismatch in 

timing resembles that of the mismatch between SIA and SIV and indicates that 

IN_OW is more sensitive to SIC, while IN_PC6 is more sensitive to SIT. On the 

variability spectrum, bounded by the peaks exhibited by SIA to SIV, the IN 

variabilities generally sit in between with regard to both timing and shape. As 

shown in Figure 18, in almost every month the normalized variability curves of all 

four metrics show the same progression of peaking variabilities from earliest to 

latest: SIV, IN_PC6, IN_OW, and SIA. 

 

The timing of the peaks is also depicted in Figure 19. Here each peak is shown as a 

point for each month and metric, alongside the median year of peak variability 

among all ensemble members for each metric. With the exception of only two 

months (April and July), the variability peaks (or occurs simultaneously) in the same 

order. April appears as a large outlier for SIA, but with reference to Figure 14, it can 
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be seen that variability is largely constant for the entire LENS run, and thus the 

century-ending increase in variability is small in amplitude before being truncated. 

 

4.3. Spatial Patterns of Peak Variability 

The variability previously expressed has represented the entire Arctic. Spatially, 

however, variability peaks are not homogenous. Figure 20 shows the magnitude and 

timing of variability peaks of SIC for each grid cell, as well as the time of peak ice 

loss rate. SIC variability peaks generally coincide with peak ice loss, and the spatial 

patterns in Figure 20 reflect this. Variability during March does not contain distinct 

peaks in the interior, though, as peak ice loss occurrence is truncated by the end of 

the LENS run (bottom row of Figure 20). The middle row of Figure 20 depicts the 

year that maximum variability occurs, which clearly is early for September and late 

for March (consistent with Figure 14). 

 

Contrasting SIC, the peaks of SIT variability are largely homogenous spatially, which 

is consistent with the broad peaks in the time series of Figure 15. In amplitude (top 

row, Figure 21), the months of March and September are nearly spatially uniform 

and similar to each other, with small peaks in the Canadian archipelago. The timing 

of peak SIT variability (middle row, Figure 21) displays some small differences 

between March and September. In March, the coastal areas peak much closer to the 

end of the century, while the interior of both months peaks early in the century. This 

is consistent with March peaking later than September in Figure 15. 
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The corresponding patterns of IN are displayed in Figure 22 for OW and Figure 23 

for PC6. As previously seen in Figure 18, IN variability takes contributions from both 

SIT and SIC and exists on a spectrum in between; IN_PC6 falls closer to SIT and 

IN_OW falls closer to SIC. The bottom rows of Figures 22 and 23 show that IN 

maximizes earlier for a PC6 vessel in both months (more evident in March). IN_OW, 

whose variability is closer to SIC’s, shows greater amplitudes near the Atlantic and 

Pacific boundaries in March, and in the interior during September; this closely 

resembles the pattern displayed by SIC in Figure 20. In contrast, this effect for 

IN_PC6 seems to be dampened and a more homogenous pattern is seen in Figure 23, 

resembling the pattern displayed by SIT. 

 

4.4. Ice Numeral Behavior 

It has been previously shown that IN variability contains a blend of the variability of 

SIA and SIV. This makes sense, as the IN equation is a function of SIC and SIT. It is 

interesting that for a PC6 vessel, IN variability relates more closely with SIV than SIA 

(and vice versa for OW). It is obvious that IN relates to its components, however, it is 

not obvious which component is more important for each vessel class, different 

temporal scales, and spatial points. 

 

Figure 24 shows correlation maps for IN_OW and its components for the months of 

March and September. Ice components and IN are anti-correlated, as increasing ice 
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cover results in a decreased IN (negative INs relate to unfavorable shipping 

conditions). The correlation maps represent the historical portion of the LENS run, 

1920-2005 (i.e. before the most significant ice loss period). For SIC, in the month of 

March (top left of Figure 24), there are three generalized regimes: 

 

1.) The central basin with perfect anti-correlation 

2.) The fringe-areas within the Arctic Ocean with modest to almost no 

correlation 

3.) The marginal ice zones outside the Arctic basin with perfect anti-correlation. 

 

In September (top right of Figure 24), the low correlation areas strengthen and 

shrink to a central area near the pole. 

 

For IN_OW correlation with SIT (bottom row of Figure 24), a very different regime 

pattern is displayed: 

 

1.) The interior Arctic basin with moderate to almost no correlation 

2.) The marginal ice zones with perfect anti-correlation. 

