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Abstract 
 

The terrestrial biosphere assimilates nearly one fourth of anthropogenic carbon dioxide 

emissions, providing a significant ecosystem service.  Anthropogenic climate changes that 

influence the distribution and frequency of subdaily weather phenomena can have a momentous 

impact on this useful function that ecosystems provide. However, most ecosystem-model based 

analyses of the impact of future extreme events on site to regional ecosystem carbon uptake do 

not consider subdaily meteorology. In order to improve these ecosystem model forecasts, 

we developed an ensemble based high resolution temporal downscaling routine designed to 

propagate uncertainty as part of the Predictive Ecosystem Analyzer 

(PEcAn, http://pecanproject.org) workflow and package. This routine uses a multi-variate 

regression based approach to downscale any daily or subdaily meteorological dataset to an 

hourly resolution. Temporally downscaling to an hourly resolution allows for the larger, more 

energetic eddies within the planetary boundary layer to overturn. Further, an hourly timestep 

allows for better model simulations of plant physiological response to rapidly changing weather 

(e.g., radiation, temperature, humidity) and microclimate.  In order to test the strength of our 

downscaling algorithm, we aggregated a year of hourly resolution eddy covariance data from the 

Willow Creek Fluxnet tower to a daily resolution, used our downscaling procedure to downscale 

it back to an hourly resolution, and then compared our observations against our downscaled 

output. Following this test, we performed the same procedure for each year between 1999 and 

2015 and compared ecosystem model output for each resolution. We find that the hourly 

downscaled meteorology improved our net ecosystem exchange values by 94%, bringing our 

modeled values closer to the actual observations. Next, we use the temporal downscaling 

algorithm to sample uncertainty in future projected meteorological drivers at site-level daily 

http://pecanproject.org)/
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resolution using Coupled Model Intercomparison Project 5 (CMIP5) forcing data from the 

Multivariate Adaptive Constructed Analogs (MACA) dataset. MACA offers spatially 

downscaled data for each CMIP5 model for two Representative Concentration Pathways (RCP) 

of 4.5 and 8.5 (W/m2 trapped by 2100, respectively) emissions scenarios at a resolution of 4-km 

from the present day to 2100 (Abatzoglou et al., 2012). We temporally downscaled each model 

in the MACA dataset from 2020-2030 so that the forcings were calibrated using observations at 

an hourly eddy covariance flux tower. After running the SIPNET ecosystem model using these 

temporally downscaled future climate data, we find a large divergence of cumulative net 

ecosystem exchange (~4000 g C m-2) across the CIMP5 models during the next decade.  This 

large spread is due to differences in frequency of extreme temperatures, extreme precipitation 

events, and prolonged periods without precipitation.  
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Introduction  

 

Human activity over the past 200 years has caused an increase in atmospheric 

concentration of carbon dioxide. Carbon dioxide emissions will continue to increase globally 

into the future (Raupach et al., 2008). Given our anticipated rates of emission, the International 

Panel on Climate Change (IPCC) Fifth Assessment Report (2014) shows that global-mean 

temperature is expected to increase between 2.6 and 4.8 degrees Celsius by 2100 relative to 

1986-2005 measurements. One reason for the range in temperature increase is due to uncertainty 

of natural carbon sequestration. The Earth’s oceanic ecosystems and terrestrial biosphere provide 

a significant service in reducing the impact of anthropogenic carbon dioxide emissions through 

the assimilation of this greenhouse gas. The terrestrial biosphere alone assimilates nearly one 

fourth of these carbon dioxide emissions which diminishes the full effect of human activity, but 

future rates range from significantly larger carbon sinks to global carbon sources (Friedlingstein 

et al., 2016; Pachauri, Rajendra K. et al., 2014). Understanding how this useful ecosystem 

function will change as the climate changes is important for increased confidence in prediction of 

further impacts to society and the health of planet Earth.   

The reason future land uptake estimates diverge is that global warming causes 

temperature increases and changing precipitation patterns that will have varied regional impacts 

on ecosystems because of differences in soils, vegetation, and land management (Walther et al., 

2002). For example, ecosystem response to phenomena such as daily temperature extremes, 

changing precipitation event duration and intensity, and an increase in extreme weather events 

each have implications for the global carbon budget. An extreme weather event is defined in the 

IPCC (2014) as an event that is as rare or rarer than the 10th or 90th percentile of a Gaussian 
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distribution. Frank et al. (2015) suggested that a relatively small change in the mean or variance 

of a climate variable inherently leads to a disproportional change in the frequency of extremes.   

It is projected that longer and more frequent heat waves will be a consequence of global 

warming. These temperature extremes are usually coupled with drought which can induce water 

stress on forests in particular with an increase in tree mortality as a consequence (Breda et al., 

2006; Bigler et al., 2007; Adams et al., 2010). These anomalously high temperature episodes 

coupled with a lack of precipitation leads to stomatal closure, higher vapor pressure deficit, and 

lower levels of leaf transpiration and evaporative cooling by plants (De Boeck et al., 2011). De 

Boeck et al. (2011) goes onto discuss how high temperatures and increased levels of sensible 

heat also increase the rate of soil moisture depletion, leading to even further stresses on plant 

hydraulics. More negative soil water potential and low soil hydraulic conductivity are 

consequences of the high temperatures projected due to anthropogenic climate change 

(Reichstein et al., 2013).   

These examples of temperature impacts on ecosystems are not limited to long term 

events.  Subdaily fluctuations in temperature can have significant implications for plant function 

and gross primary production (GPP) (Medvigy et al., 2010). Long (1991) showed that 

photosynthesis is optimized at a particular temperature and photosynthetic rates are diminished at 

extreme low and high temperatures. Thus, temperature variability throughout a day can 

significantly impact GPP values and ultimately control the carbon fluxes. When compared to 

using just daily mean, maximum, and minimum temperature data in model experiments, hourly 

temperature data can provide greater insight to diurnal photosynthetic response to temperature 

variation leading to improved accuracy of carbon flux estimates.  
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Changes in subdaily fluctuations in temperature and specifically diurnal variability due to 

climate change has consequences for agriculture as well. Peng et al. (2004) investigated diurnal 

temperature range impacts for rice crop yields using a 24-year observational dataset. They 

reported varied increases in annual mean, minimum and maximum temperatures and show a 

decrease in the diurnal temperature range. As a consequence, they discovered that increased 

nighttime temperature associated with global warming decreased rice yields.  

While Peng et al. (2004) provided us with evidence showing how maximum and 

minimum temperature ranges can impact rice yields, climate change impacts on agriculture are 

not limited to rice. Lobell et al. (2012) showed that carbon dioxide trends are likely to increase 

global yields by roughly 1.8% per decade over the next few decades. Conversely, warming 

trends are likely to reduce global yields by 1.5% per decade should the plants fail to adapt 

effectively. Changes in local temperature and precipitation conditions will also play a role in 

determining crop yields. Hatfield et al. (2010) discusses how agronomists will need to consider 

spatial and temporal variations in temperature and precipitation as part of the production system 

to determine future yield responses to climate change. This review discusses how sustained 

periods when temperature exceeds thresholds for damage to plants can decrease crop production. 

Changing precipitation patterns, event duration, and intensity are also altering 

hydrological systems that the terrestrial biosphere depends on. Extreme precipitation trends 

(greater than 95th percentile of Gaussian distribution for location) have been observed since 1950 

and show that the number of heavy precipitation events have increased over most land areas 

(IPCC, 2014). These changes will not be equally distributed across the globe, leaving specific 

regions to be affected differently. Mean precipitation in the mid-high latitudes and equatorial 

Pacific are likely to increase whereas many mid-latitude and subtropical dry regions show a 
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decrease under our current emission levels and socio-economic activities following the 

Representative Concentration Pathway (RCP) 8.5 (W/m2 increase in radiation) scenario. 

Precipitation events are very likely to become more intense and frequent over wet tropical 

regions and mid-latitude land masses (IPCC, 2014).    

 

1.1 Evidence of Ecosystem Response to Subdaily Meteorology 

Medvigy et al. (2010) compared the influences of hourly, daily, and monthly variance of 

carbon fluxes using the Ecosystem Demography model version 2 (ED2) and found that terrestrial 

ecosystems are highly sensitive to high-frequency meteorological variability. Through their 

modeling efforts, they discovered substantial differences in ecosystem functioning when ED2 

was driven by hourly meteorological forcing data compared to coarser resolution forcing data 

with the same means. They found that projected changes in radiation and precipitation 

fluctuations have significant ramifications for carbon storage and ecosystem structure and 

composition. They concluded that the statistical variability at high temporal frequency is 

essential for robust forecasting of ecosystem structure and functioning, thus providing further 

evidence that subdaily meteorological data are required to accurately forecast carbon cycle 

changes.   

Precipitation regimes in the mid-latitudes are more likely to have greater intensities but 

occur less frequently due to climate change (IPCC, 2014). Air has a greater capacity for water 

vapor at higher temperatures and the vapor pressure deficit (VPD) between plants and the 

atmosphere will grow, leading to increased evaporation and transpiration rates to restore the 

balance (Novick et al., 2016). This study showed higher levels of atmospheric water vapor can 

intensify precipitation events because of increased moisture availability and latent heat release 
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which fuel low pressure systems. Heavier precipitation events and stronger localized convective 

systems present a new problem for ecosystems on a local scale.  Rain events initiated by 

convective forcing and local convergence in the United States typically occur on a spatial scale 

of 10 to 100 km and at a subdaily timescale where the timing of initiation varies region to region 

(Carbone et al., 2001).  Essential plant nutrients such as nitrogen and phosphorus that are either 

found naturally in soils or applied as organic and inorganic amendments in agriculture are more 

likely to be lost to surface and groundwater with extreme rainfall events (Trenberth, 2011). 

Trenberth (2011) also showed how the irregularity of precipitation events can cause surface 

crusting during drought events which can increase runoff during subsequent heavier precipitation 

events.  Flooding events such as the Boscastle, England flood in August 2004 was caused by 181 

mm of rain that fell in a span of 5 hours (Wheater 2006), highlighting the need 

for subdaily resolution rainfall intensity data.  

