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 Abstract 

Novel new approaches to automatically detect and characterize volcanic ash using 

satellite data are presented.  The Spectrally Enhanced Cloud Objects (SECO) ash 

detection algorithm, combines radiative transfer theory, Bayesian methods, and image 

processing/computer vision concepts to identify volcanic ash clouds in satellite data with 

skill that is generally comparable to a human expert, especially with respect to false 

alarm rate.  The SECO method is globally applicable and can be applied to virtually any 

low earth orbit or geostationary satellite sensor.  The new ash detection approach was 

quantitatively proven to be significantly more skillful than traditional pixel based 

approaches, including the commonly used “split-window” technique.  The performance 

of the SECO approach is extremely promising and well suited for a variety of new and 

improved applications.  A new approach to retrieve volcanic ash cloud properties from 

infrared satellite measurements was also developed.  The algorithm utilizes an optimal 

estimation framework to retrieve ash cloud height, mass loading, and effective particle 
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radius.  Optimal estimation allows uncertainties in the measurements and forward model 

to be taken into account and uncertainty estimates for each of the retrieved parameters to 

be determined.  Background atmospheric water vapor, surface temperature, and surface 

emissivity are explicitly accounted for on a pixel-by-pixel basis, so the algorithm is 

globally applicable.  In addition, the ash cloud retrieval algorithm is unique because it 

allows the cloud temperature/height to be a free parameter. 

Volcanic ash clouds are a major aviation hazard.  Fine-grained ash from explosive 

eruptions can be transported long distances (>1000 km) from the source volcano by 

atmospheric winds, severely disrupting aviation operations.  Volcanic ash clouds are 

complex and the background environment in which they reside can be as well.  Thus, 

sophisticated satellite remote sensing techniques for extracting ash cloud properties are 

needed to increase the timeliness and accuracy of volcanic ash advisories and forecasts.  

As demonstrated using the 2008 eruption of Kasatochi volcano in Alaska, the new 

theoretical ash remote sensing framework is well suited for advanced applications such as 

automated volcanic ash cloud alerting and constraining model forecasts of volcanic ash 

dispersion and removal. 
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Chapter 1 

1. Introduction 

Volcanic eruptions are one of the most spectacular, but understandably most 

feared, natural phenomena; capable of altering global climate and producing an array of 

hazards that span many spatial and temporal scales.  Eruption styles vary greatly, from 

effusion of lava (e.g. Kilauea in Hawaii) to highly explosive pyroclast1 producing 

eruptions (e.g. 1980 Mount St. Helens).  The hazards produced by a volcanic eruption 

and the instruments and methods used to observe an eruption largely depend on the 

eruption style and explosiveness.  Explosive eruptions have the potential to produce far-

reaching hazards. 

Volcanic ash is a sub-class of pyroclasts that includes all volcanic rock fragments 

that are less than 2 mm in diameter.  Fine-grained ash from explosive eruptions can be 

transported long distances (>1000 km) from the source volcano by atmospheric winds, 

creating a large-scale aviation hazard2.  Given the large-scale nature of volcanic ash 

clouds, scientists primarily use satellites to track and study them.  Non-satellite based 

observations of volcanic ash clouds are quite rare. 

Volcanic ash clouds are complex and the background environment in which they 

reside can be as well.  Thus, volcanic ash cloud remote sensing is a very challenging 

problem.  Due to the challenging nature of the problem, scientists frequently employ 

several simplifying assumptions that limit the extent to which satellite measurements are 

utilized in furthering the understanding of volcanic ash clouds.  For instance, the 

                                                
1 Volcanic rock and lava propelled into the air by eruptive forces, independent of size 
2 Flying through a volcanic ash cloud can cause severe damage to aircraft 
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atmosphere is often assumed to be void of constituents, such as water vapor and 

underlying liquid water or ice clouds, as they complicate the interpretation of the satellite 

measurements.  In addition, quantitative information on the properties of thick vertical 

columns of volcanic ash, common in the early stages of an eruption, is scarce.  Due to 

limitations of remote sensing techniques, satellites best observe volcanic ash clouds, in a 

quantitative manner, during the middle third of their observable residence time in the 

atmosphere.  The observable residence time typically ranges from hours to about 10 days.  

As such, volcanic ash cloud properties are not well observed in many instances.  More 

robust globally applicable satellite remote sensing algorithms are needed to address this 

observational gap. 

In this dissertation, new globally applicable methods are developed to objectively 

identify volcanic ash and retrieve ash cloud properties from geostationary and low earth 

orbit meteorological satellites.  In Chapter 2, the importance of improving the 

understanding of volcanic ash clouds is discussed and a review of various existing 

methods of observing volcanic ash clouds is given.  At the end of Chapter 2, the 

objectives of this research effort are stated.  A new framework for utilizing infrared 

measurements to infer cloud composition is presented in Chapter 3.  Chapter 4 

demonstrates that infrared observations, cast into the framework developed in Chapter 3, 

along with visible and near-infrared measurements are useful for determining the 

probability that volcanic ash is present in a given satellite pixel.  In Chapter 5, a method 

for retrieving volcanic ash cloud properties (height, mass loading, and effective particle 

radius) from infrared measurements is presented.  The volcanic ash probability results 

discussed in Chapter 4 are used to determine when the ash cloud property retrieval should 
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be performed.  In Chapter 6, the results from Chapters 3-5 are used to develop a cloud 

object based approach to volcanic ash detection.  Using the techniques described in 

Chapters 3-6, an analysis of volcanic ash cloud properties for a selected case is presented 

in Chapter 7.  The final chapter of the dissertation (Chapter 8) contains a summary of the 

research methods and results, impacts, and the prospects for using the new approaches 

going forward.  



 4 

Chapter 2 

2. Background and Motivation 

Gaseous and particulate clouds produced by volcanic eruptions impact the Earth-

Atmosphere system in several ways.  For instance, a major volcanic eruption that injects 

sulfur gases into the stratosphere will cause the stratosphere to warm (while the surface 

cools) and enhance stratospheric ozone destruction in the months to years following the 

eruption [Robock 2000].  Further, the deposition of volcanic ash onto the ocean surface 

may play a significant but currently poorly understood role in the biogeochemical iron-

cycle [Duggen et al. 2010].  Volcanic ash particles can also serve as cloud condensation 

and ice nuclei, and thus may naturally seed (or even over-seed) clouds [Durant et al. 

2008].  Ash clouds from volcanic eruptions also pose a major risk to human health (e.g. 

Horwell and Baxter [2006]) and aviation [Casadevall 1994; Guffanti et al. 2010a].  While 

all of the impacts of volcanic clouds (climate, biogeochemical, weather modification, 

human health) are important, the primary motivation of the scientific research presented 

in this dissertation is to reduce the probability of catastrophic aircraft encounters with 

clouds that contain volcanic ash and enhance the economic resilience to aviation 

disruptions caused by volcanic eruptions. 

Even though the aviation impacts of volcanic ash clouds have only recently 

gained widespread public attention due to the April/May 2010 eruption of 

Eyjafjallajökull in Iceland, airborne volcanic ash has been considered a major aviation 

hazard since 1982 when a British Airways Boeing 747 aircraft lost power to all four 

engines after flying into a volcanic ash cloud in Indonesia [Miller and Casadevall 2000].  

A similar incident occurred in 1989 when KLM Flight-867 lost power to all four engines 
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after encountering an ash cloud outside of Anchorage, AK [Casadevall 1994].  

Fortunately, the pilots of the British Airways and KLM flights narrowly avoided disaster 

after restarting some or all of the engines upon descending thousands of feet (without 

power) and out of the airspace heavily contaminated by volcanic ash.  From 1959-2009 

there have been 94 confirmed aircraft encounters with volcanic ash clouds, where 79 of 

those encounters resulted in airframe or engine damage and 9 of the encounters resulted 

in the loss of one or more engines in flight [Guffanti et al. 2010a].  Guffanti et al. [2010a] 

state that since 1976, when reporting of encounters became more common practice, an 

average of about 2 encounters per year have occurred.  In addition, many of the reported 

encounters occurred more than 1000 km from the parent volcano.  Even volcanic ash 

produced by relatively weak volcanic activity can pose a significant hazard to aviation if 

the volcano is located near an airport.  For instance, aircraft descending into or climbing 

out of Kagoshima airport in Japan always need to be wary of low-level ash clouds from 

the nearby Sakurajima volcano [Onodera and Kamo 1994].  Volcanic ash clouds can 

damage aircraft in the following ways [ICAO 2007]: 

• The melting temperature of volcanic ash (~1100oC) is such that when ingested 

into jet engines it melts in the combustion chamber, cools down in the turbine, 

and deposits on the turbine vanes, which restricts the flow of high-pressure 

combustion gases.  In the worst case scenario in-flight engine failure occurs. 

• Volcanic ash is very abrasive and can sand blast cockpit windows, airframes, 

and flight surfaces.  It can also erode the turbines. 

• Volcanic ash can clog the pitot-static system, rendering airspeed measurements 

inaccurate. 
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• Ingestion of volcanic ash into air conditioning and cooling systems leads to 

contamination of the electrical and avionics units, fuel and hydraulic systems, 

and cargo-hold smoke detection systems. 

 

The economic impacts of airborne volcanic ash are also significant.  For instance, 

the April and May 2010 eruptions of Eyjafjallajökull [Gudmundsson et al. 2010] in 

Iceland had an unprecedented impact on aviation in the North Atlantic and Europe, 

causing over 100,000 flights, corresponding to about 50% of the world’s air traffic, to be 

canceled; the economic impact of which is in the billions of dollars [Oxford Economics 

2010].  High impact eruptions also occur in or near North American airspace.  The 

eruption of Mount Redoubt, Alaska in March and April 2009 resulted in the cancellation 

of hundreds of passenger and cargo flights into and out of Anchorage [Tony Hall, 

National Weather Service, personal comm.].  The 2008 eruptions of Okmok and 

Kasatochi in Alaska also 

significantly impacted United 

States airspace in the North 

Pacific [Guffanti et al., 2010b].  

Accurate information on the 

location of volcanic ash in the 

atmosphere is critical for 

minimizing economic losses.  On 

average, 50 – 60 volcanoes erupt 

per year (eruptions can last 

 

Figure 2.1:Major commercial flight routes (blue), 
historically active volcanoes (red), and the area of 
responsibility of each Volcanic Ash Advisory Center 
(VAAC) are overlaid on a global map.  Source: ICAO 
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anywhere from hours to years), 10 or more of which will produce a volcanic cloud that 

reaches jet aircraft cruising altitudes [ICAO, 2007].  Further, Figure 2.1 illustrates that 

global flight routes are often near volcanoes, making timely identification of dangerous 

ash clouds critical, especially given that volcanic ash clouds can reach jet aircraft cruising 

altitudes in as little as 5 minutes [ICAO 2007]. 

Volcanic cloud properties and the associated impacts on aviation largely depend 

on the attributes of the parent eruption and atmospheric conditions.  Volcanic eruptions 

occur when magma in the Earth’s crust ascends to the surface through fissures and cracks, 

exiting the sub-surface through vents.  Magma is composed of silicate melt (silicon, 

oxygen, aluminum, sodium, potassium, calcium, magnesium, and iron), crystalized 

minerals, and volatiles (H2O, CO2, H2S, and SO2) [Scaillet et al. 2013].  Explosive 

volcanic eruptions are often associated with highly silicic magmas, which have a greater 

viscosity than magmas with lower silicon content.  The energy required to exsolve 

volatiles from high viscosity magmas prevents volatiles from boiling out of the molten 

rock in a gradual manner, allowing the vapor pressure of the volatile component of the 

magma to build until it exceeds the ambient pressure (assuming the high viscosity magma 

contains a sufficient amount of volatiles).  The rapid decompression of volatile bubbles 

and gas expansion produces the energy required for an explosive volcanic eruption.  

Magma interactions with external sub-surface water sources and the attributes of the 

cracks and fissures, through which the magma is ascending, also influence the eruption 

characteristics.  When an explosive eruption occurs, the silicate melt cools rapidly in the 

atmosphere forming volcanic glass, which fragments to form pyroclasts.  Volcanic ash is 
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defined as pyroclasts with a diameter of 2 mm or less.  A more detailed review of 

volcanic processes is given in Scaillet et al. [2013]. 

Vulcanologists assign a Volcanic Explosivity Index (VEI) to each volcanic 

eruption using very rough estimates of the total volume of erupted tephra (pyroclasts that 

fall to the ground), the height of the 

eruptive column, and the duration of the 

explosive portion of the eruption 

[Newhall and Self 1982].  As shown in 

Figure 2.2, the VEI of an eruption can 

range from 0 for effusive (non-explosive) 

lava producing eruptions such as Kilauea 

to 8 for “apocalyptic” eruptions such as a 

caldera forming eruption of Yellowstone 

[Simkin and Siebert 1994].  Eruptions 

classified as VEI=2 or greater are 

considered explosive and as such produce 

volcanic clouds that are a concern to 

aviation [Simkin and Siebert 1994].  

Clouds produced by volcanic eruptions are primarily composed of pyroclasts, 

volcanic gases, and, depending on the nature of the eruption and atmospheric conditions, 

liquid water and ice [Rose et al. 2000].  While larger pyroclasts fall out of the eruptive 

cloud rather quickly [Ernst et al. 1996], volcanic ash sized particles can remain 

suspended in the atmosphere much longer (days to weeks, with longer atmospheric 

 

Figure 2.2: Graphic illustration of the 
Volcanic Explosivity Index (VEI).  A red 
sphere representing the highest VEI 
category, 8, is not shown for clarity.  
Source: USGS 
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residence times possible) [Rose 1993].  The fate of ash in the atmosphere largely depends 

on the properties of the cloud (e.g. height, particle size distribution, and mass 

concentration) and atmospheric conditions (e.g. 3-dimensional fields of water - in all 

phases, temperature, horizontal wind, and vertical wind).  Models that forecast volcanic 

ash dispersion and removal are prone to large errors [e.g. Schumann et al. 2011] and 

many questions regarding dispersion and removal processes remain [Rose and Durant 

2011]. 

Scientists utilize a variety of measurement platforms to study volcanic ash clouds.  

For instance, ground-based radars provide useful information on the properties and 

dynamics within a thick eruptive column [Harris and Rose 1983; Lacasse et al. 2004; 

Tupper et al. 2005; Marzano et al. 2006a; Marzano et al. 2006b; Marzano et al. 2010; 

Schneider and Hoblitt, 2012].  Unfortunately, most volcanoes are well outside of radar 

coverage.  Ground-based lidars [Pappalardo et al. 2004; Ansmann et al. 2010; Gasteiger 

et al. 2011] and sun photometers [Ansmann et al. 2010; Gasteiger et al. 2011] can also 

provide information on ash cloud properties in the rare event that an ash cloud is present 

within the field of view of these instruments.  Infrared cameras have also been used to 

estimate ash cloud properties during a few dedicated field campaigns [Prata and Benardo 

2009].  Due to the high impact nature of the 2010 eruption of Eyjafjallajökull, resources 

were provided to European research groups to deploy instrumented (non-jet) aircraft to 

take remote and in-situ measurements of ash cloud properties over Europe and the North 

Atlantic [Johnson et al. 2012; Marenco et al. 2011; Schumann et al. 2011; Bukowiecki et 

al. 2011; Newman et al. 2012; Turnbull et al. 2012].  In addition Hobbs et al. [1982] and 

Hobbs et al. [1991] collected airborne samples of volcanic ash clouds during the 1980 
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eruption of Mount St. Helens and the 1990 eruption of Redoubt in Alaska, respectively.  

Unfortunately, airborne measurements are expensive and risky, and hence rare.  The 

primary tool utilized in both practical and research applications related to volcanic ash 

are satellites [Prata 2009]. The combination of the inability to predict when and where an 

eruption will occur, the remote location of many volcanoes, and the large horizontal 

dimension of dispersed ash clouds is why satellites are the primary tool for identifying, 

tracking, and studying volcanic ash clouds.  In addition, approximately 90% of the 

world’s volcanoes are not regularly monitored for activity [Ph. Bally Ed. 2012], therefore 

satellites often provide the only means to detect eruptive activity in a timely manner, 

which is critical for aviation. 

Sawada [1987] was the first scientist to identify and track volcanic ash clouds in 

satellite imagery for a large number of cases in a systematic manner.  Sawada’s method, 

however, relied heavily on manual analysis of geostationary satellite imagery.  Prior to 

Sawada [1987], the use of satellite data to study volcanic ash clouds was limited to a few 

case studies where it was used in a generally qualitative manner [Hanstrum and Watson 

1983; Malingreau and Kaswanda 1986].  The first quantitative method for detecting 

volcanic ash from satellites was pioneered by Prata [1989a; 1989b].  Prata’s method is 

known as the “reverse absorption” or “split-window” technique.  In the “split-window” 

technique, bi-spectral measurements are used to exploit a composition dependent reversal 

in the sign of the slope of cloud absorptivity (or emissivity) between 10 and 12 µm in the 

so-called “infrared atmospheric window,” where water vapor absorption is less 

pronounced.  The traditional “split-window” method consists of computing the difference 

in brightness temperature between measurements taken at approximately 11 and 12 µm 
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and applying a threshold.  “Split-window” measurements are available on nearly every 

low earth orbit and geostationary meteorological satellite sensor. 

Due to its silca (SiO2) content, volcanic ash typically absorbs, and hence emits, 

more radiation at 11 µm than 12 µm, resulting in a split-window brightness temperature 

difference that is less than 0 K in the 

absence of competing 

absorption/emission/reflection effects 

at those wavelengths.  Conversely, 

liquid water and ice clouds, generated 

by meteorological processes 

(meteorological clouds), typically have 

a “split-window” brightness 

temperature difference that is greater 

than 0 K because cloud 

absorption/emission is greater at 12 

µm than 11 µm.  Thus, a “split-

window” threshold of about 0 K is 

often used for ash/dust detection.  Radiative transfer calculations illustrating the contrast 

between the “split-window” brightness temperature difference of volcanic ash clouds and 

other cloud types are shown in Figure 2.3. 

Unfortunately, competing absorption/emission/reflection effects from atmospheric 

water vapor and hydrometeors, measurement errors, and other features exhibiting 

“reverse absorption” like signals limit the effectiveness of the “split-window” technique 

 

Figure 2.3:Radiative transfer model calculations 
of the 11 µm brightness temperature and the 11-
12 µm “split-window” brightness temperature 
difference for a variety of cloud compositions 
with a volcanic ash component ranging from 0 to 
100%.  Each point on a given curve represents a 
different 0.55 µm cloud optical depth. Adapted 
from Pavolonis et al. [2006]. 
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for automated quantitative applications [e.g. Simpson et al. 2000; Prata et al. 2001; 

Tupper et al. 2004; Pavolonis et al. 2006].  Figure 2.3 demonstrates that volcanic ash 

clouds do not always exhibit a negative “split-window” brightness temperature difference 

in moist atmospheres or when mixed with hydrometeors.  In addition, Figure 2.4 shows 

that, when viewed globally, the “split-window” brightness temperature difference is often 

observed to be negative for many other reasons besides the presence of volcanic ash.  Ash 

clouds composed of large particles [Chapter 3 of this dissertation] and optically thick ash 

clouds [Pavolonis et al. 2006] can also deviate from the desired “split-window” behavior. 

 

Figure 2.4:The frequency of occurrence [%] of 11-12 µm “split-window” brightness 
temperature differences < -0.2 K on April 4, 2003.  No known volcanic ash clouds were 
present at the time of this image.  Adapted from Pavolonis et al. [2006]. 

Efforts to improve upon the basic “split-window” approach, in a quantitative 

manner, include empirically correcting the 11 – 12 µm brightness temperature difference 
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for atmospheric water vapor absorption [Yu et al. 2002; Corradini et al. 2008; Prata and 

Prata 2012], using the “split-window” method in conjunction with visible and near-

infrared spectral channels [Prata and Grant 2001; Pergola et al. 2004; Pavolonis et al. 

2006; Corradini et al. 2008], and the development of location specific thresholds [Pergola 

et al. 2004].  These efforts only produced modest improvements under certain conditions.  

High spectral resolution (termed “hyperspectral”) infrared measurements that are 

available on a few low earth orbit satellites have also been used to improve volcanic ash 

detection by utilizing many spectral channels in the 8-13 µm wavelength range [Gangale 

et al. 2010; Clarisse et al. 2010a; Clarisse et al. 2013].  While hyperspectral infrared-

based approaches do improve upon the traditional “split-window” technique, the course 

spatial resolution (> 10 km) of hyperspectral sensors and the temporal sampling 

limitations of the few low earth orbit satellites with this measurement capability are 

limiting factors.  Further, “split-window” limitations related to ash particle size and 

optical depth are not addressed by the hyperspectral approaches.  In general, published 

satellite methodologies for detecting and tracking volcanic ash clouds have one or more 

of the following limitations. 

1. The end results are qualitative and hence require manual interpretation and, as 

such, cannot be used in quantitative applications (e.g. [Hillger and Clark 2002a; 

Hillger and Clark 2002b; Ellrod et al. 2003; Miller 2003; Lensky and Rosenfeld 

2008]). 

2. The results depend strongly on solar zenith angle and/or the technique is only 

applicable over a subset of solar zenith angles (e.g. [Legrand et al. 2001; de Graaf 

et al. 2005; Pavolonis et al. 2006; Evan et al. 2006; Scollo et al. 2012]). 
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3. The technique can only be applied to a specific instrument or a small subset of 

instruments (e.g. [Liu et al. 2008; Clarisse et al. 2010a; DeSouza et al. 2010; 

Gangale et al. 2010; Winker et al. 2012; Clarisse et al. 2013]), and hence does not 

provide frequent (< 60 minutes) global coverage. 

4. Finally, no published technique capable of providing frequent global coverage has 

been shown to be consistently skillful (very high probability of detection, very 

low false alarm rate) over a large range of cloud properties (cloud 

height/temperature/pressure, geometric thickness, composition, particle size, and 

cloud optical depth) and background states (surface emissivity, surface 

temperature, atmospheric temperature, and atmospheric composition).	
  

 

Given the above limitations, existing satellite-based ash/dust detection techniques 

are not well suited for many important practical (operational) and research applications.  

For instance, Volcanic Ash Advisory Centers (VAACs), which are responsible for 

operationally issuing volcanic ash advisories to the aviation community, currently heavily 

rely on manual analysis of satellite imagery to track volcanic ash clouds.  It is not feasible 

to routinely manually examine every satellite image for volcanic ash clouds, so some 

volcanic ash clouds go undetected for several hours [e.g. Pavolonis et al. 2006].  Thus, a 

reliable, fully automated, satellite-based volcanic ash detection system is needed to help 

improve the timeliness of volcanic ash advisories.  The retrieval of important volcanic 

ash cloud properties such as cloud height, mass loading, particle size require a priori 

knowledge of the horizontal location of ash to constrain the inversion problem and 

prevent false alarms (pixels with valid retrieval results that are outside of the ash 
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cloud(s)) without significantly decreasing the probability of detection (e.g. [Prata and 

Prata 2012]; [Francis et al. 2012]; [Chapter 5 of this dissertation]).  Current quantitative 

ash detection approaches are simply not skillful enough to utilize retrieved ash cloud 

properties to automatically and rigorously constrain model eruption source parameters 

[Mastin et al. 2009] or forward trajectory forecasts.  Operational forecasters instead rely 

on manually initiated model simulations that utilize eruption source parameters that are 

prone to large errors, especially outside of the coverage of cloud or precipitation radars 

[Arason et al. 2011; Schneider and Hoblitt 2013]. 

Satellite derived ash cloud properties such as height, mass loading, and particle 

size are needed for near real-time characterization of volcanic ash hazards (e.g. VAACs 

are required to provide cloud height information in volcanic ash advisories).  Spatially 

and temporally resolved ash cloud properties, as only satellite sensors can provide, are 

also needed to improve volcanic ash transport and dispersion models through improved 

understanding of ash cloud physics and data assimilation [Stohl et al. 2011; Schmehl et al. 

2011; Denlinger et al. 2012; Bursik et al. 2012; Pouget et al. 2013].  Wen and Rose 

[1994] developed the first algorithm to retrieve volcanic ash cloud properties from 

satellite measurements.  Their method utilized radiative transfer calculations and “split-

window” measurements to retrieve the optical depth (at 11 µm) and effective particle 

radius [Hansen and Travis 1974] of volcanic ash when the “split-window” brightness 

temperature difference was less than 0 K.  From the optical depth and effective particle 

radius, they estimated the mass loading (mass per unit area) of volcanic ash.  To simplify 

this difficult problem, Wen and Rose assumed that the atmosphere was void of water 

vapor, the ash cloud and surface temperatures were spatially uniform, and the surface 
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behaved as a blackbody.  Despite these assumptions, Wen and Rose demonstrated that 

useful ash cloud properties could be retrieved from “split-window” measurements.   

Incremental improvements to the Wen and Rose method were made through 

empirical corrections for water vapor absorption [Yu et al. 2002; Corradini et al. 2008; 

Prata and Prata 2012] and refinement of retrieval inputs such as surface temperature and 

cloud temperature [Prata and Grant 2001; Corradini et al. 2008].  However, none of these 

methods explicitly account for atmospheric water vapor or allow surface temperature and 

emissivity to vary spatially.  As well, it does not allow surface emissivity to deviate from 

blackbody behavior or allow the ash cloud temperature to be a free parameter in the 

retrieval.  The approach described by Clarisse et al. [2010b] was the first to explicitly 

account for water vapor absorption and allow surface temperature to vary spatially, but 

cloud temperature was fixed in their retrieval.  A retrieval methodology that explicitly 

accounts for background contributions (surface emission and background atmospheric 

gases) to the measured radiances and allows cloud temperature or height to be a free 

parameter in the retrieval is badly needed. 

This study has five primary objectives, which will be addressed in sequential 

order since objectives 2-5 depend on all previous objectives.  These objectives are to: 

1. Increase the sensitivity of space-based infrared measurements to cloud 

microphysics by accounting for emission from the background clear sky 

atmosphere and the surface, 

 

2. Use satellite measurements to estimate the probability that a given satellite pixel 

contains volcanic ash and quantitatively show that the probabilities provide a 

more robust framework for distinguishing volcanic ash from all other features, 

compared to the traditional “split-window” approach, 
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3. Develop and validate an algorithm that utilizes infrared satellite measurements to 

retrieve ash cloud height, mass loading, and effective particle radius while 

explicitly accounting for background contributions to the measured radiances, 

 

4. Utilize results from the previous objectives to develop a cloud object based 

approach for detecting volcanic ash clouds and demonstrate that it exhibits greater 

skill than pixel based approaches, including the “split-window” approach, 

 

5. Using the 2008 eruption of Kasatochi, demonstrate that the new satellite remote 

sensing techniques produce temporally and spatially resolved volcanic ash cloud 

properties that are consistent with basic physical expectations and compare the 

results to published results.	
  

 

Finally, the research associated with objectives 1-4 was conducted within more general 

framework when possible.  For instance, the theory and practical approach developed to 

achieve the first objective is applicable to all infrared relevant cloud types (e.g. liquid 

water, ice, dust, SO2), not just volcanic ash.  In addition, the methods developed under 

objectives 2-4 can also be used to study clouds composed of desert dust, which has 

important weather and climate implications [e.g. Evan et al. 2011; Prospero and Lamb 

2003; Wang et al. 2012; Jickells et al. 2005; Dunion and Velden 2004].  
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Chapter 3 

3. Infrared Radiation and Cloud Microphysics 

3.1.  Introduction 

Infrared measurements can be used to obtain quantitative information on cloud 

microphysics, including cloud composition and particle size, with the advantage that the 

measurements are independent of solar zenith angle.  As such, infrared brightness 

temperatures (BTs) and brightness temperature differences (BTDs) have been used 

extensively in quantitative remote sensing applications for inferring cloud type (e.g. 

liquid water cloud, ice cloud, dust cloud, volcanic ash cloud, multilayered cloud) using 

both threshold and statistical methods (e.g. clustering, machine learning).  For instance, 

Inoue [1985; 1987] used “split window” (11 – 12 µm) brightness temperature differences 

to identify cloud type.  Strabala et al. [1994] and Baum et al. [2000] applied thresholds to 

8.5 – 11 µm and 11 – 12 µm BTDs to help infer cloud phase.  Pavolonis and Heidinger 

[2004] and Pavolonis et al. [2005] used a dynamic threshold technique to help infer cloud 

type, including multilayered cloud, from similar BTDs.  Prata [1989a], and many others 

since, have used “split window” BTDs to detect volcanic ash and non-volcanic dust. 

While all of the aforementioned brightness temperature difference methods have 

been applied with some success, it will be shown that, from a spectral point of view, the 

skill of BT/BTD approaches is fundamentally limited since the measured radiances are 

sensitive not only to cloud composition, but particle size, particle shape, optical depth, 

cloud height, surface emissivity, surface temperature, atmospheric gas concentrations, 

and atmospheric temperature as well.  Depending on the situation, the background signal 
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(e.g. surface emissivity, surface temperature, atmospheric temperature, and atmospheric 

water vapor) can dominate the measured radiance.  We will show that more advanced 

usage of measured infrared radiances can lead to significant increases in sensitivity to 

cloud microphysics, especially for optically thin clouds.  In lieu of BTDs, a derived 

radiative parameter, β, which is directly related to particle size, habit, and composition, is 

utilized.  The subsequent sections of this chapter will describe the physical basis of the 

new methodology for extracting cloud composition information from infrared radiances.  

In addition, the use of certain assumptions in constructing our new data space is 

motivated.  In Chapter 4, actual measurements are used to help illustrate the value β 

compared to traditional BTDs for volcanic ash and dust detection.  In this chapter, the 

term “cloud” will be used when referring to airborne particle distributions of any of the 

following compositions: liquid water, ice, volcanic ash, or non-volcanic dust. 

3.2.  Physical Basis of Cloud Composition Information 

The spectral sensitivity to cloud composition is perhaps best understood by 

examining the imaginary index of refraction, mi, as a function of wavelength.  The 

imaginary index of refraction is often directly proportional to absorption/emission 

strength for a given particle composition, in that larger values are indicative of stronger 

absorption of radiation at a particular wavelength.  However, absorption due to photon 

tunneling, which is proportional to the real index of refraction, can also contribute to the 

observed spectral absorption under certain circumstances [Mitchell 2000], but for 

simplicity, only absorption by the geometrical cross section, which is captured by the 

imaginary index of refraction, is discussed here.  Figure 3.1 shows mi for liquid water 

[Downing and Williams 1975], ice [Warren and Brandt 2008], volcanic rock (andesite) 
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[Pollack et al. 1973], and 

non-volcanic dust 

(kaolinite) [Roush et al. 

1991].  While the exact 

composition, and hence 

the mi, of volcanic ash 

and dust vary depending 

on the source, andesite 

and kaolinite were 

chosen since both rocks 

exhibit the often 

exploited “reverse absorption” signature (e.g. Prata [1989a]).  The “reverse absorption” 

signature is responsible for the sometimes-observed negative 11 – 12 µm brightness 

temperature difference associated with volcanic ash and dust.  Further, in this dissertation, 

the exact composition assumed for volcanic ash and dust is not critical since we are not 

attempting to identify specific types of rocks.  We are, instead, interested in 

distinguishing between ice, liquid water, and dust/volcanic ash.  Once a dust or volcanic 

ash cloud is detected, other methods can be used to determine more information about the 

rock type (e.g. Pavolonis et al. [2006]). 

The mi can be interpreted as follows.  In Figure 3.1, one sees that around 8.5 - 10 

µm liquid water and ice absorb approximately equally, while near 11 – 13.5 µm ice 

absorbs more strongly than water.  Thus, all else being equal, the difference in measured 

radiation (or brightness temperature) between an 8.5 µm channel and an 11 µm channel 

 

Figure 3.1: The imaginary index of refraction for liquid 
water (solid), ice (dotted), andesite (dashed), and kaolinite 
(dash-dot) is shown as a function of wavelength. 
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(or 12 µm or 13.3 µm channel) will be larger for an ice cloud compared to a liquid water 

cloud.  The previous statement is only accurate if the liquid water and ice cloud have the 

same particle concentrations at the same vertical levels in the same atmosphere, and have 

the same particle size and shape distribution.  That is what is meant by “all else being 

equal.”  While Figure 3.1 is insightful, it can also be deceiving if not interpreted correctly.  

For example, it is possible that a liquid water cloud in a certain vertical layer with a 

certain particle distribution will look identical (in measurement space) to an ice cloud at 

the same vertical layer (in the same atmosphere), but with a different particle distribution.  

As another example, a scene with a liquid water cloud in one type of atmosphere (e.g. 

maritime tropical) may exhibit the same measured spectral radiance as a scene with an ice 

cloud in another type of atmosphere (e.g. continental mid-latitude).  The same reasoning 

applies to differentiating between volcanic ash and liquid water/ice or non-volcanic dust 

and liquid water/ice. 

To increase the sensitivity to cloud composition, the information contained in 

Figure 3.1 must be extracted from the measured radiances as best as possible.  One way 

of doing this is to account for the background conditions (e.g. surface temperature, 

surface emissivity, atmospheric temperature, and atmospheric water vapor) of a given 

scene in an effort to isolate the cloud microphysical signal.  This is difficult to 

accomplish with traditional BTs and BTDs.  In the following section, we derive a data 

space that accounts for the background conditions. 

3.3.  The Beta Method 

Assuming a satellite viewing perspective (e.g. upwelling radiation), a fully cloudy 

field of view, a non-scattering atmosphere (no molecular scattering), and a negligible 
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contribution from downwelling cloud emission or molecular emission that is reflected by 

the surface and transmitted to the top of troposphere (Zhang and Menzel [2002] showed 

that this term is very small at infrared wavelengths), the cloudy radiative transfer 

equation for a given infrared channel or wavelength can be written as in Equation ( 3.1) 

(e.g. Heidinger and Pavolonis [2009]). 

 Robs(!) ="eff (!)Rac(!)+ tac(!)"eff (!)B(!,Teff )+ Rclr(!)(1!"eff (!))  ( 3.1) 

In Equation ( 3.1), which is derived in Appendix A, λ is wavelength, Robs is the observed 

radiance, Rclr is the clear sky radiance.  Rac and tac are the above cloud upwelling 

atmospheric radiance and transmittance, respectively.  B is the Planck Function, and Teff 

is the effective cloud temperature.  The estimation of the clear sky radiance and 

transmittance will be explained later on in this section.  The effective cloud emissivity 

[Cox 1976] is denoted by εeff.  To avoid using additional symbols, the angular 

dependence is simply implied.  Only fully cloudy fields of view are considered. 

Equation ( 3.1) can readily be solved for the effective cloud emissivity as shown 

in ( 3.2).  

 
!eff (!) = Robs(!)! Rclr(!)

[B(!,Teff )tac(!)+ Rac(!)]! Rclr(!)
 ( 3.2) 

In Equation ( 3.2), the term in brackets in the denominator is the blackbody cloud 

radiance that is transmitted to the top of atmosphere (TOA) plus the above cloud (ac) 

atmospheric radiance.  This term is dependent upon the cloud vertical location.  This 

dependence will be discussed in detail in later sections.  It is worth noting that a two-

layer cloud system, where the lower cloud layer is assumed to be opaque (e.g. a lower 

liquid water cloud layer) and the upper layer is allowed to be semi-transparent, can easily 
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be accommodated in Equation ( 3.2), if the clear sky radiance term is replaced with the 

upwelling top of atmosphere radiance from a black body cloud layer.  Even if the vertical 

location of the lower cloud layer is chosen based on climatology, the estimate of cloud 

emissivity for the highest cloud layer can be improved for this type of multi-layered 

cloud system.  For simplicity, we will only focus on single layer cloud systems in this 

chapter.  Multi-layered cloud systems are addressed in Chapter 4. 

The cloud microphysical signature cannot be captured with the effective cloud 

emissivity alone for a given spectral channel or wavelength.  It is the spectral variation of 

the effective cloud emissivity that holds the cloud microphysical information.  To harness 

this information, the effective cloud emissivity is used to calculate effective absorption 

optical depth ratios; otherwise known as β-ratios (see Inoue [1987]; Parol et al. [1991]; 

Giraud et al. [1997]; and Heidinger and Pavolonis [2009]).  The β-ratio is computed from 

a spectral emissivity pair, εeff(λ1) and εeff(λ2), as in Equation ( 3.3). 

 
!obs =

ln[1!!eff (!1)]
ln[1!"eff (! 2)]

=
" abs, eff(!1)
" abs, eff(! 2)

 ( 3.3) 

Equation ( 3.3) can simply be interpreted as the ratio of effective absorption optical depth 

(τabs,eff) at two different wavelengths.  The word “effective” is used since the cloud 

emissivity depends upon the effective cloud temperature.  The effective cloud 

temperature is most often different from the thermodynamic cloud top temperature since 

the cloud emission originates from a layer in the cloud.  The depth of this layer depends 

upon the cloud transmission profile, which is generally unknown.  One must also 

consider that the effects of cloud scattering are implicit in the cloud emissivity 

calculation since the actual observed radiance will be influenced by cloud scattering to 
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some degree.  In other words, no attempt is made to separate the effects of absorption and 

scattering.  At wavelengths in the 10 to 13 µm range, the effects of cloud scattering for 

upwelling radiation are quite small and usually negligible.  But at infrared wavelengths in 

the 8 – 10 µm range, the cloud reflectance can make a 1 – 3% contribution to the top of 

atmosphere radiance [Turner 2005].  Thus, it is best to think of satellite-derived effective 

cloud emissivity as a radiometric parameter, which, in most cases, is proportional to the 

fraction of radiation incident on the cloud base that is absorbed by the cloud.  See Cox 

[1976] for an in depth explanation of effective cloud emissivity. 

An appealing quality of βobs, is that it can be interpreted in terms of the single 

scatter properties, which can be computed for a given cloud composition and particle 

distribution.  Following Van de Hulst [1980] and Parol et al. [1991], a spectral ratio of 

scaled extinction coefficients can be calculated from the single scatter properties (single 

scatter albedo, asymmetry parameter, and extinction cross section), as follows. 

 

! 

"theo =
[1.0 #$(%1)g(%1)]&ext(%1)
[1.0 #$(% 2)g(% 2)]&ext(% 2)

 ( 3.4) 

In Equation ( 3.4), βtheo is the spectral ratio of scaled extinction coefficients, ω is 

the single scatter albedo, g is the asymmetry parameter, and σext is the extinction cross 

section.  At wavelengths in the 8 – 15 µm range, where multiple scattering effects are 

small, βtheo, captures the essence of the cloudy radiative transfer such that 

 

! 

"obs # "theo. ( 3.5) 

Equation ( 3.4), which was first shown to be accurate for observation in the 10 – 

12 µm “window” by Parol et al. [1991], only depends upon the single scatter properties.  

It does not depend upon the observed radiances, cloud height, or cloud optical depth.  To 
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illustrate that Equation ( 3.5) is a good approximation in the 8 – 14 µm range, high 

spectral resolution (0.4 cm-1 resolution) radiative transfer simulations were performed 

using the Line-by-Line Radiative Transfer Model (LBLRTM; Clough and Iacono [1995]) 

to compute spectral gaseous optical depth profiles and a Discrete Ordinate Radiative 

Transfer (DISORT) method [Stamnes et al. 1988] to account for cloud scattering and 

absorption.  These two radiative transfer tools were combined by Turner [2005] and 

termed LBLDIS for short.  More details concerning LBLDIS can be found in Turner 

[2005].  LBLDIS was used to simulate an ice cloud (composed of plates) in the upper 

tropical troposphere.  The single scatter properties for this type of cloud were taken from 

Yang et al. [2005].  The cloud optical depth was set to 0.5 at 10 µm (1000 cm-1) and the 

effective particle radius was varied from 7 to 30 µm.  From the simulated radiances, a 

spectra of βobs was calculated using Equations ( 3.2) and ( 3.3).  The βobs spectrum was 

constructed such that the wavenumber (or wavelength) in the denominator of Equation 

( 3.3) was held constant and the wavenumber in the numerator was varied.  An analogous 

βtheo spectrum was calculated using the single scatter properties as described by Equation 

( 3.4).  The goal here is to show that Equation ( 3.5) holds true over the 8 – 14 µm range. 

 Figure 3.2 shows the βobs and βtheo spectra for various effective particle radii.  The 

results indicate that overall Equation ( 3.5) is a very good approximation, especially at 

wavelengths longer than 10 µm.  At wavelengths shorter than 10 µm, βtheo does not fit 

βobs quite as well.  The reasoning for this is as follows.  For a given set of cloud 

microphysics, the amount of scattering will generally increase with decreasing 

wavelength, which likely imposes a small spectral dependence on the effective cloud 

temperature across this wavelength range, which was not accounted for here.  For 
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simplicity, we will ignore this small spectral dependence in Teff.  This simplification does 

not have a large impact on the results, as we are more interested in the relative difference 

in β as a function of cloud composition, as opposed to the absolute accuracy of Equation 

( 3.5). 

 

Figure 3.2: Spectra of effective absorption optical depth ratios calculated from simulated 
high spectral resolution radiances in the 8 – 14 µm range are shown in gray (with 
thinner line style) for an upper tropospheric ice cloud (composed of plates) with an 
optical depth of 0.5 at a wavelength of 10 µm.  An analogous spectrum of scaled 
extinction coefficients is also shown in black (with thick line style).  Each panel 
represents a different effective particle radius. 
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By using β-ratios as opposed to brightness temperature differences, we are not 

only accounting for the non-cloud contribution to the radiances, we are also providing a 

means to tie the observations back to theoretical size distributions.  This framework 

clearly has practical and theoretical advantages over traditional brightness temperature 

differences. Parol et al. [1991] first showed that Equation ( 3.5) is a good approximation 

in the 10 – 12 µm window.  Since that time, faster computers and improvements in the 

efficiency and accuracy of clear sky radiative transfer modeling have allowed for more 

detailed exploration of the β data space and computation of β-ratios on a global scale. 

3.4.  Cloud Composition Differences in β-space 

Since the 8.5 – 11 µm (hereafter, BTD(8.5 – 11µm)) and 11 – 12 µm (hereafter, 

BTD(11 – 12µm)) BTDs are often used to determine cloud phase (e.g. [Strabala et al. 

1994; Pavolonis et al. 2005]) and to detect volcanic ash and dust (e.g. [Pavolonis et al. 

2006; Zhang et al. 2006; Prata 1989a]), these BTDs were selected for analysis.  

Analogously, the βtheo for the 8.5, 11 (hereafter, β(8.5µm, 11µm)) and 11, 12 µm 

(hereafter, β(12µm, 11µm)) wavelengths were analyzed, where the 11 µm emissivity is 

always placed in the denominator of Equation ( 3.4).  Figure 3.3 shows the relationship 

between β(8.5µm, 11µm) and β(12µm, 11µm) as given by the single scatter properties 

(see Equation ( 3.4)) for various cloud compositions with a varying effective particle 

radius.  The effective particle radius is defined as the ratio of the third to second moment 

of the size distribution [Hansen 1974].  With the exception of ice, all single scatter 

properties were calculated using Mie theory.  The ice single scatter properties for seven 

different habits were taken from the Yang et al. [2005] database.  Figure 3.3 indicates that 

the sensitivity to particle habit is small compared to the sensitivity to composition and 
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particle size. 

 

Figure 3.3: The 12/11 µm scaled extinction ratio (β(12µm, 11µm)) is shown as a function 
of the 8.5/11 µm scaled extinction ratio (β(8.5µm, 11µm)) for liquid water spheres (red), 
various ice crystal habits (blue), andesite spheres (brown), and kaolinite spheres (green).  
The ice crystal habits shown are plates, aggregates, bullet rosettes, droxtals, hollow 
columns, solid columns, and spheroids.  A range of particle sizes is shown for each 
composition.  For liquid water (ice), the effective particle radius was varied from 5 to 30 
(54) µm.  The 5 and 15 µm values of liquid water effective radius are labeled.  The 
andesite and kaolinite effective particle radius was varied from 1 to 12 µm.  The large 
and small particle ends of each curve are labeled.  The β-ratios were derived from the 
single scatter properties.  The area shaded in light gray represents the envelope where 
volcanic ash and dust rock types not explicitly represented on this figure typically lie. 

Thus, variability in β due to ice crystal habit does not inhibit the determination of cloud 

composition, unless the liquid water effective radius is very large.  In addition, one can 

see that most of the information on cloud thermodynamic phase is given by the difference 

in absorption between 8.5 and 11 µm, while separating meteorological cloud from ash or 
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dust clouds is best performed using a tri-spectral technique.  For ice and liquid water 

clouds, the difference in absorption at 11 and 12 µm is mostly related to changes in 

particle size.  This figure also indicates that separating dust from ash is difficult to do 

using just these particular spectral relationships.  Unlike BTDs, these βtheo relationships 

are only a function of the cloud microphysical properties. 