 

IN_OW and SIT correlation patterns are broadly similar between March and 

September, however, the marginal ice zone and perfect anti-correlation areas 

retreat and compact northward in September. 
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Figure 25 shows the same four plots, but for a PC6 vessel. The major difference is 

that the areas of high correlation between IN and SIC have shrunk.  

 

Table 5: Geographic location of points used in Figures 26-29. They are also annotated for reference on Figure 24. 

Point Latitude Longitude Note 

1 86°N 90°W North of Ellesmere Island, Canada 

2 85°N 90°E North of Severnaya Zemlya, Russia 

3 75°N 45°E Barents Sea 

 

 

To help interpret the patterns displayed in Figures 24 and 25, the relationship 

between IN and its components for three different grid cells are shown in Figures 

26-29. These particular sites were chosen to represent regions showing starkly 

different relationships. Table 5 lists the locations and descriptions of all three 

selected points, which have also been illustrated on Figure 24. At Point 1, IN_OW is 

perfectly anti-correlated with SIC, but has a very weak correlation with SIT (Figure 

26). Because the equation for IN places SIT into bins, a certain range of thickness is 

needed to generate a change in ice multiplier. At Point 1, in the interior of the ice 

pack, SIC in March is always 100% and SIT does not fall below the threshold to 

generate a lower IM, therefore IN is dictated by SIC. Point 2 is similar, except that 

SIT occasionally ranges to values that are thin enough to generate changes in IM 

(and therefore IN). This creates a weak correlation with both components. Finally, 

Point 3 displays an interesting relationship, because at this point on the sea ice 
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margin there is a full range of SICs, and multiple IMs (evident by the discontinuities 

in the lower left plot of Figure 26). The upper left plot of Figure 26 shows several 

linear patterns that the scatter plot has been organized into. Each line corresponds 

to a range of SICs when the IM is constrained by a limited range of SIT. 

 

These linear elements can be expressed by rearranging equation (3): 

Equation (4) 

𝐼𝑁 = 20 + (𝐼𝑀 − 2) × 𝐶 

 

When the range of SIT is sufficiently small as to not change the IM, then IN is a 

simple linear function of SIC, with the slope represented by IM-2. 

 

The right columns of Figures 26-29 represent the ensemble averages of the 

corresponding left-column plots, which results in one point per year at each of the 

three selected sites. The primary effect of ensemble averaging is to remove the most 

extreme ensemble occurrences. In this manner, the discrete regimes displayed by 

the individual ensembles are removed, leading to generally stronger linear 

relationships. This is a simpler way to view the relationship between IN and its 

components, as the data are not forced into discrete regimes. Viewing the 

relationship of IN and its components demonstrates the drivers of IN. 

 

When comparing IN_OW (Figures 26 and 27) to IN_PC6 (Figures 28 and 29), the first 

obvious difference is that IN_PC6 is consistently shifted to higher IN values, 
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reflecting the benefit of an ice-strengthened vessel. Additionally, correlation 

coefficients are weaker between IN and SIC for a PC6 vessel than for an OW vessel, 

and the opposite is true for the correlation between IN and SIT. This reinforces the 

finding that IN_PC6 is more dependent on ice thickness and IN_OW is more 

dependent on ice concentration. 

 

For almost all instances, regardless of vessel or metric, September (Figures 27 and 

29) displayed stronger correlations than March (Figures 26 and 28). This was true 

for the ensemble average and for individual ensembles. This is due to the increased 

spread in September, whereas March is more closely bounded to upper limits of 

both SIC and SIT. 

 

The relative importance of each component can be seen in Figure 30, which displays 

the ratio of the correlation coefficient of IN vs. SIT to the correlation coefficient of IN 

vs. SIC, with all ensembles included. Because this figure shows the relative strength 

of each correlation to each other, it does not indicate absolute strength of the 

correlations, which are displayed in Figures 24 and 25. Blue areas indicate that the 

correlation of IN vs. SIC outweighs the correlation of IN vs. SIT, and red represents 

the opposite. SIC dominates a large portion of the interior in both March and 

September, and for both vessel types, reflective of the linear structures expressed by 

equation (4). SIT plays a much larger role in the month of March than in September, 

reflecting the smaller range of ice multipliers present in March. September is 
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characterized by SIC dominance in the interior, and similar correlations at the 

marginal ice zones. The consistent presence of blue areas in the interior are 

reflective of thick ice that results in IN that can only vary with a change in SIC. 