The shifts in precipitation patterns and intensity are also likely to impact soil moisture 

availability coupled with increased evapotranspiration (ET). ET is highly variable at both a daily 

and subdaily time step (Fisher et al., 2017). Solar radiation, humidity, air temperature, and wind 

speed regulate the transfer of water between plant and atmosphere and thus drive ET. Another 

significant driver examined in ecology but not mentioned with the traditional meteorological 

variables is vapor pressure deficit which tells us the relative magnitude of atmospheric water 

vapor demand. Novick et al. (2016) showed that increased atmospheric water vapor demand 

limits stomatal conductance, a measure of a plant's ability to exchange water vapor, CO2 and O2 

with the atmosphere. Their results indicate that in the future, the terrestrial carbon cycle will be 

impacted by higher temperatures because the warmer conditions will increase the respective 

importance of vapor pressure deficit in limiting stomatal conductance and ET. Vapor pressure 
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deficit has a linear relationship with gross primary production and ET and considering these 

variables at a subdaily timescale is important for maintaining the carbon-water connection (Zhou 

et al., 2014). The studies each highlight the importance of subdaily meteorological information, 

as it will ultimately impact plant function and the carbon cycle.  

Parmesan et al. (2000) provides evidence that extreme weather events are mechanistic 

drivers of broad ecological response and are essential in estimating carbon cycle feedbacks from 

ecosystem models. We have shown that extreme weather events occur at a local to regional 

spatial scale and can be subdaily events. In order to estimate extreme event impacts, a spatially 

and temporally downscaled dataset is required. Individual plants respond to meteorological 

drivers on a subdaily timescale and can vary from site to site across large spatial domains.   

  

1.2 Current Approaches to Downscaling 

Recent efforts in global climate modeling have been shown through the fifth Coupled 

Model Intercomparison Project (CMIP5) where 40 different climate centers around the world ran 

global climate models with multiple ensemble outputs for four likely scenarios and multiple 

physical realizations (Taylor et al., 2010). This is the most robust GCM effort to date, yet the 

average spatial resolution of these models is around 1.75 degrees latitude by 1.75 degrees 

longitude (ENES, 2011).   

The coarse spatial resolution has motivated multiple spatial downscaling efforts to 

identify climate changes on the regional scale. Zhang et al. (2005) spatially downscaled GCM 

output from the native GCM grid scale to station-scale using a transfer function method and used 

this method to explore the site-specific impact assessment of climate change on water resources 

at Kingfisher, Oklahoma, USA. Vimont et al. (2010) used empirical orthogonal 
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function/principal component analysis with linear regression, maximum covariance analysis, and 

canonical correction analysis to downscale precipitation over Indonesia. They investigated the 

skill of the linear method employed and found that most of the skill is attributed to year to year 

El-Nino Southern Oscillation variation and long-term trend in precipitation and large scale 

fields. Other efforts for statistical downscaling of spatial resolution have specifically focused on 

precipitation (Schmidli et al., 2007; Gutmann et al., 2014) or temperature and precipitation 

(Clark et al., 2004; Vrac et al., 2016) where multiple approaches are used such as stepwise 

multiple linear regression, bias correction and spatial disaggregation to generate the statistics 

required to downscale. Each of these methods employ the use of statistical spatial downscaling 

which assumes a relationship between the large scale and local scale flow and that this 

relationship will exist into the future. These spatial downscaling efforts have increased our 

understanding of meteorological impacts on a much finer grid space and have enhanced our 

ability to predict local-scale climate change.   

While there has been a breadth of research performed for spatially downscaling GCM 

output, little has been done to temporally downscale these coarse meteorological projections. The 

majority of the temporal downscaling efforts thus far have been geared towards downscaling 

precipitation or temperature. Mendes and Marengo (2010) used artificial neural networks to 

temporally disaggregate precipitation and showed that their method outperformed a statistical 

downscaling model, but they were only temporally downscaling to a daily resolution and this 

was only performed for precipitation. Kumar et al. (2012) statistically downscaled 

multiple meteorological variables using neural networks from monthly to sub-daily time steps 

while retaining consistent correlations between variables. They concluded that neural networks 

may not be a realistic approach if the time frame extends to a period with significantly different 
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weather variability. Kirchmeier-Young et al. (2016) provided evidence that a probabilistic 

approach to temporal downscaling is necessary to model extreme events and showed a variety of 

validation metrics for examining the results of the University of Wisconsin Probabilistic 

Downscaling dataset. While this dataset provides a robust representation of extreme events at a 

fine spatial resolution, the daily resolution data is not fine enough in a temporal sense to fully 

investigate ecosystem responses to subdaily meteorological variation.     

 

1.3 Objectives 

The present study is motivated by the lack of high temporal resolution GCM output 

available for testing subdaily extremes and their impact on the terrestrial carbon cycle at a local 

scale. Further, ecosystem models not only require hourly meteorology, they also require all 

variables relevant to land-atmosphere interaction including temperature, precipitation, incoming 

shortwave and longwave radiation, pressure, relative or absolute humidity, and wind speed. We 

have developed the first open-source ensemble based multi-variable temporal downscaling 

routine that can be used to disaggregate any resolution dataset in Climate and Forecast (CF) 

convention based on statistics from a subdaily observational dataset. This routine is available 

through the Predictive Ecosystem Analyzer (PEcAn) R package, which accelerates ecosystem 

modeling and makes the process reproducible. We use a linear regression based approach where 

we leverage statistics of the provided training data using a linear regression based approach. Our 

method is also unique as we generate multiple ensembles of downscaled output to propagate 

uncertainty into the future. By creating multiple ensembles, we are able to analyze our 

uncertainty that is inherent to any downscaling procedure (Bierkens et al., 2000; Jianguo, 

2006).   
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The purpose of this manuscript is to: (i) describe the open source, ensemble 

based downscaling procedure we have developed, (ii) evaluate the temporal downscaling 

algorithm, (iii) and use the temporal downscaling procedure to estimate future net ecosystem 

exchange (NEE). This paper is directed toward the ecosystem modeling community 

and climate downscaling community, with the goals of: (i) to show evidence supporting the need 

for high resolution meteorological driver data, (ii) validate the temporal downscaling algorithm 

detailed above, and (iii) temporally downscale projected climate data to understand the effect 

future climate has on ecosystems. This paper is organized as follows. The methodology and data 

descriptions are detailed in Section 2. Results from our algorithm validation and future carbon 

cycle response are presented in Section 3. A discussion of the results and future goals are 

presented in Section 4, and a summary of results are presented in Section 5.    

  

2. Methods 
 

The focus of the present study is to account for subdaily meteorological variations and 

their impact on future ecosystem carbon cycling. We developed a unique temporal downscaling 

algorithm that we use to temporally disaggregate daily resolution CMIP5 output into hourly 

resolution forcing data and use the downscaled data product to drive the Sipnet ecosystem model 

within the PEcAn workflow. We describe the PEcAn ecoinformatics workflow in section 2.1 

and the specifics of the temporal downscaling algorithm created within PEcAn in 2.2.  Data and 

models are discussed in section 2.3 followed by the experimental design in section 2.4.   

 

2.1 The Predictive Ecosystem Analyzer (PEcAn) 



   10 
 

Ecosystem modeling plays a critical role in basic ecological research and the lack of 

conventional methods and standards has slowed the pace of improvement (Dietze et al., 2013; 

Moorcorft, 2006). Diversity in data collections without unified metadata guidelines makes 

reproducibility of a modeling effort difficult.  Many models aren’t available to the wider 

ecosystem community and collecting multiple data sources creates a large time sink. PEcAn 

attempts to solve these problems and accelerate the pace of model improvement by making data 

and models more accessible (Lebauer et al., 2013). PEcAn is an informatics project that acts as 

an accessible home for the ecosystem community by allowing a user to parameterize, run, 

analyze and benchmark a suite of ecosystem models in one place. PEcAn integrates multiple 

sources of meteorological data and trait data that all are converted to the CF metadata convention 

standards and follow a unified coding protocol. The tools that have been developed for PEcAn 

can be combined into customizable workflows and used for ecosystem modeling and synthesis 

along with decision support. The overarching goal of PEcAn aims to improve ecosystem models 

and reduce the uncertainty of climate change impacts on ecosystems and the carbon cycle. 

PEcAn has been developed in the R programming language (R Development Core Team 2008) 

and all code is open-source and is available at (https://github.com/PecanProject/pecan).  

 

a. Ecosystem Modeling Example Using PEcAn  

The first step of the PEcAn involves selecting a location anywhere on the globe and an 

ecosystem model to run at that location. Once that is declared, the next step is downloading the 

meteorological driver data. Within the PEcAn framework, we've developed a suite of data 

extraction functions that pull data from various meteorological data archives. These include 

reanalysis datasets spanning as far back as 1900, recent observational datasets, and climate 

https://github.com/PecanProject/pecan
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projected data reaching out to 2100. Point location observational datasets and gridded datasets at 

various resolutions allow a user to span across multiple spatial and temporal scales. These are 

designed to collect variables of interest for a specified range of years, rename them using CF 

convention, and save them as individual years in the Network Common Data Form (NetCDF) 

format.  A user can simply select the function that downloads the dataset of their choice, enter 

the logistical arguments necessary, and download the data on the fly.  

The downloaded dataset is then gapfilled to fill any missing data values using the Marginal 

Distribution Sampling (MDS) method described in Reichstein et al. (2005).  The meteorological 

data is now configured for that specific model input format. These two steps are done by using 

metgapfill() and met2model() which are functions that have been developed in PEcAn and 

generalized for all of our data and models. 

Next, a user selects the plant functional type (PFT) (availability varies by model, SIPNET 

offers Temperate Deciduous and Temperate Coniferous) for the location of interest which is used 

to parameterize the ecosystem model. These traits and priors are queried from the 

Biofuel Ecophysiological Traits and Yields Database (BETYdb) and a meta-analysis is 

performed. A user can select to run the model with multiple ensemble runs with varying trait 

data parameters for the specific model. This is important for quantifying our trait data 

uncertainty.  