3.5.  Estimating the Clear Sky Radiance and Transmittance 

Since the calculation of effective cloud emissivity and hence βobs depends on the 

clear sky radiance and transmittance profiles, our mechanism for estimating the clear sky 

terms in Equation ( 3.2) is described here.  Clear sky transmittances and radiances are 

estimated using a fast clear sky radiative transfer model (RTM).  These models, which 

are computationally efficient, will produce a clear sky transmittance/radiance profile and 

top-of-atmosphere radiances given an input temperature profile, water vapor profile, 

ozone profile, surface temperature, surface emissivity, and viewing angle.  Currently, we 

use a regression-based model [Hannon et al. 1996].  The input data (with the exception of 

viewing angle and surface emisssivity) comes from numerical weather prediction (NWP) 

models, such as the National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS).  NWP model data are convenient to use because of the constant 

spatial coverage.  While the current NWP fields often have large errors in some fields, 

such as the surface temperature over land, they provide needed and useful information.  

Over the coming years, we expect the NWP fields to improve in accuracy and in spatial 

resolution, which should act to improve the clear sky radiance calculations.  All of the 

NWP profile data are interpolated to 101 levels to improve the accuracy of the calculated 

transmittance profile, especially in regards to absorption channels (e.g. [Strow et al. 



 30 

2003]).  The spectrally resolved surface emissivity is taken from the global 5-km spatial 

resolution Seebor database [Seemann et al. 2008]. It is important to note that NWP data 

have been commonly used to drive the clear sky radiative transfer models used in infrared 

cloud retrievals.  For example, the official Moderate Resolution Imaging 

Spectroradiometer (MODIS) cloud CO2 slicing algorithm utilizes this same NWP-based 

approach to estimate the clear sky radiance [Menzel at al. 2008]. 

Since a more complete discussion regarding errors in the top-of-atmosphere clear 

sky radiance is given in Heidinger and Pavolonis [2009], only a brief summary is 

included here.  For channels or wavelengths with weighting functions that peak at or near 

the surface (e.g. “window” channels), errors in the top-of-atmosphere clear sky brightness 

temperatures are generally less than 0.50 K for open-ocean.  Over land, the GFS surface 

temperature error exhibits a diurnal cycle where the surface temperature is significantly 

underestimated during the day and slightly overestimated at night.  Given the large 

uncertainties in surface temperature and uncertainties in surface emissivity, the top-of-

atmosphere clear sky radiance calculation over land is prone to fairly large errors (up to 

15 K over desert surfaces around local solar noon), although the impact of these errors is 

not always severe, depending on the cloud optical depth.  In Chapter 4 and Chapter 6, it is 

shown that cloud composition information inferred using the β method is not 

significantly coupled to the NWP model, and fairly large errors in the clear sky radiance 

can be tolerated.  Thus, assimilation of cloud composition information, extracted using 

the β method, into numerical models should not be prohibitive.  Finally, it is important to 

note that the specific radiative transfer model and ancillary data (e.g. NWP, surface 

observations, independent remote sensing data, rawindsondes, etc…) used to generate the 



 31 

clear sky radiances and transmittances does not significantly impact the results, so long as 

the estimates are reasonable.  The physical concepts are not at all dependent on the clear 

sky radiative transfer scheme chosen. 

3.6.  Sensitivity of Beta to Cloud Vertical Structure 

As shown earlier, the cloud emissivity is dependent on the vertical distribution of 

cloud particles between the upper and lower vertical boundaries.  In the absence of high 

quality independent cloud vertical boundary information, such as from a lidar, the 

effective cloud temperature (Teff) is considered to be unknown.  Previous studies have 

shown that infrared “window” channels are rather insensitive to the Teff for semi-

transparent clouds (e.g. [Heidinger and Pavolonis 2009]).  Given this information, can 

one assume a constant Teff and still effectively isolate the cloud microphysical signal 

using “window” channels?  More specifically, since most clouds are at or below the 

tropopause, can we assume that Teff = Ttropopause? 

To answer this question, we derived analytical expressions for various BTD and 

βtot Jacobians, where βtot is the β calculated using Equations ( 3.2) and ( 3.3) assuming 

that Teff = Ttropopause (“tot” = top of troposphere).  The purpose of this analysis is to 

determine the sensitivity of a given BTD and βtot to: cloud microphysics (given by the 

true β taken from single scatter properties), the effective cloud temperature, the effective 

cloud emissivity, the surface temperature, the surface emissivity, and the atmospheric 

gaseous transmittance.  The complete list of partial derivatives (Jacobians) is shown in 

Table 3.1.  All of the analytical expressions, which are listed in Appendix B, were 

derived using Equations ( 3.1), ( 3.2), ( 3.3) and the Planck Function. 
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Table 3.1: Symbols and definitions of the brightness temperature difference (BTD) and 
effective absorption optical depth ratio (βtot) Jacobians.  The effective absorption optical 
depth ratio was calculated assuming that the effective cloud temperature is equal to the 
tropopause temperature.  The denominator (numerator) wavelength in the beta ratio is 
denoted by λD (λN).  The BTD is defined as λD - λN. 

BTD Jacobian β  Jacobian Definition 
∂BTD(λN,λD)⁄∂β(λN,λD) ∂βtot(λN,λD)⁄∂β(λN,λD) The partial derivative with respect to 

cloud microphysics given by spectral 
variation in cloud emissivity 

∂BTD(λN,λD)⁄∂Teff ∂βtot(λN,λD)⁄∂Teff The partial derivative with respect to 
the effective cloud temperature 

∂BTD(λN,λD)⁄∂εcld(λD) ∂βtot(λN,λD)⁄∂εcld(λD) The partial derivative with respect to 
the denominator (λD) effective cloud 
emissivity 

∂BTD(λN,λD)⁄∂Tsfc ∂βtot(λN,λD)⁄∂Tsfc The partial derivative with respect to 
the surface temperature. 

∂BTD(λN,λD)⁄∂tatmos(λD) ∂βtot(λN,λD)⁄∂tatmos(λD) The partial derivative with respect to 
the denominator (λD) clear sky 
atmospheric transmittance 

∂BTD(λN,λD)⁄∂βatmos(λN,λD) ∂βtot(λN,λD)⁄∂βatmos(λN,λD) The partial derivative with respect to 
the spectral variation of clear sky 
atmospheric transmittance 

∂BTD(λN,λD)⁄∂εsfc(λD) ∂βtot(λN,λD)⁄∂εsfc(λD) The partial derivative with respect to 
the denominator (λD) surface 
emissivity 

∂BTD(λN,λD)⁄∂βsfc(λN,λD) ∂βtot(λN,λD)⁄∂βsfc(λN,λD) 
 

The partial derivative with respect to 
the spectral variation of surface 
emissivity 

 

Global Forecast Model (GFS) data were used to evaluate these analytical 

expressions for a variety of scenes.  A description of the GFS can be found in Hamill et al. 

[2006].  We chose to simulate the 8.5, 11, and 12 µm channels on the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI).  SEVIRI, which is in geostationary orbit, is a 12-

channel imaging instrument with a spatial resolution of 3 km at nadir for the infrared 

channels.  For more information on SEVIRI, see http://www.eumetsat.int/.  We chose to 

simulate SEVIRI radiances primarily out of convenience since we are using it for other 

studies.  The conclusions drawn from these analyses do not change if channels with a 
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similar central wavelength from another sensor are simulated.  For reasons described in 

Section 3.4 the 8.5 – 11 µm and 11 – 12 µm BTDs and the βtot for the 8.5, 11 and 11, 12 

µm channel pairs were analyzed, where the 11 µm channel emissivity is always placed in 

the denominator of Equation ( 3.3).  From here forward the BTDs and βtot are referred to 

as BTD(8.5 – 11µm), BTD(11 – 12µm), βtot(8.5µm, 11µm), and βtot(12µm, 11µm), 

respectively. 
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Figure 3.4: Surface temperature in K (Panel A), total precipitable water in cm (Panel B), 
8.5-µm surface emissivity (Panel C), and 11-µm surface emissivity (Panel D) are shown 
mapped to a full disk viewed by a geostationary radiometer.  The surface temperature 
and precipitable water are taken from a 12 hour Global Forecast System (GFS) forecast 
valid at 13:45 UTC on August 2, 2006.  The surface emissivity is a monthly mean taken 
from the Seebor database.  The white triangles indicate locations where Jacobians of the 
infrared radiative transfer equation were evaluated using these and other inputs from the 
GFS. 

Figure 3.4 shows the GFS 12-hour forecast of surface temperature (Panel A) and 

total precipitable water (Panel B) over a spatial domain consistent with a SEVIRI full 
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disk for an arbitrarily chosen time (forecast valid on August 2, 2006 at 13:45 UTC).  The 

August monthly mean 8.5 µm and 11 µm surface emissivity from the Seebor database are 

also shown in Panels C and D.  The Jacobians were evaluated for several different 

locations in this spatial domain.  Excluding bare land surfaces, the results vary only 

slightly.  Thus, Jacobians for a maritime tropical location and a location in the Sahara 

Desert, denoted by the triangles on Figure 3.4, are shown here.  For each scene, the 11 

µm cloud emissivity was varied from 0.01 to 0.99 and the location of the cloud in the 

vertical and the cloud composition were varied.  The location of the cloud in the vertical 

was specified using a tropopause following pressure coordinate analogous to the terrain 

following sigma coordinates commonly employed by NWP models.  A tropopause 

following coordinate system was chosen to account for the spatial variability of the 

tropopause height.  The goal is to put the cloud in a vertical location such that the mass of 

air between the cloud top and the tropopause is roughly constant regardless of the height 

of the tropopause.  The cloud pressure level is determined using the following expression. 

 

! 

Peff = (Ptropopause " Psurface)# + Psurface  ( 3.6) 

In Equation ( 3.6), Peff is the cloud pressure used to determine the effective cloud 

temperature by matching Peff to the corresponding temperature in the model profiles.  

Ptropopause is the pressure of the thermodynamically defined model tropopause.  Psurface is 

the surface pressure and σ is the weighting factor that determines the vertical location of 

the cloud.  In these sensitivity studies three different weighting factors (σ = 0.87, σ = 

0.63, and σ = 0.33) were used.  The 0.87 weighting factor results in a cloud located in the 

upper troposphere, which is about 75 - 120 hPa (~3 – 5 km) lower than the tropopause 

pressure.  This is important since we are assuming a Teff consistent with the tropopause 
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and we want to make sure that the true Teff is significantly different than the one we 

assumed.  The 0.63 and 0.33 weighting factors are consistent with the middle and lower 

troposphere, respectively. 

Three different cloud compositions, ice, liquid water, and andesite (volcanic ash), 

were simulated.  For ice, a true β value consistent with a plate habit and an effective 

particle radius of 20 µm, based on the single scatter database of Yang et al. [2005] were 

used.  The true β values for liquid water and volcanic ash were based upon single scatter 

properties generated using Mie theory assuming spherical particles.  A β value consistent 

with an effective radius of 10 µm was chosen for liquid water.  For volcanic ash, a β 

value consistent with an effective radius of 2 µm was chosen. All parameters used in 

these simulations are summarized in Table 3.2.  For simplicity, only single layer clouds 

are considered in this analysis, even though both the BTD and βtot will be sensitive to 

multiple cloud layers when the highest cloud layer is semi-transparent.  In Chapter 4, real 

measurements are used to assess the impact of multilayered clouds on both the BTD and 

βtot.  The goal here is to provide theoretical insight into the sensitivity of the BTD and βtot 

to cloud microphysics relative to other variables under straightforward conditions. 
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Table 3.2: A description of the parameters used in various radiative transfer model 
simulations of a maritime tropical and Sahara Desert scene. 

Parameter Maritime Tropical Sahara Desert 
Surface temperature 299 K 321.94 K 
8.5 µm surface emissivity 0.990 0.738 
11 µm surface emissivity 0.990 0.953 
12 µm surface emissivity 0.990 0.978 
Total precipitable water 6.24 cm 1.85 cm 
8.5 µm clear atmospheric transmittance 0.433 0.784 
11 µm clear atmospheric transmittance 0.353 0.870 
12 µm clear atmospheric transmittance 0.209 0.800 
Ice/ash/liquid water cloud σ 0.87/ 0.63/ 0.33 0.87/ 0.63/ 0.33 
Ice/ash/liquid water cloud effective height 11.78/ 6.87/ 3.00 km 12.01/ 7.26/ 3.49 km 
Ice/ash/liquid water cloud effective pressure 221.46/ 440.12/ 713.45 hPa 214.88/ 421.39/ 679.52 hPa 
Ice/ash/liquid water cloud effective temperature 224.66/ 261.99/ 282.79 K 224.93/ 254.55/ 286.43 K 
Ice/ash/liquid water cloud β(8.5, 11 µm) 0.836/ 0.705/ 0.981 0.836/ 0.705/ 0.981 
Ice/ash/liquid water cloud β(12, 11 µm) 1.07/ 0.564/ 1.21 1.07/ 0.564/ 1.21 
Ice/ash/liquid water cloud effective radius 20/ 2/ 10 µm 20/ 2/ 10 µm 
 

In this analysis, all of the Jacobians were arbitrarily scaled to a 1% change 

(relative to the current value) in the independent variables to obtain consistent units for a 

given set of BTD or βtot partial derivatives.  This sort of scaling allows us to answer the 

following question.  If each independent variable is perturbed by the same arbitrarily 

chosen amount, relative to the current value, while holding every other variable constant, 

which perturbation causes the greatest change in BTD or βtot? 

3.6.1. Maritime Tropical Scene 

Sensitivity results for the 8.5, 11 µm and the 11, 12 µm channel combinations are 

shown for the maritime tropical scene in Figure 3.5 and Figure 3.6, respectively.  The 

scaled βtot Jacobians are displayed on the left hand side and the scaled BTD Jacobians on 

the right hand side.  The top (middle, bottom) row in these multi-panel figures shows the 

sensitivity to the ice (volcanic ash, liquid water) cloud at the σ = 0.87 (σ = 0.63, σ = 

0.33) level.  Because of the aforementioned scaling, the magnitude of a given Jacobian is 

arbitrary, thus it is the relative difference in magnitude between the Jacobians within each 
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separate panel of the figure that is significant.  As such, the magnitude of each scaled 

Jacobian was normalized by the magnitude of the cloud microphysics Jacobian, where 

blue (red) colors indicate that the magnitude of the Jacobian was less (greater) than the 

magnitude of the cloud microphysics Jacobian. 

 

Figure 3.5: Evaluation of 8.5 – 11 µm brightness temperature difference Jacobians (right 
hand side of figure) and 8.5-µm/11-µm effective absorption optical depth ratio Jacobians, 
calculated assuming an effective cloud temperature equal to the tropopause temperature 
(left hand side of figure), for a maritime tropical location.  For each dependent variable, 
the partial derivative with respect to cloud microphysics (CM), cloud effective 
temperature (CT), 11-µm cloud emissivity (CE), surface temperature (ST), total 11-µm 
clear sky atmospheric transmittance (GT (mag)), the spectral variation of the clear sky 
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atmospheric transmittance (GT (var)), the 11-µm surface emissivity (SE (mag)), and the 
spectral variation of the surface emissivity (SE (var)) was evaluated as a function of the 
11-µm cloud emissivity.  All Jacobians were scaled to a 1% change in the dependent 
variable and then normalized by the respective CM Jacobian.  Blue (red) colors indicate 
that the magnitude of the Jacobian is less (greater) than the magnitude of the CM 
Jacobian.  Three different types of clouds were considered: an ice cloud in the upper 
troposphere (but significantly lower than the tropopause) (top row), a volcanic ash cloud 
in the middle troposphere (middle row), and a liquid water cloud in the lower 
troposphere (bottom row). 

 

 

Figure 3.6: Same as Figure 3.5 except the 11 – 12-µm brightness temperature difference 
and the 12-µm/11-µm effective absorption optical depth ratio were considered. 
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With regard to the ice cloud, which is located in the upper troposphere, about 4 

km below the tropopause, βtot is most sensitive to the cloud microphysics when the cloud 

emissivity is less than about 0.80 – 0.87 depending on which spectral channels are 

considered.  As expected, at larger emissivities, βtot gradually becomes most sensitive to 

the effective cloud temperature and the cloud emissivity.  In contrast, the BTD for the 8.5, 

11 µm pair is never most sensitive to cloud microphysics, and the BTD for the 11, 12 µm 

pair is only most sensitive to cloud microphysics at large emissivities.  Note how the 

BTDs are very sensitive to surface temperature over most of the range of emissivities, 

while the sensitivity of βtot to non-cloud variables is very small.  While not shown, these 

general conclusions for an upper tropospheric cloud hold when other cloud compositions 

or ice crystal habits are considered. 

The volcanic ash cloud at the σ = 0.63 level, which is about 9 km below the 

tropopause, exhibits a reduced sensitivity to cloud microphysics compared to the ice 

cloud at the σ = 0.87 level.  Similar to the upper tropospheric ice cloud, βtot is 

considerably more sensitive to cloud microphysics than the BTDs. The βtot Jacobians 

indicates a slightly stronger sensitivity to non-cloud variables, especially the surface 

temperature.  This is because of the larger difference between the assumed vertical cloud 

location and the true cloud location. 

The liquid water cloud was placed about 13 km below the tropopause, in the 

lower troposphere at σ = 0.33.  In this case, a very large error in the cloud vertical 

location resulted from our top of troposphere assumption, and as such, βtot is most 

sensitive to the effective cloud temperature, not cloud microphysics.  Despite this large 
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error in the vertical cloud location, βtot is still noticeably more sensitive to cloud 

microphysics than the corresponding BTDs. 

3.6.2. Sahara Desert Scene 

Bare land surfaces such as those found in the Sahara Desert are characterized by 

lower infrared emissivities (relative to most other surfaces) with a large spectral variation 

in the 8.5 – 12 µm window.  Because of these features in the surface emissivity, it is well 

known that BTDs associated with semi-transparent clouds can be dominated by these 

surface signals (e.g. [Pavolonis et al. 2005]). Figure 3.7 and Figure 3.8 show that this is, 

in fact, the case for the 8.5, 11 µm and the 11, 12 µm channel pairs, respectively.  The 

BTD(8.5 – 11µm) (Figure 3.7) is very sensitive to surface emissivity over most of the 

range of cloud emissivities for each cloud type considered.  Conversely, βtot(8.5µm, 

11µm) is very sensitive to cloud microphysics for mid and high clouds over a large range 

of cloud emissivities.  The βtot(8.5µm, 11µm) sensitivity results for the low liquid water 

cloud indicate that an accurate estimation of the cloud height is needed over low 

emissivity surfaces to better isolate the cloud microphysical signal.  This is likely due to 

the reduced difference between the upwelling clear sky radiance and the cloudy sky 

radiance caused by the reduced surface emissivities.  The BTD(8.5 – 11µm) is also very 

insensitive to cloud microphysics under these same conditions.  The difference in surface 

emissivity between the 11 and 12 µm channels is not quite as large as for the 8.5 and 11 

µm channels and the magnitude of the 12 µm surface emissivity is larger than the 8.5 µm 

surface emissivity.  Thus, the βtot(12µm, 11µm) for the mid-level ash cloud and the low-

level liquid water cloud exhibits a much greater sensitivity to cloud microphysics than 
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βtot(8.5µm, 11µm) under the same conditions.  Overall, βtot(12µm, 11µm) is much more 

sensitive to cloud microphysics than BTD(11 – 12µm). 

 

Figure 3.7: Same as Figure 3.5, except the Jacobians were evaluated for a scene located 
over the Sahara Desert. 
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Figure 3.8: Same as Figure 3.7, except the 11 – 12-µm brightness temperature difference 
and the 12-µm/11-µm effective absorption optical depth ratio were considered. 

3.7.  Alternative Cloud Vertical Structure Assumptions 

While the results in the previous section indicate that the assumption of Teff = 

Ttropopause used in constructing βtot from combinations of the 8.5, 11, and 12 µm channels 

is very effective, is it possible to improve upon this assumption under certain conditions?  

More specifically, can the microphysical sensitivity for mid and lower level clouds be 

improved if one has some a priori knowledge regarding the approximate cloud 
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emissivity?  One method for determining if a cloud has a large cloud emissivity (ε > 

0.90) is to calculate βobs for a given channel pair choosing a cloud vertical level such that 

the 11 µm emissivity is equal to 0.990.  A value of 0.990 allows the other emissivity in 

the channel pair to have values greater than the 11 µm emissivity, yet smaller than 1.0.  

In other words, using the 11 µm channel as the first channel used in calculating β, the 

cloud emissivity of the second channel is determined using the vertical level that gives an 

11 µm cloud emissivity of 0.990.  If the cloud actually has a large 11 µm emissivity, then 

the β calculated using this assumption should fall well within the expected theoretical 

range given by the single scatter properties.  If the cloud has an 11 µm emissivity much 

smaller than 0.990, the βobs should be greatly influenced by the spectral variability in 

surface emissivity and clear sky gaseous transmittance, and thus, may not fall within the 

expected theoretical range.  The following analysis illustrates this point. 

Figure 3.9 and Figure 3.10 show the β(12µm, 11µm) and β(8.5µm, 11µm) 

calculated under the assumption that 11 µm cloud emissivity must be equal to 0.990 

when the actual 11 µm cloud emissivities were varied from 0.01 to 0.999.  An ice cloud 

at the σ = 0.87 level and a liquid water cloud at the σ = 0.33 level were considered. The 

same maritime tropical (Figure 3.9) and Sahara Desert (Figure 3.10) conditions used in 

the Jacobian analysis presented in the previous sections were applied to generate these 

figures.  The relevant parameters used in this analysis are shown in Table 3.2.  The 

expected range of β(12µm, 11µm) and β(8.5µm, 11µm), which are given by the single 

scatter property derived betas shown in Figure 3.3, are denoted by the dotted line in 

Figure 3.9 and Figure 3.10. 
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Figure 3.9: Calculations showing the 12-µm/11-µm (top) and 8.5-µm/11-µm (bottom) 
effective absorption optical depth ratio (β) derived assuming a cloud vertical level that 
gives an 11-µm cloud emissivity equal to 0.99 (performed regardless of the true cloud 
emissivity).  Each β is expressed as a function of the true 11-µm cloud emissivity for an 
upper tropospheric ice cloud (dashed line) and a lower tropospheric liquid water cloud 
(solid line).  The range of values expected based on the single scatter properties are 
given by the dotted line.  These calculations were performed for a maritime tropical 
location. 
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Figure 3.10: Same as Figure 3.9 except for a location over the Sahara Desert was 
considered. 

Under the maritime tropical conditions listed in Table 3.2, β(12µm, 11µm) is a 

very good indicator of whether a cloud has an 11 µm emissivity > 0.90 because 

unphysical values of β(12µm, 11µm) are found over the low and middle ranges of 11 µm 

cloud emissivity.  It is important to note that we are not attempting to retrieve the actual 
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cloud emissivity, instead we are looking for a quick and effective way to determine 

which rough emissivity range (e.g. semi-transparent or near-opaque) the cloud falls into.  

β(12µm, 11µm) owes its sensitivity to cloud opacity to the difference in atmospheric 

weighting functions between the two channels.  Conversely, β(8.5µm, 11µm) is not a 

very strong indicator of relative cloud opacity in this case because the difference in the 

8.5 and 11 µm clear sky atmospheric optical depth (0.84 and 1.04, respectively) is small 

compared to the difference in the 11 and 12 µm clear sky optical depth (1.04 and 1.57, 

respectively).  Differences in atmospheric optical depth are important, especially since 

the surface emissivity is spectrally constant in this case.  The clear sky atmospheric 

optical depth (or alternatively, the atmospheric transmittance) impacts the difference 

between the black cloud radiance, B(λ,Teff)tac(λ) + Rac(λ), in Equation 2 and the clear sky 

radiance, Rclr(λ).  In other words, the upwelling top-of-atmosphere radiance from an 

elevated (e.g. above the surface) blackbody surface, and the atmosphere above 

(B(λ,Teff)tac(λ) + Rac(λ)), converges to the clear sky radiance (Rclr(λ)) at a higher (colder 

in this case) atmospheric level for wavelengths that have a higher peaking atmospheric 

weighting function (or a surface emissivity that is significantly less than 1.0).  The black 

cloud radiance is the only term in Equation ( 3.2) that is altered when a new cloud 

vertical level is considered.  The maritime tropical results hold for most other conditions, 

but there are exceptions, as described below. 

When the surface emissivity exhibits large spectral variations, such as over the 

Sahara Desert, the maritime tropical results are no longer valid. Figure 3.10 shows that 

β(8.5µm, 11µm) can be used to identify the presence of opaque liquid water clouds over 

surfaces that have a small 8.5 µm surface emissivity (0.738 in this case) relative to the 
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11µm surface emissivity (0.953 in this case).  The smaller surface emissivity at 8.5 µm 

leads to a much smaller difference between the 8.5 µm black cloud radiance and the 8.5 

µm clear sky radiance in the denominator of Equation 2 relative to the same difference at 

11 µm.  β(12µm, 11µm) exhibits less sensitivity over the Sahara Desert for two reasons.  

The 11 and 12 µm weighting functions differ less since the air mass is very dry.  But, 

more importantly, the 12 µm surface emissivity (0.978) is greater than the 11 µm surface 

emissivity (0.953), which acts to reduce the impact of the spectral variation in clear sky 

atmospheric transmittance.  Overall, these results indicate that it is possible to identify 

optically thick clouds using β.  Given a priori knowledge of an opaque/near-opaque 

cloud, it may be possible to improve upon the Teff = Ttropopause assumption by taking Teff to 

be consistent with an optically thick cloud. 

3.8.  Summary 

While the concept of effective absorption optical depth ratios (β) has been around 

since at least the mid 1980’s, this is the first study to explore the use of β for inferring 

cloud composition (ice, liquid water, ash, dust, etc…) in the absence of cloud vertical 

boundary information.  The results showed that even in the absence of cloud vertical 

boundary information, one could significantly increase the sensitivity to cloud 

microphysics by converting the measured radiances to effective emissivity and 

constructing effective absorption optical depth ratios from a pair of spectral emissivities.  

The spectral pair(s) can be chosen to take advantage of differences in the spectral 

absorption for different compositions.  The increase in sensitivity to cloud microphysics 

is relative to brightness temperature differences (BTDs) constructed from the same 

spectral pairs. 
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BTDs have been traditionally used to infer cloud composition.  A detailed 

sensitivity analysis indicated that, for clouds with an 11 µm emissivity less than about 

0.85, commonly used BTDs constructed from 8.5, 11, and 12 µm brightness temperatures 

are more sensitive to non-cloud variables, such as surface temperature, surface emissivity, 

and clear sky atmospheric transmittance, than cloud microphysics (which includes cloud 

composition).  In contrast, betas constructed from the same spectral radiances showed a 

much greater sensitivity to cloud microphysics, despite the fact that a constant, and 

inaccurate, cloud level (taken to be the top of the troposphere) was assumed when 

calculating cloud emissivity.  This result occurs because the spectral variation in radiance 

in the infrared “window” is largely insensitive to the cloud effective temperature.  

Additional analysis indicated that β could also be used to identify clouds that are 

optically thick (cloud emissivity > 0.9).  This knowledge can potentially be used to 

improve the sensitivity to cloud microphysics, and hence composition, for those same 

optically thick clouds.  Another advantage of using β as opposed to BTDs is that β can be 

directly related to theoretical cloud particle distributions via the single scatter properties. 

While the physical concepts described in this chapter apply to broadband and high 

spectral resolution (hyperspectral) infrared measurements, hyperspectral measurements 

offer a few clear advantages.  Hyperspectral measurements provide more complete 

spectral coverage (e.g. there are generally fewer spectral gaps) and, hence, are a better 

source of microphysical information.  The microphysical information is more robust 

because more of the detail contained in the index of refraction spectra can be resolved.  

The increased spectral sampling of hyperspectral measurements also allows one to 

smooth out noise associated with the measurements and/or the clear sky calculations.  
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Chapter 4 

4. Multispectral Analysis of Volcanic Ash and Dust 

4.1.  Introduction 

In an effort to address all of the aforementioned limitations (See Chapter 2) of 

previously published volcanic ash and dust detection methods, the Spectrally Enhanced 

Cloud Objects (SECO) technique has been developed.  The SECO algorithm utilizes a 

combination of radiative transfer theory, a statistical model, and image processing 

techniques to identify volcanic ash and dust clouds in satellite imagery with skill 

comparable to that of a human expert.  The fully automated SECO technique is globally 

applicable and can be adapted to a wide range of low earth orbit and geostationary 

satellite sensors.  The SECO algorithm is designed to take full advantage of each sensor’s 

volcanic ash/dust relevant capabilities.  The SECO algorithm is described over the course 

of two chapters.  This chapter will describe how the SECO algorithm utilizes advanced 

metrics to identify satellite pixels that potentially contain volcanic ash and/or dust with 

improved skill relative to the most utilized existing method.  In Chapter 6, the cloud 

object based techniques that are applied to the results of the analysis, described in this 

chapter, will be discussed.  In addition, Chapter 6 demonstrates that the end results of the 

complete SECO algorithm are comparable to manual analysis performed by human 

experts (especially in terms of false alarm rate).  The SECO technique is the first fully 

automated algorithm, applicable to nearly any satellite sensor with infrared capabilities, 

which can be used in advanced real-time applications such as ash cloud alerting and 

ash/dust cloud dispersion forecasting.  The SECO technique can also serve as a valuable 

research tool. 
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4.2.  Satellite Measurements 

The SECO method is designed such that it can be applied to nearly any low earth 

orbit (LEO) or geostationary (GEO) imaging sensor, such that frequent global results can 

be obtained.  The method can also be applied to sounding instruments, including 

hyperspectral infrared sounders, but this dissertation will focus on the higher spatial 

resolution (and higher temporal resolution in the case of GEO) measurements offered by 

imaging instruments.  Spectral measurements centered near 0.65 (daytime only), 3.9, 7.3, 

8.5, 11, and 12 µm can be used by the SECO algorithm.  The rationale for selecting these 

channels will be described in a later section.  More specifically, the SECO algorithm can 

utilize any of the channel combinations shown in Table 4.1.  For each channel 

combination the relevant sensors are also listed (Table 4.2 defines the sensor acronyms).  

The algorithm is designed to utilize the greatest number of spectral channels possible for 

a given sensor taking into account the quality of each spectral measurement on a pixel-

by-pixel basis.  While measurements that directly depend on solar zenith angle are 

utilized when possible, the SECO approach does not require sunlight to be present.  The 

algorithm can operate solely with measurements that are not influenced by reflected 

sunlight. 
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Table 4.1: Possible spectral channel combinations that can be used in the ash/dust detection algorithm are shown as a function of 
satellite imaging sensor spectral capabilities (relevant to ash and dust detection).  Tier I sensors offer the most channels of relevance 
to the ash/dust detection algorithm presented in this dissertation and Tier III sensors offer the least.  Sun glint is assumed to be 
present over water surfaces if the glint angle is less than 40o.  Stray light is assumed to be present if the solar zenith angle exceeds 90o 
and the measured 0.65 µm counts is greater than a sensor dependent threshold.  Please see Table 4.2 for a list of sensor acronyms. 

Tier I Sensors: MODIS 
MSG SEVIRI 
GOES-R ABI  

Himawari-8/9 AHI 
MTG FCI 

 

Approximate Central Wavelength Sensor Channel Numbers Conditions Required for Use* 
0.65, 3.9, 7.3, 8.5, 11, 12 µm 1, 20, 28, 29, 31, 32 

1, 4, 6, 7, 9, 10 
2, 7, 10, 11, 14, 15 
3, 7, 10, 11, 14, 15 
3, 9, 11, 12, 14, 15 

Solar zenith angle < 85o and no sun glint 

3.9, 7.3, 8.5, 11, 12 µm 20, 28, 29, 31, 32 
4, 6, 7, 9, 10 

7, 10, 11, 14, 15 
7, 10, 11, 14, 15 
9, 11, 12, 14, 15 

Solar zenith angle > 90o and no detectable stray light 

7.3, 8.5, 11, 12 µm 28, 29, 31, 32 
6, 7, 9, 10 

10, 11, 14, 15 
10, 11, 14, 15 
11, 12, 14, 15 

Only used if previous two channel combinations are 
not possible 

8.5, 11, 12 µm 29, 31, 32 
7, 9, 10 

11, 14, 15 
11, 14, 15 
12, 14, 15 

Only used if previous three channel combinations 
are not possible 

11, 12 µm 31, 32 
9, 10 

14, 15 
14, 15 
14, 15 

Only used if previous four channel combinations are 
not possible 

Tier II Sensors: VIIRS  
Approximate Central Wavelength Sensor Channel Numbers Conditions Required for Use* 

0.65, 3.9, 8.5, 11, 12 µm M5, M12, M14, M15, M16 Solar zenith angle < 85o and no sun glint 
3.9, 8.5, 11, 12 µm M12, M14, M15, M16 Solar zenith angle > 90o and no detectable stray light 

8.5, 11, 12 µm M14, M15, M16 Only used if previous two channel combinations are 
not possible 

11, 12 µm M15, M16 Only used if previous three channel combinations 
are not possible 

Tier III Sensors: AVHRR 
COMS-MI 

GOES Imager# 
MTSAT Imager 

 

Approximate Central Wavelength Sensor Channel Numbers Conditions Required for Use* 
0.65, 3.9, 11, 12 µm 1, 3b, 4, 5 

1, 2, 4, 5 
1, 2, 4, 5 
1, 5, 2, 3 

Solar zenith angle < 85o and no sun glint 

3.9, 11, 12 µm 3b, 4, 5 
2, 4, 5 
2, 4, 5 
5, 2, 3 

Solar zenith angle > 90o and no detectable stray light 

11, 12 µm 4, 5 
4, 5 
4, 5 
2, 3 

Only used if previous two channel combinations are 
not possible 

*Each channel in a given spectral combination must also pass quality control.  If one or more channels in a 
combination does not pass quality control the next best channel combination is attempted. 
#The 12 µm channel is only available on the GOES-8, GOES-9, GOES-10, and GOES-11 spacecraft. 
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Table 4.2: The satellite imaging radiometers of greatest relevance to the ash/dust 
detection algorithm described in this dissertation is listed below.  Each sensor may be 
present on multiple spacecraft with different orbital parameters. 

Sensor Acronym Acronym Meaning 
AVHRR Advanced Very High Resolution Radiometer 

 
COMS MI Communication, Ocean, and Meteorological Satellite (COMS) 

Meteorological Imager (MI) 
 

GOES Imager Geostationary Operational Environmental Satellite (GOES) 
Imager 
 

GOES-R ABI* Next Generation Geostationary Operational Environmental 
Satellite (GOES-R) Advanced Baseline Imager (ABI) 
 

Himawari-8/9 AHI* Himawari-8/9 Advanced Himawari Imager (AHI) 
 

MODIS MODerate Resolution Imaging Spectroradiometer 
 

MTSAT Imager 
 

Multifunctional Transport SATellites (MTSAT) Imager 
 

MSG SEVIRI Meteosat Second Generation (MSG) Spinning Enhanced Visible 
and Infrared Imager 
 

MTG FCI* Meteosat Third Generation (MTG) Flexible Combined Imager 
(FCI) 
 

VIIRS Visible Infrared Imaging Radiometer Suite 
*Capability will be launched and deployed in 2014 or later 
 

 

The MODerate Resolution Imaging Spectroradiometer (MODIS), which has all 

the spectral channels (with a 1 km resolution at nadir) required to test each possible 

channel combination, is the primary instrument for developing and demonstrating the 

SECO approach.  In Chapter 6, results from other sensors will also be briefly highlighted 

to help illustrate that the SECO approach is generic and robust enough to be applied to 

virtually any sensor (past, current, and future sensors included).  The operational 

meteorological imaging sensor (as of early 2014) excluded from Table 4.1 and Table 4.2 
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is the Geostationary Operational Environmental Satellite (GOES) Imager on GOES-12 

through GOES-15 [Schmit et al. 2001].  The 12-µm channel on GOES-12 through 

GOES-15 was replaced by a 13.3 µm channel, which, due to CO2 absorption, is more 

challenging to use for detecting volcanic ash and dust [Ellrod 2004].  We have developed 

the ability to utilize the 13.3-µm channel in lieu of the 12 µm channel, but this will not be 

discussed in this dissertation in order to focus on the more common case of the 12 µm 

channel being available. 

4.3.  Definition of Volcanic Ash and Dust Clouds 

Prior to describing the SECO algorithm, we must first explain how we define 

volcanic ash and dust clouds.  In this dissertation, volcanic ash and dust clouds are 

defined as a collection of satellite pixels that can be manually identified as ash or dust in 

well-scaled  (visible, near-infrared, and infrared) passive satellite imagery by a human 

expert.  Such a definition is quite reasonable given that automated algorithms can only 

detect volcanic ash or dust if a spatially and temporally (if applicable) coherent signature 

is present in the calibrated radiances for a given satellite sensor (e.g. the ash or dust cloud 

contributes to the measured spectral radiances more than noise).  Thus, there are two 

general scenarios in which airborne ash or dust, if actually present, cannot be 

qualitatively (and hence quantitatively) detected using passive satellite data: 1). 

Overlapping cloud layers obscure the ash or dust cloud, 2). The mass loading of the ash is 

below detection limits for a given set of observing conditions and instrument capabilities.  

Prata and Prata [2012], Francis et al. [2012], and Pavolonis et al. [2013] showed that 

volcanic ash can generally be identified in passive satellite observations if it is the highest 

cloud layer and has a concentration with order of magnitude 10-2 g/m2 or greater.  
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Multispectral false color imagery sometimes referred to as Red-Green-Blue or RGB 

imagery is a proven tool used by human analysts, including operational forecasters, to 

manually identify volcanic ash and dust [Lensky and Rosenfeld 2008; Millington et al 

2012].  Volcanic ash and dust relevant false color imagery is designed to maximize the 

color contrast between volcanic ash and dust and all other observable features (other 

cloud types and clear sky features) by exploiting the unique spectral variability of 

absorption and reflection exhibited by volcanic ash and dust relative to other cloud types 

and most surface features.  More specifically, well-known absorption and reflection 

properties at wavelengths centered near 3.9, 8.5, 11, and 12 µm are exploited [Prata and 

Grant 2001; Pavolonis et al. 2006; Lensky and Rosenfeld 2008; Pavolonis 2010; Francis 

et al. 2012; Pavolonis et al 2013].  From these spectral channels two false color images 

are generated as described next. 

4.3.1. Overview of 12-11, 11-3.9, 11 µm RGB 

The first false color image is constructed by displaying the 12-11 µm brightness 

temperature difference (BTD) on the red color gun, the 11-3.9 µm BTD on the green 

color gun, and the 11 µm brightness temperature (BT) on the blue color gun.  Each 

parameter is linearly scaled and the default scaling range is given in Table 4.3.  A 

different 11-3.9 µm scaling range is used during the day (compared to night) to account 

for the influence of reflected sunlight at 3.9 µm.  The scaling range can be optionally 

modified to provide better contrast as needed on a case-by-case basis. 
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Table 4.3: The recipe used to create the 12-11, 11-3.9, 11 µm false color (or Red-Green-
Blue) image is shown.  Each parameter is linearly scaled to the value range given in the 
third and fourth columns of the table. 

Color Gun Parameter Default Scaling Min (K) Default Scaling Max (K) 
Red 12-11 µm BTD* -4.0 2.0 

Green (day) 11-3.9 µm BTD* -60.0 0.0 
Green (Night) 11-3.9 µm BTD* -30.0 5.0 

Blue 11 µm BT# 243.0 293.0 
*BTD = Brightness Temperature Difference 
#BT = Brightness Temperature 
 

An example daytime 12-11, 11-3.9, 11 µm false color image is shown in Figure 

4.1 (Terra MODIS – February 19, 2001 at 23:10 UTC), and a nighttime example is 

shown in Figure 4.2 (Terra MODIS – February 20, 2001 at 23:10 UTC).  Annotations are 

used to highlight various features, including volcanic ash produced by an eruption of 

Cleveland volcano (Alaska), in Figure 4.1 and Figure 4.2.  Generally well understood 

differences in spectral absorption and reflection combine to give volcanic ash and dust a 

distinct pink or reddish appearance in the 12-11, 11-3.9, 11 µm RGB image [Lensky and 

Rosenfeld 2008].  In contrast, mid and high level meteorological clouds will have an 

appearance that is generally distinctively different from ash and dust primarily because of 

a much smaller contribution from the red color gun (see Figure 4.1 and Figure 4.2).  

While certain cloud (e.g. lower level liquid water clouds during the day) and surface 

features not related to volcanic ash or dust may also sometimes appear pink or red, the 

combination of the RGB color and spatial pattern recognition allow a human expert to 

identify volcanic ash and dust clouds that are not obscured by other clouds layers with 

very good skill.  This is why Volcanic Ash Advisory Centers (VAACs) routinely utilize 

manual analysis of satellite imagery to define the horizontal location of ash clouds in 
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volcanic ash advisories.  Refer to Pavolonis et al. [2006] for a detailed review of the 

absorption and scattering properties of clouds at 3.9, 11, and 12 µm. 

 

Figure 4.1: A false color Terra MODIS image centered on the Aleutian Islands (Alaska) 
on February 19, 2001 at 23:10 UTC is shown.  The 12  - 11 µm brightness temperature 
difference (BTD) is displayed on the red color gun, the 11 – 3.75 µm BTD is displayed on 
the green color gun, and the 11 µm brightness temperature is displayed in the blue color 
gun.  The scaling ranges used to make the image are shown in Table 4.3.  The white 
annotations are used to highlight some important features.  The volcanic ash cloud was 
produced by an eruption of Mount Cleveland, Alaska.  In the annotations, “meteo cloud” 
refers to liquid water or ice clouds generated by typical meteorological processes.  This 
MODIS image was taken from the sunlit portion of the orbit. 
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Figure 4.2: Same as Figure 4.1 except the Terra MODIS image is valid at February 20, 
2001 at 08:45 UTC.  The inset shows the zoomed in view of the volcanic cloud produced 
by an eruption of Mount Cleveland.  This MODIS image was taken at night. 

4.3.2. Overview 12-11, 11-8.5, 11 µm RGB 

The second type of false color image is constructed in the same manner as the 12-

11, 11-3.9, 11 µm RGB except the 8.5 µm channel is used in lieu of the 3.9 µm channel.  

Unlike the 12-11, 11-3.9, 11 µm RGB, the colors in the 12-11, 11-8.5, 11 µm RGB are 

influenced by SO2 because several SO2 absorption lines are located near 8.5 µm [e.g. 

Watson et al. 2004].  Each parameter is linearly scaled and the default scaling range is 

given in Table 4.4.  The scaling range can be optionally modified to provide better 

contrast as needed on a case-by-case basis. 
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Table 4.4: The recipe used to create the 12-11, 11-8.5, 11 µm false color (or Red-Green-
Blue) image is shown.  Each parameter is linearly scaled to the value range given in the 
third and fourth columns of the table. 

Color Gun Parameter Default Scaling Min (K) Default Scaling Max (K) 
Red 12-11 µm BTD* -4.0 2.0 

Green 11-8.5 µm BTD* -6.0 6.0 
Blue 11 µm BT# 243.0 293.0 

 *BTD = Brightness Temperature Difference 
#BT = Brightness Temperature  
 

An annotated 12-11, 11-8.5, 11 µm false color image, for the same scene depicted 

in Figure 4.1 (Figure 4.2), is shown in Figure 4.3 (Figure 4.4).  When SO2 is not present, 

or is only present in very small amounts, most volcanic ash and dust clouds will take on a 

pink or reddish color, while liquid water clouds will have a beige to light yellow color 

and ice clouds will appear brownish or blackish [Lensky and Rosenfeld 2008].  See 

Chapter 3 for a review of cloud absorption and scattering properties in the 8 – 13 µm 

spectral range.  When SO2 is present in larger concentrations, the lack of SO2 absorption 

in the 11 and 12 µm channels combined with the SO2 absorption in the 8.5 µm channel 

causes ash clouds (the combination of ash and SO2 is far more common than the 

combination of dust and SO2) to be bright yellow in the RGB when SO2 is also present at 

the same vertical levels or above the ash in the same atmospheric column (see Cleveland 

volcano ash cloud in Figure 4.3 and Figure 4.4).  While under clear sky conditions the 

spectral variability in the emissivity of land surfaces [Seemann et al. 2008] can produce 

similar colors in the 12-11, 11-8.5, 11 µm RGB as ash and dust clouds, a human expert 

can generally use pattern recognition to differentiate between ash/dust and land surface 

features. 
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Figure 4.3: A false color Terra MODIS image centered on the Aleutian Islands (Alaska) 
on February 19, 2001 at 23:10 UTC is shown.  The 12  - 11 µm brightness temperature 
difference (BTD) is displayed on the red color gun, the 11 – 8.5 µm BTD is displayed on 
the green color gun, and the 11 µm brightness temperature is displayed in the blue color 
gun.  The scaling ranges used to make the image are shown in Table 4.4.  The white 
annotations are used to highlight some important features.  The volcanic ash and SO2 
cloud was produced by an eruption of Mount Cleveland, Alaska.  In the annotations, 
“meteo cloud” refers to liquid water or ice clouds generated by typical meteorological 
processes.  This MODIS image was taken from the sunlit portion of the orbit. 
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Figure 4.4: Same as Figure 4.3 except the Terra MODIS image is valid at February 20, 
2001 at 08:45 UTC.  The inset shows the zoomed in view of the volcanic cloud produced 
by an eruption of Mount Cleveland.  This MODIS image was taken at night. 