Because these marginal zones in September usually have thin or no ice, the change 

between the presence and absence of ice creates a similarly high correlation for 

both components. Finally, in both months SIT plays a larger role for a PC6 vessel 

than for an OW vessel. 
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5. Discussion 

Implications for Predictability 

The interannual variability of Arctic sea ice is expected to increase in the future. 

While the amplitude and timing varied among metrics, the increase in variability is a 

robust feature of the CESM under RCP8.5, as well as CMIP5 models (Mioduszewski 

et al., 2018). This is important, as the trend in all relevant sea ice metrics is for 

increasing potential of shipping traffic, yet the rise in variability hinders reliability 

of sea routes. This finding is in contrast to the picture of quickly expanding marine 

polar traffic (Pizzolato et al., 2016; Smith & Stephenson, 2013). The increases in 

interannual variability are not directly comparable to operational timescales, 

however, the importance of predictability on operational timescales, such as weekly 

to seasonal, cannot be understated as shipping success the previous shipping season 

means little for operational strategy. Seasonal and 30-day outlooks of SIC and SIT 

are available through services such as the US National Ice Center and the Canadian 

Ice Service, though products are limited during the winter. Additionally, IN is not 

forecasted by these services and mariners must interpret with their own judgement 

how SIC and SIT forecasts will affect their transit. Current sea ice predictability 

varies depending on the forecasted metric, whether it is regional or pan-Arctic, and 

the month of initialization. For most cases, predictability on the order of weeks to 

seasons are reasonable (Guemas et al., 2016). The analysis of IN completed here 

demonstrated how choice in vessel affected the sensitivity between SIC and SIT, 

which in turn means that predictability of different metrics have a different 
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importance for different vessels. Guemas et al. (2016) showed that SIT and SIV are 

more predictable than SIA and SIC, which, for a less capable vessel that is more 

susceptible to ice concentration (such as OW vessels), could lead to mishaps. The 

actual time taken to transit the Arctic is relevant to predictability as well. NSR 

transits averaged near 20 days in the 1990’s and were reduced to 11 days in 2012-

2013 (Aksenov et al., 2017). TSR and NWP transit times can be expected to exceed 

those numbers, which puts the actual transit duration near the limit of sub-seasonal 

predictability (Bitz & Stroeve, 2014). 

 

From the LENS output, an example of the impact of variability produced by 

ensemble members can be seen in Figure 31. The large plot is the ensemble and 

decadal average of IN_OW in September for the period of 2016 to 2025. This map 

shows typically favorable conditions for shipping along the NSR during this decade. 

However, the smaller plots show the variability simulated by a particular ensemble 

member from year-to-year. When not expressed as an ensemble average, it can be 

seen that there is a great deal of interannual variability, and the NSR repeatedly 

opens and closes during the decade; 2016, 2018, 2019, 2022, 2023, and 2025 are 

favorable for shipping while 2017, 2020, 2021, and 2024 are unfavorable. 

 

Features of the Ice Numeral 

IN provides an interesting area for research, because it seems to be extremely 

simple, yet as the summed combination of two multiplied terms, the results of IN are 
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deceptively complex. Figures 26-29 provided a good demonstration of IN behavior, 

particularly its nonlinearity. Because SIC and SIT have behaviors that sometimes act 

independently, the IN acts with its own unique behavior. This is compounded by the 

fact that SIT is placed into discrete bins required by IM. Although it might often be 

preferred to assess such a function with continuous SIT data, the binning mirrors 

the actual way that IN is calculated on site by vessels. A modified IN formula that 

was altered to remove the binning could have been employed, however this study 

maintained the original in order to keep the results as close to a real vessel’s 

determination as possible. Perhaps the most noticeable artifact of the binning of IM 

can be seen in Figure 24, where the correlation between IN and SIC have step-like 

changes. The binning, however, is somewhat mitigated when IN is based on 

ensemble averages. 

 

Limitations of Study Methodology 

The correct method for calculating IN on site involves accounting for ice of all IMs 

present. However, the LENS output limited this full calculation, as sub-grid scale ice 

thickness is not available, which forced the approximation of one ice type and/or 

open water in each grid cell. Mean ice thickness is a good approximation for ice in a 

grid cell, but several nuances may have been lost without taking into account the full 

range of ice. Furthermore IN may be altered by observers on vessels to account for 

decaying (increase to IN) or ridging ice (decrease to IN) within their field of view 
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(Transport Canada, 2010). These were also not accounted for by the methodology in 

this study, other than indirectly through average grid ice thickness. 