After the input stage, a PEcAn creates an XML file containing all of the settings required 

to run the chosen model. The workflow is now ready to run the model. Each model run can be 

found in the automatically generated run, PFT, and output folders. One can find the results of the 

model in the output folder for each year of meteorology that drove the model. The output files 

are where we can find out the model results for NEE, Net Primary Productivity, Gross Primary 
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Productivity, etc. An ensemble analysis of the model output immediately follows the model 

execution stage. Then, a sensitivity analysis and variance decomposition of the model output is 

performed. Parameter data assimilation comes next and performs a Bayesian Markov Chain 

Monte Carlo on the model parameters by suggesting parameter values, running the model, 

computing the likelihoods, and accepting or rejecting the proposed parameters.  

State data assimilation then runs each ensemble member through a Kalman filter and 

generalized filter code. This function outputs each of the model run outputs, a PDF of 

diagnostics, and an Rdata (R’s native data file type) object that includes the forecast, analysis, 

and prior and posterior covariance matrix for each time step.  A benchmarking analysis can also 

be performed if selected by the user which evaluates the parameters by comparing to a collection 

of standards. A key advantage of this workflow is that it’s coherent across multiple models and 

parameters with a uniform structure that is reproducible. Ecosystem modeling has traditionally 

been unsystematic with lack of a central parameter database, agreed unit conventions, or a 

reproducible open-sourced workflow. PEcAn solves these issues and increases the quality and 

quantity of science we can do.   

This paper focuses on the recent addition of a temporal downscaling algorithm to PEcAn 

R package. The Temporal Downscale Meteorology (TDM) workflow has been synthesized 

within PEcAn and directly functions in between the driver data gap filling and the conversion of 

that data to model specific meteorological data syntax. The TDM functions will temporally 

downscale coarse meteorology downloaded before it is read into the model format. The 

development of this algorithm and the specific routine will be detailed in the following section. 

 

2.2 Temporal Downscaling Algorithm  
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Our statistical downscaling scheme uses a linear regression based approach motivated by 

the plethora of high resolution observational and reanalysis meteorological datasets currently 

available. Linear regression is a popular statistical method used to investigate the relationships 

between predictor and predictand (Neter et al., 1996). An advantage of a linear regression 

approach is that it enables us to quantify and propagate uncertainty. Additionally, other methods 

described by Wilby and Wigley 1997 suggest that statistical downscaling techniques such as 

regression are not as computationally intensive as others. We chose the linear regression 

technique for its computational speed and to address the statistical uncertainties in the 

downscaling (Jianguo, 2006). The basic linear regression equation is displayed below.  

 

Linear Regression Equation 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑒𝑒 

𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑥𝑥 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

𝑒𝑒 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

Equation 1. Linear regression equation (Montgomery et al., 2015) 

 

In the present study, we are investigating future meteorology and its impact on the 

ecosystem. It’s important to note that we incorporate the future climate change signal by 

temporally downscaling projected meteorological datasets. We are assuming that the 

relationships between the dependent and independent variables remains valid into the future, an 
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assumption often referred to as stationarity (Schmith 2008). Our temporal downscaling routine is 

the first open sourced ensemble based temporal downscaling function that downscales a suite 

of meteorological variables that are necessary to drive ecosystem models. Other open source 

temporal downscaling methods only downscale one or a few meteorological variables and don’t 

quantify uncertainty through the generation of multiple ensembles (Wilby et al., 2004; Maraun et 

al., 2010; Mascaro et al., 2014).  We will now discuss each step of the temporal downscaling 

workflow and explain how it was synthesized within the PEcAn workflow.   

 

Meteorological Variables Downscaled 

Variables Units 

Air Temperature Kelvin 

Surface Downwelling Shortwave Flux In Air Watts meter-2 

Precipitation Flux Kilograms meter-2 second-1 

Air Pressure Pascals 

Surface Downwelling Longwave Flux In Air Watts meter-2 

Specific Humidity Kilogram Kilogram-1 

Wind Speed Meters second-2 

Table 1. Downscaled meteorological variables and units 

 

a. Extracting Meteorological Datasets 

The TDM workflow in PEcAn requires two datasets for downscaling, a fine resolution 

training dataset and a coarse resolution dataset to downscale. The training data should ideally be 

at least a decade in length consisting of observations at a high temporal frequency (sub-daily, 
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ideally hourly or half-hourly). The coarse resolution dataset that we wish to downscale can span 

any range of dates but should be at a daily temporal resolution. We assume that future inter-

variable relationships will be more robust during years closer to the observational dataset. A user 

can select to download a single year or multi-year dataset at any point in time that they wish to 

downscale.  

 

b. Generate Linear Regression Models – gen.subdaily.models() 

The first step of our TDM workflow is to generate linear regression models using 

provided training data. At the front end of the model generation function, multiple arguments 

must be specified. The number of beta coefficients desired is a parameter that must be defined 

and the larger number of betas leads to a larger pool to draw from for uncertainty. Beta 

coefficients measure the slope or steepness of the regression line and any intercepts. Most 

importantly, the beta coefficients preserve the covariance among coefficients and intercepts. The 

larger the number of betas set, the larger memory storage required and the slower the 

calculations. We do not recommend setting the number of betas below 30 due to the central 

tendency theorem. The central tendency theorem states that the mean of a sample of data will be 

closer to the mean of the entire dataset as the sample size grows (Rosenblatt 1956). As a general 

rule, sample sizes greater than 30 are considered sufficient for this theorem to hold.  The routine 

generates the specified number of beta coefficients from the normal distribution by preserving 

covariance among predictors and the fine temporal resolution so the temporal autocorrelation is 

calculated.  

The window day argument specifies the number of days around the current day to include 

in the normal distribution. For example, if we are analyzing the training data at 01:00 AM on 
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January 5th, we will pull values from 01:00 AM on January 3,4,5,6 and 7th given a window day 

length of 5 days. We use a small window day length in order to keep smooth transitions between 

days.  This helps us avoid problems with lack of data in small datasets or zero inflated variables 

such as precipitation flux.  Another argument important for this function is declaring whether or 

not we want to calculate residuals for each time step. Residuals are the difference between the 

predicted value and dependent variable. If we calculate the residuals and store them in the linear 

regression model output, we will use these to help us add noise to the downscaled product and 

propagate uncertainty. Logistical arguments such as the training data file path and a folder to 

save the models are also needed.   

Once the initial arguments are specified, the training data is read into the function and 

additional variables are created that are used as predictors. For each meteorological variable in 

the training dataset, we calculate daily means for the previous day, current day, and next 

day which help us identify daily transitions. For air temperature, we additionally calculate daily 

minimums, minimum departures, maximums, and maximum departures for the previous, current, 

and next days. If it is the first day of the first year in the training dataset, we declare the previous 

day to be equal to the current day. The same protocol is done for the last day in the last year of 

the training dataset. We also leverage the previous and next time step values because the 

previous time step if not independent from the next time step, especially at fine temporal 

resolutions such as hourly.  Failure to do this causes abrupt, illogical shifts in variables such as 

temperature. Once the additional variables have been created, the algorithm will model 

each meteorological variable and the time step of the training data.   

Each variable in Table 1 undergoes a similar but unique linear regression calculation that gets 

applied on a daily basis. We perform the calculations for each variable independent of the others. 
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A multivariate linear regression technique was tested but returned results well outside the range 

of possibility for most variables, so specific humidity has the only multivariate approach. The 

covariances of predictors at the diurnal resolution are poorly constrained, but specific humidity 

has a clearer physical relationship with other predictors. Each linear regression calculation in R 

is performed using the “lm” function which fits a linear model to the data. The formula 

arguments includes a stated response variable and at least one explanatory variable. In our 

algorithm, the training data observations of each meteorological variable is the response variable. 

The explanatory variables differ between meteorological variables used.  

 

I. Air Temperature 

Air temperature has the most explanatory variables which include air temperature means, 

minimums, and maximums for each previous day, current day, next day, previous time step, and 

next time step. This gives us a smooth transition between time steps and helps us capture the 

diurnal signature of temperature.  

 

II. Shortwave Radiation 

For Shortwave radiation (formally known as surface downwelling shortwave flux in air), 

we initially identify the time steps where there is no sunlight and make sure to save those linear 

regression models as a dark time step. This ensures that random noise at those time steps won’t 

exist so we don’t get shortwave radiation values at night when we actually downscale some data. 

It also helps constrain an otherwise double-ended zero-inflation issue unique to shortwave 

radiation. The only explanatory variables for shortwave radiation are the daily means. 
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III. Precipitation 

Precipitation needs to be a bit different than the other variables because at some locations 

on Earth, the number of observations without measureable precipitation outweighs those with 

measureable precipitation, especially at a fine temporal resolution. We saw it necessary to use a 

scheme where we first calculate the fraction of precipitation occurring at each time step and 

estimate the probability distribution of rain occurring in that given time step. In this case, the 

probability distribution function is now used as the response variable. Our explanatory variable is 

the fraction of precipitation flux multiplied by the total daily precipitation flux.  

 

IV. Air Pressure 

 The linear regression calculation for air pressure is straight forward. As with every 

variable besides precipitation, the variable of interest is used as the response variable. The 

explanatory variables include the means of the previous day, current day, and next day as well as 

the values for the previous and next time step.  

 

V. Longwave Radiation 

Longwave radiation (formally known as surface downwelling longwave flux in air) 

undergoes the same approach as air pressure with the daily means of previous day, current day, 

and next day and the values of the previous and next time step used as the explanatory variables.  

 

VI. Specific Humidity 

Specific humidity is the only variable that has a multivariate approach for the linear 

regression model calculation. We log transform the specific humidity variable and use that as the 
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response variable because it’s zero bounded and log distributed. The explanatory variables for 

specific humidity include the daily mean for the current day, the previous and next time step 

values, and the daily air temperature maximum. We experimented with other predictors but the 

downscaled values fell well outside the observational dataset Gaussian distribution, leading us to 

believe these values were unrealistic.  

 

VII. Wind Speed 

Wind Speed is the final variable that we generate linear regression models for. Our 

response variable is the square root of the observational value for wind speed because of its non-

negative bound. The daily means of the current day and the previous and next time step values 

are used as our explanatory variables.  