4.3.3. Traditional “Split-window” Imagery 

The oldest, and most common, method used to identify ash and dust clouds in 

passive satellite data is known as the “reverse absorption” or “split-window” technique 

[Prata 1989a; Prata 1989b].  The traditional “split-window” technique simply consists of 

calculating the 11 – 12 µm BTD and applying a threshold.  Volcanic ash and dust 

typically absorb more radiation at 11 µm compared to 12 µm, while the opposite is 

generally true for meteorological clouds.  Thus, a threshold of about 0 K is often used to 

differentiate between ash/dust and other features.  A “split-window” BTD image of the 

same scene depicted in Figure 4.1 and Figure 4.3 (Figure 4.2 and Figure 4.4) is shown in 
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Figure 4.5 (Figure 4.6).  While the general presence of volcanic ash from the eruption of 

Cleveland volcano is obvious, there are several portions of the Cleveland volcanic clouds 

in Figure 4.5 and Figure 4.6 that have 11 – 12 µm BTD values that are very similar to 

other non-volcanic cloud features, which limits the effectiveness of traditional “split-

window” ash/dust detection in quantitative applications.  When viewed globally, the 

ambiguity of the 11 – 12 µm BTD is far more severe than what is shown in these two 

scenes from the Alaska region [Pavolonis et al. 2006].  Note how the spatial extent of the 

volcanic ash is generally easier to ascertain in the tri-spectral false color images, which, 

qualitatively, highlights the value of additional spectral information.  Given that “split-

window” based ash and dust detection techniques are still widely used in qualitative and 

quantitative applications, the performance of the SECO algorithm relative to the “split-

window” approach will be discussed in this chapter and Chapter 6. 
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Figure 4.5: A “split-window” (11 – 12 µm brightness temperature difference) Terra 
MODIS image centered on the Aleutian Islands (Alaska) on February 19, 2001 at 23:10 
UTC is shown.  Yellow annotations are used to highlight certain key features including 
an ash cloud produced by an eruption of Mount Cleveland, Alaska.  In the annotations, 
“meteo cloud” refers to liquid water or ice clouds generated by typical meteorological 
processes.  This MODIS image was taken from the sunlit portion of the orbit. 
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Figure 4.6: Same as Figure 4.5 except the Terra MODIS image is valid at February 20, 
2001 at 08:45 UTC.  The inset shows the zoomed in view of the volcanic cloud produced 
by an eruption of Mount Cleveland.  This MODIS image was taken at night. 

4.4.  SECO Algorithm – Multispectral Analysis 

The SECO algorithm is comprised of four primary components.  First, calibrated 

and navigated spectral measurements are converted to more robust spectral parameters 

when possible (e.g. increased sensitivity to cloud composition and decreased sensitivity 

to background conditions).  Next, the spectrally robust metrics and a naïve Bayesian 

approach are used to estimate the probability that a given satellite pixel is part of an ash 

or dust cloud.  In the third component of the SECO algorithm, spatially connected 

satellite pixels that exceed an ash/dust probability threshold are grouped into cloud 

objects and various statistical properties are computed for each cloud object.  Finally, the 
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cloud object statistics are used to determine which objects are most likely ash/dust clouds.  

All pixels associated with objects determined to be volcanic ash or dust are classified as 

ash/dust and all other pixels are classified as a non-ash/dust feature.  The first two 

components of the SECO algorithm (derivation of advanced metrics and estimation of 

ash/dust probability) are described in the following sections of this chapter, while the 

cloud object components are described in Chapter 6. 

4.4.1. Description of Spectral Metrics 

Most of the infrared-based spectral metrics are based on the concepts described in 

Chapter 3.  In lieu of infrared brightness temperatures and brightness temperature 

differences, which are very sensitive to background conditions (surface temperature, 

surface emissivity, atmospheric moisture and temperature), cloud emissivity and radiative 

parameters known as β-ratios are utilized.  As demonstrated in Chapter 3, the effective 

cloud emissivity at a given infrared wavelength is computed as given in Equations ( 4.1) 

and ( 4.2). 

 
!eff (") = Robs(")! Rclr(")

Rcld(")! Rclr(")  

( 4.1) 

 Rcld(!) = Rac(!)+B(!,Teff )tac(!)  ( 4.2) 

In Equation ( 4.1), which is derived in Appendix A, λ is wavelength, Robs is the observed 

radiance, Rclr is the clear sky radiance, and Rcld is the blackbody emission from the cloud 

that is transmitted to the top of the atmosphere. The effective cloud emissivity [Cox 

1976] is denoted by εeff. The effects of cloud scattering are implicitly captured by the 

effective cloud emissivity (see Cox [1976]).  In Equation ( 4.2), Rac and tac are the above 
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cloud upwelling atmospheric radiance and transmittance, respectively.  B is the Planck 

Function, and Teff is the effective cloud temperature. The effective cloud temperature is 

most often different from the thermodynamic cloud top temperature since the emission of 

radiation originates from a layer in the cloud.  The depth of this layer depends on the 

cloud extinction profile, which is generally unknown.  The clear sky transmittance and 

radiance terms are determined using surface temperature, atmospheric temperature, water 

vapor, and ozone profiles from the Global Forecast Model (GFS) [Hamill et al. 2006], 

surface emissivity from the Seebor database [Seemann et al. 2008], the satellite zenith 

angle, and a regression based clear sky radiative transfer model [Hannon et al. 1996].  

The procedure for determining the clear sky radiance and transmittance is the same as 

described in Heidinger and Pavolonis [2009] and Chapter 3. 

 The spectral variation of the effective cloud emissivity is directly related to cloud 

microphysical information (e.g. particle size, shape, composition, etc…).  Effective 

optical depth ratios, otherwise known as β-ratios, have been previously used to extract 

cloud microphysical information from infrared measurements [Inoue 1985; Inoue 1987; 

Parol et al. 1991; Giraud et al. 1997; Heidinger and Pavolonis 2009; Chapter 3 of this 

dissertation].  For a given spectral pair of effective emissivity (εeff(λ1) and εeff(λ2)) or 

effective absorption optical depth (τabs,eff(λ1) and τabs,eff(λ2)), the effective absorption 

optical depth ratio, β(λ1, λ2), can be computed using Equation ( 4.3). 

 
!("1," 2) = ln[1!!eff ("1)]

ln[1!!eff (" 2)]
=
! abs, eff("1)
! abs, eff(" 2)  

( 4.3) 

In order to compute β(λ1, λ2) for a given spectral pair, the location of the radiative center 

of the cloud, in the vertical, must be specified (see Equation ( 4.1) and ( 4.2)), but is 
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unknown since pixels that likely contain ash or dust must be identified prior to retrieving 

cloud properties such as Teff (see Chapter 5).  Thus, the “top of troposphere” and “opaque 

cloud” assumptions, described in detail in Chapter 3, are utilized.  The “top of 

troposphere” β-ratio, βtot(λ1, λ2), is computed by assuming that the cloud radiative center 

is located at the top of the troposphere.  The “opaque cloud” β-ratio, βopaque(λ1, λ2), is 

computed by assuming that the cloud radiative center is located at the highest level of the 

troposphere that results in εeff(λ1) or εeff(λ2) being equal to 0.98 (using Equation 1).  As 

described in Chapter 3, the “tropopause” or “top of troposphere” assumption is very 

effective for determining the composition of semi-transparent clouds, while the “opaque 

cloud” assumption provides some additional skill, particularly when classifying optically 

thick clouds.  βtot(λ1, λ2) and βopaque(λ1, λ2), while very useful, do not account for 

underlying cloud layers.  Semi-transparent ash and dust clouds will often reside above 

one or more meteorological cloud layers.  In an attempt to roughly account for the 

influence of an underlying liquid water or ice cloud layer, a second and third set of  “top 

of troposphere” β-ratios are computed (only for 11 and 12 µm spectral pairing) by 

replacing Rclr(λ) in Equation ( 4.1) with the top of atmosphere radiance produced by a 

blackbody emitter located at the 0.8 and 0.7 sigma levels (a terrain following vertical 

coordinate), respectively.  The pressure level (P) associated with a given sigma (σ) value 

is computed using Equation ( 4.4). 

 ! = !!"#$%&' ! ( 4.4) 

The 0.8 sigma level is used to approximate a low level (relative to the surface) underlying 

cloud layer, and σ = 0.7 is used to approximate a mid level underlying cloud layer.  The 
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second set of β-ratios are denoted by βtot_σ8(λ1, λ2), and the third set are denoted by 

βtot_σ7(λ1, λ2). 

The choice of spectral channel pairings (λ1, λ2) used to construct β-ratios is 

designed to take advantage of absorption/scattering features that are generally unique to 

volcanic ash and/or dust clouds.  As shown in Chapter 3, the combination of β(12µm, 

11µm) and β(8.5µm, 11µm) is extremely useful for discriminating between volcanic 

ash/dust clouds and other cloud features.  In the absence of large amounts of SO2, 

β(8.5µm, 11µm) and, to a lesser extent, β(12µm, 11µm) can individually take on similar 

values as meteorological clouds.  The combination of β(12µm, 11µm) and β(8.5µm, 

11µm), however, is less likely to spectrally overlap with meteorological clouds (see 

Figure 3.3).  When larger amounts (> 5 Dobson Units) of SO2 are present, as is common 

in clouds produced by volcanic eruptions, β(8.5µm, 11µm) takes on large values that are 

generally outside of the normal range for meteorological clouds, while β(12µm, 11µm) is 

not impacted by SO2.  Thus, even if SO2 is present in or above the ash cloud, the 

combination β(12µm, 11µm) and β(8.5µm, 11µm) still exhibits behavior that is generally 

unique to volcanic ash clouds. 

Figure 4.7 and Figure 4.8 show the βtot(12µm, 11µm), βopaque(12µm, 11µm), 

βtot_σ8(12µm, 11µm), βtot_σ7(12µm, 11µm), βtot(8.5µm, 11µm), and βopaque(8.5µm, 11µm) 

parameters computed for the scenes introduced in Section 4.3.  When ε(λ1) and/or ε(λ2) is 

less than zero, the 11 µm brightness temperature is imaged in Figure 4.7 and Figure 4.8.  

Note how βtot(8.5µm, 11µm) (Panel F), and βopaque(8.5µm, 11µm) (Panel G) are much 

larger in regions with ash plus significant SO2 compared to ash regions that are not 

coupled with a significant SO2 spectral signature.  The spatial variability of βtot(12µm, 
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11µm) (Panel B), βopaque(12µm, 11µm) (Panel C), βtot_σ8(12µm, 11µm) (Panel D), and 

βtot_σ7(12µm, 11µm) (Panel E) within the volcanic cloud can be generally attributed to 

varying cloud microphysical properties, especially the effective particle radius [Chapter 5 

of this dissertation].  The β(12µm, 11µm) parameters are not sensitive to SO2.  The 

majority of the volcanic ash in Figure 4.7 and Figure 4.8 does not overlap lower cloud 

layers so βtot_σ8(12µm, 11µm) (Panel D) and βtot_σ7(12µm, 11µm) (Panel E) most often do 

not have valid values.  In regions where a valid multilayer version of β(12µm, 11µm) 

cannot be computed the 11 µm brightness temperature is displayed revealing that the 

majority of the ash cloud in both scenes is optically thin (very weak presentation in 11 

µm image). 

The combination of β(12µm, 11µm) and β(7.3µm, 11µm) is also exploited as it 

aids in the detection of high-level volcanic ash and dust (dust, in large quantities, is less 

likely to be present at high levels than volcanic ash).  The 7.3 µm channel is centered on a 

fairly strong water vapor absorption feature, so the clear sky weighting function peaks in 

the mid to upper troposphere in all but the driest of atmospheres.  Thus, β(7.3µm, 11µm) 

is only useful when mid to high-level clouds is present.  In the absence of SO2 (strong 

SO2 absorption features are captured by the 7.3 µm channel), the increase in cloud 

absorption as a function of increasing wavelength between 7.3 and 11 µm is much greater 

for volcanic ash and dust than liquid water or ice clouds, resulting in mid and high-level 

ash and dust clouds generally taking on smaller values of β(7.3µm, 11µm) compared to 

meteorological clouds (see Figure 3.1).  When mid to high-level SO2 is present, β(7.3µm, 

11µm) will be very large such that it is out of the normal range that encompasses 

meteorological clouds, making it particularly useful for volcanic ash detection.   
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Figure 4.7: Images of the  classifiers, used during typical sunlit conditions, by the Bayes 
approach that estimates the probability that a given satellite pixel contains volcanic ash 
and/or dust are shown.  The  parameters were computed for a Terra MODIS image from 
February 19, 2001 at 23:10 UTC.  The approximate bounds of an ash cloud produced by 
an eruption of Mount Cleveland (Alaska) are overlaid on each image in white.  A). 
Multispectral false color image.  B). βtot(12µm, 11µm) overlaid on an 11 µm brightness 
temperature (BT) image.  C). βopaque(12µm, 11µm) overlaid on an 11 µm BT image.  D). 
βtot_σ8(12µm, 11µm) overlaid on an 11 µm BT image.  E). βtot_σ7(12µm, 11µm) overlaid on 
an 11 µm BT image.  F). βtot(8.5µm, 11µm) overlaid on an 11 µm BT image.  G). 
βopaque(8.5µm, 11µm) overlaid on an 11 µm BT image.  H). βtot(7.3µm, 11µm) overlaid on 
an 11 µm BT image.  I). ρ(3.9µm, 0.65µm).  Only panels B through I are used as a 
classifier.  Panel A is included to aid in scene interpretation.  See text for additional 
details. 
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Figure 4.8: Images of the  classifiers, used at night, by the Bayes approach that estimates 
the probability that a given satellite pixel contains volcanic ash and/or dust are shown.  
The  parameters were computed for a Terra MODIS image from February 20, 2001 at 
08:45 UTC.  The approximate bounds of an ash cloud produced by an eruption of Mount 
Cleveland (Alaska) are overlaid on each image in white.  A). Multispectral false color 
image.  B). βtot(12µm, 11µm) overlaid on an 11 µm brightness temperature (BT) image.  
C). βopaque(12µm, 11µm) overlaid on an 11 µm BT image.  D). βtot_σ8(12µm, 11µm) 
overlaid on an 11 µm BT image.  E). βtot_σ7(12µm, 11µm) overlaid on an 11 µm BT image.  
F). βtot(8.5µm, 11µm) overlaid on an 11 µm BT image.  G). βopaque(8.5µm, 11µm) overlaid 
on an 11 µm BT image.  H). βtot(7.3µm, 11µm) overlaid on an 11 µm BT image.  I). 
εp(3.9µm).  Only panels B through I are used as a classifier.  Panel A is included to aid in 
scene interpretation.  See text for additional details. 

It is important to note that SO2 absorption at 11 and 12 µm is negligible, so a 

β(12µm, 11µm) signal consistent with ash must always be present regardless of the 

influence of SO2 absorption, since β(7.3µm, 11µm) and β(8.5µm, 11µm) are always used 
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in tandem with β(12µm, 11µm).  The βtot(7.3µm, 11µm) parameter is shown in Figure 4.7 

and Figure 4.8 (Panel H).  The SO2 sensitivity is clearly discernable by the large 

βtot(7.3µm, 11µm) values in regions where a strong SO2 spectral signature is present.  The 

12-11, 11-8.5, 11 µm false color image from February 19, 2001 (23:10 UTC) (Figure 4.3 

and Figure 4.7) indicates that the region of ash near Cleveland volcano does not have a 

strong SO2 spectral signature like many other portions of the ash cloud at this time.  The 

lack of an obvious SO2 spectral signature in the 12-11, 11-8.5, 11 µm false color image is 

supported by co-located βtot(7.3µm, 11µm) values that are small, as would be expected 

for volcanic ash in the absence of significant SO2.  At 08:45 UTC on February 20, 2001 

(Figure 4.4 and Figure 4.8), there are portions of the ash cloud, mainly in the bottom right 

corner of the image, that do not have valid βtot(7.3µm, 11µm) values, probably because 

the ash is located at a much lower height than the peak of the 7.3 µm clear sky weighting 

function. 

Unfortunately, many satellite sensors do not have 7.3 and 8.5 µm channels, but 

nearly every sensor allows the various forms of β(12µm, 11µm) to be paired with near-

infrared (day and night) and visible (daytime only) wavelength based spectral metrics.  In 

the presence of sunlight (when the solar zenith angle < 85o and the measurements are not 

influenced by sun glint over water), the ratio of the 3.9 µm reflectance and the 0.65 µm 

reflectance [ρ(3.9µm, 0.65µm) = r[3.9µm]/r[0.65µm]] can be combined with “split-

window” (11 and 12 µm) measurements to distinguish ash and dust clouds from other 

cloud types [Pavolonis et al., 2006].  Unlike meteorological clouds, the ρ(3.9µm, 0.65µm) 

of volcanic ash and dust clouds tends to increase with decreasing β(12µm, 11µm) for a 

given visible cloud optical depth and set of background conditions.  The ρ(3.9µm, 
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0.65µm) of volcanic ash and dust tends to be > 0.5 when the visible cloud optical depth 

exceeds ~0.10 [Pavolonis et al., 2006].  Meteorological clouds generally have a ρ(3.9µm, 

0.65µm) < 0.5.  The method for computing ρ(3.9µm, 0.65µm) along with a more 

complete description of its utility for ash and dust detection is given in Pavolonis et al. 

[2006].  Figure 4.7 (Panel I) shows that ρ(3.9µm, 0.65µm) within sections of the core of 

the ash cloud exceeds 0.50, while the ρ(3.9µm, 0.65µm) of optically thick meteorological 

clouds (liquid or ice) is much smaller.  However, the edge of meteorological clouds will 

also have large values of ρ(3.9µm, 0.65µm), but this effect is mitigated by pairing 

ρ(3.9µm, 0.65µm) with β(12µm, 11µm) in its various forms. 

At solar zenith angles greater than 90o, and in the absence of stray light influences 

(significant sunlight impinging on the sensor when the solar zenith angle exceeds 90o), 

the 3.9 µm pseudo-emissivity [εp(3.9µm)] is used in conjunction with β(12µm, 11µm) to 

help identify ash and dust clouds.  The εp(3.9µm) parameter is simply defined as the ratio 

of the measured 3.9-µm radiance to the estimated 3.9-µm blackbody radiance [εp(3.9µm) 

= R[3.9 µm]/Rbb[3.9µm]].  As in Heidinger et al. [2012], the 3.9-µm-blackbody radiance 

(Rbb[3.9µm]) is estimated by the applying the Planck Function to the 3.9-µm channel for 

a given sensor using the measured 11 µm brightness temperature as the blackbody 

temperature.  The εp(3.9µm) parameter is very useful discriminating between semi-

transparent clouds and low opaque clouds [Heidinger et al., 2012].  Typical behavior of 

the β(12µm, 11µm) and εp(3.9µm) pairing is as follows. 

Volcanic ash and dust clouds: β(12 µm, 11µm) < 1 and εp(3.9µm) > 1 

Semi-transparent liquid water: β(12µm, 11µm) > 1 and εp(3.9µm) > 1 

Most ice clouds: β(12µm, 11µm) > 1 and εp(3.9µm) > 1 
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Optically thick liquid water clouds: β(12µm, 11µm) < 1 and εp(3.9µm) < 1 

Figure 4.8 (Panel I) shows illustrates that εp(3.9µm) of volcanic ash tends to be greater 

than the εp(3.9µm) of clear sky or opaque low and mid level clouds.  While in this 

particular case, the εp(3.9µm) of semi-transparent ice clouds is large compared to 

volcanic ash, there are instances where the εp(3.9µm) volcanic ash (or dust) and semi-

transparent ice clouds can be comparable.  On sensors that lack the 7.3 and 8.5 µm 

channels, β(12µm, 11µm) is not coupled with any other parameter in the day/night 

terminator region (solar zenith angle between 85-90o). 

Each radiative parameter pairing is best used in conjunction with an indicator of 

how much the observed radiance deviates from the estimated clear sky radiance.  As in 

Heidinger et al. [2012], the 11 µm emissivity value a cloud would have if it were located 

at the top of the thermodynamically defined troposphere [εtot(11µm)] is used to quantify 

the confidence that a given  signature is associated with a cloud and not a clear sky 

feature (e.g. the surface).  As will be described in a later section, additional spatial 

analysis techniques are utilized to mitigate the impacts of errors in the clear sky radiance 

calculations.  Clear sky radiance errors can be large [Heidinger and Pavolonis, 2009], 

particularly over land where the uncertainty in surface temperature and emissivity is 

significant. 

4.4.2. Naïve Bayesian Approach 

While the various metrics described in the previous section are useful for 

detecting volcanic ash and dust, the relationship between each spectral metric is quite 

complicated.  In an effort to sufficiently capture the complicated relationships over a 

wide range of conditions and reduce the many pieces of spectral information into a single 
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objective metric, a Bayesian approach is utilized.  Bayesian approaches have been 

successfully applied to several satellite-based classification problems [Uddstrom et al. 

1999; Merchant et al. 2005; Heidinger et al. 2012; Kossin and Sitkowski 2009; Cintineo 

et al. 2014; Mackie and Watson 2014].  As discussed in Kossin and Sitkowski [2009] and 

Heidinger et al. [2012], the classical Bayesian approach is not practical when more than 

just a few features are used, as the size of the class conditional probability density 

functions can easily grow to an unmanageable size and become very difficult to 

sufficiently populate.  Thus, in lieu of the classical implementation of the Bayesian 

approach [Uddstrom et al. 1999; Merchant et al. 2005], a Naïve Bayesian approach 

[Heidinger et al. 2012; Kossin and Sitkowski 2009; Cintineo et al. 2014] is used.  The 

naïve Bayesian model is formulated by assuming that features (F) are independent within 

each class.  The naïve Bayes classifier has been shown to perform quite well even when 

the features are clearly not independent [Domingos and Pazzani 1997; Hand and Yu 

2001; Kossin and Sitkowski 2009; Heidinger et al. 2012; Cintineo et al. 2014].  Using the 

naïve Bayes formulation, the probability of ash or dust given an observed set of 

independent features (P(Cyes|F) is calculated using Equation ( 4.5) (the term, P(Cyes|F), is 

also commonly referred to as the posterior probability). 

 

P(Cyes |F) =
P(Cyes) P(Fi |Cyes)

i=1

N
!
P(F)  

( 4.5) 

In Equation ( 4.5), P(Cyes) is the prior probability that a given satellite pixel contains 

volcanic ash or dust without knowledge of F, P(Fi|Cyes) is the estimated probability of 

observing a given feature (Fi) when ash or dust are present (a total of N features are used), 
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and P(F) is the probability of a given set of features being observed and is computed 

using ( 4.6). 

 P(F) = P(Cyes) P(Fi |Cyes)+P(Cno) P(Fi |Cno)
i=1

N
!i=1

N
!

 

( 4.6) 

In Equation ( 4.6), P(Cno) is the prior probability that a given satellite pixel does not 

contain volcanic ash or dust [e.g. P(Cno) = 1 – P(Cyes)] and P(Fi|Cno) is the estimated 

probability of observing a given feature (Fi) when ash or dust are not present. 

The prior probability of ash/dust [P(Cyes)] is assumed to be 0.1%, which, while 

arbitrary and crude, this value roughly captures the fact that the global fractional 

coverage of ash or dust that is detectable using passive satellite measurements is 

generally small relative to all other observable cloud and surface features.  In addition, 

the ash/dust conditional probability is often many orders of magnitude greater than the 

non-ash/dust conditional probability, rendering the impact of the prior probabilities 

minimal.  Further, in our application, the posterior probability is largely used to 

determine cloud object membership (e.g. whether or not a given pixel should be used 

when constructing cloud objects) [Chapter 6 of this dissertation] and the use of constant 

prior probabilities ensures that it is purely the signature at a given time that influences 

cloud object membership for a given probability threshold, not the prior probabilities.  

Thus, we avoided using prior probabilities that depend on time and geographic location, 

but acknowledge that the climatological probability of ash/dust is likely several orders of 

magnitude greater near source regions than locations far removed from dust source 

regions or volcanoes that frequently produce ash clouds (e.g. Sakurajima, Japan). 
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The class conditional probability density functions (PDFs), the dimensions of 

which are subsequently described, are empirically constructed for each classifier (Fi) 

from a large training data set.  The “yes” class training data set consists of 344 5-minute 

MODIS granules (see Appendix C) with ash and/or dust clouds, the horizontal bounds of 

which were manually analyzed by a human expert using the same type of false color 

images described earlier and Region of Interest (ROI) software applications. Only 

situations where ash/dust clearly was the highest cloud layer were classified as ash/dust 

during the manual analysis process.  In addition, cloud edges were drawn with an 

emphasis on avoiding false alarms (cross contamination) at the expense of excluding a 

small number of ash/dust pixels.  The 344-ash/dust cases (305 ash scenes and 39 dust 

scenes) were selected so that a large number of background (surface and atmosphere) and 

ash/dust cloud states were sampled.  For instance, low, mid, and high latitude eruptions of 

varying intensity (and varying SO2 emissions) were selected and an effort was made to 

ensure that a diverse set of underlying surfaces and clouds were sampled.  MODIS scenes 

composed of re-suspended ash [e.g. Hadley et al. 2004] were also included.  North 

American, African, Asian, and Australian dust clouds were sampled. 

The training database for the “yes” class consists of about 6.5 million volcanic ash 

pixels and 3.7 million desert dust pixels, after applying several quality control measures 

and simple filters.  The quality control measures and filters are described shortly.  Even 

though the number of dust cloud pixels in the training data set is less than the number of 

ash cloud pixels, the method performs well when applied to dust clouds because ash and 

dust have similar spectral signatures in the broad to narrow band spectral channels that 

the SECO method utilizes, and the range of dust cloud property states is likely smaller 
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than the range of ash cloud property states because ash clouds are the result of complex, 

and highly variable, volcanological processes interacting with a wide range of complex 

and highly variable atmospheric processes. 

A total of about 2.5 billion non-volcanic ash/dust pixels (after quality control and 

filtering), drawn from 2401 different 5-minute MODIS granules, were used to construct 

the training database for the “no” class.  To avoid cross-contamination, the non-ash/dust 

training pixels were taken from MODIS granules that were independent of those used to 

construct the ash/dust component of the training.  In fact, each of the 2401 5-minute 

MODIS granules used to build the “no” class training was deemed to be totally free of 

detectable ash or dust clouds through manual inspection of false color imagery.  Global 

or near-global coverage was achieved for one day per month from November 2009 – 

October 2010 using both the Terra (mid-morning sun synchronous orbit) and Aqua (mid-

afternoon sun synchronous orbit) satellites. 

Despite the large size of the training data set, some portions of the various PDFs 

were not sampled.  The un-sampled regions were consistent with physical expectations.  

Conditional probabilities cannot be equal to zero, so the observational count in every 

PDF bin was increased by a constant non-integer factor such that un-sampled PDF bins 

produce ash/dust and non-ash/dust conditional probabilities that are identical (the non-

integer factor has no impact on the ratio between the “yes” and “no” class conditional 

probabilities in the bins that already contained observations).  This simple step is needed 

to prevent arithmetic overflow and gracefully default to the prior probability in the rare 

event that the un-sampled portions of the PDF are observed when applied to satellite data 



 79 

not included in the training data set.  In the future, additional training cases can also be 

added should there be a need. 

The non-volcanic ash/dust component of the training data will consist of clear and 

cloudy pixels, as no cloud mask was applied.  The ash/dust training data may also contain 

a very small fraction of clear pixels due to smoothing of cloud edges as an unavoidable 

consequence of the manual analysis process.  A cloud mask algorithm was not used to 

filter out clear pixels because all available algorithms classify volcanic ash and dust 

pixels as “clear” to varying degrees.  All pixels, however, were required to have a 

εtot(11µm) ≥ 0.02, which ensures that pixels that have an observed 11 µm radiance that 

deviates very little from the estimated 11 µm clear sky radiance do not negatively 

influence the classifier training or the implementation of the SECO algorithm.  This step 

eliminates many of the clear pixels without having to apply a separate cloud mask 

algorithm. 

There are instances, however, where the εtot(11µm) of ash or dust clouds, that are 

identifiable in  imagery, is less than 0.02 or even negative (the observed radiance is 

greater than the calculated clear sky radiance) due to errors in the clear sky radiance 

calculation or temperature inversion effects, especially over land surfaces.  Errors in the 

NWP supplied surface temperature can be quite large [Heidinger and Pavolonis 2009] 

over land surfaces.  When the surface temperature is underestimated, the clear sky 

radiance for a given surface-viewing channel (e.g. 11 and 12 µm) will also be 

underestimated, sometimes causing the observed radiance to be greater than the clear sky 

radiance, even under cloudy conditions.  Errors in the surface temperature impact the 

calculation of the clear sky radiance at 11 and 12 µm similarly enough that the bias 
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(calculated – observed) in the calculated clear sky 11 – 12 µm BTD under observed clear 

sky conditions is much less than the clear sky brightness temperature bias in either 

channel alone.  As such, the calculated clear sky minus the observed 11 – 12 µm BTD 

(hereafter referred to as BTD_Bias) can be empirically related to βtot(12µm, 11µm) for 

ash/dust clouds that have an observed 11 µm radiance that does not strongly deviate from 

the clear sky radiance or in situations where the clear sky radiance is less than the 

observed radiance due to errors in the clear sky calculation and/or temperature inversion 

effects.  The linear regression relationship shown in Figure 4.9 is used to “restore” 

potential volcanic ash and dust pixels that have a εtot(11µm) < 0.02, a  

 

BTD_Bias > 0.5 K, 

and an observed 11 

– 12 µm BTD < 0 K.  

Francis et al. [2012] 

and Pavolonis et al. 

[2013] also utilized 

the BTD_Bias to 

aid in ash detection.  

A subset of the over 

land volcanic 

ash/dust training data with 0.02 < εtot(11µm) < 0.08 were used to construct the 

relationship shown in Figure 4.9.  The εtot(11µm) < 0.02 screening rule and the empirical 

 

Figure 4.9: The empirical relationship used to estimate the top of 
troposphere referenced 12/11 µm effective absorption optical depth 
ratio [βtot(12µm, 11µm)] from the clear minus observed 11 – 12 µm 
brightness temperature difference (BTD) is shown. 
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conversion of BTD_Bias to βtot(12µm, 11µm) are also utilized during the practical 

implementation of the SECO algorithm. 

Four simple filters are also applied to eliminate pixels from the “yes” and “no” 

training data that have a “split-window” signature that is strongly inconsistent with 

ash/dust, and is likely the result of the human expert’s inability to exactly define the edge 

of ash and dust clouds in imagery during the manual analysis process.  The following 

filters are also applied during the practical implementation of the SECO algorithm. 

1. All pixels with a βtot(12µm, 11µm) value > 1.05, which is slightly greater than the 

upper theoretical limit for volcanic ash and dust [see Figure	
   3.3], are excluded 

from the “yes” and “no” training data. 

2. All pixels must also have a 11 – 12 µm BTD that is less than BTD_MAX (see 

Equation (	
  4.7) which corresponds to the 99th percentile value from the ash/dust 

training data set as a function of εtot(11µm).  This filter function is designed to 

mitigate the impacts of possible errors associated with manually defining the edge 

of ash and dust clouds when εtot(11µm) ≥ 0.5.	
  

 

BTD_MAX =
!1.19446!tot(11µm)+1.14213, 0.5" !tot(11µm) "1.0
1000.0, !tot(11µm)< 0.5

#
$
%

&%  

( 4.7) 

 

3. All pixels must also have a BTD_Bias that is greater than BTD_BIAS_MIN (see 

Equation (	
  4.8), which corresponds to the 1st percentile value from the ash/dust 

training data set as a function of εtot(11µm).  This filter function is designed to 
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mitigate the impacts of possible errors associated with manually defining the edge 

of ash and dust clouds when εtot(11µm) < 0.5. 

 
BTD_BIAS _MIN =

!0.700909!tot(11µm)+ 0.0312235, 0.0 " !tot(11µm)< 0.5
!1000.0, !tot(11µm) # 0.5

$
%
&

'&  

( 4.8) 

 

4. All pixels with an observed 11 – 12 µm BTD > 0 K must also have a 

βopaque(12µm, 11µm) value < 1.36, which is the 99th percentile value from the 

ash/dust training data set. 

 

The 11 – 12 µm BTD (“split-window”) attributes of the quality controlled and 

filtered training data were analyzed to help quantify the limitations of traditional “split-

window” ash/dust detection approaches and to help illustrate that the training data are 

representative of a wide range of conditions.  The relative and absolute distribution of the 

11 – 12 µm BTD for the ash/dust (“yes”) and non-ash/dust (“no”) classes are shown in 

Figure 4.10.  The distributions clearly indicate that there is significant overlap between 

the two classes such that even 11 – 12 µm BTD values of -1 K are not totally unique to 

ash and dust clouds.  In addition, many volcanic ash/dust pixels do not exhibit a negative 

“split-window” signature likely due to influences from background water vapor and/or 

cloud microphysical effects.  While traditional threshold based “split-window” ash/dust 

detection algorithms are very simple to implement and may work well for a single case 

with a limited geographic extent, Figure 4.10c shows that the when applied to a global, 

multi-season data set, the detection skill (quantified using the Critical Success Index) of 

those algorithms is extremely limited.  The Critical Success Index (CSI) is defined as the 
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number of hits divided by the 

sum of hits, false alarms, and 

misses.  The CSI does not take 

correct negatives into account, so 

it is an effective metric when the 

event of interest is observed far 

less often than the non-events 

and the tolerance for false alarms 

is low (volcanic ash false alarms 

are particularly undesirable).  

The maximum CSI of a 

threshold based “split-window” 

algorithm applied to our 

extensive training data set is 

about 0.20 when a threshold of -

1.25 K is used.  The Probability 

Of Detection (POD) for a 

threshold of -1.25 K is only 

about 0.30 with a False Alarm 

Rate (FAR) of 0.002. 

The features or classifiers 

(Fi) used in our Bayes 

implementation are listed in 

 

Figure 4.10: A). Normalized distribution of the 11 – 12 µm brightness 
temperature difference (BTD) of the data used to derive the ash/dust and the non-
ash/dust class conditional probabilities, B). Same as panel A, except the 
distribution is not normalized and is shown using a log y-axis, C). Skill statistics 
of a simple threshold based 11 – 12 µm BTD ash/dust detection approach, 
applied to the training data set, is plotted as a function of the chosen threshold 
(classify as ash/dust if 11-12 µm BTD ≤ threshold on x-axis).  The probability of 
detection (red), false alarm rate (green), and critical success index (black) are 
shown. 
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Table 4.5 as a function of satellite sensor.  Even though the naïve Bayes formulation 

allows us to assume that each feature or classifier is independent, we utilize multivariate 

classifiers.  The two and three-dimensional classifiers are very effective at capturing the 

most robust spectral indicators of ash and dust (see earlier discussion) without requiring 

large PDFs. Our methodology still takes advantage of the independence assumption, as 

we utilize far more than two or three predictors, which would not be practical without the 

naïve Bayes formulation.  The conditional probabilities for each class are estimated from 

histograms of the training data set.  The histogram bins are defined in Table 4.5. 

Classifiers that are directly influenced by reflected sunlight were parsed into three 

different surface type categories (open water, snow/ice, and non-snow/ice land surfaces), 

while classifiers not directly influenced by reflected sunlight were sorted into two 

different surface type categories (open water and solid surfaces).  Daily global snow/ice 

maps were constructed by combining the 4 km Interactive multisensor snow and Ice 

Mapping System (IMS) [Ramsay 1998], which at the time of this writing only provides 

coverage of the Northern Hemisphere, with the 25 km Special Sensor Microwave Imager 

(SSM/I)-Special Sensor Microwave Imager/Sounder (SSMIS) global ice concentration 

and snow extent data set [Nolin et al. 1998] to fill in the Southern Hemisphere.  The 

surface types were chosen to broadly account for surface albedo effects on visible and 

near-infrared measurements during the day and differences in clear sky infrared radiative 

transfer error characteristics (errors are generally larger over land than open water). 
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Table 4.5: The top most portion of the table lists the individual radiative parameters utilized to construct SECO algorithm classifiers, 
along with the corresponding histogram binning scheme used to estimate the classifier PDFs.  The multivariate classifier arrays 
(using the radiative parameter ID’s shown in the top part of the table) are listed in the second part of the table as a function of 
satellite sensor and the conditions required for utilization.  Sun glint is assumed to be present over water surfaces if the glint angle is 
less than 40o.  Stray light is assumed to be present if the solar zenith angle exceeds 90o and the measured 0.65 µm counts is greater 
than a sensor dependent threshold.  

Parameter 
[Parameter ID] 

Number of Histogram 
Bins 

Starting Boundaries of Histogram Bins 

εtot(11µm)                   [1] 6 0.01, 0.03, 0.10, 0.20, 0.50, 0.90 
βtot(12µm, 11µm)       [2] 42 -0.10 to 1.95 in increments of 0.05 
βopaque(12µm, 11µm)  [3] 42 -0.10 to 1.95 in increments of 0.05 
βtot_σ8(12µm, 11µm)   [4] 42 -0.10 to 1.95 in increments of 0.05 
βtot_σ7(12µm, 11µm)   [5] 42 -0.10 to 1.95 in increments of 0.05 
βtot(8.5µm, 11µm)      [6] 21 -0.10 to 1.90 in increments of 0.10 
βopaque(8.5µm, 11µm) [7] 21 -0.10 to 1.90 in increments of 0.10 
βtot(7.3µm, 11µm)      [8] 21 -0.10 to 1.90 in increments of 0.10 
ρ(3.9µm, 0.65µm)      [9] 13 0.00 to 1.20 in increments of 0.10 
εp(3.9µm)                  [10] 25 0.80 to 2.00 in increments of 0.05 
BTD(11-12µm)         [11] 33 -3.0 to 5.0 in increments of 0.25 K 
   

Multivariate Classifier Arrays Relevant Sensors Conditions 
[1] x [2] x [9] 
[1] x [3] x [9] 
[1] x [4] x [9] 
[1] x [5] x [9] 
[1] x [11] x [9] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied outside of sun glint when the solar 
zenith angle is less than 85o. 

[1] x [2] x [10] 
[1] x [3] x [10] 
[1] x [4] x [10] 
[1] x [5] x [10] 
[1] x [11] x [10] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied when the solar zenith angle is greater 
than 90o and stray light is not detected. 

[1] x [2] x [6] 
[1] x [3] x [7] 

GOES-R ABI 
Himawari-8/9 AHI 

MODIS 
MSG SEVIRI 

MTG FCI 
VIIRS 

Applied at all times. 

[1] x [2] x [8] GOES-R ABI 
Himawari-8/9 AHI 

MODIS 
MSG SEVIRI 

MTG FCI 

Applied at all times. 

[1] x [2] 
[1] x [3] 
[1] x [4] 
[1] x [5] 
[1] x [11] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied when both ρ(3.9 µm, 0.65 µm) and 
εp(3.9 µm) are invalid. 

*The analogue to the 3.9-µm band on AVHRR (the 3.75 µm band) is currently not available on the MetOp-A and MetOp-B 
spacecraft during daytime operations. 
#The 12 µm channel is only available on the GOES-8, GOES-9, GOES-10, and GOES-11 spacecraft. 
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In addition, the classifiers that depend on ρ(3.9µm, 0.65µm) are also parsed into 

two scattering angle (Θ) categories  (Θ < 90o and Θ ≥ 90o) to roughly account for 

differences in the 0.65 and 3.9 µm scattering phase functions.  The scattering angle is 

defined as 

 ! = cos"1("cos! suncos! sat + sin! sunsin! sat cos"),  ( 4.9) 

where θsun is the solar zenith angle, θsat is the satellite zenith angle, and ϕ is the  relative 

azimuth angle. Experiments were conducted using more than two Θ categories, but the 

results changed very little. 

 The SECO algorithm utilizes 5 - 8 classifiers, depending on the spectral channels 

provided by a given sensor.  Each classifier has εtot(11µm) as the outermost dimension 

since uncertainties in the clear sky radiative transfer calculations influence the 

interpretation of the  parameters.  When the solar zenith angle is less than 85o and sun 

glint is not present, four different varieties of β(12µm, 11µm) are paired with ρ(3.9µm, 

0.65µm) (see Table 4.5).  Sun glint is deemed to be present if the pixel is located over 

open water and the glint angle (Θgl) is greater than 40o.  The glint angle is defined in 

Equation ( 4.10). 

 !gl = cos"1(cos! suncos! sat + sin! sunsin! sat cos"),  ( 4.10) 

It is important to note that the relationship between any two forms of β(λ1, λ2), 

produced using the same λ1 and λ2, is highly non-linear [Heidinger et al. 2010], so each 

form of β(12µm, 11µm) coupled with ρ(3.9µm, 0.65µm) will produce a different 

conditional probability.  From a physical standpoint, each form of β(12µm, 11µm) 

describes a different part of the solution space that defines which cloud property states 
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are possible given the measurements (and associated noise) and the clear sky radiative 

transfer modeling (and associated errors).  For additional discussion of the cloud property 

solution space in the infrared consult Heidinger et al. [2010] and Chapter 3 of this 

dissertation.  When the solar zenith angle (θsun) is greater than 90o the same four varieties 

of β(12µm, 11µm) are paired with εp(3.9µm).  In the day/night terminator region (85o ≤ 

θsun ≤ 90o) and in sun glint, a εtot(11µm) x β(12µm, 11µm) multivariate classifier is used.  

In addition, the εtot(11µm) x βtot(12µm, 11µm) x βtot(8.5µm, 11µm), εtot(11µm) x 

βopaque(12µm, 11µm) x βopaque(8.5µm, 11µm), and εtot(11µm) x βtot(12µm, 11µm) x 

βtot(7.3µm, 11µm) classifiers are used at all times of the day if the sensor spectral 

capabilities allow.  While β(12µm, 11µm) has been demonstrated to be a more robust 

metric for inferring cloud composition than the 11 – 12 µm BTD [Chapter 3 of 

dissertation], multivariate 11 – 12 µm BTD based classifiers are also used as there are 

occasions when the β(12µm, 11µm) based metrics are less skillful either due to errors in 

clear sky radiative transfer modeling or “saturation” issues at large cloud optical depths.  

The 11 – 12 µm BTD based classifiers are only used when the 11 – 12 µm BTD is less 

than zero and the BTD data are parsed into 5 different 11 µm clear sky brightness 

temperature bins (< 255 K, 255-260 K, 260-265 K, 265-270 K, and > 270 K) to account 

for the increased frequency of occurrence of negative “split-window” values in 

environments with cold backgrounds [Pavolonis et al. 2006]. 

By taking the ratio of the ash/dust conditional probability to the non-ash/dust 

conditional probability for each bin in the conditional probability look-up table, regions 

of the multivariate classifier space that favor volcanic ash/dust can be easily visualized. 

Figure 4.11 shows the conditional probability ratio of all of the multivariate classifiers 
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used over open water surfaces.  In addition, Panels A through D are valid for Θ ≥ 90o.  

Only the 0.10 – 0.20 εtot(11µm) bin is shown for the 3-dimensional classifiers (Panels A-

K).  The cyan to red portion of the color scheme is indicative of histogram bins where the 

ash/dust conditional probability is larger than the non-ash/dust conditional probability. 

Figure 4.11 indicates that the relationship between a given pair of variables is generally 

complicated and not conducive to using simple threshold functions to identify ash and 

dust in a deterministic manner.  While βtot(12µm, 11µm) must have a valid value in order 

to estimate the ash/dust probability for a given satellite pixel, all other variants of β(λ1, 

λ2) are allowed to be invalid (ε(λ1) and/or ε(λ2) < 0.0), as an invalid β(λ1, λ2) is still 

informative.  For instance, an invalid βtot_σ8(12µm, 11µm) is more likely to be associated 

with a single layer cloud than a valid value of βtot_σ8(12µm, 11µm).  All invalid β(λ1, λ2) 

values are placed in the very first histogram bin for that particular β(λ1, λ2).  It is also 

worth noting that due to the maximum emissivity being capped at 0.99990 as a means of 

preventing arithmetic overflow when computing cloud optical depth (see Equation 3), the 

minimum valid value of βopaque(λ1, λ2) is approximately 0.425 (e.g. ε(λ1)=0.98 per the 

definition of the opaque cloud assumption and ε(λ2)=0.99990 per the maximum allowed 

value).   

As might be expected, the 3-dimensional classifiers (Panels A through K in 

Figure 4.11) can provide greater spectral separation between ash/dust and all other 

features in the training data set compared to the 2-dimensional (bi-spectral) classifiers 

(Panels L through O in Figure 4.11).  Fortunately, the 2-dimensional classifiers are only 

utilized under a very limited set of conditions.  Figure 4.11 also reveals that the classifiers 

that utilize the top of troposphere variant of β(λ1, λ2) provide the best opportunity to 
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produce an ash/dust conditional probability that is 1000-10,000 times larger than the 

non-ash/dust conditional probability.  In contrast, the classifiers that utilize an “opaque 

cloud” version of β(λ1, λ2) generally provide the best opportunity to produce an ash/dust 

conditional probability that is 1000-10,000 times smaller than the non-ash/dust 

conditional probability.  The βtot(12µm, 11µm) x βtot(8.5µm, 11µm) classifier (Panel I in 

Figure 4.11) has two distinct regions where the ash/dust conditional probability is at least 

100 times greater than the non-ash/dust conditional probability.  The dual maxima 

structure is primarily the result of small amounts of SO2 combining with volcanic ash to 

create a spectral signature that is very similar to low-level liquid water clouds.  The dual 

maxima pattern is most pronounced when εtot(11µm) < 0.10 (not shown), rendering the 

β(8.5µm, 11µm)-based classifiers (Panels I and J in Figure 4.11) less useful in the 

transition region between little to no SO2 influence and strong SO2 influence.  Thus, the 

β(8.5µm, 11µm)-based classifiers are not used unless εtot(11µm) > 0.10 or βtot(8.5µm, 

11µm) ≤ 1.05 or βtot(8.5µm, 11µm) ≥ 2.0. 