 

Other limitations in this study stem from the dependence on the LENS dataset, with 

no reference to other models or other forcing scenarios besides RCP8.5. As 

previously seen, the CESM performs well at representing sea ice, but an 

investigation with other models may have provided additional insight. We note, 

however, that Mioduszewski et al. (2018) documented a similar future increase in 

Arctic sea ice variability averaged among CMIP5 models, including the month-to-

month differences in variability characteristics simulated in LENS. Previous studies 

have also utilized CMIP5 simulations to predict shipping potential, without the 

detailed analysis of interannual variability (Melia et al., 2016; Smith & Stephenson, 

2013; Stephenson & Smith, 2015). Although other emission scenarios were not 

analyzed, the observational record of sea ice has shown that ice cover is decreasing 

faster than in the LENS dataset and in other GCMs (Stroeve et al., 2012). This 

indicates that, for at least the short term, a lesser emissions scenario than the high-

end RCP8.5 may not have been relevant. 

 

Finally, the CESM and its LENS dataset are not without bias, as previously shown in 

the observational comparisons. Although these biases were marginal on most 

regional scales, the integrated pan-Arctic bias for SIE has grown in recent years, and 

the bias for SIV is a significant percentage of the modelled ice quantity. The effect 
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that these biases play on the results is unknown, however overestimations of SIC 

and SIT indicate that IN is likely to be higher in reality. A reasonable extension of 

this would indicate that the accurate physics of the CESM, in combination with its 

overestimations, mean that variability peaks occur earlier in reality. Calculations of 

IN from Sea Ice Index and PIOMAS data might help quantify the LENS error, or 

through a record of in situ IN determinations. 

 

Difficulties of Arctic Shipping 

While this study presents increases to sea ice variability as a possible impediment to 

Arctic shipping prospects, the Arctic ice pack is still declining, and will eventually 

reach ice-free summer conditions. However, there are several other factors besides 

growing variability that make Arctic shipping difficult. Large commercial vessels can 

draft (depth below waterline) a significant amount, so accurate bathymetric surveys 

for nautical charts are a necessity. Meager historical maritime traffic and ice 

conditions in the past have kept Arctic surveying to maritime standards limited. In 

fact, only 1% of Canadian Arctic waters are surveyed to modern standards; this 

number rises to 3% for marine corridors (Fisheries and Oceans Canada, 2017). 

 

Furthermore, the Arctic is notably devoid of infrastructure and logistical support, 

which for a trans-Arctic transit may be tolerable, but presents issues for vessels 

travelling to destinations within the Arctic. Even for trans-Arctic shipping, 

emergencies or casualties to vessels or crewmembers may quickly turn dire without 
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adequate support in the region. The Arctic is a remote environment, and an increase 

in shipping may result in more and more ships that are on their own. 

 

The loss of sea ice also presents the alternative challenges of open water. Wave 

activity increases without the dampening influence of ice, and air temperatures 

below freezing result in sea spray that freezes to a vessel’s topside. Vessel icing is 

hazardous to vessel stability as well as crewmembers on deck. Moore (2012) found 

that in winter, in the subpolar Atlantic, ice accumulation rates of 4 cm hour-1 are 

common. Taking the density of ice to be ~900 kg m-3, this is equivalent to ~36 kg m-

2 hour-1 (Pustogvar & Kulyakhtin, 2016). 

 

In the winter, the Arctic presents the additional challenge of extended darkness. 

Should shipping extend past summer months in the future, increased darkness will 

present difficulties in ice navigation. Even modest ice navigation can be dangerous 

and unpredictable, so the loss of light to aid in recognition of ice features adds to the 

difficulties. 

 

Finally, it is possible that shipping may come to depend on icebreaker escorts, much 

as is the standard on the Great Lakes or Canada’s Atlantic ports. Individual nations, 

or private companies, would be free to charge for ice escort services. If these fees 

are substantial, they could offset the gains associated with the shortened sailing 

distances. 
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6. Conclusions 

In this study we have utilized the output of 40 realizations of Earth’s climate from a 

fully coupled GCM to analyze changes to Arctic sea ice interannual variability, 

especially its impact to commercial shipping. From this we have determined the 

following key-results: 

 

1. Sea ice variability peaks in the future 

This study analyzed four sea ice metrics: total sea ice area (SIA), total sea ice volume 

(SIV), and ice numeral (IN) for two vessel types: open water (OW) and polar class 6 

(PC6). We have shown that for all four metrics, variability experiences an increase 

that corresponds with ice loss from anthropogenic climate change. This increase in 

variability is not an artifact of the strong downward trend in sea ice area, but rather 

a unique feature that occurs simultaneously with the decline in ice cover. 