A linear regression model is created for each time step of the training data. The linear 

regression models for each variable are saved for each day of the year as an Rdata file within the 

output folder. We save models by day to decrease memory demand and query them as needed in 

the following step. We save each variable in its own folder for organization. Now that we have 

generated the linear regression models for the variables in the training dataset, we are ready to 

utilize the predict_subdaily_met() function.  

 

c. Predicting Subdaily Meteorology – predict_subdaily_met() 

The second step to the TDM workflow is where we apply the temporal downscaling 

functions the coarse data previously downloaded using the linear regression models calculated 

from the training data. Logistical arguments must be passed such as the file paths to the dataset 

we wish to temporally downscale, the training dataset, and the location where the linear 
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regression models are stored. Each year for the data we downloaded is saved to an individual 

NetCDF file. In order to efficiently loop over each file, the date range of the coarse dataset must 

be specified. If we calculated residuals in gen.subdaily.models() and want to use them to add 

noise and thus uncertainty to our downscaled product, we will set this logical argument to true.  

An argument is required that specifies the number of ensemble members we wish to 

generate. In order to propagate the uncertainty when we transform coarse data to a fine 

resolution, we create multiple ensemble members which are sampled from the probability 

distribution functions contained within the linear regression models for each time step. We are 

able to better quantify our uncertainty by generating multiple ensembles and we are able to 

transfer this through the ecosystem model execution by driving the chosen ecosystem model 

using each ensemble member generated. 

Once the initial parameters have been defined, we are able to run the function that first opens 

the training dataset, which we use to keep our output file organized. The final downscaled file 

will have the same resolution, latitude, and longitude as the training dataset and by opening it 

first we obtain this information. Next, the date range of the coarse dataset is sequenced and a 

loop is initiated to read in and downscale one year at a time beginning with the first year. For the 

given year in the coarse dataset, we read in the previous year (if it exists), the current year, and 

the next year. By reading in the previous and next years, our transitions are coherent and smooth 

from year to year when we have a cut off at December 31 – January 1. For years where we are 

unable to access previous or next years (first year or last year of the dataset), we duplicate the 

closest available value. Once the appropriate data files have been read in and values have been 

saved, we are ready to undergo the subdaily prediction and generate multiple ensembles. During 

the prediction phase of the downscaling procedure, each variable is modeled separately. 
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However, the general scheme is the same for all, so we will describe the common workflow and 

then discuss the differences across variables.  

The first step to the prediction phase is creating column propagation list that randomly 

chooses which ensemble member value to propagate onto the equation for the next value. This 

list has a length equal to the length of the desired temporal resolution and randomly samples 

between one and the number of ensembles based on the normal distribution. Similarly, a beta 

propagation list is created that randomly chooses which betas that will be selected from the linear 

regression models for each ensemble member. This list also has a length equal to the length of 

the desired temporal resolution and randomly samples between one and the number of betas that 

we calculated for the linear regression model generation. These lists are created at the beginning 

of the prediction phase so that these random selections are consistent across variables.  

 For each variable to be downscaled, we loop over the length of the desired time step 

beginning with the minimum time step value. Inside the loop, we grab the values from the 

previous time step. From each time step in that particular variable, we read in the appropriate day 

(saved a day at a time with information at the specific time step) from the linear regression 

model output and pull the information from that particular time step. Additionally, we read in the 

beta file for that day that we have saved and reference the beta propagation list to select the 

appropriate value to use for that time step. 

 Each time step that we are downscaling is predicted by first reading in the model terms, 

coefficients, covariances, and residuals. We extract the model frame from the linear regression 

model output that was used when fitting the model for that time step. Then, we create a model 

matrix for the time step using the model frame, the closest coarse data values and the previous 

and next downscaled time step values for the variable we are downscaling. Finally, we use the  
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linear regression approach detailed in equation 2 to simulate each ensemble member by 

multiplying the model matrix by the transposition of the beta value selected for each ensemble 

member.  

Linear Regression Approach to Ensemble Downscaling 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Equation 2. Linear regression approach to ensemble downscaling.  

 

If we calculated residual errors in linear regression model generation step, the error is 

added at the end of this equation. The predictand solved for in this equation for each ensemble 

member is the downscaled value.  

 Air temperature is downscaled uniquely in that we include the maximum and minimum 

temperature for the coarse data time step and the previous downscaled values. We use these to 

help us downscale air temperature and constrain our values by set boundaries for the maximum 

and minimum temperatures possible for downscaling. For shortwave radiation, we only model 

the time steps in the training data where this value is positive for that particular day. 

Downwelling shortwave radiation is only non-zero while the sun is out so we make sure we are 

only modeling time steps where shortwave radiation is greater than zero.  

 After the downscaled values are predicted, some variables undergo quality control 

procedures. Shortwave radiation and precipitation flux are zero truncated variables so we ensure 

that the values generated are non-negative. For longwave radiation, we need to square these 

values because we took the square root when generating the linear regression models to prevent 

negative values. We also set boundaries for longwave radiation by declaring that the values must 

be greater than 100 W meter-2 and less than 600 W meter-2. These values were chosen semi-

arbitrarily based on values seen at Willow Creek. However, this is not a long term solution and 
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we will be implementing a new boundary value creation routine in the future. Specific humidity 

needs to be log transformed because we took the natural log of these values when generating the 

linear regression models. Specific humidity can sometimes end up with high or infinite values so 

we constrain this by ensuring that the values in the 99th percentile are less than 0.03 kilogram 

kilogram-1. Wind speed needs to be squared since we square rooted these values at the model 

generation stage to prevent negative values. The values for each ensemble member at each time 

step must undergo these quality checks.  

 Once the ensemble predictions have been complete and our downscaled members are 

finished, we save each ensemble member for that specific year as a NetCDF file in CF metadata 

conventions.  Each ensemble member can now be used as the meteorological driver for an 

ecosystem model.  

 

2.3 Data and Models Used 

Our experimental design (explained in Section 2.4) requires the use of two large datasets 

and one ecosystem model. We employed the use of the Willow Creek Flux Tower eddy 

covariance observational dataset (Cook et al., 2004) as well as the Multivariate Adaptive 

Constructed Analogs dataset which is a spatially downscaled version of the CMIP5 global 

climate model output. The SIPNET model (Braswell et al., 2005) was chosen as our ecosystem 

model for its fast processing time.  

 

d. Willow Creek FLUXNET Dataset 

FLUXNET is a global collection of ecological research sites that measure land-atmosphere 

exchange of carbon cycle and related atmospheric constituents that help us monitor the earth  
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system (Baldocchi et al., 2001). The measurements obtained by the sensors in this network help 

us monitor meteorology, climate trends, the carbon cycle, and the water cycle. These sensors are 

most commonly placed on flux towers which are constructed by an individual party. The 

individual scientist or lab is responsible for ensuring the quality of the data through regular 

upkeep and calibration of instrumentation as well as rigorous post-collection quality controls. In 

2016, the FLUXNET organization gathered all submissions for each tower in the network up to 

2015. The data for each site went through an advanced gap filling algorithm to fill in points in 

the time series where data may have been unavailable. Then, the data was quality assured and 

published to the FLUXNET2015 data archive. 

The Willow Creek Flux Tower stands in Northern Wisconsin and is located in a deciduous 

broadleaf forest. As described in Desai et al. (2005) and Cook et al. (2004), this mature 

hardwood forest is located in the Chequamegon-Nicolet National Forest, WI, USA (45°48′21″N, 

Figure 1. Willow Creek location and view of phenology from the top of the flux tower. Land cover map of Wisconsin courtesy of 
Wisconsin Department of Natural Resources. View of forest canopy structure taken from http://cheas.psu.edu/. 
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90°04′47″W).  The flux tower stands at 30 meters and has been measuring atmospheric state 

variables and eddy covariance metrics since 1999.  We utilized PEcAn’s extraction function, 

download.Fluxnet2015(), to attain 16 years (1999-2015) of hourly data from the Willow Creek 

flux tower. We will be using the variables listed in Table 1. These long standing flux tower 

observations at a high temporal resolution provide a rich dataset that we will use to test the TDM 

functions and use as training data for the downscaling.  

 

e. MACAv2-METDATA Dataset 

Multivariate Adaptive Constructed Analogs (MACA) is a statistical downscaling method 

used to spatially downscale CMIP5 global climate model output (Abatzoglou and Brown, 2011). 

The goal of MACA is to remove historical biases and match spatial patterns in climate model 

output by using a meteorological observation dataset. The GCM output from 20 GCMs of the 

CMIP5 experiment were spatially downscaled for the RCP4.5 and RCP8.5 scenarios to a spatial 

resolution of 4-KM.  

Model 
Name 

Model 
Country 

Model Agency Atmosphere 
Resolution(Lon 
x Lat) 

Ensemble 
Used 

bcc-csm1-1 China Beijing Climate Center, China Meteorological 
Administration 

2.8 deg x 2.8 
deg 

r1i1p1 

bcc-csm1-
1-m 

China Beijing Climate Center, China Meteorological 
Administration 

1.12 deg x 1.12 
deg 

r1i1p1 

BNU-ESM China College of Global Change and Earth System 
Science, Beijing Normal University, China 

2.8 deg x 2.8 
deg 

r1i1p1 

CanESM2 Canada Canadian Centre for Climate Modeling and 
Analysis 

2.8 deg x 2.8 
deg 

r1i1p1 

CCSM4 USA National Center of Atmospheric Research, 
USA 

1.25 deg x 0.94 
deg 

r6i1p1 

http://forecast.bcccsm.ncc-cma.net/web/channel-43.htm
http://forecast.bcccsm.ncc-cma.net/web/channel-63.htm
http://forecast.bcccsm.ncc-cma.net/web/channel-63.htm
http://esg.bnu.edu.cn/BNU_ESM_webs/htmls/index.html
http://atmos-chem-phys-discuss.net/11/22893/2011/acpd-11-22893-2011.pdf
http://journals.ametsoc.org/doi/pdf/10.1175/2011JCLI4083.1
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CNRM-
CM5 

France National Centre of Meteorological Research, 
France 

1.4 deg x 1.4 
deg 

r1i1p1 

CSIRO-
Mk3-6-0 

Australia Commonwealth Scientific and Industrial 
Research Organization/Queensland Climate 
Change Centre of Excellence, Australia 