Analogous to Figure 4.11, Figure 4.12 shows the conditional probability ratio for 

land surfaces, where the snow and ice covered surfaces were excluded from the 

classifiers that are only valid during the day (Panels A through D).  The snow/ice surface 

conditional probability ratios of the classifiers that are only valid during the day are 

shown in Figure 4.13.  Over land surfaces, the classifiers that do not rely on the presence 

of sunlight (Panels E through O in Figure 4.12) exhibit ash/dust conditional probabilities 

that are rarely more than 1000 times larger than the corresponding non-ash/dust 

conditional probability.  The differences between the land and water conditional 

probabilities can be largely attributed to the greater uncertainty in the clear sky radiance 
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calculations over land.  Over snow and ice surfaces, ρ(3.9µm, 0.65µm) is very small 

under clear sky conditions because snow and ice have a very large albedo at 0.65 µm and 

a very small albedo at 3.9 µm.  Differences between Panels A through D in Figure 4.12 

and Figure 4.13 are generally a result of differing surface albedo properties.  While not 

shown, the difference between surface types becomes much smaller with increasing 

εtot(11µm).  Finally, the conditional probability ratios for the 11 – 12 µm BTD based 

classifiers (valid over land surfaces with a clear sky 11 µm brightness temperature > 270 

K) are shown in Figure 4.14.  As expected, large negative “split-window” values are far 

more likely to be associated with ash and dust than other features, especially when at 

larger εtot(11µm) values or when coupled with the near-infrared based spectral metrics.  

Far less separation between ash/dust and all other features is found when the 11 – 12 µm 

BTD is about -0.5 K or larger. 
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Figure 4.11: The ratio of the ash/dust class conditional probability to the class conditional probability of all other 
features is shown as a function of various multivariate spectral classifiers for an open water surface.  The cyan through 
red portion of the color scheme indicates that the class conditional probability of ash/dust is greater than the class 
conditional probability of all non-ash/dust features for that histogram bin.  A). βtot(12µm, 11µm) vs. ρ(3.9µm, 0.65µm) 
(daytime classifier), B). βopaque(12µm, 11µm) vs. ρ(3.9µm, 0.65µm) (daytime classifier), C). βtot_σ8(12µm, 11µm) vs. 
ρ(3.9µm, 0.65µm) (daytime classifier), D). βtot_σ7(12µm, 11µm) vs. ρ(3.9µm, 0.65µm) (daytime classifier), E). βtot(12µm, 
11µm) vs. εp(3.9µm) (nighttime classifier), F). βopaque(12µm, 11µm) vs. εp(3.9µm) (nighttime classifier), G). βtot_σ8(12µm, 
11µm) vs. εp(3.9µm) (nighttime classifier), H). βtot_σ7(12µm, 11µm) vs. εp(3.9µm) (nighttime classifier), I). βtot(12µm, 
11µm) vs. βtot(8.5µm, 11µm) (day and night classifier), J). βopaque(12µm, 11µm) vs. βopaque(8.5µm, 11µm) (day and night 
classifier), K). βtot(12µm, 11µm) vs. βtot(7.3µm, 11µm) (day and night classifier), L). εtot(11µm) vs. βtot(12µm, 11µm) 
(twilight classifier only), M). εtot(11µm) vs. βopaque(12µm, 11µm) (twilight classifier only), N). εtot(11µm) vs. βtot_σ8(12µm, 
11µm) (twilight classifier only), O). εtot(11µm) vs. βtot_σ7(12µm, 11µm) (twilight classifier only).  Panels A through K 
are valid for 0.10 < εtot(11µm) < 0.20.  
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Figure 4.12: Same as Figure 4.11, except panels A through D are valid over all land 
surfaces excluding snow and ice and panel E through O are valid over all land surfaces 
including snow and ice. 
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Figure 4.13: Same as panels A through D in Figure 4.11 and Figure 4.12, except over 
snow and ice surfaces (including frozen water). 
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Figure 4.14: Analogous to Figure 4.11, Figure 4.12, and Figure 4.13 except the ash/dust 
to non-ash/dust conditional probability ratio for the BTD(11 – 12 µm) related classifiers 
are shown for a land surface with a clear sky 11 µm brightness temperature > 270 K. A). 
BTD(11 – 12 µm) vs. ρ(3.9µm, 0.65µm) (daytime classifier), B). BTD(11 – 12 µm) vs. 
εp(3.9µm) (nighttime classifier), and C). BTD(11 – 12 µm) vs. εtot(11µm) (twilight 
classifier only).  
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4.5.  Analysis of Volcanic Ash/Dust Probabilities 

An initial assessment of the naïve Bayesian method, used to identify which 

satellite pixels are most likely to contain volcanic ash/dust, is conducted through the 

analysis of four ash/dust cases captured by MODIS.  Each of the four cases (2 volcanic 

ash and 2 dust) is independent of the classifier training data, and the ash/dust probability 

is assessed within the context of human expert estimated horizontal cloud boundaries and 

the traditional “split-window” technique for detecting volcanic ash and dust.  Ash/dust 

probability results are generated using four different spectral channel combinations that 

are commonly available on operational and research satellite radiometers. 

1. 0.65 [daytime only], 3.9, 7.3, 8.5, 11, 12 µm (SC1, SC=Spectral Combination) 

2. 0.65 [daytime only], 3.9, 8.5, 11, 12 µm (SC2) 

3. 0.65 [daytime only], 3.9, 11, 12 µm (SC3) 

4. 11, 12 µm (SC4)	
  

The goal of the manual analysis of the ash/dust cloud boundaries was to define a Region 

of Interest (ROI) that contains the portion of the ash/dust cloud that can be manually 

identified in imagery, either directly or through spatial deduction.  All conclusions drawn 

from the comparison to the manually determined ROI are derived from relative 

relationships.  As such, small perturbations to the ROI do not impact the results as long as 

ash or dust pixels that exhibit a robust spectral signature (i.e. are obvious in the imagery) 

are not left out of the ROI. 

4.5.1. Volcanic Ash from Mount Cleveland (daytime) 

The ash/dust probabilities are analyzed using the previously discussed daytime 

scene with airborne volcanic ash (and SO2) from an explosive eruption of Mount 



 96 

Cleveland, AK that began on February 19, 2001 at approximately 14:30 UTC 

[McGimsey et al. 2004].  The starting date and time of the Terra MODIS granule is 

February 19, 2001 at 23:10 UTC.  The results, along with reference imagery, are shown 

in Figure 4.15. The bounds of the manually derived ROI are overlaid on each geo-

referenced image (Panels A, B, C, D, F, H, and J) in Figure 4.15.  While the spatial 

distribution of the ash optical depth is unknown, the 11 µm brightness temperature image 

(Panel C) indicates that much of the cloud is quite tenuous (has a small optical depth).  

The ash/dust probability image (the transition from red to orange in the color bar 

indicates a transition to probabilities that are less than 10%) and the normalized 

histogram of ash/dust probability (inside and outside of the ROI) are shown for each of 

the four spectral combinations (SC1, SC2, SC3, and SC4) examined.  Recall that 

probabilities are only computed for pixels that passed the pre-screening tests described 

earlier.  The 11 µm brightness temperature is shown in the geo-located images wherever 

the pixel probability is not computed.  The histograms were created using the entire 5-

minute MODIS granule, not just the sub-granule region shown in the geo-referenced 

images (for the sake of clarity) within Figure 4.15.  The ash/dust probability is expressed 

as a percentage and log scaling is used in the figures to enhance details at low 

probabilities. 

Not surprisingly, SC1 (Panels D and E), which utilizes the greatest number of 

spectral channels, produces the greatest area of probabilities that exceed 90% within the 

ROI. Regardless of the spectral channel combination used, the probability distribution 

demonstrates that the Bayesian method has good skill, as the amount of overlap between 

pixels inside and outside the ROI is relatively small, but does increase as the number of 
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spectral channels utilized decreases (moving from the second row from the top to the 

bottom of Figure 4.15), as one would expect if the spectral channels that are removed add 

value.  Additional analysis was conducted to better quantify the performance of each 

spectral channel combination relative to the traditional “split-window” BTD.  

Performance related statistics (Panel A: CSI, Panel B: POD, and Panel C: FAR) are 

shown in Figure 4.16.  The statistics are shown as a function of the threshold used to 

create a binary yes/no ash/dust mask from the probability derived from each spectral 

channel combination as well as the “split-window” BTD.  The simple binary masks are 

not the end goal; it is just used to assess the performance of the Bayesian method by 

quantifying the amount of overlap between the ash/dust and non-ash/dust classes.  The 

ash/dust probability threshold is shown on the top x-axis of Figure 4.16 and the 11 – 12 

µm BTD threshold is shown on the bottom x-axis.  The SC1, SC2, SC3, SC4, and “split-

window” BTD results are shown in black, red, blue, green, and magenta, respectively.  

The filled colored circles indicate which threshold, used to create a binary mask, 

produces the largest CSI.  The ash/dust probability metric always produces a significantly 

larger maximum CSI than the “split-window” BTD.  More specifically, SC1 produces the 

greatest maximum CSI (0.29), followed by SC4 (0.25), SC2 (0.24), SC3 (0.21), and the 

“split-window” BTD (0.13).  The ranking of SC4 slightly ahead of SC2 and SC3 

indicates that βtot(7.3µm, 11µm) is adding good value in this case, primarily due to the 

presence of SO2, and the ρ(3.9µm, 0.65µm) signal in certain portions of the cloud is weak 

(< 0.3) as shown in Figure 4.7I.  The weak ρ(3.9µm, 0.65µm) signals are co-located with 

regions where the cloud is hardly identifiable in 11 µm imagery, indicative of very low 

optical depths, where a strong ρ(3.9µm, 0.65µm) signal is not expected [Pavolonis et al. 
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2006].  Finally, even though the same two spectral channels (11 and 12 µm) are used, 

SC4 is much more skillful at distinguishing ash/dust from all other features than the 11 – 

12 µm BTD alone, which illustrates the power of using εtot(11µm) and β-ratios in lieu of, 

or in addition to, BTDs. 
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Figure 4.15: The results of the Bayesian method are shown for a Terra MODIS image from February 19, 2001 at 23:10 
UTC.  A). 12-11 µm, 11-8.5 µm, and 11 µm false color image. B). 12-11 µm, 11-3.9 µm, and 11 µm false color image. 
C). 11 µm image. D). Ash/dust probability image for 0.65, 3.9, 7.3, 8.5, 11, 12 µm channel combination. E). Histogram 
of ash/dust probability inside (black) and outside (red) of manually analyzed ash/dust cloud.  The panels in the third 
through fifth rows are analogous to the second row, except for the 0.65, 3.9, 8.5, 11, 12 µm, 0.65, 3.9, 11, 12 µm, and 
11, 12 µm channel combinations, respectively.  The outer bounds of the manually defined ash/dust cloud are overlaid 
on each geo-referenced image.  
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Figure 4.16: Skill statistics of threshold based ash/dust detection, applied to several different metrics, are shown as a 
function of the selected threshold.  The thresholds are relevant to the following metrics: 0.65, 3.9, 7.3, 8.5, 11, 12 µm 
based probability (black), 0.65, 3.9, 8.5, 11, 12 µm based probability (red), 0.65, 3.9, 11, 12 µm based probability 
(blue), 11, 12 µm based probability (green), and BTD(11-12 µm).  The statistics are valid for a 5-minute MODIS 
granule with a starting time of February 19, 2001 at 23:10 UTC. The bottom x-axis is BTD(11-12µm) and the top x-
axis is ash/dust probability.  The critical success index (CSI) (A), probability of detection (B), and false alarm rate (C) 
are shown.  The circles denote the threshold where the CSI is a maximum. 
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4.5.2.  Volcanic Ash from Mount Cleveland 

In the 9.5 hours between Terra MODIS overpasses, volcanic ash and gases from 

the explosive February 19, 2001 eruption of Cleveland dispersed along a NW/SE axis and 

were advected northeastward by the atmospheric winds.  Results from the February 20, 

2001 08:45 UTC Terra MODIS (nighttime) overpass are shown in Figure 4.17.  The 11 

µm brightness temperature image (Panel C) indicates that nearly the entire ash cloud is 

now highly semi-transparent to infrared radiation and quite difficult to see in single 

channel infrared imagery, more so than in the February 19, 2001 23:10 UTC Terra 

MODIS overpass shown earlier, likely due to dispersion and ash fallout processes.  

Similar to the February 19 Cleveland volcanic ash example, the overlap in the ash/dust 

probability distribution inside and outside of the ROI is rather small but does increase 

when less spectral channels are utilized.  Performance metrics analogous to Figure 4.16 

are shown in Figure 4.18.  Once again the ash/dust probability metric always produces a 

significantly larger maximum CSI than the “split-window” BTD maximum value of 0.08.  

SC1, SC2, and SC3 produce maximum CSI of about 0.30, while SC4 has a maximum 

CSI of 0.24.  The SC4 maximum CSI of 0.24 is three times greater than the “split-

window” maximum of 0.08, further illustrating the value of using εtot(11µm) and β-ratios.  

Even though the CSI analysis indicates that additional spectral channels do not always 

have a large impact, it will be shown in Chapter 6 that the extra spectral channels do have 

noticeable positive impact on the final results of the complete SECO algorithm. 
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Figure 4.17: Same as Figure 4.15 except for a Terra MODIS image from February 20, 
2001 at 08:45 UTC.  Since this is a nighttime scene the 0.65 µm channel is not utilized. 
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Figure 4.18: Same as Figure 4.16 except the statistics are valid for a 5 minute Terra 
MODIS granule with a starting time of February 20, 2001 at 08:45 UTC. 
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4.5.3. South American Dust (daytime) 

The Bayesian method was also applied to a dust case where sediments, primarily 

composed of gypsum, calcite, and halite [Piovano et al. 2002; da Silva et al. 2008], from 

dried up portions of Laguna Mar Chiquita, a saline lake in central Argentina, were lofted 

into the atmosphere by strong winds on July 29, 2012 (a small portion of the dust area 

may be the result of secondary sources).  Not only is this case independent of the training 

data set, the training data set did not include any South American dust cases, let alone a 

case with a unique rock type that is associated with a relatively localized source.  In 

addition, the dust is primarily located over land, where uncertainty in the clear sky 

radiance calculations is greater compared to water surfaces.  Thus, this case is quite 

useful for demonstrating the robustness of the Bayesian method.  The starting date and 

time of the Aqua MODIS granule used in this analysis is July 29, 2012 at 17:35 UTC 

(daytime).  The results are shown in Figure 4.19 and Figure 4.20.  Because of its 

relatively unique mineral composition the dust does not take on the typical reddish color 

in the 12-11 µm, 11-8.5 µm, 11 µm false color image (Figure 4.19a).  The manually 

analyzed bounds of the dust cloud were primarily determined from the 12-11 µm, 11-3.9 

µm, 11 µm false color image (Figure 4.19b) where the cloud is more readily apparent.  

The dust cloud ROI is also consistent with MODIS true color imagery 

(https://earthdata.nasa.gov/labs/worldview/).  While the ash/dust probability within the 

dust cloud is generally quite large (> 80%), a fair number of larger values are also found 

outside of the ROI compared to the over-water Cleveland volcanic ash cases.  The larger 

probabilities outside of the ROI are mainly caused by spectral variability in surface 

emissivity that resembles ash/dust clouds, coupled with errors in the clear sky radiance 
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calculations (largely driven by errors in land surface temperature).  Nevertheless, the 

overlap in ash/dust probability inside and outside of the ROI is quite small, and increases 

when fewer spectral channels are used (see Figure 4.19).  The maximum CSI associated 

with applying a threshold to the ash/dust probability (0.43, 0.43, 0.41, 0.46, for SC1, SC2, 

SC3, SC4, respectively) is still nearly twice the maximum CSI that can be achieved by 

applying a threshold to the “split-window” BTD (0.22) for this MODIS granule (Figure 

4.20), regardless of the spectral channel combination used in estimating ash/dust 

probability.  Despite the complexities introduced by a variety of complicated land surface 

types, the FAR associated with the maximum ash/dust CSI is very comparable to the over 

ocean Cleveland ash scenes, but the probability threshold required to achieve the 

maximum CSI does vary quite a bit from scene to scene.  This issue is addressed in 

Chapter 6. 
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Figure 4.19: Same as Figure 4.15 except for an Aqua MODIS image from July 29, 2012 
at 17:35 UTC. 
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Figure 4.20: Same as Figure 4.16 except the statistics are valid for a 5 minute Aqua 
MODIS granule with a starting time of July 29, 2012 at 17:35 UTC. 
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Dust lofted from the western portion of the Argentinean Pampa (plain) by a 

nocturnal thunderstorm outflow boundary on January 24, 2014 was also examined.  

Feldspars and quartz tend to be the primary mineral components of dust that originates 

from the Argentinean Pampa [Ramsperger et al. 1998a; Ramsperger et al. 1998b].  The 

starting date and time of the Terra MODIS granule used in this analysis is January 24, 

2014 at 03:55 UTC and the results are shown in Figure 4.21 and Figure 4.22.  Similar to 

the Laguna Mar Chiquita dust scene, pixels outside of the manually derived ROI 

sometimes have a larger probability due to surface emissivity effects and errors in the 

clear sky radiative transfer (Figure 4.21).  In addition, unlike the previous three cases, the 

SC4 derived ash/dust probabilities are not particularly skillful in this over land nighttime 

scene, likely as a result of less contrast between the temperature of the dust cloud and the 

background.  The additional spectral information offered by SC1, SC2, and SC3 adds 

more value in the low temperature contrast situations commonly encountered at night.  

As shown in Figure 4.22, the maximum CSI of the SC1 (0.21), SC2 (0.21), and SC3 

(0.22) derived ash/dust probabilities is more than twice the maximum CSI of the “split-

window” BTD (0.10).  The maximum CSI of SC4 does not improve upon the “split-

window” BTD likely due to low signal to noise and clear sky radiative transfer errors.  

Overall, the Bayesian method has been demonstrated to be skillful in distinguishing 

ash/dust and non-ash/dust features, day and night, over land and over water.  Pixel and 

cloud object filters that minimize the impact of clear sky radiative transfer errors, like 

those encountered in the two South American dust scenes, are described in Chapter 6.  
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Figure 4.21: Same as Figure 4.15 except for a Terra MODIS image from January 24, 
2014 at 03:55 UTC.  Since this is a nighttime scene the 0.65 µm channel is not utilized. 
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Figure 4.22: Same as Figure 4.16 except the statistics are valid for a 5 minute Terra 
MODIS granule with a starting time of January 24, 2014 at 03:55 UTC. 
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4.6.  Summary 

In an effort to open the door to new and improved research and operational 

volcanic ash and dust applications, the globally applicable Spectrally Enhanced Cloud 

Objects (SECO) algorithm was developed.  The SECO volcanic ash and dust detection 

algorithm, which can be applied to nearly any satellite sensor at all times of the day, 

consists of four major components.  The first two components, computation of advanced 

radiative metrics and estimation of the probability that a given pixel contains volcanic ash 

and/or dust, were described in this chapter.  The remaining two parts, construction of 

cloud objects and the selection of volcanic ash/dust cloud objects, are described in 

Chapter 6.  The methodology for computing advanced radiative metrics, such as effective 

absorption optical depth ratios (β-ratios) was described.  Multispectral infrared 

measurements are expressed as β-ratios, as opposed to traditional brightness temperature 

differences (BTDs), because β-ratios provide increased sensitivity to cloud microphysical 

properties, including cloud composition.  A naïve Bayesian approach was developed to 

take advantage of the volcanic ash/dust relevant cloud composition information that the 

β-ratios provide.  Various empirically derived multivariate classifiers were constructed by 

coupling β-ratios, computed from the radiance measured at approximately 11 and 12 µm, 

with visible and near infrared measurements (0.65 and/or 3.9 µm) or β-ratios that are 

computed using other spectral channel pairs (8.5/11 µm and 7.3/11 µm).  Several case 

studies showed that the naïve Bayesian approach is quite skillful even when only subsets 

of the allowable spectral channels are utilized.  The skill of the Bayesian approach was 

also shown to greatly exceed the skill of the traditional “split-window” method used to 

detection volcanic ash and dust. 
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 The ultimate objective of the automated SECO approach is to produce a binary 

volcanic ash/dust mask that is comparable in skill to a mask that is manually constructed 

by a human expert.  Despite the success of the Bayesian method, it, alone, is not skillful 

enough to construct a human expert like binary mask by simply applying a probability 

threshold.  As shown in Chapter 6, the Bayesian method must be combined with 

advanced spatial analysis to produce such a result. 
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Chapter 5 

5. Retrieval of Volcanic Ash and Dust Cloud Properties 

5.1.  Introduction 

In this chapter, satellite-based infrared measurements will be used to retrieve the 

radiative temperature, emissivity, and a microphysical parameter of volcanic ash and dust 

clouds (the term “cloud” will be used throughout this chapter in lieu of “aerosol layer” or 

“ash/dust plume”), analogous to the cirrus cloud retrievals performed by Heidinger and 

Pavolonis [2009] and Heidinger et al. [2010].  From these retrieved parameters, the cloud 

radiative height, effective particle radius, optical depth, and mass loading can be derived, 

subject to certain assumptions.  The retrieval methodology was developed in preparation 

for the next generation of Geostationary Operational Environmental Satellite (GOES-R) 

and will serve as the official operational volcanic ash algorithm for GOES-R.  The 

retrieval approach (hereafter referred to as the GOES-R approach), which has already 

been demonstrated in real-time (http://volcano.ssec.wisc.edu/) and used to support 

operations at the Anchorage and Washington Volcanic Ash Advisory Centers (VAACs), 

is unique in that it is fully automated, computationally efficient, globally applicable, 

explicitly accounts for major absorbing background atmospheric gases, and allows the 

effective cloud temperature to be a free parameter in the retrieval.  The cloud radiative 

temperature has been treated as a constant in nearly all published imaging radiometer-

based volcanic ash retrieval studies [e.g. Wen and Rose 1994; Prata and Grant 2001; Gu 

et al. 2005; Zhang et al. 2006; Corradini et al. 2008; Clarisse et al. 2010b].  In addition, 

like Yu et al. [2002] and Corradini et al. [2008], the GOES-R algorithm does not rely on 

the presence of the traditional “reverse absorption” signal (negative 11 – 12 µm 
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brightness temperature difference) [Prata 1989a; Prata 1989b].  A traditional “reverse 

absorption” signal need not be present because major background absorbing gases (e.g. 

H2O, CO2, and O3) are accounted for explicitly.  The GOES-R approach does not depend 

on scene dependent off-line look-up tables, so it can easily be implemented operationally.  

Comparisons to other published methodologies like those of Wen and Rose [1994], Prata 

and Grant [2001], Corradini et al. [2008], Clarisse et al. [2010b], Francis et al. [2012], 

and Prata and Prata [2012] are valuable and will be performed at a later time.  This 

chapter will focus on describing and justifying the GOES-R ash/dust retrieval 

methodology and physical basis.  Further, as in Heidinger and Pavolonis [2009], 

spaceborne lidar measurements will be used to quantify the accuracy of the retrieval 

method presented in this chapter. 

5.2.  Infrared Measurements 

Although the basic methodology described in this chapter applies to aircraft 

measurements of upwelling infrared radiation, we will focus on satellite based infrared 

measurements, which are generally better suited for global operational monitoring of 

volcanic ash and dust than research aircraft measurements.  Three spectral channels 

centered near 11, 12, and 13.3 µm, will be used to retrieve the ash and dust cloud 

properties.  Heidinger et al. [2010] use this same channel combination to retrieve cirrus 

cloud properties and these channels are not sensitive to SO2, which simplifies the 

retrieval (e.g. fewer unknowns) when SO2 is present, as may be the case in volcanic ash 

clouds.  While the specific spectral characteristics of the channels will differ slightly from 

sensor to sensor, the channels considered in this chapter have approximate central 

wavelengths of 11, 12, and 13.3 µm and are available on current sensors such as the 
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Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spinning Enhanced 

Visible/Infrared Imager (SEVIRI) and will be available on all next generation 

geostationary sensors such as the GOES-R Advanced Baseline Imager (ABI) [Schmit et 

al., 2005].  Geostationary satellites, because of their high temporal refresh, are critical for 

monitoring volcanic ash and dust clouds. While certain instruments in low earth orbit 

have better spectral and/or spatial resolution, the temporal resolution is poor relative to 

geostationary satellites.  It should be noted that the 11 and 12 µm channel combination 

has been historically used to retrieve the optical depth and effective particle radius of 

volcanic ash and dust clouds (e.g. [Wen and Rose 1994; Prata and Grant 2001; Yu et al. 

2002; Gu et al. 2003; Corradini et al. 2008]).  However, Heidinger et al. [2010] showed 

that, for cirrus clouds, the addition of the 13.3 µm channel adds considerable sensitivity 

to the cloud radiative temperature. Although the retrieval approach described in this 

chapter can be applied to hyperspectral infrared measurements (available on certain low 

earth orbit satellites), more advanced retrieval procedures can be applied to hyperspectral 

measurements (e.g. [Huang et al. 2004; Peyridieu et al. 2010; Clarisse et al. 2010b; 

DeSouza-Machado et al. 2010]) so this chapter is focused on more commonly available 

narrow band radiometer measurements.  The algorithm described in this chapter will be 

demonstrated using SEVIRI, which is a 12-channel imaging radiometer with a spatial 

resolution of 3 km (in the infrared at nadir) and is located in a geostationary orbit with a 

coverage area that includes many volcanoes.  For more information on SEVIRI, see 

http://www.eumetsat.int/.  More specifically, volcanic ash from the 2010 eruptions of 

Eyjafjallajokull (Iceland) and Soufriere Hills (Caribbean) and airborne dust lofted from 
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the Sahara Desert will be used to illustrate algorithm results and co-located spaceborne 

lidar data will be used to objectively assess algorithm performance. 

5.3.  Infrared Radiative Transfer Theory 

For reader convenience, a brief review of the infrared radiative transfer concepts 

first introduced in Chapter 3 is given.  Assuming a satellite viewing perspective (e.g. 

upwelling radiation), a fully cloudy field of view, a non-scattering atmosphere (no 

molecular scattering), and a negligible contribution from downwelling cloud emission or 

molecular emission that is reflected by the surface and transmitted to the top of 

troposphere (Zhang and Menzel [2002] showed that this term is very small at infrared 

wavelengths), the cloudy radiative transfer equation for a given infrared channel or 

wavelength can be written as in Equation ( 5.1) (e.g. Chapter 3). 

 

! 

Robs(") = #eff (")Rcld(") + Rclr(")(1$#eff ("))  ( 5.1) 

While sub-pixel cloudiness is noted as a potential source of error, only fully cloudy fields 

of view are considered in this since information on cloud fraction is not readily available.  

For a cloud fraction sensitivity analysis, see Heidinger and Pavolonis [2009].  In 

Equation ( 5.1), which is derived in Appendix A, λ is wavelength, Robs is the observed 

radiance, Rclr is the clear sky radiance. The effective cloud emissivity [Cox 1976] is 

denoted by εeff. The effects of cloud scattering are implicitly captured by the effective 

cloud emissivity (see Cox [1976]).  To avoid using additional symbols, the angular 

dependence is simply implied.  Rcld is given by 

 Rcld(!) = Rac(!)+ tac(!)B(!,Teff ) . ( 5.2) 
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In Equation ( 5.2), Rac and tac are the above cloud upwelling atmospheric radiance and 

transmittance, respectively.  B is the Planck Function, and Teff is the effective cloud 

temperature. The effective cloud temperature is most often different from the 

thermodynamic cloud top temperature since the emission of radiation originates from a 

layer in the cloud.  The depth of this layer depends upon the cloud extinction profile, 

which is generally unknown.  The clear sky transmittance and radiance terms are 

determined using surface temperature, atmospheric temperature, water vapor, and ozone 

profiles from the Global Forecast Model (GFS) [Hamill et al. 2006], surface emissivity 

from the Seebor database [Seemann et al. 2008], the satellite zenith angle, and a 

regression based clear sky radiative transfer model [Hannon et al. 1996].  The procedure 

for determining the clear sky radiance and transmittance is the same as described in 

Heidinger and Pavolonis [2009] and Chapter 3 so no other details are given here. 

 The spectral variation of the effective cloud emissivity is directly related to cloud 

microphysical information (e.g. particle size, shape, composition, etc…).  Effective 

absorption optical depth ratios, otherwise known as β-ratios, have been previously used 

to extract cloud microphysical information from infrared measurements [Inoue 1987; 

Parol et al. 1991; Giraud et al. 1997; Heidinger and Pavolonis 2009; and Chapter 3 of this 

dissertation].  For a given pair of spectral effective emissivities, εeff(λ1) and εeff(λ2), the 

effective absorption optical depth ratio, βobs, is defined in Equation ( 5.3). 

 

! 

"obs =
ln[1#$eff (%1)]
ln[1#$eff (%2)]

=
&abs , eff(%1)
&abs , eff(%2)  

( 5.3) 

Notice that Equation ( 5.3) can simply be interpreted as the ratio of effective absorption 

optical depth (τabs,eff) at two different wavelengths.  An appealing quality of βobs, is that it 
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can be interpreted in terms of the single scatter properties, which can be computed for a 

given cloud composition and particle distribution.  Following Van de Hulst [1980] and 

Parol et al. [1991], a spectral ratio of scaled extinction coefficients can be calculated from 

the single scatter properties (single scatter albedo, asymmetry parameter, and extinction 

cross section), as follows. 

 

! 

"theo =
[1.0 #$(%1)g(%1)]&ext(%1)
[1.0 #$(% 2)g(% 2)]&ext(% 2)  

( 5.4) 

In Equation ( 5.4), βtheo is the spectral ratio of scaled extinction coefficients, ω is the 

single scatter albedo, g is the asymmetry parameter, and σext is the extinction cross 

section.  As shown in Chapter 3, at wavelengths in the 8 – 15 µm range, where multiple 

scattering effects are small, βtheo, captures the essence of the cloudy radiative transfer 

such that 

 !obs ! ! theo.  ( 5.5) 

Equation ( 5.5) allows βobs to be used to infer information on the cloud particle 

distribution.  In addition, Equations ( 5.1) - ( 5.5) allow for an efficient retrieval without 

the need for large, scene dependent, look-up tables. 

5.4.  Retrieval Forward Model 

Following Equation ( 5.1), the infrared radiative transfer equation is shown for 

each spectral channel used in the retrieval in Equations ( 5.6) – ( 5.8). 

 

! 

Robs(11µm) = "eff (11µm)Rcld(11µm) + Rclr(11µm)(1#"eff (11µm))  ( 5.6) 

 

! 

Robs(12µm) = "eff (12µm)Rcld(12µm) + Rclr(12µm)(1#"eff (12µm))  ( 5.7) 
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! 

Robs(13.3µm) = "eff (13.3µm)Rcld(13.3µm) + Rclr(13.3µm)(1#"eff (13.3µm)) ( 5.8) 

The algorithm is designed to directly retrieve the 11 µm effective cloud emissivity and 

βobs(12/11 µm), in addition to Teff, so Equation ( 5.3) is used to express the 12 µm 

effective cloud emissivity as a function of the 11 µm effective cloud emissivity and βobs-

(12/11 µm), as shown in Equation ( 5.9). 

 

! 

"eff (12µm) =1# [1#"eff (11µm)]$obs(12 /11µm )
 ( 5.9) 

Similarly the 13.3 µm effective cloud emissivity can be expressed as a function of the 11 

µm effective cloud emissivity and βobs(13.3/11 µm), as shown in Equations ( 5.10). 

 

! 

"eff (13.3µm) =1# [1#"eff (11µm)]$obs(13.3 /11µm )
 ( 5.10) 

The single scatter properties (recall Equations ( 5.4) and ( 5.5)) are then used to relate 

βobs(12/11 µm) to βobs(13.3/11 µm) such that only Teff, εeff(11 µm), and βobs(12/11 µm) 

are solved for in the retrieval.  More specifically, βobs(13.3/11 µm) is related to βobs(12/11 

µm) via a 4th order polynomial fit (see Equation ( 5.11)) to the single scatter property 

derived beta relationship (βtheo(13.3/11 µm) vs. βtheo(12/11 µm)).  The polynomial 

coefficients (c0, c1, c2, c3, and c4) are a function of the microphysical model chosen, and 

will be discussed in a later section in this chapter. 

 

! 

"(13.3/11µm) = c4["(12 /11µm)]4 + c3["(12 /11µm)]3 + c2["(12 /11µm)]2 + c1["(12 /11µm)] + c0 ( 5.11) 

5.5.  Optimal Estimation Retrieval Method 

The retrieval of Teff, εeff(11 µm), and βobs(12/11 µm) is formally performed using 

the optimal estimation approach described by Rodgers [1976].  Heidinger and Pavolonis 

[2009] utilize this same technique to retrieve cirrus cloud properties.  In addition, Turner 
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[2008] used optimal estimation to retrieve dust cloud properties from ground based 

infrared measurements.  There are many more examples of optimal estimation being used 

in satellite remote sensing applications.  The benefits of this approach are that it is 

flexible and allows new observations or retrieved parameters to be added or removed 

from the retrieval scheme.  Another benefit of this approach is that it generates estimates 

of the uncertainty in the retrieval. Each step in the optimal estimation iteration changes 

each element of vector of retrieved parameters (Teff, εeff(11 µm), and βobs(12/11 µm)) 

according to the following relationship. 

 

! 

"x = Sx{KTSy
#1[y # f (x)]+ Sa

#1(xa # x)} ( 5.12) 

In Equation ( 5.12), y is the vector of observations, x is the vector of retrieved parameters, 

f(x) represents the forward model, which is a function of x, and xa is the a priori 

representation of x.  The matrices Sx, Sy, and Sa are the error covariance matrices of the 

retrieved parameters, the measurements, and the a priori values, respectively.  The kernel 

matrix, K, contains the forward model Jacobians.  In our retrieval, x = [Teff, ε(11µm), 

βobs(13.3/11µm)].  Using “BT” to denote brightness temperature and “BTD” to denote 

brightness temperature difference, the observation vector, y is [BT(11µm), BTD(11-

12µm), BTD(11-13.3µm)].  The forward model vector, f(x), is constructed in the same 

manner as y for each of the channel combinations.  The kernel matrix is defined in 

Equations ( 5.13). 
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! 

K =

"BT(11µm)
"Teff

"BT(11µm)
"#eff (11µm)

"BT(11µm)
"$obs(12 /11µm)

"BTD(11%12µm)
"Teff

"BTD(11%12µm)
"#eff (11µm)

"BTD(11%12µm)
"$obs(12 /11µm)

"BTD(11%13.3µm)
"Teff

"BTD(11%13.3µm)
"#eff (11µm)

"BTD(11%13.3µm)
"$obs(12 /11µm)
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+ 
+ 
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+ 
 

( 5.13) 

Given our choice of forward model, analytical expressions for the Jacobians can be 

derived.  The Jacobian analytical expressions can be found in Appendix D. Once the 

Kernel Matrix has been calculated, the error covariance matrix of x can be determined 

using Equation ( 5.14) [Rodgers, 1976].  The method used to determine Sa and Sy will be 

described shortly. 

 

! 

Sx = (Sa
"1 + KTSy

"1K)"1 ( 5.14) 

The optimal estimation approach is run until the following convergence criterion is met. 

 

! 

"xSx
#1"x$ %

p
2  

( 5.15) 

In Equation ( 5.15), p is the size of x, which is 3 in our case.  This convergence criterion 

is same used by Rodgers [1976].  If the retrieval does not converge after 10 iterations, it 

is deemed a failed retrieval (retrievals very rarely fail to converge) and all retrieved 

parameters are set to the a priori values.  Further, δx is constrained such that the 

maximum allowed absolute changes in the retrieved parameters, Teff, ε(11µm), and 

β(12/11µm), are 20.0 K, 0.3, 0.2, respectively.  Once the retrieval vector is updated by δx, 

the retrieved parameters are constrained to be within a physically plausible range. 

 The a priori values and their associated uncertainties act to constrain the retrieved 

parameters when the measurements contain little or no information on one or more of the 
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retrieved parameters.  However, prior, independent, knowledge of ash and dust cloud 

properties is generally not available and climatological values are not very useful since 

ash and dust cloud properties are highly variable in space and time.  Thus, a large 

uncertainty is assigned to each a priori parameter, so that the measurements are highly 

weighted.  Ideally, ash cloud property estimates from more accurate (but less frequent) 

measurements (satellite or otherwise) would be used to automatically determine the a 

priori values and uncertainties.  However, combining measurements from different 

satellites or measurement platforms is not a trivial endeavor and will be the subject of 

future research.  Model simulated ash cloud properties can also potentially be used as a 

first guess, but quantifying model errors is a difficult task and requires significant 

additional research.  The a priori values and associated uncertainty estimates are shown 

in Table 5.1.  The choice of a priori value for Teff and ε(11µm) assumes that most ash 

and dust clouds are semi-transparent to infrared radiation and accounts for the satellite 

zenith angle.  The a priori value of β(12/11µm) is chosen as 0.8, which, as will be shown 

in the next section, approximately corresponds to the center of the range of sensitivity for 

effective particle size.  The actual a priori values, however, are not critically important 

since the a priori error estimates (σx_ap) are assumed to be significant (see Table 5.1).  As 

in Heidinger and Pavolonis [2009], the a priori error covariance matrix (Equation ( 5.16)) 

is taken to be diagonal (e.g. errors in the first guess of each parameter are uncorrelated).  

The procedure for assigning the a priori values and uncertainty will be refined in the 

future. 
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! 

Sa =

" 2
Teff _ ap 0.0 0.0

0.0 " 2
# (11µm) _ ap 0.0

0.0 0.0 " 2
$ (12 / 11µm) _ ap
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* 

 

( 5.16) 

Table 5.1: First guess values and associated uncertainties of each retrieved parameter.  
θsat is the satellite zenith angle.  If an upper level SO2 signal is present (see Chapter 3), 
Teff(2) is utilized, otherwise Teff(1) is used. 

Retrieved Parameter 
(x) 

First Guess 
(x_ap) 

First Guess Uncertainty 
(σap

2) 
Teff (1) BT(11µm) – 15 K  (50 K)2 
Teff (2) Temperature at tropopause + 2km  (50 K)2 

εeff(11 µm) 1.0-exp(-0.5/cos(θsat))  (1.0)2 
βobs(12/11 µm) 0.8  (0.6)2 

 

The optimal estimation procedure also requires an estimate of the error covariance 

matrix of the forward model (Equation ( 5.17)). 

 

! 

Sy =

" 2
BT (11µm) 0.0 0.0

0.0 " 2
BTD (11 # 12µm) 0.0

0.0 0.0 " 2
BTD (11 # 13.3µm)
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) 
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( 5.17) 

As in Heidinger and Pavolonis [2009], the total uncertainty in the forward model is 

assumed to be composed of a linear combination of three major sources (see Equation 

( 5.18)): instrumental, clear sky radiative transfer modeling, and pixel heterogeneity. 

 

! 

" 2 =" 2
instr + [1#$(11µm)]" 2

clr +" 2
hetero  ( 5.18) 

In Equation ( 5.18), the instrument uncertainty is given by σ2
instr, the clear sky radiative 

transfer uncertainty is denoted by σ2
clr, and the uncertainty due to pixel heterogeneity is 

given by σ2
hetero.  The impact of the clear sky radiative transfer uncertainty is 
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approximately inversely proportional to the cloud emissivity, so it is weighted by the 11-

µm cloud emissivity, ε(11µm).  As discussed in Heidinger and Pavolonis [2009], the off-

diagonal elements (correlated uncertainty) of the forward model error covariance matrix 

are very difficult to determine, so only the diagonal elements (uncorrelated uncertainty) 

are considered. The uncertainty in the clear sky radiative transfer (σ2
clr), which is a 

function of the accuracy of the radiative transfer model, the GFS fields, and the surface 

emissivity database, is determined through an offline clear sky radiance bias analysis, 

separately for land and water surfaces (see Heidinger and Pavolonis [2009]).  In general, 

there is much greater uncertainty in land surface temperature than sea surface temperature 

so the clear sky uncertainty over land is greater than over water.  The forward model 

uncertainty due to spatial heterogeneity (σ2
hetero) is approximated by the spatial variance 

of each observation used in the retrieval over a 3 x 3 pixel box centered on the current 

pixel of interest.  The last forward model error term is that due to instrumental effects, 

σ2
instr.  This term includes noise, calibration, and spectral response errors that impact the 

ability of the forward model to fit the measurements.  The clear sky and instrument 

uncertainty estimates for SEVIRI are given in Table 5.2.  The instrumental uncertainty 

was taken from satellite operator, EUMETSAT: 

http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_MSG_SEVI

RI_RADIOM_NOISE&RevisionSelectionMethod=LatestReleased. 
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Table 5.2: Instrument and forward model errors for each observation used in the 
retrieval. 

Observation 
(y) 

Instrument Error 
(σinstr) 

Clear Sky Error 
(water) (σclr) 

Clear Sky Error 
(land) (σclr) 

BT(11 µm) (0.11 K)2 (0.50 K)2 (5.00 K)2 

BTD(11-12 µm) (0.26 K)2 (0.25 K)2 (1.00 K)2 
BTD(11-13.3 µm) (0.55 K)2 (1.50 K)2 (4.00 K)2 

 

5.6.  Microphysical Models 

The microphysical relationships needed to determine βobs(13.3/11 µm) from the 

retrieved βobs(12/11 µm) (see Equation 11) and to calculate the effective particle radius 

[Hansen and Travis 1974] and mass loading from the retrieved εeff(11 µm) and βobs(12/11 

µm) were constructed for 4 different rocks: andesite, rhyolite, gypsum, and kaolinite.  

Pollack et al. [1973] provided the indices of refraction for andesite and rhyolite and 

Roush et al. [1991] provided the indices of refraction of the other rocks.  Regardless of 

the composition, the size distribution was assumed to be lognormal. 
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( 5.19) 

In equation ( 5.19), No is the total number of particles, r is particle radius, rg is the 

geometric mean radius, and σg is the geometric standard deviation.  In this study, the 

geometric standard deviation is always set to 2.1 (ln(σg)=0.74). Lognormal distributions 

with a geometric standard deviation of ~2 have commonly been used to model and fit 

volcanic ash and dust particle distributions (e.g. [Hobbs et al. 1991; Wen and Rose 1994; 

Pavolonis et al. 2006; Prata and Grant 2001; Pavolonis 2010; Clarisse et al. 2010b]).  The 
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geometric radius, rg, can be determined from the effective particle radius [Hansen and 

Travis 1974], reff, using 

 
rg = reff

exp 5
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( 5.20) 

The total number of particles per unit area, No, can be calculated from the retrieved 

effective cloud emissivity, εeff(11 µm) and βobs(12/11 µm) using 

 No =
! (11µm)
" ext(11µm)

,
 

( 5.21) 

where τ(11µm) is the effective cloud optical depth at 11 µm and σext(11µm) is the 

extinction cross section at 11 µm.  The effective cloud optical depth, corrected for 

satellite viewing zenith angle, θsat, is easily computed from the retrieved effective cloud 

emissivity using Equation ( 5.22). 

 

! 

"(11µm) = #cos($sat)ln[1.0 #%(11µm)]  ( 5.22) 

As will be shown shortly, the single scatter properties can be expressed as a function of 

βtheo(12/11 µm), which allows σext(11µm) to be determined. 

 The ash and dust particles were assumed to be spherical and Mie theory is used to 

compute the single scatter properties for each rock type over a range of effective radii 

(0.5 – 20.0 µm).  Of course, real volcanic ash and dust particles actually take on a variety 

of irregular shapes that are very difficult to model.  Fortunately, in the infrared 

(especially at wavelengths larger than 10 µm), the sensitivity to particle habit and 

composition has been shown to be much smaller than the sensitivity to particle size [Wen 

and Rose 1994; Corradini et al. 2008; Clarisse et al. 2010b; Newman et al. 2012], so, as 
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in other studies, the particles are treated as spheres.  The Mie calculations in the 

wavelength range of 8 – 15 µm are performed with a wave number spacing of 10 cm-1.  

Instrument specific single scatter properties for each channel required by the retrieval 

algorithm are compiled by integrating over the corresponding instrument specific spectral 

response functions for those channels. 