 

2. Each metric’s variability curve has a characteristic shape 

Regardless of month chosen, variability of a given sea ice metric displayed a peak 

that corresponded with the peak rate of ice loss. The differences among months for 

a given metric primarily affected the timing of the peak. Typical SIA variability 

consisted of a baseline natural variability, a large rise in future variability, and 

finally a decrease to zero with the loss of the ice pack. SIV variability was similar, but 

with a variability peak that was broader and smaller in amplitude and occurred 

earlier in the future in each month. The peaks of IN_OW and IN_PC6 variability 
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occurred between those of SIV and SIA, with IN_OW acting more like SIA and IN_PC6 

acting more like SIV. 

 

3. Timing of peak variability depends on season and metric 

The timing of peak variability was a function of the season. The earliest occurrences 

of peak variability were in the late summer/early fall (August, September, October), 

around 2030 for SIA. The latest occurrences of peak variability were the late winter 

(February, March, April), after 2090 for SIA. The early and late timing of peak 

variability corresponds to the timing of the annual minimum and maximum of sea 

ice, respectively. This is likely related to the thermodynamics of the system, as 

thicker and more expansive ice is limited in growth potential. Finally, the 

chronological peaks of variability for each metric typically occurred in this order: 

1. SIV 
2. IN_PC6 
3. IN_OW 
4. SIA 

 

4. Vessel selection influences which IN component is more important 

Vessels with lesser degrees of ice ability (such as OW) are more susceptible to the 

existence of any ice, which occurs first as a significant concentration with minimal 

thickness. As the vessel becomes more ice-capable, SIT becomes more important. 

We have shown that IN_OW is therefore more closely correlated to SIA, and IN_PC6 

is more closely correlated to SIV. 
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This study comprehensively investigated the relationship of IN within the LENS 

output. In the future, ground-truthing of IN (and its variability) should be conducted 

with a combination of on-site and remote observations. The creation of reliable IN 

products (such as operational forecasts or analysis) that are synthesized through 

any available observations would be of immense value to the maritime community. 

Additionally, a modified IN formula could be devised that removed the discrete 

jumps, but preserved the relationship between IN and its components. 
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Figures 
 

 
 

Figure 1: Thematic map of Arctic environment. The three sea routes displayed are simplified and approximated for 
reference. These three routes are the Northwest Passage (NWP) in purple, the Northern Sea Route (NSR) in yellow, and 
the Transpolar Sea Route (TSR) in green. Also shown is bathymetry (see legend) and September sea ice extents (SIE) for 
the 1981-2010 median (blue) and 2012 (the record minimum, green). Bathymetric data is taken from the International 
Bathymetric Chart of the Arctic Ocean (IBCAO) and sea ice extents are taken from the Sea Ice Index (Fetterer et al., 
2017; Jakobsson et al., 2012). 
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Figure 2: LENS ensemble averaged SIC climatology. 1920-1959. 
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Figure 3:  LENS ensemble averaged SIC climatology. 2000-2039. 
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Figure 4: LENS ensemble averaged SIT climatology. 1920-1959. 
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Figure 5: LENS ensemble averaged SIT climatology. 2000-2039. 
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Figure 6: Ice Numeral (IN) LENS ensemble averaged climatology for the period 1960-1999. OW refers to Open Water, a 
vessel with no ice strengthening. PC6 refers to Polar Class 6, a vessel with moderate ice strengthening. Positive values 
(red) represent ice conditions where navigation is allowed. Negative values (blue) represent ice conditions where 
navigation is not permitted. 

 



 53 

 
Figure 7: 

Top: Comparison of LENS vs. satellite observations (from Sea Ice Index) of SIE. 