1.8 deg x 1.8 
deg 

r1i1p1 

GFDL-
ESM2M 

USA NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.5 deg x 2.0 
deg 

r1i1p1 

GFDL-
ESM2G 

USA NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.5 deg x 2.0 
deg 

r1i1p1 

HadGEM2-
ES 

United 
Kingdom 

Met Office Hadley Center, UK 1.88 deg x 1.25 
deg 

r1i1p1 

HadGEM2-
CC 

United 
Kingdom 

Met Office Hadley Center, UK 1.88 deg x 1.25 
deg 

r1i1p1 

inmcm4 Russia Institute for Numerical Mathematics, Russia 2.0 deg x 1.5 
deg 

r1i1p1 

IPSL-
CM5A-LR 

France Institut Pierre Simon Laplace, France 3.75 deg x 1.8 
deg 

r1i1p1 

IPSL-
CM5A-MR 

France Institut Pierre Simon Laplace, France 2.5 deg x 1.25 
deg 

r1i1p1 

IPSL-
CM5B-LR 

France Institut Pierre Simon Laplace, France 2.75 deg x 1.8 
deg 

r1i1p1 

MIROC5 Japan Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies,and Japan Agency for 
Marine-Earth Science and Technology 

1.4 deg x 1.4 
deg 

r1i1p1 

MIROC-
ESM 

Japan Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies 

2.8 deg x 2.8 
deg 

r1i1p1 

MIROC-
ESM-
CHEM 

Japan Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies 

2.8 deg x 2.8 
deg 

r1i1p1 

MRI-
CGCM3 

Japan Meteorological Research Institute, Japan 1.1 deg x 1.1 
deg 

r1i1p1 

http://www.cnrm-game.fr/spip.php?article126&lang=en
http://www.cnrm-game.fr/spip.php?article126&lang=en
http://www.atmos-chem-phys.net/12/6377/2012/acp-12-6377-2012.html
http://www.atmos-chem-phys.net/12/6377/2012/acp-12-6377-2012.html
http://www.gfdl.noaa.gov/earth-system-model
http://www.gfdl.noaa.gov/earth-system-model
http://www.gfdl.noaa.gov/earth-system-model
http://www.gfdl.noaa.gov/earth-system-model
https://verc.enes.org/models/earthsystem-models/metoffice-hadley-centre/hadgem2-es
https://verc.enes.org/models/earthsystem-models/metoffice-hadley-centre/hadgem2-es
https://verc.enes.org/models/earthsystem-models/metoffice-hadley-centre/hadgem2-es
https://verc.enes.org/models/earthsystem-models/metoffice-hadley-centre/hadgem2-es
http://link.springer.com/article/10.1134%2FS000143381004002X
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://icmc.ipsl.fr/index.php/icmc-projects/icmc-international-projects/international-project-cmip5
http://journals.ametsoc.org/doi/pdf/10.1175/2010JCLI3679.1
http://www.geosci-model-dev.net/4/845/2011/gmd-4-845-2011.pdf
http://www.geosci-model-dev.net/4/845/2011/gmd-4-845-2011.pdf
http://www.geosci-model-dev.net/4/845/2011/gmd-4-845-2011.pdf
http://www.geosci-model-dev.net/4/845/2011/gmd-4-845-2011.pdf
http://www.geosci-model-dev.net/4/845/2011/gmd-4-845-2011.pdf
https://www.jstage.jst.go.jp/article/jmsj/90A/0/90A_2012-A02/_article
https://www.jstage.jst.go.jp/article/jmsj/90A/0/90A_2012-A02/_article
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NorESM1-
M 

Norway Norwegian Climate Center, Norway 2.5 deg x 1.9 
deg 

r1i1p1 

Table 2. CMIP5 Models Spatially Downscaled by MACA found at (http://maca.northwestknowledge.net/GCMs.php) 

 

The MACAv2-METDATA dataset is the result of the spatially downscaled CMIP5 output 

available over the entire coterminous United States at a daily temporal resolution from 2006 to 

2100. All 20 GCMs in Table 2 were spatially downscaled and the meteorological variables in 

Table 3 are available for each GCM.  

 

 

MACAv2-METDATA 

Variables Units 

Minimum Daily Temperature Kelvin 

Maximum Daily Temperature Kelvin 

Average Daily Precipitation mm/day 

Daily Average Surface Downwelling 
Shortwave Flux In Air 

Watts meter-2 

Daily Average Specific Humidity Kilogram Kilogram-1 

Daily Average Wind Speed Meters second-2 

Table 3. MACAv2-METDATA Variables and Units 

   

In this study, we downloaded a decade of data (2020-2030) for the RCP8.5 scenario for all 20 

models available in the dataset using the download.MACA() function in PEcAn. The MACAv2-

METDATA dataset is ideal for testing ecosystem response to future climate. The 20 spatially 

downscaled GCMs allow for a fine model intercomparison at 1/24th of a degree spatial 

http://folk.uib.no/ngfhd/EarthClim/index.htm#no
http://folk.uib.no/ngfhd/EarthClim/index.htm#no
https://verc.enes.org/models/earthsystem-models/ncc/noresm
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resolution. We will temporally downscale the MACAv2-METDATA to obtain a fine temporal 

and spatial resolution dataset.  

 

f. SIPNET Ecosystem Model 

The SIPNET model is a simple ecosystem model that can be used to explain the interaction 

between ecological biomes and the atmosphere (Braswell et al., 2005). This model has been built 

in a straightforward manner with the intention of being a basic, fast running ecosystem model. It 

stems from the PnET family of models (Aber and Federer 1992) and has been integrated into 

PEcAn. SIPNET is the fastest model PEcAn has and also requires the least amount of inputs. A 

user is able to select the meteorological driver and the PFT for a point location to run the model.  

PEcAn converts these selections to the climate and parameter input files in SIPNET format using 

the met2model() function. PEcAn also automatically generates the spatial parameter file and the 

SIPNET input file that holds information about the organization of the files created. The 

automated creation of these files make modeling with SIPNET fast, efficient, and 

straightforward.  

 SIPNET requires a number of meteorological variables to drive the model. These 

variables include air temperature, precipitation flux, shortwave radiation, humidity, and wind 

speed. Another convenient feature of SIPNET is that it doesn’t require the meteorological data to 

be at any specific temporal resolution. This will allow us to compare SIPNET’s output for 

varying temporal resolution meteorological datasets.  
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Figure 2. Basic SIPNET workflow described in Braswell et al., 2005.  
 

2.4 Experimental Design  

The goals of this study are: (i) to show evidence supporting the need for high resolution 

meteorological driver data, (ii) validate the temporal downscaling algorithm detailed above, and 

(iii) temporally downscale projected climate data to understand the effect future climate has on 

ecosystems. Each objective was approached in a specific manner and the methods employed for 

each goal will be detailed below.  

 

g. The Importance of High Resolution Meteorological Data 

The present study is centered on the argument that high resolution meteorological data is 

required to decrease carbon cycle uncertainty. In order to present evidence for this argument, we 
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ran the SIPNET ecosystem model in PEcAn using various resolutions of the same dataset. We 

took hourly resolution Willow Creek FLUXNET data for each year in our observational record 

(1999-2015) and aggregated the meteorology to 2 hour means, 3 hour means, 6 hour means, 12 

hour means and daily means. We ran SIPNET with each of these resolutions for Willow Creek 

and accumulated daily NEE values for the entire year. The average yearly sum of NEE from 

1999-2015 for each resolution are compared.  

 

h. Temporal Downscaling Algorithm Validation 

In order to test the validity of the temporal downscaling algorithm we wanted to see how well 

the routine performed with observational data. We aggregated 2006 hourly Willow Creek 

FLUXNET observations to a daily resolution and used the TDM workflow to downscale it back 

down to an hourly resolution. We chose to aggregate up to a daily resolution and downscale back 

to hourly because we will be temporally downscaling from a daily resolution to an hourly 

resolution in the next experiment. The year 2006 was chosen as the test year because it lies in the 

middle of our training dataset. A window day length of 5 days was selected and we generated the 

linear regression models with 100 betas. The window day length of 5 days allows us to provide 

the linear regression model calculations with sufficient data for precipitation. We chose 100 

betas because of computational time restrictions. We compare the meteorology data between the 

downscaled ensemble outputs and the actual observations and evaluate the accuracy of the TDM 

procedure.  

 

i. Future Ecosystem Responses at Willow Creek 
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Once we had validated the TDM procedure, we temporally downscaled climate projected 

data to understand the effect future climate has on ecosystems. We temporally downscaled each 

GCM in the MACAv2-METDATA dataset for the Willow Creek Flux Tower location. This 

dataset has a spatial resolution of 4-km, allowing us to extract spatially downscaled data near the 

location of the tower. We only temporally downscaled the RCP8.5 scenario, which has been 

coined the “business as usual” scenario. This scenario will be most accurate with current carbon 

emissions for the next decade given the low likelihood that immediate, drastic policy change on 

reducing greenhouse gas emissions would take place.  

In order to temporally downscale this data, we trained it using the Willow Creek FLUXNET 

meteorological dataset. The 15 years of hourly resolution flux tower data offer a robust training 

dataset. We used the TDM workflow to temporally downscale each GCM in the MACAv2-

METDATA dataset from a daily resolution to an hourly resolution for the years 2020-2030. We 

chose to perform this analysis for the next decade because SIPNET does not account for 

elevations in atmospheric carbon dioxide concentrations and the next decade will have similar 

levels compared to the end of the century. We generated 12 ensembles for each model and year 

downscaled to quantify our uncertainty. Consistent with our validation step, we chose a window 

day length of 5 days and chose to use 100 betas for the same reasons listed previously. 

Once all of the data went through the TDM workflow and the ensemble meteorology was 

generated, the data was then debiased based on evaluations of the downscaling algorithm 

performance detailed above. Specifically, we debias the downscaled precipitation fluxes by 

multiplying by the percent error between the mean of the observed precipitation and the 

downscaled precipitation (17.75%). The other variable comparisons showed that we were within 

1.4% of the mean for each and thus decided it was not worth debiasing. We ran each year of each 
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ensemble member through SIPNET to observe future NEE. We compare how differences in 

meteorological driver data affects the SIPNET model output and thus the future carbon cycle. By 

temporally downscaling spatially downscaled data, we are able to get our best estimate of NEE 

in the decade of 2020-2030. It is important to note that the MACAv2-METDATA dataset did not 

have longwave radiation or air pressure available. SIPNET does not require these meteorological 

variables but a more sophisticated model may need these variables to be specified.  