 For a given rock type, the theoretical beta relationship (Equation ( 5.4)) over a 

range of effective radii is used to derive the empirical coefficients needed to evaluate 

Equation ( 5.11).  Figure 5.1 shows βtheo(13.3/11 µm) as a function of βtheo(12/11 µm) for 

each rock type.  The coefficients required by Equation ( 5.11) are determined by fitting a 

4th order polynomial to the points.  The relationships shown in Figure 5.1 are valid for the 

SEVIRI sensor on-board the Met-9 satellite.  The relationship between βtheo(12/11 µm) 

and βtheo(13.3/11 µm) has the same primary attribute, βtheo(12/11 µm) > βtheo(13.3/11 µm) 

for a given reff, for all rock types.  In an analogous manner, βobs(12/11 µm) is also used to 

determine the effective particle radius (reff) and the 11-µm extinction cross-section 

(σext(11µm)).  Those relationships are shown for each rock type in Figure 5.2 and Figure 

5.3, respectively.  The empirical relationships depicted in Figure 5.2 and Figure 5.3 are 

valid for Met-9 SEVIRI, but empirical fits of the same general form are used for other 

instruments.  Thus, polynomial coefficients for each instrument of interest are computed 

and stored in a data file and a single version of the retrieval code is used for all 

instruments that meet the channel requirements. 

 Figure 5.2 shows that the sensitivity to effective radius is generally greatest in the 

1 – 6 µm range (e.g. relatively large changes in βtheo(12/11 µm) are associated with 

relatively small changes in reff).  Once the reff exceeds ~15 µm, relatively small changes 
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in βtheo(12/11 µm) are associated with larger changes in reff and retrievals of reff greater 15 

µm cannot be performed reliably.  It is also more difficult to separate ash/dust clouds 

from liquid water and ice clouds when reff exceeds 15 µm [Chapter 3 of this dissertation].  

Thus, the maximum allowed retrieved reff in the GOES-R approach is 15 µm.  This does 

not mean that a volume of particles with an actual reff > 15 µm does not contribute to the 

measured top of atmosphere radiation.  Figure 5.3 shows that particles of all sizes greater 

than about 1 µm have a non-trivial extinction coefficient.  In fact, the larger the effective 

radius, the greater the extinction of radiation.  While fundamental (given the physical 

relationship between particle size and wavelength), this is an important point to make in 

this manuscript since the lack of sensitivity to effective radii larger than about 15 µm is 

sometimes misinterpreted to mean that larger particles within a size distribution do not 

significantly contribute to the measured radiance in the infrared, which is not correct.  

The infrared cloud optical depth is greatly influenced by emission and scattering from 

larger particles. 

 As in previous studies, ash mass loading in g/m2 is computed using 

 
ML = (1!106 ) 4

3
!"ash r3n(r)dr

r1

r 2

! .
 

( 5.23) 

In Equation ( 5.23), ML is the mass loading in g/m2 and ρash is the density of ash, which 

is taken to be 2.6 g/cm3 [Neal et al., 1994].  The particle radius, r, is expressed in units of 

µm.  The units of n(r) are the number of particles per µm2 per µm.  The factor, 1x106, in 

Equation ( 5.23), is needed to convert the units to g/m2.  Given that the maximum 

effective radius that can be retrieved is 15 µm, the mass loading will likely be 
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underestimated if the actual effective radius exceeds 15 µm simply because the number 

of larger volume particles will be underestimated. 

 

Figure 5.1: The black triangles show the 13.3/11 µm scaled extinction ratio (βtheo(13.3/11 
µm)) as a function of the 12/11 µm scaled extinction ratio (βtheo(12/11 µm)) for 4 different 
rock types over a range of effective radii (1 – 15 µm). A fourth order polynomial fit is 
shown in red.  The numbers adjacent to the triangles indicate the effective radius in µm.  
Andesite, rhyolite, kaolinite, and gypsum are shown in panels a-d, respectively.  
βtheo(12/11 µm) and  βtheo(13.3/11 µm) were derived from the single scatter properties as 
described in the text. 
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Figure 5.2: The same as Figure 5.1except the effective particle radius (reff) is shown as a 
function of βtheo(12/11 µm). 
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Figure 5.3: The same as Figure 5.1 except the extinction cross section (σext) is shown as a 
function of βtheo(12/11 µm). 

5.7.  Results and Error Analysis 

The optimal estimation retrieval algorithm is applied to all satellite pixels that 

either have an ash/dust probability (see Chapter 4) that exceeds 1.0x106 % or an 11 – 12 

µm BTD that is less than 0 K. 

5.7.1. Eyjafjallajökull – May 8, 2010 (04:00 UTC) 

The April 14 – May 21, 2010 eruption of Eyjafjallajökull [Gudmundsson et al. 

2010] in southern Iceland had an extensive impact on aviation.  Ash clouds from 2010 

eruption of Eyjafjallajökull have been studied using ground [Ansmann et al. 2010; 



 132 

Arason et al. 2011; Gasteiger et al. 2011], airborne [Schumann et al. 2011; Turnbull et al. 

2012; Newman et al. 2012; Marenco et al. 2011; Johnson et al. 2012], and satellite 

[Winker et al. 2012; Francis et al. 2012; Stohl et al. 2011; Newman et al. 2012; Prata and 

Prata 2012] observations.  In this study, the GOES-R retrieval results will primarily be 

compared to ash cloud properties inferred from the Cloud Aerosol Lidar with Orthogonal 

Polarization (CALIOP) [Hunt et al. 2009] on board the Cloud Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO) [Winker et al., 2010] since those data 

provide detailed information on cloud vertical structure and are readily and freely 

available.  In addition, unlike fixed location ground-based measurements and aircraft 

measurements, CALIOP samples ash and dust clouds globally over a large range of 

background conditions.  Thus, just as described by Heidinger and Pavolonis [2009], the 

CALIOP data set is an ideal starting point for algorithm validation.  Quantitative 

comparisons to aircraft observations will be performed in the future when those data sets 

are more readily available to the broader scientific community.  Detailed comparisons to 

ground-based measurements and other published satellite retrieval data sets will also be 

the focus of future research. 

 Figure 5.4, Figure 5.5, and Figure 5.6 show the results of the GOES-R ash 

cloud property retrieval on May 8, 2010 at 04:00 UTC.  Satellite imagery and the core 

retrieval outputs, Teff (K), ε(11µm), β(12/11µm), and associated uncertainties are shown 

in Figure 5.4.  The andesite rock type was used to generate the results shown in Figure 

5.4.  Consistent with Heidinger and Pavolonis [2009], the uncertainties are expressed as 

the ratio of the estimated 1-σ-retrieval error and the a priori error estimate, where a value 

of 1.0 indicates that the uncertainties are identical and the retrieval added no value (ratios 
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much less than 1.0 indicate that the retrieval added considerable value). Figure 5.5 shows 

the ash cloud height, mass loading, and effective particle radius, which were derived from 

Teff, ε(11µm), and β(12/11µm) as described earlier.  In order to help assess the sensitivity 

to rock type, the height (km above sea level), mass loading (g/m2), and effective radius 

(µm) results are shown for three different rock types, andesite (left column), rhyolite 

(center column), and kaolinite (right column).  Finally, Figure 5.6 shows the 532 nm total 

attenuated backscatter from a CALIOP cross-section through the ash cloud at 04:00 UTC.  

The ash cloud height results from each composition are overlaid on the cross section 

shown in the bottom panel of Figure 5.6.  SEVIRI parallax effects were accounted for 

when co-locating SEVIRI and CALIOP and measurement times never differed by more 

than 7.5 minutes.  For reference, the CALIPSO ground track is overlaid on each panel in 

Figure 5.4 and (black line) Figure 5.5. 

Figure 5.4 (panels c and d) shows that Teff is generally much less than the 11 µm 

brightness temperature and ε(11µm) is generally less than 0.5, meaning the cloud is semi-

transparent to infrared radiation and deviates strongly from blackbody behavior.  This is 

true for nearly all ash/dust clouds analyzed in this chapter.  Also seen in Figure 5.4 

(panels g-i), is that the uncertainty ratio for each of the retrieved parameters is generally < 

0.90, indicating that the retrieval is adding skill to the first guess.  This scene is 

particularly interesting because the retrieval results indicate that there is considerable 

spatial variability in the ash cloud properties along the CALIPSO ground track, with 

higher heights (lower Teff), lower loadings (smaller ε(11µm) and β(12/11µm)), and 

smaller effective radii) in the southwest portion of the ground track compared to the 

northeast portion. Figure 5.6 shows that the GOES-R retrievals are very consistent with 
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the 1/3 km 532 nm CALIOP total attenuated backscatter profile which shows a more 

strongly attenuating lower level ash cloud in the northeast part of the overpass segment 

and much higher ash cloud layers with weaker attenuation in the southwest.  The overall 

cloud height variation is captured by the GOES-R retrieval regardless of the assumed 

rock type.  The retrieved mass loading and effective radius, however, are more sensitive 

to rock type, with kaolinite producing much larger (in some cases a factor of 2 larger) 

mass loadings and effective radii than andesite or rhyolite (see Figure 5.5).  A more 

rigorous, quantitative, validation analysis will be shown later as a function of the rock 

type.  One of the main limitations of our methodology, and all previously published 

passive satellite sensor ash/dust retrieval algorithms, is that ash/dust cloud properties can 

only be retrieved if ash/dust is the highest cloud layer.  In this scene the false color image 

(dust RGB) (Figure 5.4a) indicates that cirrus clouds overlap the ash cloud just south of 

Iceland.  Thus, ash cloud properties could not be determined for this part of the ash cloud. 
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Figure 5.4: SEVIRI images from 0400 UTC on May 8, 2010. (a) Dust RGB image. (b) “Split-window” 
imagery. (c) 11 µm imagery. (d) Retrieved effective cloud temperature. (e) Retrieved effective cloud 
emissivity. (f) Retrieved 12/11 µm effective optical depth ratio. (g) Retrieved effective cloud temperature 
uncertainty ratio. (h) Retrieved effective cloud emissivity uncertainty ratio. (i) Retrieved 12/11 µm effective 
optical depth ratio uncertainty ratio.  The black solid line through the cloud represents a CALIPSO 
overpass. The andesite rock type was used to generate these results.  
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Figure 5.5: SEVIRI images from 0400 UTC on May 8, 2010. (a-c) Retrieved effective cloud height as a 
function of rock type (andesite, rhyolite, and kaolinite, respectively). (d-f) Retrieved cloud mass loading as 
a function of rock type (andesite, rhyolite, and kaolinite, respectively). (g-i) Retrieved cloud effective radius 
as a function of rock type (andesite, rhyolite, and kaolinite, respectively).  The black solid line through the 
cloud represents a CALIPSO overpass.  
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Figure 5.6: A CALIOP 532 nm total attenuated backscatter cross-section from 04:01:59 
UTC – 04:05:04 UTC on May 8, 2012.  The cross section is shown with (bottom) and 
without (top) the retrieved SEVIRI cloud heights (as a function of the assumed rock type) 
overlaid.  Magenta circles represent andesite.  White circles denote rhyolite.  Gray 
circles represent kaolinite.  In both panels, the solid black line denotes the tropopause 
and the dashed black lines represent select atmospheric isotherms (in Kelvin). 

5.7.2. Soufriere Hills – February 12, 2010 (05:30 UTC) 

Soufriere Hills is located in the eastern Caribbean, on the island of Montserrat.  

On February 11, 2010 a major partial lava dome collapse occurred, resulting in 

pyroclastic flows and a high-level ash cloud [Montserrat Volcano Observatory: 

http://www.mvo.ms].  Figure 5.7, Figure 5.8, and Figure 5.9 show the results of the 
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GOES-R ash cloud property retrieval on February 12, 2010 at 05:30 UTC in the same 

manner as the Eyjafjallajökull example.  The andesite rock type was assumed to generate 

the results shown in Figure 5.7.  The meteorological background for this eruption is 

considerably different than that observed south of Iceland on May 8, 2010.  A radiosonde 

from the nearby island of Guadeloupe indicated that the total precipitable water was 

27.18 mm, more than twice that observed at Keflavikur-Flugvollur in southern Iceland on 

May 8, 2010 (13.28 mm).  As seen in Figure 5.7b, a significant portion of the ash cloud is 

characterized by a positive BTD(11-12µm), consistent with a larger water vapor loading.  

Recall that the retrieval accounts for background variables such as water vapor so it 

should not be adversely impacted by positive values of BTD(11-12µm).  As in the 

Eyjafjallajökull example, Teff is generally much less than the 11 µm brightness 

temperature and subsequently ε(11µm) is also generally small, as is commonly the case 

with dispersed ash clouds (see Figure 5.7, panels c and d).  Most of the Soufriere Hills 

cloud is characterized by β(12/11µm) values greater than 0.8.  The uncertainty ratios 

indicate that the retrieval is adding considerable skill to the first guess for all retrieved 

parameters over most of the cloud.  In the isolated patches where the Teff uncertainty ratio 

is greater than 0.9 the ε(11µm) and β(12/11µm) uncertainty ratios are very small and 

vice-versa, such that all three uncertainty ratios are never simultaneously large.  There are 

a couple small holes in the cloud where conditions were such that ash was not detected 

using the procedure described earlier, and no retrieval was performed.  Once again, the 

retrieved effective radius, and hence the mass loading, is far more sensitive to the 

assumed rock type than the cloud height (see Figure 5.8).  The retrieved cloud heights are 

also in good agreement with the CALIOP cross section (Figure 5.9) through the optically 
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thin eastern portion of the cloud, with andesite producing a slightly better match than 

rhyolite and kaolinite.  The low heights (< 2 km) sometimes observed on the very edge of 

the Soufriere Hills cloud are likely caused by sub-pixel cloudiness (e.g. cloud fraction < 

1.0 within a given satellite pixel), which is not accounted for in the retrieval.  Retrieval 

results and uncertainty estimates at the very edge of clouds should be used with caution, 

especially when the size of a satellite pixel is large, as it is in this case (SEVIRI pixels 

have a horizontal resolution of 10 km or greater in this region). 
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Figure 5.7: Same as Figure 5.4 except for the eastern Caribbean on 0530 UTC on 
February 12, 2010.  The andesite rock type was used to generate these results. 
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Figure 5.8: Same as Figure 5.5 except for the eastern Caribbean on 0530 UTC on 
February 12, 2010. 
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Figure 5.9: Same as Figure 5.6 except for 05:34:04 UTC – 05:34:42 UTC on February 
12, 2010. 

5.7.3. Saharan Dust – June 22, 2007 (02:45 UTC) 

While the retrieval methodology described in this chapter was developed, 

primarily, for volcanic ash cloud applications, it can also be used to estimate dust cloud 

properties.  Figure 5.10, Figure 5.11, and Figure 5.12 illustrate how the retrieval works on 

a Saharan dust cloud near the west coast of Africa, captured by SEVIRI on June 22, 2007 

at 02:45 UTC.  In should be noted that the horizontal resolution of the GFS model data 

used in this case study is 1o (0.5o data were used for the previous two cases), so the 
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retrieved properties are slightly “blocky” as a result.  As with the Eyjafjallajökull and 

Soufriere Hills volcanic ash clouds, the retrieved Teff (Figure 5.10c) throughout the 

Saharan dust cloud is often much less than the 11 µm brightness temperature (Figure 

5.10d) and ε(11µm) rarely exceeds 0.3 (Figure 5.10e).  The kaolinite rock type was to 

used generate the results shown in Figure 5.10.  The Teff uncertainty ratio often exceeds 

0.9 (medium and dark orange colors in Figure 5.10g) when ε(11µm) is smaller than about 

0.05 (see Figure 5.10e), indicating that the retrieval of Teff adds little to no value to the 

first guess for the most optically thin portions of this dust cloud.  In contrast, the ε(11µm) 

and β(12/11µm) uncertainty ratios (Figure 5.10h and Figure 5.10i, respectively) are 

nearly always less than 0.7, regardless of cloud opacity.  The uncertainty ratio for all 

three retrieved parameters is generally greater over land than water because, as described 

earlier, the uncertainty in the modeled clear sky brightness temperatures is much greater 

over land than water. 

Figure 5.11 shows that the retrieval of cloud height, mass loading, and effective 

particle radius is quite sensitive to the rock type.  In particular, using gypsum as the rock 

type results in lower cloud heights (higher Teff), which must be radiatively compensated 

for by larger values of ε(11µm) (not shown).  The larger gypsum derived mass loadings 

are caused by the larger values of ε(11µm).  This particular Saharan dust scene was 

chosen for analysis because the CALIPSO overpass includes observations over water and 

land (Figure 5.12).  Figure 5.12 shows that the retrieved cloud heights tend to be 

overestimated near the coastline when using kaolinite or andesite.  Coastlines are 

challenging in that surface temperature can vary greatly over relatively small 

distances.  The spatial variability of surface temperature is not captured well by course 
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resolution global models like the GFS (the horizontal resolution of the GFS data used for 

this scene is 1.0 degree).  Thus, larger errors in the modeled clear sky brightness 

temperatures are likely.  Over the land portion of this segment the rock type has only a 

small impact on the retrieved height, consistent with a Teff that does not deviate much 

from the first guess value.  In fact, Teff is generally within 5 K of the first guess along the 

land portion of the CALIOP cross section.  Over the water, using gypsum causes the 

cloud height to be underestimated more than kaolinite, perhaps suggesting that kaolinite 

is more likely to be the dominant rock type of this cloud.  Turner [2008] found that the 

dominant rock type of Saharan dust clouds was kaolinite.  Interestingly, even though this 

cloud is not composed of andesite, the cloud heights retrieved using the andesite 

composition are generally consistent with kaolinite.  Using andesite, however, will cause 

the effective radius, and consequently the mass loading, to be underestimated relative to 

kaolinite.  This case study does show that the general retrieval approach can be applied to 

dust clouds. 
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Figure 5.10: Same as Figure 5.4 except for a dust outbreak near the west coast of Africa 
on 0245 UTC on June 22, 2007. The kaolinite rock type was used to generate these 
results. 

  



 146 

 

Figure 5.11: SEVIRI images near the west coast of Africa on 0245 UTC on June 22, 2007.  
(a-c) Retrieved effective cloud height as a function of rock type (kaolinite, gypsum, and 
andesite, respectively). (d-f) Retrieved cloud mass loading as a function of rock type 
(kaolinite, gypsum, and andesite, respectively). (g-i) Retrieved cloud effective radius as a 
function of rock type (kaolinite, gypsum, and andesite, respectively).  The black solid line 
through the cloud represents a CALIPSO overpass. 
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Figure 5.12: Same as Figure 5.6 except for 02:51:38 UTC – 02:53:40 UTC on June 22, 
2007.  Unlike Figure 5.6, magenta circles represent kaolinite, white circles denote 
gypsum and gray circles represent andesite. 

5.7.4. Statistical Comparison to CALIOP 

More rigorous comparisons to CALIOP derived cloud properties are used to 

quantitatively assess the GOES-R retrieval algorithm.  A total of 15 CALIPSO ash cloud 

overpasses from the May 6-16 portion of the 2010 Eyjafjallajökull eruption and the 

CALIPSO overpass from the Soufriere Hills ash clouds shown in Figure 5.7 were 

manually chosen for this analysis.  The only criterion used in the manual selection 

process was that ash had to be the highest cloud layer.  When fully automated techniques 
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have been developed to mine the CALIOP data record for ash clouds, this analysis can be 

readily expanded.  Currently, confidently identifying ash clouds in CALIOP data is a 

manually intensive process that requires side-by-side close examination of CALIOP and 

infrared imagery, as ash clouds are very difficult to identify using CALIOP alone 

[Winker et al. 2012].  The CALIPSO overpasses of Eyjafjallajökull ash clouds are 

conveniently well known due to the high impact of that eruption on air traffic, which is 

not the case with many other eruptions sampled by CALIOP.  The 16-ash cloud 

overpasses result in a total of 796 data points, which is large relative to previously 

published quantitative, ash cloud, validation efforts (e.g. [Francis et al. 2012]; Prata and 

Prata 2012]). 

A combination of the 5-km CALIOP cloud and aerosol cloud layers products 

[Vaughan et al. 2009] are used to determine the vertical extent of the highest cloud layer 

along each segment through the ash clouds.  A combination of the cloud and aerosol 

layers products is needed since some ash clouds will be classified as aerosol and some 

will be classified as clouds (liquid or ice) by the classification algorithm [e.g. Winker et 

al. 2012].  In addition, effective cloud emissivity for a given SEVIRI spectral band or 

bands can be computed using a combination of CALIOP vertical cloud boundaries and 

co-located SEVIRI infrared measurements [e.g. Heidinger and Pavolonis 2009; Garnier et 

al. 2012].  We utilize the method of Heidinger and Pavolons [2009] to compute the 

ε(11µm), and β(12/11µm) of the highest cloud layer.  The ε(11µm), and β(12/11µm) 

computed from a combination of CALIOP and SEVIRI will be consistently more 

accurate than the ε(11µm), and β(12/11µm) retrieved using SEVIRI alone (with the 

GOES-R retrieval approach) because CALIOP vertical cloud boundaries provide a very 
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tight constraint on Teff and no cloud microphysical assumptions are needed (see 

Equations ( 5.1) - ( 5.2)).  In the GOES-R retrieval, Teff is a very loosely constrained free 

parameter and cloud microphysical assumptions related to particle composition, shape, 

and size are needed (e.g. Figure 5.1).  No microphysical assumptions are needed to 

determine cloud top height, ε(11µm), and β(12/11µm) from CALIOP or a combination of 

CALIOP and SEVIRI (in the case of ε(11µm), and β(12/11µm)).  The determination of 

mass loading from the CALIOP + SEVIRI derived ε(11µm) and β(12/11µm) does require 

the same assumptions about particle composition, size, and shape utilized when 

computing mass loading from SEVIRI alone. 

A comparison between the GOES-R ash cloud heights and the CALIOP cloud top 

heights are shown in Figure 5.13 as a function of the ε(11µm) computed from a 

combination of CALIOP and SEVIRI, the cloud geometrical thickness provided by 

CALIOP, and the rock type (andesite, rhyolite, or kaolinite) used in the GOES-R retrieval.  

The cloud heights retrieved using the GOES-R approach are generally in good agreement 

with CALIOP, regardless of the rock type used in the retrieval (although andesite seems 

to have a slight edge).  The GOES-R heights are negatively biased (-0.77 km for 

andesite) relative to the CALIOP cloud top, which is expected given the high vertical 

resolution of CALIOP and the coarse vertical resolution of SEVIRI (the measured 

radiation originates from a thicker layer within the cloud).  Not surprisingly, the most 

optically thin clouds (ε(11µm) < 0.05) are responsible for most of the low bias.  Clouds 

with a larger geometric thickness are also more prone to underestimation since the 

measured infrared radiation is now emanating from a thicker layer below the cloud top.  

The GOES-R approach sometimes slightly over-estimates the cloud top height, especially 
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for ash clouds with tops lower than 5 km.  The over-estimation can generally be 

attributed to underlying stratus clouds that are colder than the surface.  Underlying cloud 

layers are not accounted for in the retrieval at this time, but future versions of the 

retrieval will account for underlying clouds. 

Figure 5.14 shows a comparison between ε(11µm) retrieved using the GOES-R 

algorithm and ε(11µm) computed from a combination of CALIOP and SEVIRI.  The 

results are shown as a function of the CALIOP cloud top height, CALIOP geometric 

cloud thickness, and the rock type (andesite, rhyolite, or kaolinite) used to perform the 

GOES-R retrieval.  The GOES-R bias in ε(11µm) is very small, especially when the 

retrieval is performed using andesite (bias = -0.006).  The standard deviation (or 

precision) of the GOES-R – CALIOP difference is considerably larger because a positive 

bias is observed when the CALIOP derived ε(11µm) < 0.3 and a negative bias is 

observed when ε(11µm) > 0.3.  Closer inspection of the CALIOP cross sections used in 

this analysis reveals that the positive bias at smaller emissivity values is likely a result of 

the presence of multiple, geometrically thin, ash cloud layers with very little vertical 

separation.  While underlying cloud layers are accounted for in the computation of the 

combined CALIOP/SEVIRI 11µm cloud emissivity, they are not accounted for in the 

GOES-R retrieval.  Conversely, the negative bias observed at larger emissivity values is 

caused by the under-estimation of Teff (over-estimation of cloud height) discussed earlier. 

A comparison between the GOES-R β(12/11µm) and the β(12/11µm) computed 

using a combination of CALIOP and SEVIRI are shown in Figure 5.15 as a function of 

the CALIOP cloud top height, the ε(11µm) computed from a combination of CALIOP 

and SEVIRI measurements, and rock type.  With the exception of a few outliers (mainly 



 151 

low to mid level ash clouds), the β(12/11µm) retrieved using the GOES-R algorithm is in 

very close agreement with the CALIOP β(12/11µm), regardless of the rock type used in 

the retrieval (bias = 0.002 for andesite).  Since the effective particle radius is determined 

directly from β(12/11µm) (see Figure 5.1), these results imply that the effective particle 

radius can be computed with a similarly small bias for a given known rock type.  Given 

that β(12/11µm) (and hence the effective particle radius) is largely unbiased, the bias in 

mass loading will primarily be a result of the bias in ε(11µm), which is heavily 

influenced by underlying cloud layers.  Thus, the mass loading of an ash cloud (with a 

known rock type and particle density) that overlays another cloud layer or layers will be 

positively biased when ε(11µm) < 0.3 and negatively biased when ε(11µm) > 0.3.  

Accounting for underlying cloud layers, even crudely, should help reduce the overall bias. 

The comparison between the ash mass loading derived from a combination of 

CALIOP and SEVIRI and SEVIRI alone is shown in Figure 5.16.  The andesite rock type 

results in the lowest bias (no large systematic bias) and spread.  Relative to the combined 

CALIOP/SEVIRI retrievals, the SEVIRI alone retrievals tend to underestimate the ash 

loading of lower level ash clouds and over-estimate the loading of higher-level clouds.  A 

closer inspection of the cases used in this analysis indicates that multiple cloud layers 

(usually ash with underlying meteorological cloud layers) are often present when the 

differences are larger.  We are able to account for multiple distinct cloud layers in the 

combined CALIOP/SEVIRI retrieval with much greater skill compared to the SEVIRI 

alone retrieval. 
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Figure 5.13: A comparison of SEVIRI ash cloud heights retrieved using the GOES-R 
approach and CALIOP measured cloud top heights is shown as a function of the nadir 11 
µm cloud emissivity derived from a combination of CALIOP and SEVIRI (first column) 
and the cloud geometric thickness given by CALIOP (second column).  Each color 
represents a different 11-µm cloud emissivity or cloud thickness bin.  The results are also 
shown as a function of the rock type assumed by the retrieval (top=andesite, 
middle=rhyolite, bottom=kaolinite). The 1:1 line is shown in black.  A total of 796 data 
points were used in this analysis. 
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Figure 5.14: A comparison of SEVIRI ash cloud emissivity retrieved using the GOES-R 
approach and the 11 µm cloud emissivity derived from a combination of CALIOP and 
SEVIRI are shown as a function of the CALIOP measured cloud top height (first column) 
and the cloud geometric thickness given by CALIOP (second column).  Each color 
represents a different cloud top height or cloud thickness bin.  The results are also shown 
as a function of the rock type assumed by the retrieval (top=andesite, middle=rhyolite, 
bottom=kaolinite).  The 1:1 line is shown in black.  A total of 796 data points were used 
in this analysis. 
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Figure 5.15: A comparison of SEVIRI ash 12/11 µm β-ratios retrieved using the GOES-R 
approach and the 12/11 µm β-ratios computed using a combination of CALIOP and 
SEVIRI is shown as a function of the cloud top height measured by CALIOP (first 
column) and the nadir 11 µm cloud emissivity derived from a combination of CALIOP 
and SEVIRI (second column).  Each color represents a different cloud top height or 11-
µm cloud emissivity bin.  The results are also shown as a function of the rock type 
assumed by the retrieval (top=andesite, middle=rhyolite, bottom=kaolinite).  The 1:1 
line is shown in black.  A total of 796 data points were used in this analysis. 
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Figure 5.16: A comparison of SEVIRI ash mass loading retrieved using the GOES-R 
approach and the ash mass loading computed using a combination of CALIOP and 
SEVIRI is shown as a function of the cloud top height measured by CALIOP (first 
column) and the nadir 11 µm cloud emissivity derived from a combination of CALIOP 
and SEVIRI (second column).  Each color represents a different cloud top height or 11-
µm cloud emissivity bin.  The results are also shown as a function of the rock type 
assumed by the retrieval (top=andesite, middle=rhyolite, bottom=kaolinite).  The 1:1 
line is shown in black.  A total of 796 data points were used in this analysis. 
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5.8.  Summary 

A fully automated algorithm to retrieve the radiative temperature, emissivity, and 

a microphysical parameter of volcanic ash and dust clouds using satellite-based infrared 

measurements was developed.  From these retrieved parameters, the cloud radiative 

height, effective particle radius, optical depth, and mass loading can be derived, subject 

to certain assumptions.  An optimal estimation framework is utilized, which allows 

uncertainties in the measurements and forward model to be taken into account and 

uncertainty estimates for each of the retrieved parameters to be determined.  Background 

atmospheric water vapor, surface temperature, and surface emissivity are explicitly 

accounted for on a pixel-by-pixel basis, so the algorithm is globally applicable.  

Using SEVIRI, the retrieval algorithm was applied to ash clouds from the 2010 

eruption of Eyjafjallajökull and the 2010 eruption of Soufriere Hills and a Saharan dust 

cloud.  In an effort to determine the accuracy of the retrieval, the results were compared 

to CALIOP derived cloud properties.  The retrieved cloud heights were found to 

generally be within 1 - 2 km (with little bias) of CALIOP derived cloud top heights for 

low and mid level ash clouds (< 7 km) and within 3 - 4 km (with a negative bias) for high 

level clouds (> 7 km).  These results are consistent with the work of Francis et al. [2012]. 

The 11 µm cloud emissivity had a tendency to be positively biased relative to the cloud 

emissivity computed using CALIOP for clouds with a small 11 µm optical depth (< 0.3) 

and negatively biased for clouds with an intermediate to large optical depth (> 0.3), 

although nearly all clouds analyzed were semi-transparent to infrared radiation.  The bias 

in the retrieved cloud emissivity is likely caused by complexities related to underlying 

cloud layers.  The 12/11µm optical depth ratio (β(12/11µm)), which is directly related to 
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the effective particle radius, closely agreed with the β(12/11µm) computed using 

CALIOP, and was found to be unbiased.  Consequently, the effective particle radius 

should also be largely unbiased.  The mass loading was biased in a similar manner as the 

cloud emissivity, which is expected since β(12/11µm) was shown to be accurate and 

unbiased.  In addition, better overall agreement between the retrieved and CALIOP 

derived cloud properties was found when andesite rock was used to represent ash clouds 

and kaolinite was used to represent dust clouds. 

 While the retrieval described in this chapter was designed to use spectral channels 

approximately centered at 11, 12, and 13.3 µm, the general retrieval framework can be 

applied to other channel combinations.  For instance a water vapor absorption band (e.g. 

6.7 µm) can be substituted for the 12 µm or 13.3 µm channels so that ash and dust cloud 

properties can be retrieved using a greater number of satellite sensors.  Measurements 

from different sensors can also be combined to allow the retrieval to be performed using 

high spatial resolution sensors that lack a 13.3 µm band by approximating a 13.3 µm 

band from low spatial resolution hyperspectral infrared sounding instruments located on 

the same spacecraft (e.g. Advanced Very High Resolution Radiometer (AVHRR) + 

Infrared Atmospheric Sounding Interferometer (IASI); Visible Infrared Radiometer Suite 

(VIIRS) + Cross Track Infrared Sounder (CrIS); MODerate Resolution Imaging 

Spectroradiometer (MODIS) + Atmospheric Infrared Sounder (AIRS)).  Hyperspectral 

instruments can also potentially be used to provide a better first guess for the retrieval. 

As recent case studies [Stohl et al. 2011; Schmehl et al. 2012; Denlinger et al. 

2012; Webley et al. 2012] have shown, the ash/dust cloud property retrievals, like those 

presented here, can be used to initialize (improve the volcano source term, data 
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assimilation applications, initialize trajectories, etc…) and validate dispersion and 

transport models.  A globally robust, fully automated, ash/dust detection method is 

needed to facilitate using satellite retrievals of ash and dust cloud properties to improve 

operational modeling capabilities.  Such a method is described in the next chapter. 
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Chapter 6 

6. Volcanic Ash Cloud Objects 

6.1.  Introduction 

A fully automated, satellite-based, volcanic ash and dust detection technique, 

known as the Spectrally Enhanced Cloud Objects (SECO) algorithm, is developed.  The 

development of the SECO algorithm is motivated by the lack of a highly skilled, globally 

applicable, automated volcanic ash and dust detection technique that can be applied to 

nearly any geostationary or low earth orbit satellite sensor with infrared measurement 

capabilities day or night [Chapter 4].  The SECO algorithm is designed to 

deterministically identify volcanic ash and dust in manner that is more consistent with 

human expert interpretation of satellite imagery than traditional techniques.  The SECO 

approach does not attempt to distinguish between volcanic ashes and dust because they 

generally have very similar spectral signatures at the wavelengths utilized by the SECO 

algorithm. 

In Chapter 4, several sophisticated satellite metrics, derived from measurements 

with central wavelengths of approximately 0.65, 3.9, 7.3, 8.5, 11, and 12 µm, were 

utilized in a naïve Bayesian procedure to determine the probability that a given satellite 

pixel contains volcanic ash and/or non-volcanic dust.  The Bayesian method can utilize 

all of those spectral channels or several different channel subsets as dictated by sensor 

capabilities, solar zenith angle, and/or intellectual curiosity (see Table 4.1).  The 

Bayesian method was trained empirically using a very large MODerate Resolution 

Imaging Spectroradiometer (MODIS) based data set where the horizontal bounds of 

volcanic ash and dust clouds were manually analyzed.  Analysis showed that the 
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Bayesian method was skilled at distinguishing between volcanic ash/dust features and all 

other features (e.g., the probability was generally much greater inside actual volcanic ash 

and dust clouds than outside), much more so than the traditional “split-window” method 

[e.g. Prata 1989a; Prata 1989b] technique, even when spectral channel subsets were used.  

The traditional “split-window” method consists of computing the difference in brightness 

temperature between measurements taken at approximately 11 and 12 µm and applying a 

threshold.  Volcanic ash and dust typically absorb, and hence emit, more radiation at 11 

µm than 12 µm, resulting in a split-window brightness temperature difference that is less 

than 0 K in the absence of competing absorption/emission/reflection effects at those 

wavelengths.  Conversely, liquid water and ice clouds, generated by meteorological 

processes (meteorological clouds), typically have a “split-window” brightness 

temperature difference that is greater than 0 K.  Thus, a “split-window” threshold of 

about 0 K is typically used for ash/dust detection.  Unfortunately, competing 

absorption/emission/reflection effects and measurement errors greatly limit the accuracy 

of the “split-window” technique. 

A human-like (i.e., high probability of detection with an extremely low false 

alarm rate) capability for distinguishing volcanic and dust from all other features is 

needed for advanced, automated applications such as volcanic eruption alerting and data 

assimilation.  Despite the success of the pixel-level Bayesian method, it, alone, is not 

sufficient to produce a human-like deterministic volcanic ash/dust assessment by simply 

applying a probability threshold.  The Bayesian method must be combined with advanced 

spatial analysis to produce such a result.  In this Chapter, the remaining components of 

the SECO algorithm that utilize advanced spatial analysis are described, and the results 
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are shown to be consistent with human expert interpretation of multispectral satellite 

imagery, especially with respect to false alarm rate.  Data from the MODIS are used to 

introduce the remaining components of the SECO algorithm and assess the impact of 

using various spectral channel subsets. 

6.2.  Review of Multispectral Parameters 

In Chapter 4 (hereafter Ch4), several advanced multi-spectral parameters were introduced 

and subsequently utilized in the naïve Bayesian method for determining the probability 

that volcanic ash and/or dust is present in a given satellite pixel.  These parameters and 

the underlying physical concepts are also invoked in this paper so a brief review is given 

here.  The multi-spectral infrared measurements were generally expressed as β-ratios, as 

opposed to traditional brightness temperature differences (BTDs), because β-ratios 

provide increased sensitivity to cloud microphysical properties, including cloud 

composition [Chapter 3].  As shown in ( 6.1), a β-ratio is simply the ratio of effective 

(scattering is implicitly accounted for) absorption optical depth at two different 

wavelengths. 

  ( 6.1) 

The effective absorption optical depth for a given wavelength [τeff(λ)] is easily computed 

from the effective cloud emissivity [εeff(λ)] (see ( 6.1)), but computation of εeff(λ) requires 

knowledge of the clear sky top of atmosphere radiance and transmittance (integrated 

radiance and transmittance from the surface or a given atmospheric level to the top of the 

atmosphere) combined with the effective cloud height (and the corresponding effective 

cloud temperature).  The clear sky transmittance and radiance are determined using the 

!obs =
ln[1!!eff (!1)]
ln[1!"eff (! 2)]

=
" abs, eff(!1)
" abs, eff(! 2)
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methods described in Chapter 3.  The effective height (“radiative center”) of the cloud is 

unknown, so β-ratios are computed using the “top of troposphere” and “opaque” cloud 

assumptions as described in Ch4.  The “top of troposphere” β-ratio, βtot(λ1, λ2), is 

computed by assuming that the cloud radiative center is located at the top of the 

troposphere.  The “opaque cloud” β-ratio, βopaque(λ1, λ2), is computed by assuming that 

the cloud radiative center is located at the highest level of the troposphere that results in 

εeff(λ1) or εeff(λ2) being equal to 0.98 (using ( 4.1)).   As shown in Ch4, βtot(12µm, 11µm), 

βopaque(12µm, 11µm), βtot(8.5µm, 11µm), and βtot(7.3µm, 11µm) are particularly useful for 

discriminating volcanic ash and dust from other features.  In addition, the 11 µm effective 

cloud emissivity, computed using the “top of troposphere” assumption [εtot(11µm)], is a 

good indicator of how much the observed radiance deviates from the estimated clear sky 

radiance.  Such information is important for correctly interpreting multispectral 

signatures related to cloud composition. 

In addition to the infrared-based metrics, useful information on cloud composition 

can also be gleaned from visible (daytime only) and near-infrared (day and night) 

observations that are available on nearly every meteorological satellite sensor.  When the 

solar zenith angle is less than 85o and sun glint is not pronounced, the ratio of the 3.9 µm 

reflectance and the 0.65 µm reflectance [ρ(3.9µm, 0.65µm) = ref[3.9µm]/ref[0.65µm]] is 

used in combination with “split-window” (11 and 12 µm) observations to enhance the 

spectral contrast between volcanic ash/dust and all other features (see Pavolonis et al. 

[2006] and Ch4 for a more detailed description). At solar zenith angles greater than 90o, 

and in the absence of stray light influences (significant sunlight impinging on the sensor 

when the solar zenith angle exceeds 90o), the 3.9 µm pseudo-emissivity [εp(3.9µm)] is 
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used in conjunction with “split-window” measurements to help identify ash and dust 

clouds.  The εp(3.9µm) parameter is simply defined as the ratio of the measured 3.9-µm 

radiance to the estimated 3.9-µm blackbody radiance [εp(3.9µm) = R(3.9 

µm])/Rbb(3.9µm)] (see Heidinger et al. [2012] and Ch4 for more information).  The 

spatial standard deviation of the 11 µm brightness temperature [BTsdev(11µm)] and the 

0.65 µm reflectance [refsdev(0.65µm)] are also utilized as metrics in an effort to mitigate 

cloud edge related measurement errors (e.g., small band to band co-registration errors can 

have a large impact in regions with sharp spatial gradients).  The standard deviations are 

computed using a 3 x 3 pixel window centered on the pixel of interest. 

6.3.  Review of Ash/Dust Cloud Property Retrieval 

The remaining components of the SECO algorithm also leverage information on 

retrieved cloud properties and their associated uncertainty.  The optimal estimation 

retrieval algorithm described in Chapter 5 is applied to all satellite pixels that either have 

an ash/dust probability that exceeds 1.0x10-6 % or an 11 – 12 µm BTD that is less than 0 

K.  The retrieved mass loading and the uncertainty in the retrieved cloud emissivity, 

expressed as the ratio of the 1-sigma retrieval uncertainty to the a priori uncertainty, are 

useful for assessing the impact a given pixel will have on the total mass of ash and/or 

dust computed from a collection of pixels.  While the methodology explicitly described in 

Chapter 5 requires measurements at 11, 12, and 13.3 µm, the retrieval algorithm is 

flexible and can be applied without the 13.3 µm channel, which is not available on many 

satellite sensors. 
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6.4.  Cloud Object Analysis 

The majority of volcanic ash and dust clouds are composed of a small subset of 

pixels that are spectrally unique (e.g., very unlikely to be associated with any other 

feature) and a larger subset of pixels that, to varying degrees, are spectrally non-unique 

(e.g., can sometimes be associated with other features).  When very few spectrally unique 

pixels are present, as is common in well-dispersed ash and dust clouds, it is very difficult 

to achieve a useful probability of detection without significantly increasing the false 

alarm rate.   One of the aims of the SECO algorithm is to associate spectrally non-unique 

pixels with the correct feature (ash/dust vs. everything else) through spatial connectivity 

with spectrally unique pixels.  In order to achieve this goal, cloud objects are constructed.  

In the SECO algorithm, a cloud object is defined as a collection of spatially connected 

satellite pixels that meet certain criteria.  The methodology described in Wielicki and 

Welch [1986] is used to efficiently construct cloud objects in a single pass through the 

data.  In Wielicki and Welch, a cloud is deemed unique when it has no edge pixels 

adjacent to another cloud.  The cloud object procedure also allows for diagonal spatial 

connectivity between two pixels and no constraints are placed on the size of cloud objects.  

The most challenging aspect of the cloud object generation procedure is establishing 

which pixels are suitable for inclusion into cloud objects.  The volcanic ash/dust 

probability determined using the methods described in Ch4 play a critical role in 

constructing cloud objects and interpreting cloud object properties. 

6.4.1. Cloud Object Membership 

As shown in Ch4, the volcanic ash/dust probability, while generally quite skillful, 

does not always provide robust separation from non-ash/dust features.  In other words, 
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there are instances where high probabilities are associated with non-ash/dust features and 

low probabilities are associated with ash/dust features.  The lack of separation is 

generally caused by a combination of ambiguity in the multi-spectral signature of 

ash/dust (other surface and atmospheric features sometimes have a very similar spectral 

signature as volcanic ash and dust) and uncertainty in the clear sky radiative transfer 

required to construct our advanced spectral metrics.  Unidentified measurement errors 

can also be problematic.  Over land, complexities related to surface temperature and 

emissivity can further increase the overlap of the probability distributions derived from 

observations inside and outside of the volcanic ash/dust cloud.  Thus, determination of 

cloud object membership using a simple probability threshold is not optimal. 

In lieu of a single probability threshold, the probability information is combined 

with several other variables to determine which pixels can belong to a cloud object.  The 

cloud object selection criteria were developed heuristically using physical reasoning.  

Given the extremely large size of the data set used to train the Bayesian method, 

development of objective multivariate selection criteria was impractical.  The cloud 

object membership criteria are based on the following physical reasoning.  Larger (more 

conservative) volcanic ash/dust probability thresholds should be utilized when the 

observed 11 µm radiance deviates very little from the clear sky value (e.g., εtot(11µm) is 

small) and the observed 11 – 12 µm BTD does not exhibit, at the very least, a semi-

robust ash/dust signature and the calculated clear sky minus the observed 11 – 12 µm 

BTD (hereafter referred to as BTD_Bias) is small and the uncertainty in the retrieved 

cloud emissivity is large (meaning that addition of this pixel to the cloud object will add 

significant uncertainty to the total mass of volcanic ash or dust in the cloud object).  
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Local spatial contrast metrics are also used in the cloud object membership decision-

making process and extra consideration (the probability threshold is lowered) is given to 

pixels that exhibit an SO2 signal (SO2 and volcanic ash are often, though not always, co-

located).  All pixels that have an ash/dust probability that exceeds at least one of the 

thresholds computed using the functions in Appendix E are allowed to be part of a cloud 

object. 

Figure 6.1 helps demonstrate how the cloud object construction process works.  A 

volcanic ash cloud (with SO2) from the February 19, 2001 eruption of Mount Cleveland 

in the Aleutian Islands (Alaska) can be seen in the false color images shown in the top 

row of Figure 6.1.  As in Ch4, the satellite data for this scene are from Terra MODIS.  