Bottom: Spread of the difference between LENS and satellite observations of the annual averages among the 
ensemble members. Gaps are shown when an entire year of data was unavailable. 
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Figure 8: Spatial SIC bias in the LENS ensemble average (LENS minus observations), averaged over the period 1980-99. 
Red refers to an overestimation, while blue is an underestimation. Note that observations are not available for the 
area near the pole due to satellite orbit inclination. 
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Figure 9: Same as in Figure 8, but for 2000-17. 
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Figure 10: Same as in Figure 2, but for volume comparison with PIOMAS. 



 57 

 
Figure 11: Spatial SIT bias in the LENS ensemble average (LENS minus PIOMAS), averaged over the period 1980-99. Red 
refers to an overestimation, while blue is an underestimation. 
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Figure 12: As in Figure 6, but for 2000-17. 
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Figure 13: Checkerboard plots of September total SIA for each of the 40 ensemble members. SIA is presented as an 
anomaly relative to each ensemble’s September average from 1920-2100. The bottom plot expands the highly variable 
period from 2005-2040. 
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Figure 14: Year-to-year difference (light blue), 5 year running mean (dark blue), and variability expressed as 
interannual standard deviation (orange) of total SIA. 
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Figure 15: As in Figure 14, but for total SIV. 
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Figure 16: As in Figure 14, but for IN (OW). 
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Figure 17: As in Figure 14, but for IN (PC6). 
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Figure 18: Normalized variability curves of four important sea ice metrics. Variability of different metrics can be 
compared for amplitude and timeliness in a given month. Amplitudes cannot be compared between months. 
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Figure 19: Occurrence of the peak variability of four ice metrics, for each month from the LENS run. Lines represent 
median occurrences among all ensemble members (values listed in legend). Note that scatter points that occur 
concurrently have been slightly displaced for visibility. 

 

  



 66 

 
Figure 20: Spatial patterns of peak variability in SIC. The top row represents the magnitude of the peak variability 
occurring at each grid cell (i.e. the 3-year running mean of the year-to-year difference). The middle row is the year 
corresponding to the peak occurrence. The bottom row is the year associated with peak rate of concentration loss. 
Plots display the month of March (left column) and September (right column). 
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Figure 21: Same as in Figure 20, but for SIT.  
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Figure 22: Same as in Figure 20, but for IN (OW). 
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Figure 23: Same as in Figure 20, but for IN (PC6). 
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Figure 24: Each map plots correlation coefficients of IN (OW) with either SIC (top plots) or SIT (bottom plots), for the 
time period 1920-2005 (historical portion of LENS run). The plots on the left are for March and the plots on the right 
are for September. Plots are not averaged in any way, i.e. each temporal and ensemble point for the respective spatial 
points are included in the regression. The red circles represent the points referenced by Table 5 and Figures 25-28. 
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Figure 25: Same as in 24, but for Polar Class 6 (PC6). 
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Figure 26: Scatter plots of IN (OW) and components (SIC on top rows, SIT on bottom row), for the month of March. The 
left column plots show all years and ensembles, the right column shows ensemble averaged points. See Table 5 and 
Figure 24 for geographic positions of the three points featured on plots. The scatter points correspond to the left 
column of Figure 24. Note that for SIC (top row) all scatter points from geographic point 1 (blue) are clustered at 100% 
concentration and -40 IN, as are most of point 2 (red). 
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Figure 27: Same as in Figure 26, but for the month of September. The scatter points correspond to the right column of 
Figure 24. 
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Figure 28: Same as in Figure 26, but for a Polar Class 6 (PC6) vessel, for the month of March. The scatter points 
correspond to the left column of Figure 25. 
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Figure 29: Same as in Figure 26, but for a Polar Class 6 (PC6) vessel, for the month of September. The scatter points 
correspond to the right column of Figure 25. 
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Figure 30: Relative strength of correlations between IN and its components (SIC/SIT). Plots display the ratio of SIT 
correlation with IN to the correlation of SIC correlation with IN. The color indicates the relative strength of the 
correlation with each component and white represents ratios of correlation coefficients that are near unity. The top 
row is for an Open Water vessel (OW) and the bottom row is for a Polar Class 6 vessel (PC6). The left and right columns 
are for the months of March and September, respectively. 
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Figure 31: The large plot displays the ensemble and decadal average of IN for an Open Water (OW) vessel, from 2016 
to 2025 in September. Note that the Eurasian coast is, on average, favorable for navigation through the Northern Sea 
Route (NSR) during this period. The smaller plots show each September for only ensemble member 17, during the 
same period. Note that the NSR opens and closes multiple times during this period. 
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