 

3. Results 
 

3.1 NEE Response to Varying Temporal Resolution Meteorology 

 We begin by comparing the SIPNET NEE output for varying temporal resolutions of 

Willow Creek flux tower observations. Figure 3 shows the SIPNET output for average yearly 

cumulative NEE for each temporal resolution aggregation and the actual observations of NEE.  
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Figure 3. Yearly total NEE by driver resolution for Willow Creek. Each resolution of Willow Creek observations from 1999-2015 
was run using SIPNET. Average yearly total NEE from SIPNET output is compared to NEE observations. 

 

To ensure that each resolution of NEE output was being compared fairly, we computed 

the daily average sums for each SIPNET run to account for the models tendency to show high 

diurnal variability. The daily sums for each SIPNET run were then summed for each year of 

output and averaged across the date range. The same procedure was used for the hourly 

observations of NEE at Willow Creek. When we compare the observed hourly NEE with the 

SIPNET NEE from hourly meteorology, we find that SIPNET overestimates carbon uptake by 

about 24 gC m-2 yr-1, or 10%. When we compare observed hourly NEE with the SIPNET NEE 

from daily meteorology, we find that SIPNET overestimates carbon uptake by 360 gC m-2 yr-1, 

or 250%. A progression of carbon uptake overestimation is evident as we decrease the temporal 

frequency of the meteorological driver data.  



   34 
 

 

Figure 4. Boxplots of yearly total NEE for each year (1999-2015) in observed NEE and SIPNET output NEE for various 
aggregated Willow Creek observations. 

 

Figure 4 shows boxplots that highlight the range in the yearly sum of NEE for each year 

at each resolution. As we decrease our temporal frequency, the variance in yearly NEE output 

from SIPNET grows. A poor temporal resolution meteorological driver increases interannual 

variability. By running SIPNET at an hourly resolution, we decrease our uncertainty for 

interannual variability for yearly sums of NEE.  
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Figure 5. Air Temperature vs. NEE regression slope magnitudes comparing actual observations and the various aggregations 
used for SIPNET. 

 

Figure 5 shows magnitudes of the linear regression slopes for observed NEE and 

temperature against the various temporal resolutions of SIPNET NEE and temperature. 

Temperature can be considered the most important driver of NEE because it controls plant 

photosynthetic efficiency and drives total soil respiration. As we decrease our temporal 

frequency, we decrease the variation in temperature by smoothing between the fine temporal 

variation and thus alter its photosynthetic efficiency and NEE. The magnitude of regression 

slopes drastically increases and moves further away from observations as we decrease our 

temporal frequency. Furthermore, Figure 5 shows the magnitude of covariances between air 

temperature and NEE for observations and the various SIPNET runs. The covariance structure 

becomes progressively disjointed and moves further from reality at lower temporal frequencies. 
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Since temperature is an important driver for photosynthetic efficiency, we need to preserve the 

covariance between it and NEE. 

 

Figure 6. Air Temperature vs. NEE covariance magnitudes comparing actual observations and the various aggregations used for 
SIPNET. 

 

 In order to decrease our uncertainty for yearly sums of NEE, it’s necessary to use high 

temporal frequency driver data for the ecosystem model. Figures 3-6 show evidence supporting 

the notion that finer temporal resolution meteorological data should be used to bring our SIPNET 

output closer to observed, both for means, for interannual variability, and for environmental 

sensitivity of the carbon cycle to climate.  

 

3.2 Temporal Downscaling Algorithm Validation 

 Validating the temporal downscaling procedure was necessary to show that we trust the 

algorithm to reproduce meteorology. Each figure or table in this section will be comparing the 
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hourly observed meteorology and the ensemble averaged downscaled meteorology. Tables 4 and 

5 show mean percent changes between the observations and the downscaled ensemble member 

average. A positive percentage value indicates a larger observational meteorology value and a 

negative value indicates a larger ensemble average downscaled value.  

 

 

Table 4. Mean Percent Change of the summary statistics for the year of 2006 highlighting the differences between the observed 
meteorology and the downscaled ensemble average. 

  

The summary statistics show small differences apart from precipitation flux and specific 

humidity. For precipitation, the mean value and maximum value for the observations are 17.75% 

and 84.41% higher, respectively. Precipitation is a difficult meteorological variable to downscale 

because at Willow Creek, like most mid-latitude locations, consistent patterns are rare at the 

hourly timescale. The timing and intensity of precipitation events is highly variable and the 

number of precipitable hours is largely outweighed by the number of dry hours. The lack of wet 

hours and in particular intense, convectively driven precipitation events causes the algorithm to 

distribute a daily value of precipitation throughout the day rather than capture a single, intense 

hourly value. Statistically speaking, the training data shows it to be more likely to have equal 

precipitation throughout the day rather than the short-lived but intense precipitation event. This is 

backed by our methodology which chooses to use a normal distribution to select the most 
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probable times of precipitation based on the observational dataset. Ultimately, this shifts our 

distribution of precipitation amounts towards smaller values that occur with a higher frequency.  

The yearly total sums for each variable is not reported in Table 4 as this is only 

applicable to precipitation. The mean percent change of the sum of precipitation flux is 17.75% 

(consistent with the precipitation flux mean). The year of 2006 was only 2% below our average 

precipitation total values throughout the datatset, suggesting that our downscaling algorithm 

underestimates precipitation totals. When we take a look at the downscaled precipitation output 

and compare it to the observations for the entire 16 year period, a low precipitation bias of 

around 17.7% is consistent throughout each ensemble member in each year.  

Specific humidity for the ensemble averages seem to have a negative bias at the tails, but 

the mean is within 1.4% of the observed meteorology. This gives us confidence that while the 

tails aren’t captured, the overall mean is well modeled. Observed meteorology and the ensemble 

average of the downscaled data demonstrate reasonable agreement for all other variables. Most 

notably, the temperature downscaling procedure performs well in recapturing the means, 

minimums and maximums. This gives us confidence in the downscaling approach because 

temperature is an important driver for ecosystem response.   

 

Table 5. Mean percent change of the covariances for the year of 2006 highlighting the differences between the observed 
meteorology and the downscaled ensemble average. 
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 Propagating through the covariances through the downscaling procedure was important 

for realistic meteorological modeling. Despite our univariate linear regression modeling 

approach (aside from specific humidity), the mean percent change in covariances between 

observed meteorology and ensemble averaged downscaled meteorology are relatively small 

across all variables barring precipitation and its relationship with other variables. It is important 

to note that precipitation will NOT be debiased until we test the future carbon cycle response 

using the MACAv2-METDATA. This suggests that our approach propagates the covariances 

through and shows evidence that the relationships between variables is not lost during the 

procedure.  

 

Table 6. 2006 forecast accuracy metrics between the ensemble averaged downscaled meteorology and the observations. A paired 
t-test was used to calculate values for the t-test statistic and p-value. Results were rounded to the 7th decimal place. 

 

 In Table 6, we evaluate the forecast accuracies for each meteorological variable we 

downscaled. We chose metrics described in Hyndman and Koehler 2006 to evaluate our forecast 

accuracies. We calculated mean error (ME), root mean square error (RMSE), mean absolute 

error (MAE), mean percentage error (MPE), mean absolute percentage error (MAPE), a paired t-

test, and a p-value to help us determine the forecast accuracy of the downscaled meteorology. 

The values of ensemble averaged temperature show high accuracy to the observed temperature 

values. A popular metric for investigating forecasting accuracy is the p-value. P-values of below 

.05 indicate a statistical significance that rejects the null hypothesis which in this case is that the 
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models are disagreeing. Precipitation seems to be accurate and has a p-value suggesting high 

accuracy. However, this is probably due to the agreement of dry hours between the ensemble 

averaged values and the observations as we’ve seen from previous tables that the mean and 

maximum values are considerably different.  

Shortwave radiation has a high p-value and this is most likely due to the fact that the 

downscaled values underestimate the maximum daily shortwave radiation values by 2.3%. 

Another caveat of the shortwave radiation downscaling is the smoothed diurnal cycle. TDM 

shows that it’s unable to accurately predict abrupt variations in sub-daily shortwave radiation. 

This is an artifact of the training dataset which has 16 years of hourly values and doesn’t have 

consistent variability of subdaily values for any variable.  

The high p-values of longwave radiation and air pressure are contradicted by the small 

mean percentage error values. Specific humidity and wind speed values are accurately forecasted 

by the metrics shown above. Overall, forecasting hourly data from a daily resolution dataset can 

be done with relative accuracy using our methodology. Our results are consistent with Maurer et 

al. (2010) that show a linear regression approach abrupt hourly shifts per variable would be hard 

to capture given their inconsistent nature in the training data.  
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Figure 7. Yearly time series of temperature and shortwave radiation for 2006. Observed meteorology is colored in black and the 
ensemble averages are colored in red for temperature and orange for shortwave radiation. 
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Figure 8. Yearly time series of precipitation flux and specific humidity for 2006. Observed meteorology is colored in black and 
the ensemble averages are colored in blue for precipitation and purple for specific humidity. 

 

 Figures 7 and 8 provide a visual representation of a yearly time series for temperature, 

shortwave radiation, precipitation flux, and specific humidity. The ensemble members do a fine 

job of modeling temperature, shortwave radiation, and specific humidity. For precipitation, 

however, one can see that even on a yearly scale, the magnitudes of the precipitation fluxes are 

not well captured for reasons described above.  
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Figure 9. May 31 - June 5 2006 air temperatures comparing the observed values to the downscaled ensemble member values. 