The approximate horizontal boundary of the ash cloud, determined through manual 

analysis of the false color imagery, is overlaid in white.  The cloud boundary contour is 

also referred to as the Region of Interest (ROI), as ROI software is used in the manual 

analysis process.  Interpretation of the false color imagery, including imagery for this 

particular case, is discussed in detail in P14.  The volcanic ash/dust probability computed 

using the method of Ch4 is shown in Figure 6.1d.  As described in Ch4, the naïve 

Bayesian method for determining the probability is not applied to pixels that clearly lie 

outside of certain theoretical constraints (when the ash/dust probability is not computed, 

the corresponding 11 µm image is shown).  The end result of sorting eligible pixels into 

cloud objects is visualized by imaging the median ash/dust probability of the pixels that 

compose the object.  More specifically, the median probability of the object is assigned to 

each pixel in the object (e.g., the same color associated with a given median object 

probability is assigned to each pixel in the object) as shown in Figure 6.1e.  While many 
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pixels with a valid probability do not meet the object membership criteria, several cloud 

objects of various sizes are constructed inside and outside of the ROI.  The volcanic ash 

cloud shown in Figure 6.1 is fairly well dispersed and, as such, is composed entirely of 

optically thin cloud elements [Chapter 4].  In some regions of the volcanic ash cloud, the 

optical depth of the cloud for a given set of conditions falls below the quantitative 

detection limit (the presence of ash in some regions is primarily inferred through spatial 

deduction), resulting in multiple cloud objects within the ROI.  Note, however, that the 

cloud objects within the ROI generally have a much greater median probability than the 

objects outside of the ROI.  In addition, the pixels selected for cloud object membership 

need not have a robust traditional “split-window” signal.  In fact, many of the pixels 

retained for further analysis have positive 11 – 12 µm BTD (see Figure 6.1c).  Retaining 

pixels with positive 11 – 12 µm BTD is critical because there are several factors that can 

cause volcanic ash/dust to have positive 11 – 12 µm BTD (e.g., water vapor absorption, 

underlying or co-located liquid water or ice particles, large particle sizes, mineral 

composition effects, etc.).  The β-ratio parameters used in the naïve Bayesian approach 

account for many of the factors that cause the “split-window” BTD to be positive. 
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Figure 6.1: Images of the primary metrics utilized to construct cloud objects and apply a binary 
ash/dust classifier to each cloud object are shown.  All parameters were derived from a Terra 
MODIS image from February 20, 2001 at 08:45 UTC.  The approximate visual bounds of a 
volcanic ash cloud produced by an eruption of Mount Cleveland (Alaska) are overlaid on each 
image in white.  A). 12-11µm, 11-8.5µm, and 11µm false color image.  B). 12-11µm, 11-3.9µm, 
and 11µm false color image false color image.  C). Image of BTD(11-12µm).  D). Ash/dust pixel 
probability image.  E). Median ash/dust probability of pixels that compose each cloud object.  F). 
The probability that the cloud object is part of a volcanic ash/dust cloud.  G). The fraction of 
cloud object pixels that have a spectrally robust ash/dust signature using the most strict definition 
of spectral robustness.  H). The fraction of cloud object pixels that have a spectrally robust 
ash/dust signature using the second most strict definition of spectral robustness.  I). The fraction 
of cloud object pixels that have a spectrally robust ash/dust signature using the third strictest 
definition of spectral robustness.  In Panels D-I the 11 µm brightness temperature image is shown 
when the variable of interest is invalid.  Two objects of interest are labeled “1” and “2” in Panel 
F.  The 3.9, 7.3, 8.5, 11, and 12 µm channels were used to generate these results. 
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6.4.2. Cloud Object Statistics 

Several key cloud object properties are used to determine if a given cloud object, 

and all of the pixels that compose the object, are part of an actual volcanic ash or dust 

cloud.  More specifically, the cloud object size (in pixel counts), median volcanic 

ash/dust probability of pixels within the object, cloud object probability, and spectral 

robustness ratings are utilized by the cloud object selection procedure.  The size of the 

cloud object and the median pixel probability are trivial to calculate and require no 

further explanation.  The remaining two object properties are described in greater detail. 

The cloud object probability is defined as, the probability that a given cloud 

object is, itself, an ash/dust cloud or is part of a larger ash/dust cloud.  The cloud object 

probability addresses the following question.  Given a collection of spatially connected 

satellite pixels, what is the probability that the resulting spatially aggregated multispectral 

signature is associated with volcanic ash or dust?  This differs from the median 

probability metric that quantifies the extent to which individual pixels in the object have a 

spectral signature that is associated with volcanic ash or dust.  This concept is best 

explained using an example.  Suppose that a large (1000 pixels or greater) cloud object is 

composed primarily of pixels that have a weak to moderate volcanic ash/dust multi-

spectral signature such that the probability that a given individual pixel contains volcanic 

ash or dust is, at most, 50%.  The resulting median probability for that object would then 

be less than 50%.  The object probability, however, can be much greater than 50% 

because, while the probability of an individual pixel is not strongly indicative of ash/dust, 

the occurrence of a spatially coherent aggregate of pixels with a weak to moderate 

volcanic ash/dust multispectral signature is far less likely to be observed outside of 
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volcanic ash and dust clouds.  This concept is also akin to how humans visually identify 

very optically thin cirrus clouds in an otherwise blue sky (during the day).  If a 1 km 

spatial grid were applied to the cirrus cloud area, analogous to a region of satellite pixels, 

and if a person’s view were restricted to a given grid cell, it would be very difficult to 

confidently determine if that grid cell contained cirrus or clear sky.  Conversely, when the 

entire collection of grid cells is viewed (analogous to a cloud object), spatial coherence 

makes the cirrus cloud much easier to identify, despite the fact that the amount of 

sunlight attenuated within many of the grid cells is too small to produce the contrast 

required for confident visual identification. 

6.4.2.1.	
  Bayesian	
  Method	
  

The methodology for computing the cloud object ash/dust probability is as 

follows.  A naïve Bayesian method is used to estimate the probability that a given cloud 

object is an ash or dust cloud.  The naïve Bayesian method is formulated by assuming 

that the features (F) are independent within each class.  The general naïve Bayesian 

approach is motivated and described in Ch4, so only the details required to understand 

the cloud object implementation are described in this chapter. 

Using the naïve Bayes formulation, the probability of ash or dust given an 

observed set of independent features [P(Cyes|F)] is calculated using ( 6.2) (the term, 

P(Cyes|F), is also commonly referred to as the posterior probability). 

 

 

( 6.2) 

P(Cyes |F) =
P(Cyes) P(Fi |Cyes)

i=1

N
!
P(F)
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In ( 6.2), P(Cyes) is the prior probability that a given cloud object is part of an ash or dust 

cloud without knowledge of F, P(Fi|Cyes) is the estimated probability of observing a given 

feature (Fi) when an ash or dust cloud object is present (a total of N features are used), 

and P(F) is the probability of a given set of features being observed and is computed 

using ( 6.3). 

 
 

( 6.3) 

In ( 6.3), P(Cno) is the prior probability that a given cloud object is not part of a volcanic 

ash or dust cloud [i.e., P(Cno) = 1 – P(Cyes)] and P(Fi|Cno) is the estimated probability of 

observing a given feature (Fi) when an ash or dust cloud object is not present.  As in Ch4, 

the prior probability of ash/dust [P(Cyes)] is assumed to be 0.1%.  The rationale used in 

selecting the prior probability is described in Ch4.  As with the determination of the pixel 

level ash/dust probability [Chapter 4], the object based ash/dust conditional probability is 

often many orders of magnitude greater than the non-ash/dust conditional probability, 

rendering the impact of the prior probabilities minimal. 

6.4.2.2.	
  Cloud	
  Object	
  Classifiers	
  

The class conditional probability density functions (PDFs) are empirically 

constructed, for each classifier (Fi), from the same extensive MODIS-based training data 

set described in detail in Ch4.  The top ten most common spectral states, by areal 

coverage, within a cloud object, are used as classifiers.  There are many different ways to 

define spectral state (spectral state definition – SSD).  Consistent with Ch4, we utilize 

several different multivariate definitions of spectral state.  Each of the SSDs is listed in 

P(F) = P(Cyes) P(Fi |Cyes)+P(Cno) P(Fi |Cno)
i=1

N
!i=1

N
!
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Table 6.1 as a function of sensor capabilities and solar illumination.  The satellite sensor 

acronyms are defined in Table 4.2. 

The object conditional probability for the “yes” and “no” classes are drawn from a 

series of empirically derived 2-dimensional PDFs.  The first dimension of the conditional 

probability PDFs corresponds to the spectral state location (SSL), or where in the SSD 

parameter space that portion of the cloud object resides (the multivariate SSDs shown in 

Table 6.1 are collapsed into a single vector) and the second dimension corresponds to the 

size of the geographic area within the object that belongs to a given SSL.  The starting 

location of the area bins in km2 is 1.0, 10.0, 50.0, 100.0, 500.0, 1000.0, and 5000.0.  A 

maximum of 7 SSDs can be used if the sensor has the 0.65, 3.9, 7.3, 8.5, 11, and 12 µm 

channels (0.65 µm is only relevant in sunlit conditions).  For each SSD, the top ten SSLs 

within a cloud object are used as classifiers.  Thus, a maximum of 70 classifiers (Fi) can 

be used.  If an object has less than 10 SSLs, for a given SSD, then less than 10 SSLs are 

used (the cloud object area corresponding to a given SSL must be greater than 1 km2).  In 

addition, when the SSL is defined by a εtot(11µm) that is less than 0.03, the conditional 

probability for the “yes” and “no” classes is set to 1.0 to avoid using pixels that exhibit 

very little deviation from clear sky conditions at 11 µm in the object selection process. 
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Table 6.1: The top most portion of the table lists the individual radiative parameters utilized to construct cloud object classifiers, 
along with the corresponding histogram-binning scheme used to estimate the classifier PDFs.  The multivariate classifier variables 
(using the radiative parameter IDs shown in the top part of the table) are listed in the second part of the table as a function of satellite 
sensor and the conditions required for utilization.  Sun glint is assumed to be present over water surfaces if the glint angle is less than 
40o.  Stray light is assumed to be present if the solar zenith angle exceeds 90o and the measured 0.65 µm counts is greater than a 
sensor dependent threshold.  Please see Table 4.2 for a list of sensor acronyms. 

Parameter 
[Parameter ID] 

Number of Histogram 
Bins 

Starting Boundaries of Histogram Bins 

εtot(11µm)                   [1] 4 0.00, 0.03, 0.10, 0.30 
βtot(12µm, 11µm)       [2] 7 0.00, 0.70, 0.80, 0.90, 0.95, 0.98, 1.00 
βopaque(12µm, 11µm)  [3] 7 0.00, 0.50, 0.90, 1.00, 1.10, 1.20, 1.30 
βtot(8.5µm, 11µm)      [4] 5 0.00, 0.90, 1.10, 1.30, 1.80 
βopaque(8.5µm, 11µm) [5] 5 0.00, 0.90, 1.10, 1.30, 1.80 
βtot(7.3µm, 11µm)      [6] 5 0.00, 1.00, 1.50, 2.00, 3.00 
ρ(3.9µm, 0.65µm)      [7] 5 0.00, 0.20, 0.50, 0.80, 1.00 
εp(3.9µm)                   [8] 5 0.00, 0.90, 1.00, 1.20, 1.40 
BTD(11-12µm)          [9] 7 -20.00, -2.00, -1.00, -0.75, -0.50, -0.25, 0.00 K 
BTsdev(11µm)             [10] 11 0.0, 0.25, 0.50, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 K 
refsdev(0.65 µm)          [11] 11 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 % 

Indicators of Spectral State Relevant Sensors Conditions 
[1] x [2] x [7] 
[1] x [3] x [7] 
[1] x [9] x [7] 
[1] x [11] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied when at least 25% of the cloud object 
pixels are outside of sun glint and have a solar 
zenith angle that is less than 85o. 

[1] x [2] x [8] 
[1] x [3] x [8] 
[1] x [9] x [8] 
[1] x [10] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied when at least 25% of the cloud object 
pixels have a solar zenith angle greater than 90o 
while not under the influence of stray light. 

[1] x [2] x [4] 
[1] x [3] x [5] 

GOES-R ABI 
Himawari-8/9 AHI 

MODIS 
MSG SEVIRI 

MTG FCI 
VIIRS 

Applied at all times. 

[1] x [2] x [6] GOES-R ABI 
Himawari-8/9 AHI 

MODIS 
MSG SEVIRI 

MTG FCI 

Applied at all times. 

[1] x [2] 
[1] x [3] 
[1] x [9] 
[1] x [10] 

AVHRR* 
COMS-MI 

GOES-Imager# 
GOES-R ABI 

Himawari-8/9 AHI 
MODIS 

MTSAT Imager 
MSG SEVIRI 

MTG FCI 
VIIRS 

Only applied when less than 25% of the cloud 
object pixels fail to meet the daytime or nighttime 
requirements. 

*The analogue to the 3.9-µm band on AVHRR (the 3.75 µm band) is currently not available on the MetOp-A 
and MetOp-B spacecraft during daytime operations. 
#The 12 µm channel is only available on the GOES-8, GOES-9, GOES-10, and GOES-11 spacecraft. 
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6.4.2.3.	
  Cloud	
  Object	
  Probability	
  Illustration	
  

The cloud object probability is shown in Figure 6.1F.  Several cloud objects 

within the ROI have a very large probability (~100%), while all of the cloud objects 

outside of the ROI generally have much lower probabilities.  The ten most common (by 

area) SSLs within the cloud object (labeled with a “1” in Figure 6.1F) are shown in 

Figure 6.2 using six different SSDs.  Note that cloud object “1” is located inside the ROI.  

Each bar in each panel of Figure 6.2 represents a classifier in the cloud object based 

Bayesian method.  The magnitude of each bar depicts the area within the cloud object 

that falls within a given SSL (the area is shown on the y-axis on the left).  The bar color 

represents the ratio of the ash/dust conditional probability to the non-ash/dust conditional 

probability, where the cyan to red color range indicates that the ash/dust conditional 

probability is greater than or equal to the non-ash/dust conditional probability.  The 

specific parameters that define the SSL are also labeled on each bar.  The box-and-

whisker plot of the pixel ash/dust probability distribution within a given SSL in the cloud 

object is overlaid in black and referenced to the y-axis on the right of each panel.  Figure 

6.2 indicates that even SSLs that are generally associated with pixel-level ash/dust 

probabilities that are less than 50% often have conditional probabilities that favor 

ash/dust (or vice versa).  It is no surprise that the posterior cloud object probability is 

~100%, as the posterior cloud object probability computed using a single SSD (or single 

panel in Figure 6.2) is also quite large (>95% in most cases).  This analysis was repeated 

for the cloud object that resides outside of the ROI in Figure 6.1F and is labeled with a “2” 

(Figure 6.3).  Unlike object “1,” less than ten SSLs were identified in object “2” and the 

observed features do not favor volcanic ash/dust, regardless of the method used to define 
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spectral state.  The posterior cloud object probability is close to zero, as one might expect 

for a meteorological cloud feature.  The analysis shown in Figure 6.1F, Figure 6.2, and 

Figure 6.3 indicates that the cloud object implementation of the Bayesian method 

produces reasonable results and enhances the pixel-level probability information. 

 

Figure 6.2: The procedure used to determine the probability that a cloud object is part of a volcanic ash or dust cloud 
is illustrated.  Each panel represents a different method for quantifying the spectral states within a cloud object (see 
panel titles for spectral state definition).  The ten most common spectral states (for a given definition) within the cloud 
object labeled “1” in Figure 6.1F are denoted by the colored bars.  The magnitude of the bar is representative of the 
area within the cloud object that exhibits a given spectral state (the area is shown on the y-axis on the left).  The bar 
color represents the ratio of the ash/dust conditional probability to the non-ash/dust conditional probability, where the 
cyan to red color range indicates that the ash/dust conditional probability is greater than or equal to the non-ash/dust 
conditional probability.  The specific parameters that define each spectral state are also labeled at the bottom of each 
bar.  Finally, the box-and-whisker plot of the pixel ash/dust probability distribution within a given spectral state in the 
cloud object is overlaid in black and referenced to the y-axis on the right of each panel.  The dotted and dashed 
horizontal gray lines indicate a pixel probability value of 1% and 50%, respectively.  
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Figure 6.3: Same as Figure 6.2, except for the cloud object labeled with a “2” in Figure 
6.1F.  Less than 10 spectral states were found in object “2,” regardless of the mechanism 
for defining spectral state. 

6.4.2.4.	
  Spectral	
  Robustness	
  

Another method for quantitatively rating the overall spectral robustness of a given 

cloud object, with respect to volcanic ash and dust, is to determine how many pixels in 

the object exhibit a multi-spectral signature that is very rarely observed outside of 

volcanic ash and dust clouds.  Although the pixel level Bayesian model was shown to be 

quite skillful, a pixel level ash/dust probability close to 100% does not always correspond 

to volcanic ash or dust, primarily because the naïve Bayesian method cannot perfectly 
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account for land surface emissivity effects, errors in the computation of clear sky 

radiances, and measurement artifacts.  Thus, seven additional metrics are used along with 

the pixel level ash/dust probability to rate the spectral robustness of a given pixel.  The 

additional metrics utilized are: the 11 µm clear sky brightness temperature [BTclr(11µm)], 

εtot(11µm), BTsdev(11µm), BTD(11-12µm), BTD(8.5-11µm), βtot(7.3µm, 11µm), and 

βtot(8.5µm, 11µm).  These metrics were chosen because the values of many different 

combinations of these variables are rarely observed outside of volcanic ash and dust 

clouds, including in association with measurement artifacts such as noise and band-to-

band co-registration errors and errors in the clear sky radiative transfer.  In addition, only 

a small number of histogram bins are required, for each metric, to keep track of values 

that are potentially associated with a robust ash/dust spectral signature, making it 

practical to construct an 8-dimensional histogram.  The histogram bins are defined in 

Table 6.2.  The MODIS-based training dataset described in Ch4 was used to construct an 

8-dimensional histogram from volcanic ash/dust pixels and separately from all other 

pixels in the training data set.  Even though the training data set is very large the 8-

dimensional histogram is likely under-sampled, which is one of the reasons that a naïve 

Bayesian approach, with lower dimensional classification features, is utilized to assign 

pixel and object probabilities.  The 8-dimensional histograms, however, are only utilized 

to identify pixels that have a discretized (i.e., individual values are assigned to a 

histogram bin) 8-element state vector that was observed inside of ash and/or dust clouds 

in the training data, but otherwise were rarely observed in the training data.  Several 

satellite sensors lack the spectral channels required to compute the BTD(8.5-11µm), 

βtot(7.3µm, 11µm), and βtot(8.5µm, 11µm) parameters (see Table 6.1).  When the 7.3 
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and/or 8.5 µm channels are not available, all observations are assigned to the first 

histogram bin of the parameter or parameters that cannot be computed. 

Table 6.2: The radiative parameters that define an 8-element state vector, where each 
element is discretized using the associated histogram-binning scheme, are shown. 

Parameter 
[Dimension Index] 

Number of 
Histogram Bins 

Starting Boundaries of Histogram Bins 

BTclr(11µm)          [1] 4 160, 250, 270, 290 [K] 
εtot(11µm)              [2] 8 0.00, 0.05, 0.08, 0.10, 0.20, 0.40, 0.60, 0.80 
BTsdev(11µm)        [3] 6 0.00, 0.50, 1.00, 2.00, 5.00, 10.00 [K] 
BTD(11-12µm)     [4] 14 -50.00, -25.00, -2.50, -2.00, -1.50, -1.00, -0.75, -0.50, -0.25, -0.10, 0.0, 

0.25, 0.50, 1.00 [K] 
BTD(8.5-12µm)    [5] 11 -50.00, -25.00, -1.50, -1.25, -1.00, -0.75, -0.50, -0.25, 0.00, 0.25, 0.50 [K] 
βtot(7.3µm, 11µm) [6] 5 0.00, 0.10, 1.50, 1.80, 2.00 
βtot(8.5µm, 11µm) [7] 8 0.00, 0.10, 0.80, 0.90, 1.00, 1.50, 1.80, 2.00 
P(Cyes|F)                [8] 10 0, 10, 50, 90, 99, 99.9, 99.99, 99.999, 99.9999, 99.999999 [%] 

 

The 8-dimensional histograms are used to derive a spectral robustness rating for 

each histogram bin that ranges from 0 (not robust) to 4 (very robust).  The robustness 

rating was derived separately for desert surfaces since multi-spectral surface emissivity 

signatures over desert can closely resemble volcanic ash and dust clouds and errors in the 

clear sky radiative transfer calculations are generally greatest over desert.  For non-desert 

surfaces, the ash/dust histogram contains about 10 million observations and the non-

ash/dust histogram contains 2.3 billion observations.  For desert surfaces, the ash/dust 

histogram contains about 100,000 observations and the non-ash/dust histogram contains 

4.7 million observations.  The discrepancy in sampling was considered when choosing 

guidelines that map each histogram bin into a robustness rating.  For a given histogram 

bin, the number of ash/dust observations (Nash), the number of non-ash/dust observations 

(Nother), and the number of non-ash/dust observations normalized by the total number of 

observations (ash/dust + non-ash/dust) in that bin (Rother) are used to assign the robustness 
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rating (RR).  Each bin is assigned the highest robustness rating possible using the 

following rules. 

 

 

( 6.4) 

Each pixel in a given cloud object is assigned a robustness rating using the 8-

dimensional robustness look-up table generated from the data used to train the Bayesian 

methods.  The total number of pixels in each robustness category can then be computed 

for each cloud object.  Returning to the nighttime Cleveland volcanic ash example, the 

fraction of each cloud object that achieves robustness rating 2 through 4 is shown in the 

bottom row of Figure 6.1, with robustness rating decreasing from left to right.  The 

robustness counter is incremented for a given rating (0-4) if a rating at or above that level 

is achieved.  For instance, a robustness rating of 3 results in the object counter for rating 

values 0-3 being incremented.  In Figure 6.1 (Panels G-I) the robustness fraction is only 

displayed if it is greater than 0%, otherwise the 11 µm brightness temperature is 

displayed.  Only two cloud objects were found to include pixels with a robustness rating 

of 3 or greater, and both objects were located inside the ROI.  Five cloud objects, all 

RR =

4, Nash > 5 and Nother = 0

3,

Nash > 0 and Nother = 0 or
Nash >1 and Nother < 2 or
Nash > 5 and Nother < 50 and  Rother < 0.01 or
Nash > 5 and Nother <10 and  Rother < 0.10

2,
Nash > 0 and Nother <10 or
Nash > 5 and Nother <100 and  Rother < 0.01 or
Nash > 5 and Nother < 50 and  Rother < 0.10

1,
Nash > 0 and Nother <100 or
Nash > 5 and Nother < 500 and  Rother < 0.50

0, otherwise
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within the ROI, were found to contain pixels with a robustness rating of 2 or greater.  Not 

surprisingly, the two objects with level 3 or greater robust pixels correspond to regions of 

the ash cloud that are readily apparent in the false color and “split-window” images.  The 

cloud objects that at most contained pixels with a robustness rating of 2 have a much less 

impressive visual appearance in the multi-spectral imagery.  Thus, the robustness rating 

of all of the objects is qualitatively consistent with how a human expert would rate the 

strength of the volcanic ash spectral signature at various locations in the cloud.  Finally, 

the robustness rating procedure allows for a greater degree of sensor dependent 

customization without the need of re-training the Bayesian model.  Thus, the SECO 

method can be effectively applied to new sensors immediately, simply by adjusting the 

robustness rating look-up table until the false alarm rate is as low as expected. 

6.4.2.5.	
  Identifying	
  Potential	
  Clear	
  Sky	
  Objects	
  

As discussed in Ch4, errors in the clear sky radiative transfer calculations can be 

large at times, especially over land surfaces.  Thus, some “cloud” objects may actually be 

composed entirely of clear sky pixels when the clear sky radiances are significantly over-

estimated.  If the spectral variability of the surface emissivity is similar to volcanic ash 

and dust, the clear sky object can potentially be misclassified as volcanic ash/dust.  A 

spatial analysis technique is used to address this issue.  The difference between the clear 

sky 11 µm BT and the observed 11 µm BT, referred to as the clear sky bias or BTbias, is 

assessed at various locations inside and outside of cloud objects.  More specifically, the 

mean “in object” and “environmental” BTbias is computed for each object.  The “in object” 

BTbias (BTbias_obj) is computed from object pixels that have a pixel-level ash/dust 

probability smaller than 10%.  The “environmental” BTbias (BTbias_env) is computed from 
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nearby (e.g. within 12 pixels of the edge of the object of interest) out of object pixels that 

have an ash/dust probability less than 0.10 and are likely to be free of meteorological 

cloud.  Meteorological cloud cover is assessed using the metrics described in Heidinger et 

al. [2012].  Each cloud object is assigned a cloud flag (CF) ranging from 0 (confidently 

clear) to 3 (confidently cloudy) depending on the BTbias_obj and the difference between 

BTbias_obj and BTbias_env (BTDbias_diff).  The binary cloud object classifier utilizes the cloud 

flag.  The guidelines for assigning the cloud flag are provided below. 

 

CF =

3 BTbias _ obj >18K  or  BTbias _ diff > 6K

2 4 < BTbias _ diff ! 6

1 2 < BTbias _ diff ! 4

0 BTbias _ diff ! 2
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( 6.5) 

6.4.3. Binary Classification of Cloud Objects 

Using the various cloud object statistics described earlier, a simple binary cloud 

object classifier was developed.  Cloud objects can be classified as volcanic ash/dust or 

not.  If a cloud object is classified as volcanic ash/dust all pixels that compose the cloud 

object are classified as volcanic ash/dust.  The basic binary classifier, also referred to as 

the cloud object selection procedure, is a function of the cloud object size (in pixels), the 

median ash/dust pixel probability, the cloud object referenced probability of ash/dust, the 

cloud confidence flag, and the robustness rating metrics.  Many different threshold 

combinations are utilized based on heuristic analysis of the training data set and 

subsequent global real-time testing of the SECO algorithm.  All of the threshold 

combinations utilized in the cloud object selection process are listed in Table 6.3.  Each 
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row in the table represents a set of cloud object selection criteria.  During the cloud object 

selection process the “greater than” operator is applied to all criteria except the maximum 

cloud object size and cloud confidence.  The “less than or equal to” operator is applied to 

the maximum cloud object size and the “greater than or equal to” operator is applied to 

the cloud confidence flag.  If any single set of selection criteria is met, the cloud object is 

selected. 

Table 6.3: Each row in the table represents a set of cloud object selection criteria. During the cloud object 
selection process the “greater than” operator is applied to all criteria except “Max Size” and “Cloud 
Flag.”  The “less than or equal to” operator is applied to “Max Size” and the “greater than or equal to” 
operator is applied to “Cloud Flag.”  If any single set of selection criteria is met, the cloud object is 
selected.  The center of the cloud object must be within 50/10/5 km of a volcano in order to use the criteria 
listed below the V50/V10/V5 headers. 

Min 
Size 

(#pix) 

Max 
Size 

(#pix) 

Median 
Prob % 

Object 
Prob % 

Cloud 
Flag 
(CF) 

RR4 
Ct 

RR4 
Frac 

RR3 
Ct 

RR3 
Frac 

RR2 
Ct 

RR2 
Frac 

RR1 
Ct 

RR1 
Frac 

25 ∞ 0 80 2 4 0.0000 14 0.0000 0 0.0000 0 0.0000 
25 ∞ 80 0 2 4 0.0000 14 0.0000 0 0.0000 0 0.0000 

250 ∞ 0 80 2 0 0.0100 0 0.0000 0 0.0000 0 0.0000 
250 ∞ 80 0 2 0 0.0100 0 0.0000 0 0.0000 0 0.0000 
100 ∞ 0 80 2 0 0.0050 0 0.0100 0 0.0000 0 0.0000 
100 ∞ 80 0 2 0 0.0050 0 0.0100 0 0.0000 0 0.0000 

5000 ∞ 20 99 2 -1 -0.10 -1 -0.10 10 0.0000 3000 0.0000 
250 ∞ 0 80 0 100 0.0000 0 0.0000 0 0.0000 0 0.0000 
250 ∞ 80 0 0 100 0.0000 0 0.0000 0 0.0000 0 0.0000 
500 ∞ 0 80 0 0 0.0000 500 0.0000 0 0.0000 0 0.0000 
500 ∞ 80 0 0 0 0.0000 500 0.0000 0 0.0000 0 0.0000 
100 1000 80 80 2 -1 -0.10 0 0.0100 0 0.0133 0 0.0500 
250 500 0 80 2 0 0.0000 0 0.0055 0 0.0133 0 0.0500 
250 500 80 0 2 0 0.0000 0 0.0055 0 0.0133 0 0.0500 
100 250 0 80 2 0 0.0050 0 0.0100 0 0.0000 0 0.0000 
100 250 80 0 2 0 0.0050 0 0.0100 0 0.0000 0 0.0000 
25 250 0 80 2 0 0.0000 0 0.0000 0 0.0133 0 0.0500 
25 250 80 0 2 0 0.0000 0 0.0000 0 0.0133 0 0.0500 
15 25 80 80 2 4 0.0000 14 0.0000 0 0.0000 0 0.0000 
10 25 80 80 2 0 0.0000 0 0.0000 0 0.0133 0 0.0500 

V50             
10 25 80 0 3 -1 -0.10 -1 -0.10 0 0.2500 0 0.5000 
10 25 80 80 3 -1 -0.10 -1 -0.10 0 0.1000 0 0.5000 
0 10 80 0 3 -1 -0.10 -1 -0.10 0 0.2500 0 0.5000 
0 10 80 80 3 -1 -0.10 -1 -0.10 0 0.1000 0 0.5000 

V10             
10 25 0 80 3 0 0.0000 0 0.0000 0 0.0133 0 0.0500 
10 25 80 0 3 0 0.0000 0 0.0000 0 0.0133 0 0.0500 
V5             
0 10 80 0 3 0 0.0000 0 0.0000 0 0.0133 0 0.0500 
0 10 0 80 3 0 0.0000 0 0.0000 0 0.0133 0 0.0500 

#pix: number of pixels, Prob: ash/dust probability, RR: Robustness rating, Ct: count, Frac: fraction  



 183 

6.5.  Case Studies 

An initial assessment of the complete SECO volcanic ash/dust detection algorithm 

is conducted by analyzing four ash/dust cases captured by MODIS.  The same four cases 

shown in Ch4 are utilized.  Each of the four cases (2 volcanic ash and 2 dust) is 

independent of the classifier training data, and the ash/dust probability is assessed within 

the context of human expert estimated horizontal cloud boundaries and the traditional 

“split-window” technique for detecting volcanic ash and dust.  As in Ch4, results from 

the SECO algorithm were generated using four different spectral channel combinations 

that are commonly available on operational and research satellite radiometers. 

1. 0.65 [daytime only], 3.9, 7.3, 8.5, 11, 12 µm (SC1, SC=Spectral Combination) 

2. 0.65 [daytime only], 3.9, 8.5, 11, 12 µm (SC2) 

3. 0.65 [daytime only], 3.9, 11, 12 µm (SC3) 

4. 11, 12 µm (SC4)	
  

The results from the manual analysis first presented in Ch4 are once again utilized.  As 

described in Ch4, the goal of the manual analysis of the ash/dust cloud boundaries was to 

define a ROI that contains the portion of the ash/dust cloud that can be manually 

identified in multispectral imagery, either directly or through spatial deduction.  All 

conclusions drawn from the comparison to the manually determined ROI are derived 

from relative relationships.  As such, small perturbations to the ROI do not impact the 

results as long as ash or dust pixels that exhibit a robust spectral signature (i.e., are 

obvious in the imagery) are not left out of the ROI. 
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6.5.1. Volcanic Ash from Mount Cleveland (nighttime) 

SECO algorithm results from each spectral channel combination are shown in 

Figure 6.4 for the same nighttime Cleveland volcanic ash scene discussed earlier.  The 

binary classifier results are displayed using the pixel level ash/dust probability and the 11 

µm brightness temperature imagery.  Where the binary classifier indicates volcanic ash or 

dust is present, the pixel level probability is displayed; otherwise the 11 µm brightness 

temperature is displayed.  As in Ch4, the Critical Success Index (CSI), which is defined 

as the number of hits divided by the sum of hits, false alarms, and misses, is utilized to 

quantify the skill of the SECO algorithm relative to the manual analysis.  The CSI does 

not take correct negatives into account, so it is an effective metric when the event of 

interest is observed far less often than the non-events and the tolerance for false alarms is 

low (volcanic ash false alarms are particularly undesirable).  The “split-window” results 

were derived using the traditional threshold method.  The BTD(11-12µm) threshold, 

however, was selected such that it maximized the CSI for each 5-minute MODIS granule.  

Thus, the best possible, case specific, “split-window” results are shown (which will not 

necessarily be known in real-time).  The Probability of Detection (POD) and False Alarm 

Rate (FAR) are also computed.  The MODIS overpass shown in Figure 6.4 occurred 

about 18.25 hours after the start of the eruption of Mount Cleveland.  As a result, the 

volcanic ash cloud has been advected northeastward of the volcano by the atmospheric 

winds and the entire ash cloud is highly semi-transparent to infrared radiation due to 

dispersion and fallout processes.  In fact, portions of the southern part of cloud can only 

be confidently identified in multispectral false color imagery through spatial deduction. 
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Figure 6.4: The results of the SECO volcanic ash and dust detection algorithm are shown for a Terra MODIS image from February 
20, 2001 at 08:45 UTC. A). 12-11 µm, 11-8.5 µm, and 11 µm false color image. B). 12-11 µm, 11-3.9 µm, and 11 µm false color image. 
C). Image of BTD(11-12µm).  D). Ash/dust pixel probability image for 0.65, 3.9, 7.3, 8.5, 11, 12 µm channel combination. E). The 
SECO algorithm skill (blue bars) measured against manual analysis of multi-spectral imagery is expressed as the Critical Success 
Index (CSI), Probability of Detection (POD), and False Alarm Rate (FAR).  The skill of the traditional “split-window” method using 
the BTD(11-12µm) threshold that produces the greatest CSI for this particular scene is also shown (red bars).  The panels in the third 
through fifth rows are analogous to the second row, except for the 3.9, 8.5, 11, 12 µm, 3.9, 11, 12 µm, and 11, 12 µm channel 
combinations, respectively.  The outer bounds of the manually defined ash/dust cloud are overlaid on each geo-referenced image. 
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Figure 6.4 shows that the SECO algorithm is much more skilled than the “split-window” 

approach, that was intentionally optimized for this particular scene, regardless of the 

spectral channel combination.  In this scene the CSI of the SECO algorithm is 0.39, 0.23, 

0.23, and 0.21 for the SC1, SC2, SC3, and SC4 implementations, respectively.  The 

“split-window” approach only achieves a CSI of 0.08; making the CSI of the SC1 

implementation of the SECO algorithm almost five times greater than the “split-window” 

approach.  Even when the SECO algorithm utilizes the exact same spectral channels as 

the “split-window” approach (the SC4 implementation), the skill of the SECO algorithm 

is much greater, which underscores the value of using β-ratios in lieu of BTD’s and cloud 

objects in lieu of individual pixels. Unlike the “split-window” approach, all SECO 

algorithm ash/dust detections occur within the ROI or just barely outside of the ROI (this 

is true for the entire 5-minute MODIS granule) and the 11 – 12 µm BTD need not be 

negative in order to detect volcanic ash.  The POD of the SECO method is greater than 

the “split-window” method, regardless of the channel combination utilized.  Further, the 

FAR of the SECO method is nearly two orders of magnitude less than the “split-window” 

technique and the proximity of the SECO “false alarms” to the edge of the manually 

analyzed cloud casts some doubt as to their true nature. 

 As expected, the skill of the SECO approach decreases when spectral channels are 

removed.  In fact, the portion of the ash cloud south of Alaska’s Aleutian Islands is only 

partially detected using the SC1 implementation.  Only the SC1 implementation results in 

the object labeled “1” in Figure 6.1F having a sufficient number of spectrally robust 

pixels to be selected.  However, as Figure 6.5 shows, even the two-channel SC4 

implementation results in many cloud objects within the ROI.  While many of those 
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objects lack the properties required for selection by the basic cloud object selection 

procedure, the mere presence of those objects within the ROI means that the prospect of 

improving the POD of the SECO algorithm through improvements in the cloud object 

selection procedure is good.  For instance, future versions of the SECO cloud object 

selection procedure will include the ability to utilize the results from previous images, 

regardless of sensor. 

 

Figure 6.5: Same as Figure 6.1, except only the 11 and 12 µm channels were used to 
generate these results. 



 188 

6.5.2. Volcanic Ash from Mount Cleveland (daytime) 

As in Ch4, the Terra MODIS overpass of the Cleveland ash cloud that occurred 

about 9.5 hours prior to the nighttime Cleveland example was also analyzed.  The exact 

starting date and time of the Terra MODIS granule is February 19, 2001 at 23:10 UTC 

and the overpass occurred under sunlit conditions and at a time when the Cleveland 

plume was less dispersed.  SECO algorithm results from each spectral channel 

combination are shown in Figure 6.6.  As in the previous example, the SECO algorithm is 

much more skilled than the “split-window” approach, regardless of the spectral channel 

combination.  In this scene the CSI of the SECO algorithm is 0.63, 0.61, 0.59, and 0.58 

for the SC1, SC2, SC3, and SC4 implementations, respectively.  The “split-window” 

approach achieves a CSI of 0.13; making the CSI of the SC1 implementation of the 

SECO algorithm more than five times greater than the “split-window” approach.  Even 

when the SECO algorithm utilizes the exact same spectral channels as the “split-window” 

approach (the SC4 implementation), the skill of the SECO algorithm is much greater, 

which again underscores the value of using β-ratios in lieu of BTDs and cloud objects in 

lieu of individual pixels.  All SECO “false alarms” once again reside along the edge of 

the manually analyzed ROI, while the “split-window” false alarms are located well 

outside of the ROI.  The CSI of the SECO approach does decrease when less spectral 

channels are used, but not by a substantial amount. 
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Figure 6.6: Same as Figure 6.4, except the results are shown for a sunlit (the 0.65 µm 
channel is used) Terra MODIS image from February 19, 2001 at 23:10. 
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6.5.3. South American Dust (daytime) 

When the complete SECO algorithm is applied to the South American suspended 

lake sediment case from Ch4, the SECO algorithm significantly improves upon the “split-

window” technique, except when the SC4 implementation is used (Figure 6.7).  The SC4 

channel combination results in no pixels being classified as dust, which illustrates the 

value of using additional spectral channels, especially over complicated land surfaces.  

There is essentially no difference between the SC1 and SC2 results, with both channel 

combinations having a CSI of 0.54.  The FAR of the SC1 and SC2 results (2.03x10-3), 

however, is larger compared to the Cleveland ash results because the western edge of the 

dust cloud is over-estimated relative to the manual analysis.  Errors in the clear sky 

radiance calculations combined with surface emissivity effects lead to the western-most 

cloud object being partially composed of pixels that are outside of the identifiable bounds 

of the dust cloud.  No other false alarms were found and the SC1 and SC2 FAR is still an 

order of magnitude smaller than the “split-window” FAR.  The SC3 implementation has a 

CSI of 0.50 with very few false alarms, all of which are located right along the boundary 

of the manually analyzed cloud.  This case shows that the SECO method is effective over 

complicated land surfaces during sunlit conditions. 
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Figure 6.7: Same as Figure 6.4, except the results are shown for a sunlit (the 0.65 µm 
channel is used) Aqua MODIS image from July 29, 2012 at 17:35. 
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6.5.4. South American Dust (nighttime) 

In Ch4, a nocturnal South American dust cloud, generated by an outflow 

boundary, was analyzed.  This same case is revisited using the complete SECO algorithm 

(Figure 6.8).  The dust cloud in this scene has 11 µm BT values that deviate only slightly 

from the clear sky values; therefore this case is very challenging.  As a result, only the 

SC1 and SC2 implementations of the SECO algorithm are able to detect any dust.  The 

CSI of the SC1 implementation is more than three times greater than the “split-window,” 

primarily due to the very low FAR of the SC1 implementation compared to the “split-

window” technique.  The SC2 implementation is only a slight improvement to the “split-

window” approach, but the much higher POD of the “split-window” comes with a FAR 

that is three orders of magnitude greater than the SC2 FAR.  Despite the severe detection 

deficiency of the SC3 and SC4 implementations, neither implementation produces any 

false alarms.  Improvements to the cloud object selection procedure may lead to 

improved detection capabilities for all channel combinations. 
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Figure 6.8: Same as Figure 6.4, except the results are shown for a Terra MODIS image 
from January 24, 2014 at 03:55. 
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6.6.  Global Analysis 

The skill score of the SECO method, with the full complement of spectral 

channels (the SC1 implementation), was assessed using a full day of Aqua MODIS data 

from January 26, 2011.  All data from this day are independent of the training data set.  

On January 26, 2011 four volcanoes produced ash clouds that were identifiable in 

MODIS false color imagery.  Kizimen and Karymsky volcanoes on the Kamchatka 

Peninsula of Russia and Sakurajima (Japan) produced small ash plumes that were 

identifiable in MODIS multispectral imagery.  The existence of these plumes in MODIS 

false color imagery is consistent with the volcanic activity reported by the Smithsonian 

Global Volcanism Program (http://www.volcano.si.edu/reports_weekly.cfm#vn_300130).  

In addition, more significant ash emissions were produced by the eruption of Shinmoe-

dake, a stratovolcano of the Kirishima volcano group in Japan [Miyabuchi et al. 2013].  

Mainly optically thin regions of African (Saharan) and Asian dust were also present in 

MODIS false color (and true color) imagery at times, but the horizontal bounds of the 

dust over the desert surface are difficult to determine, therefore the 16 5-minute MODIS 

granules (out of a total of 288) that possibly contained regions of dust were excluded 

from the skill score analysis.  Thus, only the Kizimen, Karymsky, Sakurajima, and 

Shinmoe-dake ash clouds were manually analyzed. 

The global ash detection results are visualized for both orbital nodes (ascending 

and descending) of Aqua MODIS.  The ascending node (Figure 6.9) consists primarily of 

sunlit observations (except at high latitudes in the Northern Hemisphere) and the 

descending node consists of nighttime observations (except at high latitudes in the 

Southern Hemisphere).  In the ascending node, the SECO algorithm detects dust clouds 
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over the Sahara and Asia.  The presence of dust in these regions is confirmed in the false 

color imagery (especially when viewed at full resolution).  No other regions of ash or 

dust are detected (no false alarms).  However, the SECO algorithm does miss some areas 

of low optical depth dust over Africa and Asia because the cloud objects associated with 

these low optical clouds did not exhibit the necessary spectral attributes to be chosen by 

the cloud object selection procedure.  The SECO algorithm also misses weak ash plumes 

from Kizimen and Karymsky (Figure 6.10) for the same reason the low optical depth dust 

clouds are missed.  The 11 µm brightness temperatures in the over-land portion of the 

Kizimen and Karymsky plumes are very similar to the calculated clear sky 11 µm 

brightness temperature.  Thus, the cloud objects, denoted by the median cloud object 

probability, within the ROI in Figure 6.10D are not selected.  No other volcanic ash 

clouds are present in the ascending node multispectral imagery.  In the future, the 

detection of low optical depth ash/dust clouds or ash/dust clouds that exhibit very little 

thermal contrast with the estimated clear sky brightness temperatures can potentially be 

improved through incorporation of information from multispectral satellite data collected 

at previous times. 
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Figure 6.9: False color imagery constructed from the 12-11, 11-8.5, 11µm channel combination (top), 11-12µm “split-
window” imagery (middle), and the results of the SECO ash/dust detection algorithm using the 0.65, 3.9, 7.3, 8.5, 11, 
and 12 µm channel combination are shown for all Aqua MODIS ascending (afternoon) node overpasses on January 26, 
2011.  The SECO results are displayed by overlaying the pixel-level probability of ash/dust over the 11 µm brightness 
temperature image in locations where the SECO algorithm detected ash or dust. 
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In the descending node (Figure 6.11), the SECO algorithm detects ash clouds 

associated with the eruptions of Sakurajima (very minor ash emission) and Shinmoe-dake 

(more significant ash emission) in Japan.  No other regions of volcanic ash or dust are 

detected.  Volcanic ash clouds from the Japanese volcanoes are examined in greater detail 

(Figure 6.12).  While the areal extent of the volcanic ash detected by the SECO algorithm 

is much smaller than the manually defined ROI (Figure 6.12D), the SECO algorithm does 

 

Figure 6.10: Volcanic ash plumes produced by eruptions of Kizimen and Karymsky on the 
Kamchatka Peninsula (Russia), which were captured by Aqua MODIS on January 26, 2011 
(02:05 UTC), are examined in greater detail.  A). The 12-11, 11-8.5, 11µm false color image. 
B). The 12-11, 11-3.9, 11µm false color image. C). The 11-12µm “split-window” brightness 
temperature difference. D). The median cloud object probability from the 0.65, 3.9, 7.3, 8.5, 11, 
and 12 µm implementation of the SECO algorithm overlaid on the corresponding 11 µm 
brightness image. 
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correctly detect ash in regions that do not exhibit a robust “split-window” signature 

(Figure 6.12C).  Portions of the ash cloud that overlap low meteorological clouds are 

missed, as are optically thick (and perhaps ice topped) portions near Shinmoe-dake.  The 

Sakurajima ash plume, which is detected by the SECO algorithm is only composed of 

about 200 pixels and is barely noticeable in the far western part of the images in Figure 

6.12.   Note that the SECO algorithm does not detect any volcanic ash outside of the ROI.  

An ash plume from Kizimen is also noticeable in multi-spectral imagery, albeit barely 

(Figure 6.13).  The SECO algorithm does not detect the Kizimen ash plume, as it simply 

exhibits very little contrast with the surrounding environment, especially over land.  The 

ROI does, however, contain a few cloud objects (Figure 6.13D), so this very weak plume 

can potentially be detected using a more sophisticated cloud object selection procedure. 
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Figure 6.11: Same as Figure 6.9 except for all descending (overnight) Aqua MODIS 
overpasses on January 26, 2011. 