  

When we plot air temperature with a length of 5 days, we can show how the ensemble 

members are capturing the diurnal signature of temperature. We chose to show 5 days at the 

beginning of meteorological summer due to its importance for the growing season. The activity 

during the early stages of the growing season can have significant contributions to the yearly 

carbon cycle budget as shown in Wolf et al. (2016). Obtaining the diurnal cycle for temperature 

was a priority during our development of the algorithm. There is strong agreement between 

observations and ensemble members here, thus suggesting that the algorithm is doing a good job 

at capturing the diurnal cycle of temperature.  
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Figure 10. May 31 - June 5 2006 shortwave radiation plot (surface downwelling shortwave flux in air) comparing the observed 
values to the downscaled ensemble member values.  

 

 Figure 10 shows the same 5 day span as Figure 9 but for shortwave radiation. The diurnal 

cycle is evident in both the ensemble members and the observations. The ensemble members do 

a fine job at capturing the timing and magnitudes of the observations apart from the maximum 

value and abrupt shifts likely caused by clouds. The maximum values of the ensemble members 

falls short of the observed maximums for May 31, June 2, and June 4. Further, sudden 

diminished values of shortwave radiation in the observations are not well captured by the 

ensemble members.  
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Figure 11. June 5 – June 10 2006 precipitation fluxes comparing the observed values to the downscaled ensemble member 
values. 

 

 Figure 11 shows another 5 day period in the early stages of the growing season. We had 

to push our 5 day time series forward another 5 days so we could show a day with precipitation. 

This figure provides a visual representation of the models inability to capture hourly 

precipitation spikes. Rather than model a few hourly values with higher precipitation values, the 

ensembles spread the precipitation out throughout the day as directed by the normal distribution 

modeling step for subdaily precipitation. 
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Figure 12. May 31 - June 5 2006 specific humidity plot comparing the observed values to the downscaled ensemble member 
values. 

  

Figure 12 shows May 31 – June 5, 2006 hourly values of specific humidity for the 

observations and downscaled ensemble members. The ensemble members do well at following 

the general pattern of subdaily specific humidity but has trouble obtaining the magnitudes that 

the observed values have. Overall, it is encouraging to be able to capture these hourly patterns by 

downscaling a single daily value, even if the magnitudes are slightly suppressed.  

The final step of our validation experiment was using the downscaled meteorology 

ensembles to drive SIPNET. Now that we are applying the downscaled meteorology to SIPNET, 

we decided to debias the downscaled precipitation by my increasing the values of each ensemble 

member by 17.75%. In order to decrease uncertainty for the carbon cycle, it’s necessary that we 

correct for the precipitation mean disparity between the downscaled meteorology and the 

observations. While accounting for the low precipitation bias by raising the means will help our 

accuracy, further work should be done on improving the downscaled precipitation maximum 

values.   
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Figure 13. 2006 cumulative observed NEE vs. SIPNET cumulative NEE with downscaled/debiased met drivers. The average 
MPE for the ensemble members compared to the observed values is -38.52%.  

  

Figure 13 compares the observed NEE to the SIPNET NEE that was run using 

downscaled and debiased ensemble drivers for the year of 2006. The ensemble average mean 

percent error was -38.53% showing that our downscaled values seem to overestimate carbon 

sequestration. While this figure highlights the 2006 analysis, we need to perform this same 

analysis for every year in our dataset to quantify our uncertainty. Each year in our dataset 

followed the protocol detailed in this section of the results. We aggregated each year to a daily 

resolution and downscaled back to an hourly resolution. Running SIPNET with 12 downscaled 

and debiased ensemble members and averaging each ensemble member for each year between 

1999 and 2015 will give us a more robust error estimate.   
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Figure 14. Yearly cumulative NEE for observed data, SIPNET downscaled and debiased data, and SIPNET daily data. 

 

Figure 14 compares yearly cumulative NEE for the observed NEE, SIPNET NEE from 

downscaled and debiased hourly resolution data, and SIPNET NEE from the daily averaged 

resolution data. Our downscaled and debiased SIPNET NEE output shows that we overestimate 

carbon sequestration by 54.89%. However, this is significantly closer to the observed NEE 

compared to the daily resolution SIPNET NEE. By downscaling our data from a daily resolution 

to an hourly resolution and debiasing precipitation, we improve our accuracy by 94.61% and 

bring our values closer to observations.  

 

3.3 Future NEE at Willow Creek 

Future carbon cycle estimates come with high uncertainty. It’s important to quantify this 

uncertainty and constrain it. After downscaling each CMIP5 model within the MACAV2-

METDATA dataset, we debiased the precipitation fluxes by increasing the mean by 17.75%. The 



   49 
 

results of SIPNET NEE output for each ensemble member of each year in each model will now 

be shown.  

 

Figure 15. Example of ensemble boxplots of yearly cumulative NEE from 2020-2029. This is for the MACAv2-METDATA BNU-
ESM global climate model that was temporally downscaled using the TDM routine and then put through SIPNET. 

 

 Figure 15 shows the temporally downscaled BNU-ESM ensemble boxplots for yearly 

cumulative NEE for each year from 2020 to 2029. This plot was made for each CMIP5 model so 
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that we could analyze interannual variability and the regression line of the decade. Figure 15 

serves as an example for how we derived our cumulative NEE regression slopes for each model. 

 

Figure 16. Ensemble member regression slopes for yearly cumulative NEE. A positive slope indicates throughout the decade we 
are trending towards a carbon source. A negative slope indicates that we are trending towards a carbon sink. 

 

 Figure 16 shows the divergence of ensemble member regression slopes for yearly 

cumulative NEE. Each CMIP5 model that was downscaled shows a wide range of regression 

slope magnitudes which ultimately tells us whether or not the model is trending Willow Creek 

towards a carbon source or carbon sink. A negative slope indicates that we are trending towards 

a carbon sink and a positive slope indicates that we are trending towards a carbon source. For 

this quantification, we will consider slopes between +-10 gC m-2 y-1 to be carbon neutral. Of the 

20 CMIP5 models, 5 show we are trending towards a carbon sink, 6 are carbon neutral, and 9 
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show that we are trending towards a carbon source. The average model has a slope around of 5 

gC m-2 y-1.  

 

Figure 17. 2020-2030 ensemble averaged cumulative daily sums for NEE. Each year in the decade for each MACAv2-
METDATA model was temporally downscaled from a daily to an hourly resolution. We generated 12 ensembles for each year 

and ran this data using SIPNET. 

  

Figure 17 shows the ensemble averaged cumulative daily sums of NEE for each CMIP5 

model. This offers us insight into the total amount of carbon sequestered or respired during the 

decade. Despite the regression slopes showing that more models will become weaker carbon 

sinks throughout the decade, we see that we are still taking up carbon throughout that time 

period. The divergence of the cumulative daily sums shows ranges of nearly -3000 gC m-2 to 

1000 gC m-2. Such a wide range indicates how sensitive even a basic ecosystem model like 
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SIPNET can be to different meteorology. This divergence also shows evidence that even over the 

relatively short time period of a decade, the model you choose to forecast ecological response to 

climate change can come with significant bias. In order to effectively quantify our uncertainty 

for future carbon cycle, multiple GCMs if not the entire suite of CMIP5 models is necessary for 

future ecosystem modeling. The closest model to the CMIP5 average cumulative daily sum of 

NEE was MIROC-ESM-CHEM which is an atmospheric chemistry coupled version of MIROC-

ESM. The model showing the highest carbon source is HadGEM2-CC365 and the largest carbon 

sink is GFDL-ESM2G.  

Comparing the differences between each CMIP5 models physics, parameters, and 

systematic biases is beyond the scope of this paper.  Instead, we will investigate the differences 

between the downscaled hourly ensemble meteorology for HadGEM2-CC365 and GFDL-

ESM2G, each tail of Figure 17s spread. As described in Dietze (2017), the factors contributing to 

predictive variance in ecosystem modeling are depicted in equation 3.  

 

Equation 3. Factors contributing to predictive variance in ecosystem modeling (Dietze 2017). 

 

The focus of this paper is centered on driver sensitivity and uncertainty (external factors). 

By analyzing the differences between HadGEM2-CC365 and GFDL-ESM2G, an approach to 

exploring the driver sensitivity and uncertainty is illustrated. 
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Figure 18. Histogram of ensemble averaged temperature for GFDL-ESM2G (largest carbon sink) and HadGEM2-CC365 
(largest carbon source) from 2020-2030. 

 

 

Figure 19. Density of ensemble averaged, yearly averaged temperature for GFDL-ESM2G and HadGEM2-CC365 from 2020-
2030. 
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Temperature is an important driver for ecosystem function and the distribution of hourly 

temperatures could provide an explanation for the differences. Figures 18 & 19 show the 

ensemble averaged temperature distributions for the entire decade for GFDL-ESM2G (largest 

carbon sink) and HadGEM2-CC365 (largest carbon source). The models share a similar 

distribution shape but HadGEM2-CC365 mean decadal temperature 0.88 Kelvin higher. 

HadGEM2-CC365 appears to have a higher concentration of temperatures at the tails of the 

distribution, indicating that it has a more hourly temperature values that can induce ecological 

stress.  

 

 

Figure 20. Histogram of ensemble averaged, yearly averaged temperatures greater than 300 Kelvin for GFDL-ESM2G and 
HadGEM2-CC365 from 2020-2030. 
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Figure 21. Density of ensemble averaged, yearly averaged temperature greater than 300 Kelvin for GFDL-ESM2G and 
HadGEM2-CC365 from 2020-2030. 

 

 One possible explanation is a disparity of hot temperatures in the models. Figures 20 and 

21 show the ensemble averaged temperature distributions when temperature is greater than 300 

Kelvin (80.33 Fahrenheit) for the entire decade for each model. This cutoff allows us to examine 

the concentration of temperatures that can threaten photosynthetic efficiency leading to 

decreased GPP.  HadGEM2-CC365 has a higher concentration of warmer temperatures and has a 

higher density of temperatures beyond 303 Kelvin, suggesting higher plant stress and diminished 

productivity relative to GFDL-ESM2G.  
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Figure 22. Histogram of precipitation fluxes greater than 5 mm/hr (0.00139 kg m-2 s-1) for ensemble averaged, yearly averaged 
GFDL-ESM2G and HadGEM2-CC365 from 2020-2030. 