 



 200 

 

Figure 6.12: Volcanic ash produced by a minor emission from Sakurajima and a more 
significant emission from Shinmoe-dake in Japan, which was captured by Aqua MODIS 
on January 26, 2011 (17:20 UTC), are examined in greater detail.  A). The 12-11, 11-8.5, 
11µm false color image. B). The 12-11, 11-3.9, 11µm false color image. C). The 11-12µm 
“split-window” brightness temperature difference. D). Volcanic ash detected by the 3.9, 
7.3, 8.5, 11, and 12 µm implementation of the SECO algorithm is denoted by valid values 
of pixel-level ash/dust probability in lieu of the 11 µm brightness temperature value. 
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Figure 6.13: Same as Figure 6.10, except for the January 26, 2011 15:35 UTC Aqua 
MODIS overpass. 

Excluding the 16 MODIS granules that contained diffuse dust clouds with ill-

defined edges, the skill score of the SC4 implementation of the SECO algorithm and the 

“split-window” approach were determined using the global January 26, 2011 Aqua 

MODIS dataset.  The results are shown in Figure 6.14.  The SECO approach (0.35) has a 

CSI that is more than five times greater than the “split-window” technique.  The “split-

window” ash/dust detection threshold was set at -1.80 K because that threshold resulted 

in the greatest CSI in this global analysis.  The threshold of -1.80 K is exceptionally 

conservative; yet more than 20,000 false alarms are associated with the FAR of 3.0x10-5.  
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The SECO method only produced a total of 2 false alarm pixels, both of which were 

located near the edge of the Japanese ash ROI.  A total of about 736,982,000 pixels were 

included in this analysis.  While the SECO POD (0.35) greatly exceeds the “split-window” 

POD (0.07), the SECO POD is rather low.  The low PODs can be attributed the superior 

ability of the human expert to identify specific objects in images.  Many of the additional 

regions of volcanic ash or dust identified by the human expert are extremely tenuous or 

are identified through spatial deduction.  In addition, the small buffer applied when 

manually drawing the cloud edges has a significant effect on the POD, especially for 

large clouds.  The main goal of the skill score analysis was to quantitatively demonstrate 

that the SECO algorithm has a very low false alarm rate and significantly improves upon 

the traditional “split-window” approach.  Both of those goals have been achieved. 

 

Figure 6.14: SECO and “split-window” algorithm performance statistics (CSI, POD, 
FAR) measured against manual analysis of multi-spectral imagery for an entire day 
of Aqua MODIS overpasses on January 26, 2011.  Only MODIS granules that likely 
contain diffuse dust clouds with ill-defined edges are excluded.  The SECO results, 
using the 0.65, 3.8, 7.3, 8.5, 11, and 12 µm channel combination, are shown in blue 
and the “split-window” results obtained using the BTD(11-12µm) threshold that 
produced the greatest CSI for this particular day of data are shown in red. 
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6.7.  Summary 

The SECO algorithm combines radiative transfer theory, Bayesian methods, and 

image processing/computer vision concepts to identify volcanic ash and dust clouds in 

multispectral satellite data with skill that is generally comparable to a human expert, 

especially with respect to false alarm rate.  The volcanic ash/dust probability determined 

using the naïve Bayesian approach described in Ch4, in combination with results from a 

cloud property retrieval algorithm [Chapter 5], is used to identify satellite pixels that 

might contain volcanic ash and/or dust.  All pixels that potentially contain ash or dust are 

sorted into cloud objects.  A cloud object is a collection of spatially connected satellite 

pixels that meet a specified set of criteria.  An ash/no ash (or dust/no dust) classification 

is then assigned on a cloud object basis.  The majority of volcanic ash and dust clouds are 

composed of a small subset of pixels that are spectrally unique (e.g., very unlikely to be 

associated with any other feature) and a larger subset of pixels that, to varying degrees, 

are spectrally non-unique (e.g., can sometimes be associated with other features).  In 

essence, a cloud object is assigned to the volcanic ash/dust class if the object contains a 

specified number of pixels that exhibit a spectral signature that is unambiguously 

associated with volcanic ash or dust (volcanic ash and dust exhibit very similar spectral 

signatures in weather satellite data).  The resulting pixel level ash/no ash (or dust/no dust) 

classification is used to screen out any ash cloud property retrievals that were performed 

outside of volcanic ash or dust clouds.  The SECO method is globally applicable and can 

be applied to virtually any low earth orbit or geostationary satellite sensor.  Further, the 

SECO approach was quantitatively proven to be more skillful than pixel based 

approaches, including the commonly used “split-window” technique.  More specifically, 
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the SECO method has a much higher probability of detection than the traditional “split-

window” method while maintaining a near zero false alarm rate.  The performance of the 

SECO approach is extremely promising and well suited to a variety of new and improved 

applications. 
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Chapter 7 

7. Analysis of Ash Cloud Properties 

7.1.  2008 Eruption of Kasatochi, Alaska 

7.1.1. Eruption Overview 

On August 7-8, 2008, Kasatochi volcano erupted with little warning, injecting 

volcanic gases and ash high into the atmosphere.  Kasatochi volcano is located on 

Kasatochi Island in the Aleutian Islands of Alaska (see Figure 7.1).  Prior to the 2008 

eruption, Kasatochi Island served as a major nesting area for sea birds.  Aside from 

yearly visits from scientists from the U.S. Fish and Wildlife Service, Kasatochi Island 

was uninhabited by humans 

[Buchheit and Ford 2008].  

Waythomas et al. [2010] 

provide a thorough review of 

the eruption, which was the 

first known eruption of 

Kasatochi in recorded history.  

An overview of the 

Kasatochi eruption is 

described throughout the 

remainder of this section. 

Three distinct 

explosions, each lasting 

 

 
Figure 7.1:Top: Map showing the location of Kasatochi Island 
(Source: AVO/ADGGS).  Bottom: Aerial photo of Kasatochi 
Island on December 5, 2013 (Source: Richard Zimmer) 
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approximately 60 minutes or less were observed [Waythomas et al. 2010].  The first 

explosion, which was evident in satellite imagery at 22:23 UTC on 7 August, was 

primarily driven by magma coming into contact with lake water inside the crater of the 

volcano [Waythomas et al. 2010].  The particulate composition of the resulting cloud was 

dominated by water.  The cloud top was estimated to be 14 km ASL and the water at 

cloud top was in the form of ice (Figure 7.2).  The cloud from the second explosive event 

was first observed in satellite imagery at 02:10 UTC on 8 August (height was estimated 

to be 14 km ASL by Waythomas et al. [2010]).  The primary mechanism 

(phreatomagmatic – water/magma interaction versus magmatic) for this explosion is 

unclear [Waythomas et al. 2010].  As Figure 7.2 shows, the resulting cloud initially 

appeared dark in visible satellite imagery, which is consistent with volcanic ash being the 

dominant particulate, as volcanic ash absorbs more visible light than liquid water or ice 

[Pavolonis et al. 2006].  Subsequent visible satellite images, however, indicated that the 

cloud albedo increased significantly, consistent with the formation of ice.  The clouds 

from the first two explosive events were observed to move to the southwest of the 

volcano and disperse (the cloud optical depth decreased significantly) without ever 

displaying a multispectral signature that was clearly indicative of volcanic ash.   

The third and final explosive event was first observed in satellite imagery at 04:43 

UTC on 8 August.  This event was interpreted to be a magmatic eruption from a dry vent 

[Waythomas et al. 2010].  As a result, the cloud appeared very dark in visible satellite 

imagery (Figure 7.2), which is a strong indicator of ash being the dominant particulate in 

the cloud.  Using the parallax induced horizontal displacement of the cloud in 

geostationary satellite imagery; the height of the cloud from the third explosion was 
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estimated to be 18 km ASL 

[Waythomas et al. 2010].  Airborne 

ash that may have remained as a result 

of the first two explosive events could 

not be distinguished from the cloud 

produced by the third event.  After the 

third explosive event the eruption 

entered a phase characterized by 

continuous production of ash and 

gases until about 20:00 UTC on 8 

August [Waythomas et al. 2010].  The 

maximum height of the ash clouds 

produced during the continuous phase 

was estimated to be 10 km ASL, 

making it difficult to distinguish 

between ashes produced by the third 

explosive event and the continuous 

phase of the eruption [Waythomas et 

al. 2010].  In the days that followed the third explosive event, the volcanic ash clouds 

from Kasatochi maintained an infrared signature that is very consistent with the presence 

of volcanic ash.  Ultra-violet [Krotkov et al. 2010] and infrared [Karagulian et al. 2010; 

Prata et al. 2010] satellite measurements indicated that the Kasatochi cloud also 

contained large amounts of SO2.  

 

Figure 7.2:GOES-11 visible satellite images capturing the three 
explosive events during the August 7-8, 2008 eruption of 
Kasatochi.  The cloud produced by Event 1 is shown at 23:30 
UTC on 7 August (top left).  The cloud produced by Event 2 is 
shown at 02:00 UTC and 02:30 UTC on 8 August (top right and 
bottom left, respectively).  The cloud produced by Event 3 is 
shown at 05:00 UTC on 8 August.  The clouds of interest are 
located in the center of each image.  Source: CIMSS Satellite 
Blog 
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Volcanic ash and gases, primarily from the third and most explosive Kasatochi 

event dispersed over great distances in the months that followed.  Aviation across the 

North Pacific and northern North America was disrupted for 5 days following the start of 

the eruption, resulting in at least 40 flight cancellations that stranded over 6000 

passengers [Associated Press and Anchorage Daily News reports].  On numerous 

occasions airlines had to re-route planes to avoid possible areas of volcanic ash [Guffanti 

et al. 2010b].  In addition, several pilots reported possible encounters with volcanic ash 

clouds [Guffanti et al. 2010b]. 

The Kasatochi eruption was selected for analysis because the ash and gas 

emissions and subsequent dispersion were reasonably well observed by low earth orbit 

and geostationary-based imaging radiometers, lidars, and by humans (e.g. pilots).  Further, 

the Kasatochi literature is rich with observational and model based analysis of the gas and 

ash clouds produced by the third explosive event, allowing for interesting comparisons.  

The volcanic ash detection and ash cloud property retrieval algorithms described in 

Chapters 3-6 were applied to data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS).  The spectral channels available on MODIS allow all of the 

algorithms to run in the most capable configuration.  Corrandini et al. [2010] also used 

MODIS to study the Kasatochi ash cloud.  While Prata et al. [2010] used the 

Atmospheric Infrared Sounder (AIRS), which is located on the same spacecraft as one of 

the two MODIS instruments to estimate the Kasatochi ash cloud properties.  Thus, the 

use of MODIS in our study facilitates comparisons to published analyses. 
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7.1.2. Comparison to Independent Observations  

Prior to describing the evolution of the Kasatochi ash cloud in space and time, the 

ash cloud properties derived using the methods presented in this dissertation are assessed 

relative to some independent observations of the Kasatochi clouds.  While quantitative 

validation studies for each algorithm have already been presented, an additional 

assessment is performed using some independent observations that are unique to the 

Kasatochi case. 

7.1.2.1.	
  True	
  Color	
  Imagery	
  

The algorithm used to retrieve the ash cloud properties (height, mass loading, and 

effective particle radius) only utilizes infrared channels.  One possible way to assess the 

quality of the mass loading estimates is to compare them against true color imagery, 

which is available from MODIS.  In true color images, calibrated reflectance 

measurements from the red light (0.65 µm), green light (0.55 µm), and blue light (0.47 

µm) centered channels are displayed on the corresponding red-green-blue color guns.  

The resulting image is a decent proxy of a color photograph.  Similar to a photograph, 

liquid water or ice clouds that appear bright white can be considered optically thick.  

Thick layers of volcanic ash on the other hand will appear brown, similar to when viewed 

by the human eye.  Thus, true color images are useful for identifying areas of optically 

thick volcanic ash, assuming a higher cloud layer does not obscure the volcanic ash.  

Optically thin layers of volcanic ash are not nearly as distinct in true color imagery, 

especially when underlying liquid water or ice clouds are present as the energy scattered 

back to space by the underlying clouds dominates the measured signal at these 
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wavelengths (infrared observations generally maintain sensitivity to optically thin ash 

layers more so than visible wavelength observations). 

 The goal of the true color imagery comparison is to qualitatively determine if the 

spatial pattern in ash mass loading, derived solely from infrared measurements, is 

consistent with the location of optically thick volcanic ash in the corresponding true color 

 

Figure 7.3:A comparison between the retrieved ash mass loading (top right) and the 
corresponding true color imagery (bottom) for a 9 August 2008 Aqua MODIS 
overpass (at 00:50 UTC) with Kasatochi volcanic ash is shown.  Infrared-based 
false color imagery is also shown in the top left panel. The true color imagery was 
obtained from NASA. 
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image (Figure 7.3).  An Aqua MODIS overpass on 9 August 2008 at 00:50 UTC (~20 

hours after the third explosive event) was selected for analysis.  In Figure 7.3, the most 

optically thick portion of the ash cloud identifiable in the true color image corresponds to 

an “axis” of larger retrieved mass loadings.  Conversely, much smaller mass loadings are 

co-located with parts of the cloud that have a tenuous appearance in the true color 

imagery.  Thus, the infrared-based mass loading retrievals and the true color imagery, 

which is spectrally independent of the retrieval, are generally consistent.  It is also worth 

noting that the overall horizontal extent of the volcanic ash is far easier to visually 

ascertain in infrared false color imagery compared to the true color image for reasons 

described earlier (Figure 7.3).  As demonstrated throughout this dissertation, the 

qualitative sensitivity of the infrared measurements also translates to quantitative 

sensitivity. 

7.1.2.2.	
  Pilot	
  Reports	
  

 On 11 August 2008, with portions of the Kasatochi cloud now dispersed over 

Canada and parts of the northern United States, numerous pilots reported seeing volcanic 

ash or brown colored haze layers (consistent with volcanic ash) that smelled of sulphur 

(consistent with the presence of SO2 and possibly H2S) above 8 km ASL [Guffanti et al. 

2010b].  Several of the pilot reports were associated with volcanic cloud sightings in 

Montana, Wyoming, and South Dakota on 11 August.  The volcanic ash cloud properties 

derived from an Aqua MODIS overpass that occurred about 10-15 hours after the pilot 

reports from Montana, Wyoming, and South Dakota are shown in Figure 7.4.  The false 

color image shows that the U.S. portion of the volcanic cloud is located further to the east 

over the Dakotas and Nebraska (geostationary satellite image sequences confirm the 
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eastward movement).  The automated algorithms described in this dissertation are able to 

detect and characterize several regions of volcanic ash that have a horizontal position that 

is consistent with the imagery.  In general, less than 0.5 g/m2 of ash (although not 

resolved by the color scale, most mass loading values are < 0.1 g/m2) with cloud top 

heights around 12 – 14 km ASL were found using the retrieval approach described in 

Chapter 5.  This result is therefore consistent with the 11 August 2008 pilot reports of 

tenuous volcanic ash layers with bases of 9 km ASL or greater.  Some portions of the 

Kasatochi cloud that are identifiable in the false color image are not detected by the 

automated algorithm (Figure 7.4), which illustrates that very low optical depth ash clouds 

are difficult to automatically detect, especially over land surfaces where uncertainties in 

the clear sky radiance calculations are greater. 

 

Figure 7.4:Volcanic ash cloud properties as derived from an Aqua MODIS overpass on August 12, 2008 at 
08:20 UTC.  A false 12-11µm, 11-8.5µm, 11µm false color image (top left), ash cloud height (top right), ash 
effective particle radius (bottom left), and ash mass loading (bottom right) are shown. 
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More detailed information about the Kasatochi volcanic cloud was ascertained 

from a 757 jet aircraft encounter over northern British Columbia on 11 August at about 

01:00 UTC [Guffanti et al 2010b].  The crew of the 757 reported seeing a yellowish 

brown aerosol layer from the flight deck while cruising at about 10 km ASL.  They also 

reported smelling sulfur.  The plane descended to about 8.5 km ASL in order to escape 

the cloud.  A subsequent inspection of the planes engines and other systems revealed no 

damage, but particles adhering to the engine cowl and air conditioning pack were found 

during the inspection process and a sample of these particles was sent to the United States 

Geological Survey (USGS) for further analysis [Guffanti et al. 2010b].  The USGS 

analysis determined that some of the collected particles were volcanic in origin and 

consistent with the composition of Kasatochi tephra deposits [Guffanti et al. 2010b].  

Thus, volcanic ash was deemed to be present in the cloud encountered by the 757. 

The traditional “split-window” technique for detecting volcanic ash was not able 

to provide any conclusive information related to the presence of volcanic ash in northern 

British Columbia near the time of the encounter.  At the time of the encounter, the British 

Columbia portion of the cloud was thought to be primarily composed of SO2.  The 

volcanic ash cloud properties derived from an Aqua MODIS overpass on 10 August 2008 

at 21:25 (about 3.5 hours prior to the 757 encounter), however, indicate that volcanic ash 

was present in the vicinity of the encounter location (Figure 7.5).  In the 3.5 hours 

between the MODIS overpass and the crew of the 757 observing the volcanic cloud, 

geostationary satellite imagery shows that sections of the cloud in British Columbia 

moved northward towards the future location of the 757.  The MODIS retrievals indicate 

that generally light amounts of ash (< 1 g/m2) with cloud top heights of 10-14 km ASL 
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are present in the general vicinity of the encounter location (Figure 7.5).  Some of the 

larger mass loading (> 1g/m2) values is likely an artifact of cirrus contaminating the 

retrieval (the cirrus are easily identifiable in the corresponding false color image).  In 

general, the MODIS based retrieval results are very consistent with the in-situ samples 

inadvertently collected by the 757. 

 

Figure 7.5: Volcanic ash cloud properties as derived from an Aqua MODIS overpass on August 10, 2008 at 
21:25 UTC.  A false 12-11µm, 11-8.5µm, 11µm false color image (top left), ash cloud height (top right), ash 
effective particle radius (bottom left), and ash mass loading (bottom right) are shown.  The approximate 
location of a 757 encounter with volcanic ash at 01:00 UTC on 11 August 2008 is denoted by the white 
square. 
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7.1.2.3.	
  Lidar	
  

The Kasatochi cloud was also observed by the University of Wisconsin High 

Spectral Resolution Lidar (HSRL), which, in 2008, was deployed on the roof of the 

Space Science and Engineering Center (SSEC) in Madison, WI USA.  The HSRL is a 

unique lidar that provides absolutely calibrated profiles of particulate backscatter cross 

section and depolarization [Eloranta 2005].  Conventional lidars measure the total 

attenuated backscatter (from molecular and particulate matter), which at any given 

location in the vertical profile is at least somewhat dependent on the full vertical profile 

of attenuating matter (molecular and particulate).  Conversely, the HSRL particulate 

backscatter measurements at a given vertical location are not compromised by attenuation 

in other parts of the vertical profile (at least up until the lidar beam is completely 

attenuated) and the small field of view of the HSRL greatly limits the effects of multiple 

scattering.  Thus, the HSRL provides exceptionally accurate measurements of the vertical 

location and optical depth of cloud and aerosol layers.  In addition, the HSRL 

depolarization ratio provides robust information on particle shape at a given location 

above the lidar.  The depolarization measurements provide information about cloud 

composition, as very low depolarization ratios are indicative of spherical particles and 

higher depolarization ratios are measured when non-spherical particles such as volcanic 

ash dominate the composition.  As of May 2014, the University of Wisconsin HSRL 

measurements have not been used in any published Kasatochi related study. 

Karagulian et al. [2010] and Krotkok et al. [2010] conclude that by 11 August 

2008 sulphate aerosol, formed from oxidation of SO2 by homogeneous gas phase 

reactions [McKeen and Liu 1984], was the dominant particulate composition in the 
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Kasatochi clouds.  Karagulian et al. [2010] were unable to unambiguously detect volcanic 

ash after 10 August 2008 using high spectral resolution infrared measurements from the 

Infrared Atmospheric Sounding Interferometer (IASI).  Krotkov et al. [2010] interpreted 

the very low depolarization measured by the spaceborne lidar, CALIOP (see Chapter 5 

for an overview of CALIOP), to be indicative of spherical sulphate aerosols dominating 

the particulate composition. As shown in Figure 7.4 and Figure 7.5, the remote sensing 

methods described in this dissertation were still able to detect volcanic ash after 10 

August 2008, which was qualitatively consistent with pilot reports and with particles 

inadvertently collected by a 757 that flew into the Kasatochi cloud.  The HSRL 

measurements are used to investigate the cloud composition problem in more detail. 

The Kasatochi cloud elements depicted in Figure 7.4, and in ultra-violet based 

SO2 products [e.g. Guffanti et al 2010b], moved eastward into southern WI along with a 

line of convection on 13 August 2008.  The properties of the overpassing Kasatochi cloud 

were subsequently measured by the HSRL between 5-6 UTC and 7-8 UTC on 13 August, 

when optically thick meteorological cloud layers did not completely attenuate the HSRL 

beam (Figure 7.6).  The HSRL shows a cloud layer between 11.5 and 12.5 km ASL that 

has a depolarization ratio of about 15-30%, which is strongly indicative of non-spherical 

volcanic ash particles being the dominant particulate component of the cloud (Figure 7.6).  

Clouds composed primarily of spherical particles will have depolarization ratios that are 

about 3% or less, whereas ice clouds typically have a depolarization ratio of 20% or 

greater in HSRL data since ice crystals are non-spherical [Burton et al. 2012].  The 

presence of volcanic ash over the Midwest U.S. on 12 August 2008, as inferred from the 
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MODIS measurements (Figure 7.4), is consistent with the HSRL observations of the 

same region of the Kasatochi cloud 24 hours later. 

The time series of HSRL measurements from August 15-31, 2008 provides 

additional insight into the evolution of the particulates in the Kasatochi cloud (Figure 7.7).  

Two primary clusters of intriguing upper troposphere to lower stratospheric (11-18 km 

ASL) clouds drifted over the HSRL during the second half of August.  The first cluster 

was observed from August 15-19 and had a depolarization ratio of about 10-30%, which 

again suggests that non-spherical particles dominated the particulate composition (Figure 

 

Figure 7.6: HSRL aerosol backscatter cross section (top) and particulate circular 
depolarization ratio (bottom) from 0-12 UTC on 13 August 2008 in Madison, WI.  
Clouds produced by the eruption of Kasatochi volcano were definitively observed by the 
HSRL above 11 km ASL between 5-6 UTC and 7-8 UTC.  The black region just after 9 
UTC indicates missing data. 
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7.7).  The appearance of the August 15-19 clouds is consistent with the location of the 

SO2 cloud on these days [Krotkov et al. 2010; Karagulian et al. 2010], leaving little doubt 

that these features are part of the Kasatochi cloud.  The second cluster of clouds was 

observed above 17 km ASL from 23 August to 1 September.  Unlike the first cloud 

cluster, the depolarization ratio is generally less than about 7%, suggesting that spherical 

particles are the more dominant particulate composition.  Thus, the particulate component 

of the Kasatochi cloud sampled by the HSRL was not dominated by spherical sulfate 

particles until the last third of August 2008.  Given that the HSRL spatial sampling is 

limited to a vertical column above a single point, it is certainly possible that the HSRL 

fortuitously sampled portions of the Kasatochi cloud that had a particulate component 

dominated by ash.  As such, the HSRL results do not necessarily conflict with the 

conclusions of Karagulian et al. [2010] and Krotkov [2010], but do provide additional 

confidence that our MODIS derived cloud properties are more sensitive to low optical 

depth ash clouds than other methods. 
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Finally, while CALIOP provides an unprecedented view of clouds, one has to 

wonder if the depolarization ratios can always be interpreted in a straightforward manner 

given the significant effects of multiple scattering, attenuation, and instrument noise.  On 

16 August 2008 and 28 August 2008 CALIOP sampled the Kasatochi volcanic cloud 

within 200 km of Madison, WI (the location of the HSRL). Figure 7.8 shows that the 

 

Figure 7.7: HSRL aerosol backscatter cross section (top) and particulate circular 
depolarization ratio (bottom) from August 15-31, 2008 in Madison, WI.  Clouds 
produced by the eruption of Kasatochi volcano were definitively observed by the HSRL 
above 11 km ASL between August 15-19 and August 22-31. 
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CALIOP depolarization ratio of the Kasatochi layer on 16 August is very small 

(consistent with spherical particles in the absence of competing effects) and 

indistinguishable from the depolarization ratio observed on 28 August.  Note that the 

CALIOP cloud layers are located at very similar altitudes (11-15 km ASL on 16 August 

and > 17 km ASL on 28 August) as the cloud layers sampled by the HSRL (Figure 7.8), 

which provides confidence that the cloud layers sampled by both instruments can be 

fairly compared.  As highlighted earlier, the difference between the HSRL depolarization 

ratios observed at those same times is significant, strongly suggestive of different 

dominant particulates.  While it is possible that the CALIOP/HSRL differences can be 

attributed to inexact spatial co-location, the difference is large and worthy of 

consideration when interpreting CALIOP depolarization ratios. 
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7.1.3. Ash Cloud Evolution 

Previous validation efforts and comparisons to independent observations of the 

Kasatochi cloud indicate that the ash detection and cloud property retrieval methods 

 

Figure 7.8:The CALIOP depolarization ratio from August 16, 2008 at 07:54-08:08 UTC 
(top) and August 28, 2008 at 08:18-08:31 UTC (bottom) is shown.  Kasatochi clouds 
within 200 km of Madison, WI were sampled by CALIOP.  In the top figure the 
Kasatochi cloud of interest is located above 11 km ASL and is centered on 41.19o 
latitude, -86.64o longitude.  In the bottom figure the Kasatochi cloud of interest is the 
sole identifiable feature above 17 km ASL.  
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described in Chapters 3-6 are well suited to analyzing the spatial and temporal evolution 

of the Kasatochi ash cloud and may provide new insights into the physical behavior of 

the cloud.  As described earlier, in an effort to maximize accuracy and facilitate 

comparisons to published results, the algorithms were applied to MODIS on-board the 

Aqua (sun synchronous) low earth orbit satellite.  The MODIS retrievals assumed the ash 

was composed of andesite, which matches the composition of the tephra deposits 

collected from Kasatochi Island [Waythomas et al. 2010].  The MODIS-derived areal 

extent, height, mass loading, and effective particle radius of the ash cloud are analyzed. 

Composite maps of the MODIS-derived ash mass loading (overlaid on 11 µm 

brightness temperature imagery) and the corresponding false color imagery were created 

using MODIS overpasses that occurred between August 8-11, 2008 (Figure 7.9 and 

Figure 7.10).  Each map represents one of the two orbital nodes on a given day 

(descending overnight node or ascending afternoon node).  The image sequence 

demonstrates that the horizontal location of ash, determined using the Spectrally 

Enhanced Cloud Objects (SECO) approach described in Chapter 4 and Chapter 6, is very 

consistent with the false color imagery.  As shown in Chapter 6, the lack of obvious false 

alarms and the high detection rate of the SECO approach are very unique. 

The overall spatial area of the cloud was found to increase significantly with time 

while the mass loading decreased considerably.  The area of the ash cloud is comparable 

to the SO2 cloud that was detected by ultra-violet satellite measurements [Krotkov et al. 

2010], which differs from published accounts of a much smaller detectable ash cloud 

(using variants of the traditional “split-window” approach) compared to the SO2 cloud 

[e.g. Guffanti et al. 2010b].  The dispersal pattern of the cloud was strongly influenced by 
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a mid-latitude cyclone over the North Pacific.  From August 8-9, 2008, the Kasatochi 

cloud moved slowly to the southeast while rotating counter-clockwise in the response to 

the developing mid-latitude cyclone (the counter-clockwise rotation is readily apparent in 

geostationary satellite movies).  On August 10-11, 2008, a large portion of the ash cloud 

wrapped around the center of the cyclone as the spatial lag between the upper level 

cyclonic circulation to the west and the near surface cyclonic circulation to the east 

decreased as the cyclone matured.  Parts of the ash cloud to the north of the primary 

cloud shield, associated with the mid-latitude cyclone, were advected towards the 

northeast and subsequently formed an elongated north/south band in response to upper 

tropospheric/lower stratospheric wind shear. 

The composite maps of the retrieved ash cloud height (Figure 7.11 and Figure 

7.12) indicate that the highest layer of ash was generally located in the upper troposphere 

to lower stratosphere (10-16 km ASL).  Areas of lower ash layers were generally only 

observed towards the outer fringes of the cloud prior to 10 August.  The location of the 

lower cloud heights was also well correlated with the red colors in the false color imagery.  

As discussed in Chapter 4, areas of volcanic ash that are horizontally co-located with SO2 

will appear yellow in 12-11µm, 11-8.5µm, 11µm false color imagery while ash that is not 

co-located with SO2 will appear red.  The areas of mid-troposphere volcanic ash 

decreased rapidly in time, likely in response to being removed from the atmosphere by 

some combination of gravitational sedimentation, wet deposition, and dry deposition [e.g. 

Langmann et al. 2010].  The impacts of the volcanic ash on the mid-latitude cyclone or 

other weather systems, primarily via cloud microphysical effects [e.g. Campbell et al. 

2012], are unfortunately not easily ascertained from any single data set.  However, the 
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combination of the MODIS data set, other data sets, and modeling may eventually be able 

to address questions related to weather modification via volcanic clouds. 
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Figure 7.9:Composite maps of 12-11µm, 11-8.5 µm, 11 µm false color imagery (left column) and volcanic 
ash mas loading (right column) from three different Aqua MODIS overpasses.  The 8 August 2008 AM 
overpasses (top), 8 August 2008 PM overpasses (middle), and 9 August AM overpasses (bottom) are shown.  
The ash mass loading is overlaid on 11 µm brightness temperature imagery. 
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Figure 7.10: Composite maps of 12-11µm, 11-8.5 µm, 11 µm false color imagery (left column) and volcanic 
ash mas loading (right column) from three different Aqua MODIS overpasses.  The 9 August 2008 PM 
overpasses (top), 10 August 2008 AM overpasses (middle), and 11 August AM overpasses (bottom) are 
shown.  The ash mass loading is overlaid on 11 µm brightness temperature imagery. 

  



 227 

 

Figure 7.11:Same as Figure 7.9 except the retrieved ash cloud height is shown in the 
right column. 
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Figure 7.12: Same as Figure 7.10 except the retrieved ash cloud height is shown in the 
right column. 
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The total mass and area of volcanic ash were computed as a function of time 

(Figure 7.13).  The total mass was determined simply by multiplying the mass loading 

(mass per unit area) in a given pixel by the pixel area and summing the result for all 

pixels deemed to contain volcanic ash.  In Chapter 5, the mass loading retrieval was 

shown to be largely unbiased.  As such, the total mass estimates should also be generally 

unbiased given the 

demonstrated skill of the 

SECO ash detection 

approach.  The total mass 

is expressed in terra 

grams (Tg), the total area 

in km2, and time in hours 

since the start of the third 

explosive event at ~04:40 

UTC on 8 August 2008 

[Waythomas et al. 2010].  

The total ash (black line 

in Figure 7.13) mass 

rapidly decreases with 

time from ~1.0 Tg to 0.38 Tg in the first 60 hours after the start of the third explosive 

event, while the total ash cloud area (red line in Figure 7.13) increases approximately 

exponentially to ~80,000 km2 (roughly the size of Texas and Louisiana combined) 80 

hours after the eruption.  The maximum total mass estimate of ~1 Tg is likely an 

 

Figure 7.13:The total mass and area of airborne volcanic 
ash are shown as a function of the time since the third and 
final explosive event observed during the August 7-8, 2008 
eruption of Kasatochi volcano.  The total mass estimated 
using the methods described in this dissertation (black), the 
total mass reported by Corradini et al. [2010] (green), the 
total mass reported by Prata et al. [2010] (blue), and the 
total ash cloud area (red) are shown. 
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underestimate as the ability to retrieve cloud optical depths greater than 5 with infrared 

measurements is quite limited.  From 20 hours onwards (the second point on the black 

line in Figure 7.13), optical depth saturation is no longer an issue (e.g. Figure 7.9), 

therefore the total mass estimates are likely more accurate.  Waythomas et al. [2010] 

utilized observations of tephra deposits to estimate that the bulk volume of erupted 

products was 0.15-0.28 km3 (0.15 km3 is a conservative lower bound so the actual 

volume is unlikely to be smaller).  Using a particle density of 2.6 g/cm3 [Neal et al. 1994] 

yields a total erupted mass of 390 – 728 Tg.  The significant difference between the total 

mass estimated from fall deposits and the total mass extrapolated from the MODIS 

estimates can largely be attributed to large pyroclasts (larger than 1 mm) that quickly fall 

out of the eruptive column within the first 30 minutes [Rose 1993].  The saturation of the 

cloud optical depth information also certainly contributes.  Nevertheless, it appears that 

the total eruptive mass derived from Waythomas et al. [2010] decreased by almost three 

orders of magnitude in the first 24 hours, as inferred from the MODIS estimates at ~20 

hours after the third explosive event. 

The initial mass of SO2 in the Kasatochi cloud was estimated to be 2.2 Tg 

[Krotkov et al. 2010].  If the total ash mass estimate at 9 hours after the third explosive 

event  (first point on black line in Figure 7.13) is representative of the initial mass of fine-

grained ash (Mastin et al. [2009] define fine ash as particles with a diameter < 63 µm) 

and the total mass estimate at that time is underestimated due to cloud optical depth 

saturation, then the total mass of fine ash is possibly comparable to the total mass of SO2.  

Further, the mass fraction of the initial mass that is composed of fine-grained ash is 

approximated as 100/102≈0.01.  The fraction of the total mass associated with fine-
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grained ash is an extremely important parameter for dispersion models [e.g. Mastin et al. 

2009] and the order of magnitude estimate presented here represents the first attempt to 

obtain this information for the 2008 Kasatochi eruption.  Without a reasonable estimate 

of fine ash fraction, models can greatly over-estimate the atmospheric ash content.  For 

instance, the total Kasatochi ash mass simulated by Langmann et al. [2010], using a 

three-dimensional atmospheric chemistry-aerosol model, is consistently three orders of 

magnitude larger than our MODIS-based results out to 80 hours after the third explosive 

event.  Langmann et al. [2010] assumed that 95% of the 600 Tg of pyroclasts released by 

the eruption in their experiment had a diameter of 1 - 16 µm, resulting in a very large fine 

ash fraction that is not supported by satellite observations. 

Prata et al. [2010] and Corradini et al. [2010] also estimated the total mass of ash 

(blue and green lines, respectively, in Figure 7.13) in the Kasatochi cloud.  Prata et al. 

[2010] (hereafter Prata10) utilized infrared measurements from AIRS to compute the 

total mass of ash in the 3 days following the third explosive event.  Corradini et al. [2010] 

(hereafter Corradini10) provided MODIS-based (only infrared channels were used) 

estimates of total mass out to 30 hours after the third explosive event.  The Prata10 and 

Corradini10 ash detection and ash cloud property retrieval approaches differ from the 

algorithms presented in Chapters 3-6.  For instance, in the ash retrieval, the surface 

temperature and cloud temperature are assumed to be spatially uniform and background 

atmospheric water vapor is accounted for empirically by Prata10 and Corrandini10.  In 

addition, the ash detection methods utilized by Prata10 and Corradini10 are most 

effective when a robust “split-window” brightness temperature difference is present.  The 
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ash detection approach described in Chapters 4 and 6 does not rely on the presence of a 

robust “split-window” signal.   

The Prata10 and Corradini10 total mass time series’ differ considerably from the 

time series derived using the methods described in Chapters 3-6 (hereafter referred to as 

the SECO method).  The maximum total mass from Prata10 (0.31 Tg) never exceeds the 

minimum total mass derived using the SECO method (0.38 Tg).  While the Corradini10 

total mass estimates are always greater than the corresponding Prata10 estimates; they are 

always less than the SECO derived values.  Further, the total mass of ash does not always 

decrease with time in the Prata10 and Corradini10 results as one would expect given that 

the ash producing eruptive event (the source of ash) ended ~15 hours after the start of the 

third explosive event [Waythomas et al 2010].  Closer examination of the spatial pattern 

of the Prata10 and Corradini10 ash mass loading for a given Aqua overpass reveals that 

the remote sensing techniques utilized by Prata10 and Corradini10, at times, significantly 

underestimates the areal extent of the ash cloud as readily inferred from visual analysis of 

the corresponding satellite imagery (see Figures 7-8 in Prata10 and Figure 5 in 

Corradini10).  The underestimation of the ash cloud area, and hence the total mass, is 

largely due to well-understood limitations of their ash detection methods.  These 

limitations often prevent optically thick ash and well dispersed optically thin ash from 

being detected.  Prata10 and Corradini10 acknowledge that limitations in the ash 

detection approaches that they employee result in an underestimation of the ash cloud 

area and total mass.  Visual inspection of Figures 7-8 in Prata10 and Figure 5 in 

Corradini10 also reveals some significant differences in the retrieved mass loadings when 

all three methods perform the retrieval.  The nature of these differences cannot be 
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explored without a detailed pixel-by-pixel inter-comparison conducted in a collaborative 

manner, which is not currently possible.  The swath width of the AIRS instrument 

utilized by Prata10, which is 680 km smaller than the MODIS swath width, may also 

partially explain why the Prata10 

estimates are so much lower. 

Additional statistical properties of 

the ash cloud were analyzed with respect 

to time after the start of the third 

explosive event (Figure 7.14).  The 25th, 

50th, and 75th percentiles of the ash mass 

loading (Figure 7.14, top), effective 

particle radius (Figure 7.14, middle), and 

cloud top height (Figure 7.14, bottom) 

were analyzed.  The 25th, 50th, and 75th 

percentiles of mass loading and effective 

radius generally decrease with time, 

consistent with ash removal (Figure 7.14, 

top and middle).  The interquartile range 

of ash cloud top height generally 

decreases with time, indicative of removal 

of lower and middle tropospheric ash 

(Figure 7.14, bottom).  After 55 hours, the 

total ash mass is essentially constant at 

 

Figure 7.14:The 25th (red), 50th (black), and 75th (blue) 
percentiles of ash mass loading (top), effective particle 
radius (middle), and cloud top height (bottom) are shown as 
a function of time since the start of the third explosive event 
from the 2008 Eruption of Kasatochi.  The interquartile 
range of cloud top height (brown) is also shown in the 
bottom panel.  



 234 

~0.38 Tg (Figure 7.13).  Further, nearly all of the detected ash is near or above the 

tropopause (Figure 7.14, bottom) and the median ash effective radius is indicative of a 

cloud dominated by smaller particles (Figure 7.14, middle).  One would not expect the 

total ash mass to decrease significantly if much of the remaining ash is dominated by 

smaller particles located in the stratosphere (above most of the weather), as the terminal 

settling velocity of ash particles with a diameter of 15 µm or less is only of the order 10-1 

to 10-3 m/s [Rose and Durant 2011]. 

7.1.4. Summary 

When applied to the 2008 Kasatochi volcanic ash cloud, the new satellite remote 

methods presented in this dissertation produce results that are consistent with 

independent observations, imagery, and physical expectations.  The new remote sensing 

methods address some of the long-standing limitations of traditionally used methods and, 

as such, have a significant impact on the inferred ash cloud properties.  The ash cloud 

area and total mass of ash were found to be significantly larger than reported in earlier 

studies of the Kasatochi eruption.  The larger detected area and mass is mainly a result of 

improved ash detection at large (> 5) and small (< 0.1) optical depths, where traditional 

approaches most often fail [e.g. Pavolonis et al. 2006].  Further, previous studies 

concluded that sulphate particles were the dominant particulate constituent of the 

Kasatochi cloud within three days of the last explosive event [Krotkov et al. 2010; 

Karagulian et al. 2010; Prata et al. 2010].  The results derived using the new satellite 

remote sensing methods and independent ground-based lidar measurements are more 

consistent with ash being the dominant particulate composition out to about 7 days after 

the last explosive event.  The new remote sensing methods were also used to derive an 
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estimate of fine ash fraction for the Kasatochi eruption.  The satellite-derived fine ash 

fraction of ~0.01 was much smaller than what has been used to model the Kasatochi ash 

cloud [Langmann et al. 2010], which likely explains why the modeled total mass of ash 

and ash cloud area greatly exceeds the satellite estimates.  This underscores the 

importance of observations to better constrain model parameters. 

7.2.  Excursion: Analysis of Ash Cloud Geometric Thickness 

Prior to the availability of CALIOP measurements (see Chapter 5), information on 

the vertical extent (e.g. geometric thickness) of dispersed ash clouds was simply not 

available.  Thus, CALIOP has provided the first opportunity to characterize ash cloud 

geometric thickness to a meaningful extent.  Figure 7.15 shows the CALIOP-derived 

distribution of geometric ash cloud thickness for observations of ash cloud from the 2010 

eruption of Eyjafjallajökull and observations of additional ash clouds produced by a 

variety of eruptions including Cordon Caulle (2011), Grimsvotn (2011), Kasatochi (2008), 

Okmok (2008), Soufriere Hills (2010), and Redoubt (2009).  The Eyjafjallajökull 

distribution (Figure 7.15, top) indicates that 75% of the ash layers sampled by CALIOP 

are less than 1 km thick.  Similarly, the distribution from the other volcanic events 

indicates that 73% of ash layers sampled are less than 1 km thick (Figure 7.15, bottom).  

The majority of the ash layers sampled were well dispersed from the volcano.  These 

results show that the majority of dispersed ash clouds have a geometric thickness that 

most forecast models would be unable to resolve.  Thus, current dispersion model 

forecasts might be prone to over-estimating the vertical extent of dispersed ash clouds, 

which has very important implications for aviation. 



 236 

 

 

Figure 7.15: The CALIOP-derived distribution of geometric ash cloud thickness is shown 
for Eyjafjallajökull observations (top) and observations of additional ash clouds 
produced by a variety of eruptions including Cordon Caulle (2011), Grimsvotn (2011), 
Kasatochi (2008), Okmok (2008), Soufriere Hills (2010), and Redoubt (2009) (bottom).  
The distribution shown in the top panel indicates that 75% of the ash layers sampled by 
CALIOP are less than 1 km thick.  Similarly, the bottom panel distribution indicates that 
73% of ash layers sampled are less than 1 km thick.  The majority of the ash layers 
sampled were well dispersed from the volcano. 
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Chapter 8 

8. Summary and Conclusions 

The five objectives of this research, described in Chapter 2, were accomplished.  

An alternative data space that increases the sensitivity of space-based infrared 

measurements to cloud microphysics was developed.  Traditionally, infrared brightness 

temperatures (BTs) and brightness temperature differences (BTDs) have been used to 

infer cloud composition from satellites.  It was shown that BTDs are fundamentally 

limited and that a more physically based infrared approach can lead to significant 

increases in sensitivity to cloud microphysics, especially for optically thin clouds.  In lieu 

of BTDs, a derived radiative parameter, β, which is directly related to particle size, habit, 

and composition, is utilized.  This is the first study to explore the use of β for inferring 

cloud composition in the total absence of cloud vertical boundary information.  The 

results showed that even in the absence of cloud vertical boundary information, one could 

significantly increase the sensitivity to cloud microphysics by converting the measured 

radiances to effective emissivity and constructing effective absorption optical depth ratios 

from a pair of spectral emissivities in the 8 – 12 µm “window.”  The increase in 

sensitivity to cloud microphysics is relative to brightness temperature differences (BTDs) 

constructed from the same spectral pairs.  A paper describing this component of the 

research has been published Pavolonis [2010]. 

Multispectral satellite measurements were used to estimate the probability that a 

given satellite pixel contains volcanic ash and quantitatively show that the probabilities 

provide a more robust framework for distinguishing volcanic ash from all other features, 

relative to the traditional “split-window” approach.  More specifically, a naïve Bayesian 
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approach was developed to take advantage of the volcanic ash relevant cloud composition 

information that the β-ratios derived in Chapter 3 provide.  Various empirically derived 

multivariate classifiers were constructed by coupling β-ratios, computed from the 

radiance measured at approximately 11 and 12 µm, with visible and near infrared 

measurements or β-ratios that are computed using other spectral channel pairs in the 

infrared.  Several case studies showed that the naïve Bayesian approach is quite skillful 

even when subsets of the allowable spectral channels are utilized.  In each of those cases, 

the statistical skill of the Bayesian approach was shown to greatly exceed the traditional 

“split-window” method used to detect volcanic ash. 