 

 Another possible reason for that nearly 4000 gC m-2 decade1 cumulative NEE difference 

between GFDL-ESM2G and HadGEM2-CC365 is precipitation distribution; another key driver 

for ecosystem functions. Figure 22 shows the distribution of the concentrations of precipitation 

events greater than 5 mm/hr. GFDL-ESM2G has considerably more (22) precipitation events 

greater than 5 mm/hr than HadGEM2-CC365. The decadal sum of precipitation for GFDL-

ESM2G is 852 mm higher than the decadal sum for HadGEM2-CC365. This suggests that the 

lack of higher precipitation events for HadGEM2-CC365 is not balanced by an increase in the 

number of smaller precipitation events.  
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Figure 23. Consecutive dry hours (no precipitation) during growing season for ensemble averaged, yearly averaged GFDL-
ESM2G and HadGEM2-CC365 from 2020-2030. Over the decade, GFDL-ESM2G had 852.292 mm more precipitation than 

HadGEM2-CC365. 

 

 A smaller decadal sum of precipitation and smaller number of heavy precipitation events 

offers us one piece of evidence for the high levels of decadal NEE for HadGEM2-CC365. A 

lower quantity of precipitation can be accounted for by smaller, more consistent precipitation 

events. Figure 23 investigates the frequency of precipitation events by showing the consecutive 

dry hours during the growing season. We chose to analyze the length of dry periods during the 

growing season because that is the period of time where GPP magnitudes are most susceptible.  

When we consider the number of dry periods lasting longer than 7 days, HadGEM2-CC365 has 

11 more such periods than GFDL-ESM2G. Therefore, HadGEM2-CC365 has a lower quantity of 

precipitation and has a higher quantity of weeks without precipitation throughout the decade.  

 The greater density of temperatures greater than 300 K and drier conditions of the 

HadGEM2-CC365 meteorology likely increased the ecological stress and lead to decreased 

levels of carbon uptake. Alternatively, the cooler, wetter conditions of the GFDL-ESM2G 
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meteorology creates a more productive environment for photsynthetic efficiency and leads to 

greater carbon sequestration.  

 

4. Discussion 
 

4.1 Model performance 

Generally, TDM routine had high accuracy for most meteorological variables. 

Temperature, a key driver for ecosystem response, performed well during our test case. The 

temporal downscaling routine also returned results with low error for shortwave radiation. The 

temporal downscaling for longwave radiation and air pressure captured the minimums, means, 

and maximums well but performed poorly during the accuracy analysis. This suggests that we 

aren’t capturing the timing of these events correctly. TDM downscaled wind speed with high 

accuracy and recaptured the means. However, the maximum wind speed value is overestimated 

using our approach. Likewise, specific humidity downscaling had high accuracy regarding the 

timing of fluctuations but the magnitudes were suppressed (both maximums and minimums). 

Further tuning of the model is required to correct for these variables.   

The lack of accuracy in the precipitation timing and intensity is a caveat in our 

methodology. Debiasing for precipitation fluxes using a scaling factor improved our accuracy by 

matching up precipitation means. This will decrease our mean percent error for the maximum in 

precipitation, though it won’t correct the problem completely.  

Precipitation has long been a difficult variable to temporally downscale due to its 

inconsistent nature (Gutmann et al., 2014; Clark et al., 2016). Other studies have used artificial 

networks for temporally downscaling precipitation (Coulibaly et al., 2005; Dibike et al., 2005; 

Anandhi et al., 2008; Mendes & Morengo, 2010). While these techniques are useful for 
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probabilistic prediction tasks, the computer code used to execute these the downscaling are 

openly available. Further, Kumar et al. (2010) shows that artificial neural networks not be useful 

for future time periods with increased variability. This is also true for our methodology as well 

which relies on an observational dataset. Further implementation of projected variability will 

need to be explored.  

Considering that we derived hourly values from a daily measurement using the TDM 

workflow, the diurnal cycles were well captured for each variable. The inter-hourly variability is 

slightly constrained due to random variations due to temporary factors and this is a criticism of 

linear regression approaches (Wilby and Wigley, 1997).   

 

4.2 Limitations of TDM approach 

Although the linear regression based approach is a conservative method for reproducing 

extreme events (Wilby et al., 2004; Nguyen et al., 2007; Maraun et al., 2010), it's a 

straightforward method that employs a full range of available predictor variables. We were also 

driven to employ probabilistic temporal downscaling ideologies while also propagating future 

uncertainty that comes with any downscaling methodology. Linear regression also falls under 

scrutiny due to its poor representation of observed variance. However, we correct for this 

concern in our study by using high temporal resolution Fluxnet 2015 eddy covariance data to 

train our GCM output. By using high frequency flux tower data to train our GCM output, we will 

have the ability to better capture extreme subdaily events compared to previous linear regression 

efforts. The techniques developed for this study will be used to downscale CMIP5 output and 

used to estimate future carbon cycle responses.   
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The TDM functions have a univariate, independent approach, aside from specific 

humidity. A multivariate approach was tested, but took much longer to run and returned values 

well outside the realm of possibility. We hope to incorporate a multivariate regression technique 

in the future to more accurately account for covariances and interdependent variable 

relationships. Furthermore, while accounting for the residual errors allows for more uncertainty 

propagation, it is also more computationally intensive and for this reason we created that 

optional logical argument. Accounting for residual errors also poses problems for preserving 

covariances among drivers. We’ve built the function so that it could potentially be parallelizable, 

though that hasn’t been fully implemented yet. This would greatly enhance the efficiency of the 

process but also requires a great deal of computational power.  

TDM requires an hourly training dataset with a minimum of 6 years. Currently, 

generating a training dataset takes roughly 1 hour per year within the dataset. The more years 

present, the larger our pool of statistics to pull from. It takes roughly 1.5 hours to downscale a 

daily resolution dataset to an hourly resolution with 2 minutes per ensemble requested. The 

majority of the time is spent loading the stored linear regression models. Advancing the speed of 

the model is one of our future tasks.  

Our TDM routine offers a unique way to temporally downscale any location on the globe 

given a high resolution training dataset. Our routine allows a user to also downscale for any time 

period, though we recommend staying close to the training dataset due to changes in variability 

that are currently unaccounted for. The functions above have been generalized to work with any 

meteorological dataset in CF convention and at any temporal resolution. These open-sourced 

functions are designed to work within the PEcAn framework and are available at 

(https://github.com/PecanProject/pecan/modules/data.atmosphere/R).  

https://github.com/PecanProject/pecan/modules/data.atmosphere/R
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4.3 SIPNET Model Caveats 

The SIPNET model was used for its computational efficiency and flexible meteorology 

variable requirements. It is not the best model available to quantify exact NEE and lacks the 

robust processes of other models such as the Ecosystem Demography model version 2 (Medvigy 

et al., 2009). SIPNET offers us estimates of the carbon cycle but a more robust model should be 

employed for finer estimates. Furthermore, a single set of parameters was used to initialize each 

SIPNET run. Willow Creek has semi-steady parameters (Cook et al., 2004), but these are likely 

to change slightly by 2020. SIPNET will also induce uncertainty via the propagation of those 

parameters over the time of the particular ecosystem model run. For example, SIPNET will build 

up a carbon pool over time and the parameters are changing as well. Typically, a parameter data 

assimilation should be employed for a range of parameter sets but that is beyond the scope of this 

study. As stated before, another caveat of SIPNET is that the model does not respond to changes 

in atmospheric CO2. 

This study looks directly at the impact that climate change will have on ecosystems by 

temporally downscaling spatially downscaled CMIP5 model data. It’s important to acknowledge 

that ecosystems can also impact physical properties within the boundary layer and alter 

meteorological variables. Ecosystems and meteorology represent a coupled system where each 

member influences the other. Estimating ecosystem influences on meteorology is beyond the 

scope of this study but should be considered in any carbon cycle quantification analysis.  

 

4.3 Implications for carbon cycle 

Our results are consistent with Medvigy et al. (2010) and demonstrate the importance of 

temporal resolution for ecosystem modeling. By feeding ecosystem models high frequency 

meteorological data at an hourly timestep, we can improve yearly NEE estimates and decrease 
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the interannual variability across the 16 year dataset at Willow Creek compared to coarser 

temporal resolution driver data. Further, we are better able to preserve the covariances and 

regression slope relationships between NEE and temperature. High temporal frequency data is 

imperative to accurate estimates of the carbon cycle.  

 

4.4 Future work 

Future work will primarily focus on improving the accuracy and speed of the TDM 

routine. Additionally, the precipitation bias and current TDM struggles associated with capturing 

precipitation maximum, specific humidity maximum and minimum, and wind speed maximum 

will be addressed.  Future analysis will also focus on increasing the number of betas used for the 

linear regression models to quantify our meteorological uncertainty.  

 

Conclusions 
 

 In this study, evidence is presented highlighting the importance that high temporal 

resolution meteorological plays in ecosystem modeling. We discuss a unique temporal 

downscaling algorithm and validate its accuracy. Future carbon cycle response to climate change 

at Willow Creek is tested using spatially and temporally downscaled CMIP5 data. Our results 

include: 

1. Our temporal downscaling routine decreased our uncertainty by 94.61% when we downscaled 

from a daily resolution to an hourly resolution.   

2. Covariances between NEE and temperature become decoupled at low frequency resolutions. 
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3. Our ensemble based temporal downscaling routine that returned multiple meteorological 

variables based on a high frequency training dataset quantifies our uncertainty and advances the 

science behind methodologies chosen for temporal downscaling routines.  

4. Using our TDM routine, we are able to capture the diurnal cycles of a variety of 

meteorological variables, improve our NEE estimates, and decrease carbon cycle uncertainty.  

5. The spatially and temporally downscaled CMIP5 models show varying regression slopes 

throughout the decade but more models point to Willow Creek trending towards a carbon source 

through the 2020-2030 period. The average model slope is 5 gC m-2 yr-1. 

6. CMIP5 models show large divergence (~4000 gC m-2) in decadal cumulative NEE from 

2020-2030. The model average has Willow Creek sequestering around 1200 gC m-2 by the end 

of the decade. 

7. Differences in decadal carbon cycle between models due to strong differences in the amount 

of hourly temperatures above 300 K, amount of precipitation events greater than 5 mm/hr, and 

number of consecutive hours without precipitation. Ecological systems are highly sensitive to 

high-frequency variance in climate.  
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