An algorithm that utilizes infrared satellite measurements to retrieve ash cloud 

height, mass loading, and effective particle radius was developed.  The fully automated 

algorithm directly retrieves the cloud radiative temperature, emissivity, and a 

microphysical parameter.  From these retrieved parameters, the cloud radiative height, 

effective particle radius, optical depth, and mass loading can be derived, subject to certain 

assumptions.  An optimal estimation framework is utilized, which allows uncertainties in 

the measurements and forward model to be taken into account and uncertainty estimates 

for each of the retrieved parameters to be determined.  Background atmospheric water 

vapor, surface temperature, and surface emissivity are explicitly accounted for on a pixel-

by-pixel basis, so the algorithm is globally applicable.  In addition, the retrieval algorithm 

is unique because it allows the cloud temperature to be a free parameter.  The retrieval 

algorithm is demonstrated using the Spinning Enhanced Visible and Infrared Imager 

(SEVIRI).  Ash clouds from the 2010 eruption of Eyjafjallajökull in Iceland and the 2010 

eruption of Soufriere Hills in the eastern Caribbean were analyzed, and the accuracy of 
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the retrieval was evaluated using spaceborne lidar measurements.  The validation analysis 

shows that the retrieved ash cloud height, emissivity, and effective particle radius 

generally agrees well with lidar measurements, especially when andesite rock is used to 

model the cloud microphysics.  The ash cloud property retrieval algorithm, which is also 

described in Pavolonis et al. [2013], will serve as the operational algorithm for the next 

generation of Geostationary Operational Environmental Satellites (GOES-R). 

Building upon previous results, the Spectrally Enhanced Cloud Objects (SECO) 

volcanic ash detection algorithm was developed.  The SECO algorithm combines 

radiative transfer theory, Bayesian methods, and image processing/computer vision 

concepts to identify volcanic ash clouds in satellite data with skill that is generally 

comparable to a human expert, especially with respect to false alarm rate.  The volcanic 

ash probability determined using the naïve Bayesian approach, in combination with 

results from the ash cloud property retrieval algorithm, is used to identify satellite pixels 

that might contain volcanic ash.  All pixels that potentially contain volcanic ash are 

sorted into cloud objects.  A cloud object is a collection of spatially connected satellite 

pixels that meet a specified set of criteria.  An ash/no ash classification is then assigned 

on a cloud object basis.  The majority of volcanic ash clouds are composed of a small 

subset of pixels that are spectrally unique (e.g., very unlikely to be associated with any 

other feature) and a larger subset of pixels that, to varying degrees, are spectrally non-

unique (e.g., can sometimes be associated with other features).  In essence, a cloud object 

is assigned to the volcanic ash class if the object contains a specified number of pixels 

that exhibit a spectral signature that is unambiguously associated with volcanic ash or 

dust (volcanic ash and dust exhibit very similar spectral signatures in weather satellite 
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data).  The resulting pixel level ash/no ash classification is used to screen out any ash 

cloud property retrievals that were performed outside of volcanic ash or dust clouds.  The 

SECO method is globally applicable and can be applied to virtually any low earth orbit or 

geostationary satellite sensor.  Further, the SECO approach was quantitatively proven to 

be more skillful than pixel based approaches, including the commonly used “split-

window” technique.  More specifically, the SECO method has a much higher probability 

of detection than the traditional “split-window” method while maintaining a near zero 

false alarm rate.  The performance of the SECO approach is extremely promising and 

well suited to a variety of new and improved applications.  

The SECO algorithm was applied to MODIS and the spatial and temporal 

evolution of the ash clouds produced by the 2008 eruption of Kasatochi volcano in 

Alaska was analyzed.  The SECO results were found to be consistent with independent 

observations (lidar, true color imagery, and pilot reports),  imagery, and physical 

expectations (e.g. area of stratospheric ash cloud should increase with time, total mass of 

ash should decrease with time after the end of the eruption).  The SECO algorithm 

addresses some of the long-standing limitations of traditionally used methods and, as 

such, has a significant impact on the inferred ash cloud properties.  The ash cloud area 

and total mass of ash were found to be significantly larger than reported in earlier studies 

of the Kasatochi eruption [Corradini et al. 2010; Prata et al. 2010].  Further, previous 

studies concluded that sulphate particles were the dominant particulate constituent of the 

Kasatochi cloud within three days of the last explosive event [Krotkov et al. 2010; 

Karagulian et al. 2010; Prata et al. 2010].  The results derived using the SECO algorithm 

and independent ground-based lidar measurements are more consistent with ash being the 
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dominant particulate composition out to about 7 days after the last explosive event.  The 

SECO algorithm was also used to derive an estimate of fine ash fraction for the Kasatochi 

eruption.  The satellite-derived fine ash fraction of ~0.01 was much smaller than what has 

been used to model the Kasatochi ash cloud [Langmann et al. 2010], which likely 

explains why the modeled total mass of ash and ash cloud area greatly exceeds the 

satellite estimates.  This underscores the importance of observations to better constrain 

model parameters. 

This study has resulted in the development of a promising new theoretical 

framework for retrieving volcanic ash cloud properties from satellite measurements.  

Several components of the research can be generalized and applied to other problems 

such as dust cloud monitoring, SO2 detection/tracking, and cloud thermodynamic phase 

determination.  The new framework is well suited for advanced applications such as 

automated volcanic ash cloud alerting and constraining Eulerian and Lagrangian model 

forecasts of volcanic ash dispersion and removal.  In fact, the SECO algorithm has 

already been used to develop an automated volcanic ash-alerting tool.  Since May of 

2013, the alerting tool has detected several eruptions that otherwise went undetected.  By 

mid 2014 all Volcanic Ash Advisory Centers will have a subscription to the alerts.  The 

SECO derived products have also been used in model validation studies [Bursik et al. 

2012; Denlinger et al. 2012; Schmehl et al. 2012], but much more work is needed to 

couple observations with models. 

While the SECO algorithm software was designed to allow satellite data from 

multiple times to be used when constructing and classifying cloud objects, this capability 

has yet to be explored in any detail.  SECO algorithm results from previous image times 
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can be used to provide prior knowledge on the likely spatial locations of volcanic ash, 

allowing for improved ash detection at the lowest detectable optical depths and in very 

complex scenes.  Ash cloud properties from previous times can also serve as a first guess 

in the optimal estimation procedure.  In addition, time trends in cloud vertical growth [e.g. 

Cintineo et al. 2014] may offer a means to detect clouds that contain volcanic ash, but 

cannot be detected using spectral methods due to a combination cloud optical depth 

saturation and the presence of ice.  The temporal evolution of cloud properties during an 

eruption may also allow the mass eruption rate to be determined in a fully automated 

objective manner [Puget et al. 2013].  Mass eruption rate is a critical input for dispersion 

models and current techniques to estimate mass eruption rate are based on very simple 

empirical relationships that are prone to large errors [Mastin et al. 2009]. 

Detailed comparisons to other remote sensing approaches are also an important 

next step.  Given the complexity of satellite remote sensing algorithms, inter-comparison 

work must be done collaboratively through sharing of data sets and algorithm software.  

Fortunately, with support from the World Meteorological Organization (WMO), a 

volcanic ash algorithm inter-comparison and validation workshop will be held in October 

2014.  The SECO algorithms will be part of the inter-comparison activity.  The inter-

comparison activity will allow the volcanic ash remote sensing community to better 

characterize errors in detection and retrieval methodologies and further develop best 

scientific practices. 

As stated in Chapter 2, the primary motivation of this research was to reduce the 

probability of catastrophic aircraft encounters with clouds that contain volcanic ash and 

enhance the economic resilience to aviation disruptions caused by volcanic eruptions.  
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The improved ash detection algorithm has led to the development of an automated 

volcanic ash-alerting tool that has helped increase the timeliness of volcanic ash 

advisories to aviation users.  In addition, a more accurate characterization of dispersed 

ash clouds has been achieved, allowing aviation interests to better plan for volcanic ash 

related disruptions to normal operations.  Nevertheless, much more work lies ahead, but 

with a variety of in-situ, remote sensing, and modeling efforts now well aligned and 

internationally coordinated, the future of volcanic cloud research is bright and full of 

possibilities.  
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Appendix A: Derivation of the all-sky infrared radiative transfer equation 

For upwelling infrared radiation, the surface reflectance term is generally quite 

small (Zhang and Menzel [2002]) and molecular scattering is negligible, so the top of 

atmosphere clear sky radiance, Rclr(λ), can be expressed as 

 Rclr(!) = " sfc(!)B(!,Tsfc)tatmos(!)+ Ratmos(!) . [ A.1] 

In Equation [ A.1], λ is the wavelength, εsfc(λ) is the surface emissivity, B is the Planck 

Function, Tsfc is the surface temperature, tatmos(λ) is the surface to top-of-atmosphere 

transmittance, and Ratmos(λ) is the integrated atmospheric radiance that is transmitted to 

the top of the atmosphere.  Equation [ A.1] can be re-written as 

 Rclr(!) = " sfc(!)B(!,Tsfc)tbc(!)tac(!)+ Rbc(!)tac(!)+ Rac(!) . [ A.2] 

In Equation [ A.2] the total column upwelling atmospheric transmittance (tatmos) and 

radiance (Ratmos) terms are simply decomposed into “below cloud (bc)” and “above cloud 

(ac)” layers, which will aid in the simplification of the cloudy infrared radiative transfer 

equation. 

Assuming, a fully cloudy field of view, a non-scattering atmosphere (no 

molecular scattering), and a negligible contribution from downwelling cloud emission or 

molecular emission that is reflected by the surface and transmitted to the top of 

troposphere (Zhang and Menzel [2002] showed that this term is very small at infrared 

wavelengths), the upwelling all-sky radiative transfer equation for a given infrared 

channel or wavelength can be written as in Equation [ A.3]. 

 Robs(!) = [1!"eff (!)][" sfc(!)B(Tsfc)tbc(!)tac(!)+ Rbc(!)tac(!)]+"eff (!)B(!,Teff )tac(!)+ Rac(!)  [ A.3] 
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In Equation [ A.3], Robs is the observed radiance, εeff(λ) is the effective cloud emissivity, 

and Teff is the effective cloud temperature.  All other terms were previously defined. 

Equation [ A.2] can be used to re-write Equation [ A.3] as follows. 

 Robs(!) = [1!"eff (!)][Rclr(!)! Rac(!)]+"eff (!)B(!,Teff )tac(!)+ Rac(!)  [ A.4] 

Finally, Equation [ A.4] is algebraically manipulated as shown in Equation [ A.5] below. 

 Robs(!) = "eff (!)Rac(!)+ tac(!)"eff (!)B(!,Teff )+ Rclr(!)(1!"eff (!))  [ A.5] 

Equation [ A.5] is the form of the all-sky form of the infrared radiative transfer equation 

used throughout this dissertation.  This is the same form of the all-sky radiative transfer 

equation used in Heidinger and Pavolonis [2009].  
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Appendix B: Derivation of analytical of Jacobians listed in Table 3.1 

The infrared radiative transfer equation can be expressed as 

 Robs(!) = "eff (!)Rac(!)+ tac(!)"eff (!)B(!,Teff )+ Rclr(!)(1!"eff (!)) . [ B.1] 

In the above equation, λ is wavelength, Robs(λ) is the observed radiance, Rclr(λ) is the 

clear sky radiance.  Rac(λ) and tac(λ) are the above cloud upwelling atmospheric radiance 

and transmittance, respectively.  B is the Planck Function, Teff is the effective cloud 

temperature, and ε is the cloud emissivity.  In the infrared, the surface reflectance term is 

generally quite small so the clear sky radiance, Rclr(λ), can be expressed as 

 Rclr(!) = " sfc(!)B(!,Tsfc)tatmos(!)+ Ratmos(!) . [ B.2] 

In Equation [ B.2], εsfc(λ) is the surface emissivity, Tsfc is the surface temperature, 

tatmos(λ) is the surface to top-of-atmosphere transmittance, and Ratmos(λ) is the integrated 

atmospheric radiance that is transmitted to the top of the atmosphere which can be 

approximated by Equation [ B.3]. 

 Ratmos(!) ! Ratmos ! 1(!)+B(!,Tavg)[tatmos ! 1(!)! tatmos(!)]  [ B.3] 

In Equation [ B.3], Ratmos-1(λ) is the integrated atmospheric radiance that excludes the 

lowest (e.g. near the surface) atmospheric layer, B(λ,Tavg) is the blackbody radiance 

based on the average temperature of the lowest atmospheric layer, and tatmos-1 is the 

transmittance of the atmosphere excluding the lowest layer.  This expression is needed 

when evaluating radiometric sensitivity to atmospheric transmittance. 

Equation [ B.1] can be re-arranged and solved for cloud emissivity, as shown 

below. 
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!eff (") = Robs(")! Rclr(")

Rcld(")! Rclr(")  

[ B.4] 

In [ B.4], a new variable, Rcld is defined for notational convenience. 

 Rcld(!) = Rac(!)+B(!,Teff )tac(!)  [ B.5] 

In this sensitivity analysis, it is assumed that the effective cloud temperature, Teff, 

is equal to the tropopause temperature (Ttropo).  As such, the effective absorption cloud 

optical depth ratio using the top of troposphere assumption, βtot(λN,λD), is defined by: 

 
! tot(!N,!D) = ln[1!! tot(!N)]

ln[1!! tot(!D)]  

[ B.6] 

The cloud emissivity calculated assuming Teff = Ttropo is given by εtot.  In addition, λN and 

λD represent the wavelength used in the numerator and denominator of Equation B6, 

respectively.  For the same given pair of wavelengths, λN and λD, a brightness 

temperature difference (BTD) can be defined such that 

 

! 

BTD("N,"D) = BT("D) # BT("N) = B#1["D,Robs("D)]# B#1["N,Robs("N)] [ B.7] 

In [ B.7], BT is the brightness temperature at a given wavelength, which is determined by 

applying the inverse of the Planck Function (B-1) to the radiance, Robs. 

The spectral variation in the total clear sky atmospheric transmittance 

(βatmos(λN,λD)) and surface emissivity (βsfc(λN,λD)) can be captured with expressions of 

the same form as the ratio of effective absorption cloud optical depth. 

 
! atmos("N,"D) = ln[tatmos("N)]

ln[tatmos("D)]  

[ B.8] 
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! 

"sfc(#N,#D) =
ln[1$%sfc(#N)]
ln[1$%sfc(#D)]  

[ B.9] 

We now define some common partial derivatives using Equations [ B.1] – [ B.9].  

All of the symbols used in the following equations have been previously defined, with the 

exception of ∂B(λ)/∂T, which is simply the derivative of the Planck Function with respect 

to temperature. 

 !" tot(!N,!D)
!" tot(!N)

=
!1

ln[1.0!! tot(!D)][1!! tot(!N)]  

[ B.10] 

 

 !" tot(!N,!D)
!" tot(!D)

=
ln[1.0!! tot(!N)]

ln[1.0!! tot(!D)]2[1!! tot(!D)]  

[ B.11] 

 

 !" tot(!N)
!Robs(!N)

=
!" tot(!D)
!Robs(!D)

=
1

Rcld(!)! Rclr(!)  

[ B.12] 

 

 !" tot(!N)
!Rclr(!N)

=
!" tot(!D)
!Rclr(!D)

=
!cld(!)[Rcld(!)! Rclr(!)]
[Rcld _ tot(!)! Rclr(!)]2

!
"cld(!)

Rcld _ tot(!)! Rclr(!)  

[ B.13] 

In deriving Equation [ B.13], it is important to remember to include the 

dependence of Robs(λ) on Rclr(λ) (see Equations [ B.1] and [ B.4]). 

 

! 

"Robs(#N)
"$(#N,#D)

= ln[1%&cld(#D)][1%&cld(#D)]$ (#N ,#D )[Rclr(#N) % Rcld(#N)]
 

[ B.14] 
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! 

"Robs(#N)
"$cld(#D)

= %(#N,#D)[1&$cld(#D)](% (#N ,#D )&1)[Rcld(#N) & Rclr(#N)]
 

[ B.15] 

 

 

! 

"Robs(#D)
"$cld(#D)

= Rcld(#D) % Rclr(#D)
 

[ B.16]
 

 

 

! 

"Robs(#N)
"Rclr(#N)

=
"Robs(#D)
"Rclr(#D)

=1$%cld(#)
 

[ B.17] 

 

 !Rclr(!N)
!Tsfc

=
!Rclr(!D)
!Tsfc

= ! sfc(!)tatmos(!) "B(!)
"Tsfc

!

"
#

$

%
&
'1

 

[ B.18] 

 

 !Robs(!N)
!Teff

=
!Robs(!D)
!Teff

= !cld(!)tac(!) "B(!)
"Teff

!

"
#

$

%
&
'1

 

[ B.19] 

 

 !Rclr(!N)
!" sfc(!D)

= ! sfc(!N,!D)[1!! sfc(!D)](!sfc(!N,!D)!1) tatmos(!N)B(!N,Tsfc)
 

[ B.20] 

 

 !Rclr(!D)
!" sfc(!D)

= tatmos(!D)B(!D,Tsfc)
 

[ B.21] 
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 !Rclr(!N)
!" sfc(!N,!D)

= ! ln[1!! sfc(!D)][1!! sfc(!D)]!sfc(!N,!D) tatmos(!N)B(!N,Tsfc)
 

[ B.22] 

 

 !Rclr(!N)
!tatmos(!D)

= ! atmos(!N,!D)[tatmos(!D)](!atmos(!N,!D)!1)[! sfc(!N)B(!N,Tsfc)!B(!N,Tavg)]
 

[ B.23] 

 

 !Rclr(!D)
!tatmos(!D)

= ! sfc(!D)B(!D,Tsfc)!B(!D,Tavg)
 

[ B.24] 

 

 !Rclr(!N)
!" atmos(!N,!D)

= ln[tatmos(!D)][tatmos(!D)]!atmos(!N,!D)[B(!N,Tsfc)!B(!N,Tavg)]
 

[ B.25] 

Equations [ B.10] – [ B.25] are used to derive analytical expressions for all of the 

partial derivatives listed in Table 3.1 via application of the Chain Rule of calculus.  For 

clarity, these expressions include the equation number of each previously defined 

derivative used, but be aware that the wavelength dependence is not shown in tandem 

with the equation number. 

Derivatives with respect to cloud microphysics 

 

! 

"BTD(#N,#D)
"$(#N,#D)

= %
"Robs(#N)
"$(#N,#D)

"B(#N)
"T

& 

' 
( 

) 

* 
+ 
%1

 

= ![B.14] !B(!N)
!T

"

#
$

%

&
'
!1

 

[ B.26] 

 !" tot(!N,!D)
!"(#N,!D)

=
!" tot(!N,!D)
!" tot(!N)

!" tot(!N)
!Robs(!N)

!Robs(!N)
!"(#N,!D)  

[ B.27] 
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= [B.10][B.12][B.14]  

Derivatives with respect to the effective cloud temperature 

 

! 

"BTD(#N,#D)
"Teff

=
"Robs(#D)
"Teff

"B(#D)
"T

$ 

% 
& 

' 

( 
) 
*1

*
"Robs(#N)
"Teff

"B(#N)
"T

$ 

% 
& 

' 

( 
) 
*1

 

= [B.19] !B(!D)
!T

!

"
#

$

%
&
'1

'[B.19] !B(!N)
!T

!

"
#

$

%
&
'1

 

[ B.28] 

 !" tot(#N,#D)
!Teff

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Robs(#N)

!Robs(#N)
!Teff

+
!" tot(#N,#D)
!$ tot(#D)

!$ tot(#D)
!Robs(#D)

!Robs(#D)
!Teff  

= [B.10][B.12][B.19]+[B.11][B.12][B.19]  

[ B.29] 

Derivatives with respect to cloud emissivity 

 

! 

"BTD(#N,#D)
"$cld(#D)

=
"Robs(#D)
"$cld(#D)

"B(#D)
"T

% 

& 
' 

( 

) 
* 
+1

+
"Robs(#N)
"$cld(#D)

"B(#N)
"T

% 

& 
' 

( 

) 
* 
+1

 

= [B.16] !B(!D)
!T

!

"
#

$

%
&
'1

'[B.15] !B(!N)
!T

!

"
#

$

%
&
'1

 

[ B.30] 

 !" tot(#N,#D)
!$cld(#D)

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Robs(#N)

!Robs(#N)
!$cld(#D)

+
!" tot(#N,#D)
!$ tot(#D)

!$ tot(#D)
!Robs(#D)

!Robs(#D)
!$cld(#D)  

= [B.10][B.12][B.15]+[B.11][B.12][B.16]  

[ B.31] 

Derivatives with respect to surface temperature 

 

! 

"BTD(#N,#D)
"Tsfc

=
"Robs(#D)
"Rclr(#D)

"Rclr(#D)
"Tsfc

"B(#D)
"T

$ 

% 
& 

' 

( 
) 
*1

*
"Robs(#N)
"Rclr(#N)

"Rclr(#N)
"Tsfc

"B(#N)
"T

$ 

% 
& 

' 

( 
) 
*1

 

= [B.17][B.18] !B(!D)
!T

!

"
#

$

%
&
'1

'[B.17][B.18] !B(!N)
!T

!

"
#

$

%
&
'1

 

[ B.32] 
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 !" tot(#N,#D)
!Tsfc

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Rclr(#N)

!Rclr(#N)
!Tsfc

+
!" tot(#N,#D)
!$ tot(#D)

!$ tot(#D)
!Rclr(#D)

!Rclr(#D)
!Tsfc  

= [B.10][B.13][B.18]+[B.11][B.13][B.18]  

[ B.33] 

Derivatives with respect to the denominator clear sky transmittance 

 !BTD(!N,!D)
!tatmos(!D)

=
!Robs(!D)
!Rclr(!D)

!Rclr(!D)
!tatmos(!D)

!B(!D)
!T

!

"
#

$

%
&
'1

'
!Robs(!N)
!Rclr(!N)

!Rclr(!N)
!tatmos(!D)

!B(!N)
!T

!

"
#

$

%
&
'1

 

= [B.17][B.24] !B(!D)
!T

!

"
#

$

%
&
'1

'[B.17][B.23] !B(!N)
!T

!

"
#

$

%
&
'1

 

[ B.34] 

 !" tot(#N,#D)
!tatmos(#D)

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Rclr(#N)

!Rclr(#N)
!tatmos(#D)

+
!" tot(#N,#D)
!$ tot(#D)

!$ tot(#D)
!Rclr(#D)

!Rclr(#D)
!tatmos(#D)  

= [B.10][B.13][B.23]+[B.11][B.13][B.24]  

[ B.35] 

Derivatives with respect to the spectral variation of clear sky transmittance 

 !BTD(!N,!D)
!" atmos(!N,!D)

= !
!Robs(!N)
!Rclr(!N)

!Rclr(!N)
!" atmos(!N,!D)

!B(!N)
!T

"

#
$

%

&
'
!1

 

= ![B.17][B.25] !B(!N)
!T

"

#
$

%

&
'
!1

 

[ B.36] 

 !" tot(#N,#D)
!" atmos(#N,#D)

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Rclr(#N)

!Rclr(#N)
!" atmos(#N,#D)  

= [B.10][B.13][B.25]  

[ B.37] 

Derivatives with respect to the denominator surface emissivity 

 

! 

"BTD(#N,#D)
"$sfc(#D)

=
"Robs(#D)
"Rclr(#D)

"Rclr(#D)
"$sfc(#D)

"B(#D)
"T

% 

& 
' 

( 

) 
* 
+1

+
"Robs(#N)
"Rclr(#N)

"Rclr(#N)
"$sfc(#D)

"B(#N)
"T

% 

& 
' 

( 

) 
* 
+1

 

[ B.38] 



 253 

= [B.17][B.21] !B(!D)
!T

!

"
#

$

%
&
'1

'[B.17][B.20] !B(!N)
!T

!

"
#

$

%
&
'1

 

 !" tot(#N,#D)
!$ sfc(#D)

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Rclr(#N)

!Rclr(#N)
!$ sfc(#D)

+
!" tot(#N,#D)
!$ tot(#D)

!$ tot(#D)
!Rclr(#D)

!Rclr(#D)
!$ sfc(#D)  

= [B.10][B.13][B.20]+[B.11][B.13][B.21]  

[ B.39] 

Derivatives with respect to the spectral variation of surface emissivity 

 

! 

"BTD(#N,#D)
"$sfc(#N,#D)

= %
"Robs(#N)
"Rclr(#N)

"Rclr(#N)
"$sfc(#N,#D)

"B(#N)
"T

& 

' 
( 

) 

* 
+ 
%1

 

= ![B.17][B.22] !B(!N)
!T

"

#
$

%

&
'
!1

 

[ B.40] 

 !" tot(#N,#D)
!" sfc(#N,#D)

=
!" tot(#N,#D)
!$ tot(#N)

!$ tot(#N)
!Rclr(#N)

!Rclr(#N)
!" sfc(#N,#D)  

= [B.10][B.13][B.22]  

[ B.41] 

Finally, all of these partial derivatives are evaluated under various assumed conditions.  

The magnitude of each (after proper scaling, since the units differ) can be used to assess 

the sensitivity of βtot(λN, λD) and BTD(λN, λD) to local changes in the various dependent 

variables. 
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Appendix C: Description of Volcanic Ash and Dust Detection Training Data 

Year Month Day Time 
(UTC) 

Satellite Number of 
Pixels 

Description 

2012 12 23 1515 Terra      230 Tungurahua ash plume 
2012 12 22 0350 Terra       27 Tungurahua ash plume 
2012 12 18 0710 Aqua      302 Tungurahua ash plume 
2012 12 18 0415 Terra       13 Tungurahua ash plume 
2012 12 17 1850 Aqua      322 Tungurahua ash plume 
2012 12 17 1555 Terra      370 Tungurahua ash plume 
2012 12 16 1805 Aqua      447 Tungurahua ash plume 
2012 11 24 0755 Aqua       70 Santa Maria ash plume 
2012 08 24 1525 Terra      170 Tungurahua ash plume 
2012 08 23 1620 Terra       35 Tungurahua ash plume 
2012 08 21 1925 Aqua     1966 Tungurahua ash plume 
2012 08 21 1630 Terra     1427 Tungurahua ash plume 
2012 08 21 0705 Aqua    13927 Tungurahua ash plume 
2012 08 21 0410 Terra     3628 Tungurahua ash plume 
2012 08 20 1845 Aqua     2519 Tungurahua ash plume 
2012 08 20 1550 Terra     1924 Tungurahua ash plume 
2012 08 20 0625 Aqua     5025 Tungurahua ash plume 
2012 08 20 0325 Terra    16787 Tungurahua ash plume 
2012 08 19 1940 Aqua      482 Tungurahua ash plume 
2012 08 19 1505 Terra      493 Tungurahua ash plume 
2012 08 19 0720 Aqua     1699 Tungurahua ash plume 
2012 08 19 0420 Terra     1779 Tungurahua ash plume 
2012 08 18 1855 Aqua     2424 Tungurahua ash plume 
2012 08 18 1600 Terra    10604 Tungurahua ash plume 
2012 08 18 0635 Aqua     1055 Tungurahua ash plume 
2012 08 18 0340 Terra     1590 Tungurahua ash plume 
2012 08 17 1815 Aqua       81 Tungurahua ash plume 
2012 08 17 1515 Terra      229 Tungurahua ash plume 
2012 08 17 0730 Aqua      143 Tungurahua ash plume 
2012 08 16 1910 Aqua      410 Tungurahua ash plume 
2012 08 16 1610 Terra     1138 Tungurahua ash plume 
2012 08 16 0645 Aqua      446 Tungurahua ash plume 
2012 08 16 0350 Terra      262 Tungurahua ash plume 
2012 08 15 0305 Terra      353 Tungurahua ash plume 
2012 08 14 1920 Aqua       35 Tungurahua ash plume 
2012 05 23 1555 Terra      255 Tungurahua ash plume 
2012 05 02 1830 Aqua       24 Tungurahua ash plume 
2012 05 02 1535 Terra       55 Tungurahua ash plume 
2012 03 26 1815 Aqua      129 Tungurahua ash plume 
2012 03 26 1515 Terra      248 Tungurahua ash plume 
2012 02 24 0635 Aqua       77 Tungurahua ash plume 
2012 02 24 0340 Terra      247 Tungurahua ash plume 
2011 12 24 0325 Terra       14 Tungurahua ash plume 
2011 12 22 1855 Aqua     1284 Tungurahua ash and so2 plume 
2011 12 22 1600 Terra     1381 Tungurahua ash plume 
2011 12 08 1845 Aqua       64 Tungurahua ash plume 
2011 12 08 1550 Terra       42 Tungurahua ash plume 
2011 12 08 1545 Terra       95 Tungurahua ash plume 
2011 12 06 1855 Aqua       80 Tungurahua ash plume 
2011 12 06 0635 Aqua      172 Tungurahua ash plume 
2011 12 06 0340 Terra       34 Tungurahua ash plume 
2011 12 05 1515 Terra       51 Tungurahua ash plume 
2011 12 04 1910 Aqua      296 Tungurahua ash plume 
2011 12 04 1610 Terra     1532 Tungurahua ash plume 
2011 12 04 0645 Aqua     4849 Tungurahua ash plume 
2011 12 04 0350 Terra     2199 Tungurahua ash plume 
2011 12 03 1825 Aqua     1557 Tungurahua ash plume 
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Year Month Day Time 
(UTC) 

Satellite Number of 
Pixels 

Description 

2011 12 03 1530 Terra     2659 Tungurahua ash plume 
2011 12 01 1540 Terra      422 Tungurahua ash plume 
2011 12 01 0320 Terra       26 Tungurahua ash plume 
2011 11 29 1850 Aqua       72 Tungurahua ash plume 
2011 11 28 1510 Terra      124 Tungurahua ash plume 
2011 11 28 0430 Terra       34 Tungurahua ash plume 
2011 08 03 0135 Aqua     1655 Shiveluch ash plume 
2011 07 19 0220 Aqua     2347 Kizimen ash plume 
2011 07 19 0030 Terra     2134 Kizimen ash plume 
2011 05 24 0400 Terra       24 Tungurahua ash plume 
2011 05 23 1835 Aqua       12 Tungurahua ash plume 
2011 05 23 1540 Terra       25 Tungurahua ash plume 
2011 05 23 1400 Aqua    21938 Grimsvotn ash cloud; explosive 
2011 05 05 1850 Aqua       73 Tungurahua ash plume 
2011 05 05 1555 Terra       54 Tungurahua ash plume 
2011 05 05 0630 Aqua       81 Tungurahua ash plume 
2011 05 03 0640 Aqua     1629 Tungurahua ash plume 
2011 05 03 0345 Terra      343 Tungurahua ash plume 
2011 05 02 1820 Aqua      139 Tungurahua ash plume 
2011 05 02 1525 Terra     1010 Tungurahua ash plume 
2011 05 01 1915 Aqua     2309 Tungurahua ash plume 
2011 05 01 1620 Terra     1200 Tungurahua ash plume 
2011 05 01 0655 Aqua      380 Tungurahua ash plume 
2011 04 30 1830 Aqua      193 Tungurahua ash plume 
2011 04 30 1535 Terra      502 Tungurahua ash and so2 plume 
2011 04 30 0610 Aqua      331 Tungurahua ash and so2 plume 
2011 04 30 0315 Terra      940 Tungurahua ash and so2 plume 
2011 04 29 1925 Aqua       45 Tungurahua ash plume 
2011 04 29 0705 Aqua      663 Tungurahua ash and so2 plume 
2011 04 28 1845 Aqua       62 Tungurahua ash plume 
2011 04 28 1550 Terra      224 Tungurahua ash plume 
2011 04 28 0625 Aqua       84 Tungurahua ash plume 
2011 04 28 0325 Terra      344 Tungurahua ash plume 
2011 04 25 1815 Aqua      447 Tungurahua ash plume 
2011 04 25 1515 Terra      607 Tungurahua ash plume 
2011 04 24 1910 Aqua     1380 Tungurahua ash plume 
2011 04 24 1610 Terra     1715 Tungurahua ash plume 
2011 04 24 0645 Aqua     1384 Tungurahua ash plume 
2011 04 24 0350 Terra      215 Tungurahua ash plume 
2011 04 23 1825 Aqua       85 Tungurahua ash plume 
2011 04 23 1530 Terra      488 Tungurahua ash plume 
2011 04 22 0700 Aqua       59 Tungurahua ash plume 
2011 04 22 0400 Terra       83 Tungurahua ash plume 
2011 04 21 1840 Aqua       19 Tungurahua ash plume 
2011 04 21 1540 Terra      276 Tungurahua ash plume 
2011 04 21 0320 Terra       30 Tungurahua ash plume 
2011 02 24 1100 Terra     4595 Kizimen ash plume 
2011 02 24 0135 Aqua     6583 Kizimen ash and so2 plume 
2011 02 10 0125 Aqua      253 Kizimen ash plume 
2011 02 10 0110 Terra      226 Kizimen ash plume 
2011 02 09 0030 Terra      666 Kizimen ash and so2 plume 
2011 02 02 1540 Aqua     1408 Kizimen ash plume 
2011 02 02 1135 Terra     1254 Kizimen ash and so2 plume 
2011 02 02 0210 Aqua     7417 Kizimen ash and so2 plume 
2011 02 02 0025 Terra     6576 Kizimen ash and so2 plume 
2011 02 01 1500 Aqua     9289 Kizimen ash and so2 plume 
2011 02 01 1055 Terra     5331 Kizimen ash and so2 plume 
2011 02 01 0130 Aqua     6722 Kizimen ash and so2 plume 
2011 01 31 2340 Terra     3241 Kizimen ash and so2 plume 
2011 01 31 1555 Aqua     9118 Kizimen ash and so2 plume 
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Year Month Day Time 
(UTC) 

Satellite Number of 
Pixels 

Description 

2011 01 31 1010 Terra     2776 Kizimen ash and so2 plume 
2011 01 31 0225 Aqua     3349 Kizimen ash and so2 plume 
2011 01 31 0035 Terra     5507 Kizimen ash and so2 plume 
2011 01 27 1035 Terra      768 Kizimen ash and so2 plume 
2011 01 27 0250 Aqua     1609 Kizimen ash and so2 plume 
2011 01 27 0110 Aqua     1730 Kizimen ash and so2 plume 
2011 01 27 0100 Terra     2574 Kizimen ash and so2 plume 
2011 01 26 1535 Aqua     3463 Kizimen ash plume 
2011 01 26 1130 Terra     2979 Kizimen ash plume 
2011 01 25 0125 Aqua     1896 Kizimen ash plume 
2011 01 25 0110 Terra     2345 Kizimen ash plume 
2011 01 24 1550 Aqua     1907 Kizimen ash and so2 plume 
2011 01 24 1005 Terra     2050 Kizimen ash and so2 plume 
2011 01 24 0220 Aqua     5542 Kizimen ash and so2 plume 
2011 01 24 0030 Terra     5105 Kizimen ash and so2 plume 
2011 01 21 1640 Terra     2669 Fuego ash plume 
2011 01 11 0110 Aqua      160 Kizimen ash plume 
2011 01 11 0100 Terra      200 Kizimen ash plume 
2011 01 09 1455 Aqua     1466 Kizimen ash and so2 plume 
2011 01 09 1045 Terra     1090 Kizimen ash plume 
2011 01 05 1520 Aqua     1332 Kizimen ash plume 
2011 01 05 1515 Aqua     5505 Kizimen ash plume 
2011 01 05 1110 Terra    11322 Kizimen ash and so2 plume 
2011 01 05 0145 Aqua     2951 Kizimen ash and so2 cloud 
2011 01 05 0000 Terra     1231 Kizimen ash and so2 plume 
2011 01 01 1135 Terra     2678 Kizimen ash plume 
2010 12 24 1825 Aqua     1864 Merapi ash plume; explosive 
2010 12 24 0600 Aqua      758 Merapi ash plume; explosive 
2010 12 24 0310 Terra     1169 Merapi ash cloud; explosive 
2010 12 08 1915 Aqua     6019 Tungurahua ash plume 
2010 12 08 1620 Terra     3029 Tungurahua ash plume 
2010 12 06 1630 Terra     6898 Tungurahua ash plume 
2010 12 06 0705 Aqua     1951 Tungurahua ash plume 
2010 12 05 1845 Aqua     5842 Tungurahua ash plume 
2010 12 05 1550 Terra     5482 Tungurahua ash plume 
2010 12 05 0625 Aqua      139 Tungurahua ash plume 
2010 11 11 0620 Aqua     5359 Merapi ash cloud; explosive 
2010 11 08 0550 Aqua      389 Merapi ash plume; explosive 
2010 11 06 1825 Aqua      559 Merapi ash and so2 plume; explosive 
2010 11 03 0230 Aqua      207 Kliuchevskoi ash plume 
2010 10 29 1540 Aqua     3116 Shiveluch ash and so2 cloud 
2010 10 29 1135 Terra      645 Shiveluch ash and so2 cloud 
2010 10 28 1500 Aqua    44067 Shiveluch ash and so2 cloud 
2010 10 28 0915 Terra     6553 Shiveluch ash and so2 cloud 
2010 10 28 0130 Aqua     8954 Shiveluch ash and so2 cloud 
2010 10 27 2340 Terra     6438 Shiveluch ash and so2 cloud 
2010 10 23 0250 Aqua     2829 Kliuchevskoi ash cloud 
2010 09 11 0210 Aqua     2101 Kliuchevskoi ash plume 
2010 06 01 1620 Aqua     1300 Bezymianny ash and so2 cloud 
2010 06 01 1035 Terra     2786 Bezymianny ash and so2 cloud 
2010 06 01 0250 Aqua     4056 Bezymianny ash and so2 cloud 
2010 05 31 1535 Aqua     2063 Bezymianny ash and so2 cloud 
2010 05 12 2235 Terra    27854 Eyjafjallajokull ash cloud; explosive 
2010 05 12 1300 Terra     2919 Eyjafjallajokull ash cloud; explosive 
2010 05 12 1255 Terra     5849 Eyjafjallajokull ash cloud; explosive 
2010 05 12 0335 Aqua    21996 Eyjafjallajokull ash cloud; explosive 
2010 05 11 2325 Terra    16056 Eyjafjallajokull ash cloud; explosive 
2010 05 11 1405 Aqua    18771 Eyjafjallajokull ash cloud; explosive 
2010 05 11 1215 Terra    20987 Eyjafjallajokull ash cloud; explosive 
2010 05 11 0430 Aqua     5175 Eyjafjallajokull ash cloud; explosive 
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2010 05 10 2245 Terra     8194 Eyjafjallajokull ash cloud; explosive 
2010 05 10 1320 Aqua     4273 Eyjafjallajokull ash cloud; explosive 
2010 05 10 1310 Terra    24877 Eyjafjallajokull ash cloud; explosive 
2010 05 10 0350 Aqua    38768 Eyjafjallajokull ash cloud; explosive 
2010 05 10 0345 Aqua     2152 Eyjafjallajokull ash cloud; explosive 
2010 05 09 2205 Terra     4502 Eyjafjallajokull ash cloud; explosive 
2010 05 09 1415 Aqua    33689 Eyjafjallajokull ash cloud; explosive 
2010 05 09 1230 Terra    25994 Eyjafjallajokull ash cloud; explosive 
2010 05 09 1225 Terra    64770 Eyjafjallajokull ash cloud; explosive 
2010 05 09 0305 Aqua    69858 Eyjafjallajokull ash cloud; explosive 
2010 05 08 2300 Terra    11110 Eyjafjallajokull ash cloud; explosive 
2010 05 08 2255 Terra    59853 Eyjafjallajokull ash cloud; explosive 
2010 05 08 1335 Aqua    65553 Eyjafjallajokull ash cloud; explosive 
2010 05 08 1325 Terra    29261 Eyjafjallajokull ash cloud; explosive 
2010 05 08 1320 Terra    15909 Eyjafjallajokull ash cloud; explosive 
2010 05 08 0400 Aqua    88837 Eyjafjallajokull ash cloud; explosive 
2010 05 07 2215 Terra    48393 Eyjafjallajokull ash cloud; explosive 
2010 05 07 1430 Aqua    44382 Eyjafjallajokull ash cloud; explosive 
2010 05 07 1425 Aqua    64872 Eyjafjallajokull ash cloud; explosive 
2010 05 07 1240 Terra    28546 Eyjafjallajokull ash cloud; explosive 
2010 05 07 0315 Aqua    87406 Eyjafjallajokull ash cloud; explosive 
2010 05 06 2310 Terra    68957 Eyjafjallajokull ash cloud; explosive 
2010 05 06 1350 Aqua    13491 Eyjafjallajokull ash cloud; explosive 
2010 05 06 1345 Aqua    34968 Eyjafjallajokull ash cloud; explosive 
2010 02 12 1800 Aqua    87005 Soufriere Hills ash cloud (small so2) 
2010 02 12 0530 Aqua   244908 Soufriere Hills ash cloud (small so2) 
2010 01 02 1810 Aqua      556 Soufriere Hills ash plume 
2010 01 02 0535 Aqua     2018 Soufriere Hills ash plume 
2009 12 30 1735 Aqua     9335 Soufriere Hills ash plume 
2009 06 18 0230 Aqua    27898 Sarychev ash and so2 cloud; explosive 
2009 06 17 1655 Aqua   103921 Sarychev ash and so2 cloud; explosive 
2009 06 17 0325 Aqua    34003 Sarychev ash and so2 cloud; explosive 
2009 06 17 0320 Aqua   260643 Sarychev ash and so2 cloud; explosive 
2009 06 16 1615 Aqua   100575 Sarychev ash and so2 cloud; explosive 
2009 06 16 1610 Aqua   138514 Sarychev ash and so2 cloud; explosive 
2009 06 16 0240 Aqua    38598 Sarychev ash and so2 cloud; explosive 
2009 06 16 0100 Aqua     7999 Sarychev ash and so2 cloud; explosive 
2009 06 15 1710 Aqua     8785 Sarychev ash and so2 cloud; explosive 
2009 06 15 1705 Aqua    20739 Sarychev ash and so2 cloud; explosive 
2009 06 15 1530 Aqua   103888 Sarychev ash and so2 cloud; explosive 
2009 06 15 0335 Aqua    68254 Sarychev ash and so2 cloud; explosive 
2009 06 15 0155 Aqua    32417 Sarychev ash and so2 cloud; explosive 
2009 06 14 1625 Aqua   103037 Sarychev ash and so2 cloud; explosive 
2009 06 14 0250 Aqua   118930 Sarychev ash and so2 cloud; explosive 
2009 06 13 0210 Aqua    20679 Sarychev ash and so2 cloud; explosive 
2009 04 04 2235 Aqua    61595 Redoubt ash and so2 cloud 
2009 04 02 1310 Aqua      283 Redoubt ash plume 
2009 04 01 2345 Aqua      160 Redoubt ash plume 
2009 04 01 2205 Aqua      638 Redoubt ash plume 
2009 04 01 1230 Aqua      363 Redoubt ash plume 
2009 03 27 2325 Aqua      914 Redoubt ash and so2 cloud 
2009 03 27 1210 Aqua    10830 Redoubt ash and so2 cloud 
2009 03 26 2240 Aqua    28619 Redoubt ash and so2 cloud 
2009 03 24 2255 Aqua    22978 Redoubt ash and so2 cloud 
2009 03 24 2115 Aqua    23368 Redoubt ash and so2 cloud 
2009 03 24 1315 Aqua    18891 Redoubt ash and so2 cloud 
2009 03 24 1140 Aqua     3645 Redoubt ash and so2 cloud 
2009 03 23 2210 Aqua    23546 Redoubt ash and so2 cloud 
2009 03 23 1235 Aqua    21040 Redoubt ash and so2 cloud 
2008 08 16 1905 Aqua     2727 Okmok ash and so2 cloud; explosive 
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2008 08 15 2005 Aqua    13416 Okmok ash and so2 cloud; explosive 
2008 08 14 2100 Aqua    72431 Okmok ash and so2 cloud; explosive 
2008 08 13 2155 Aqua    31413 Okmok ash and so2 cloud; explosive 
2008 08 11 2205 Aqua    87392 Okmok ash and so2 cloud; explosive 
2008 08 10 2300 Aqua   130684 Okmok ash and so2 cloud; explosive 
2008 08 10 2255 Aqua    31471 Okmok ash and so2 cloud; explosive 
2008 08 10 1330 Aqua    21885 Okmok ash and so2 cloud; explosive 
2008 08 09 2355 Aqua   342388 Okmok ash and so2 cloud; explosive 
2008 08 09 1245 Aqua   262509 Okmok ash and so2 cloud; explosive 
2008 08 08 2315 Aqua    51614 Okmok ash and so2 cloud; explosive 
2008 08 08 1340 Aqua    96015 Okmok ash and so2 cloud; explosive 
2008 07 29 1425 Terra    10090 Soufriere Hills ash and so2 cloud 
2008 07 29 0635 Aqua     1525 Soufriere Hills ash and so2 plume 
2008 07 14 2320 Aqua   218571 Okmok ash and so2 cloud; explosive 
2008 07 13 2235 Aqua    22108 Okmok ash and so2 cloud; explosive 
2008 07 13 1305 Aqua    48560 Okmok ash and so2 cloud; explosive 
2008 07 13 1300 Aqua     6936 Okmok ash and so2 cloud; explosive 
2008 07 13 0855 Terra    47319 Okmok ash and so2 cloud; explosive 
2008 07 12 2330 Aqua      420 Okmok ash cloud; explosive 
2008 05 06 1915 Aqua    38988 Chaiten ash and so2 cloud; explosive 
2008 05 06 1735 Aqua    14250 Chaiten ash and so2 cloud; explosive 
2008 05 06 0540 Aqua   100295 Chaiten ash and so2 cloud; explosive 
2008 05 06 0400 Aqua    39808 Chaiten ash and so2 cloud; explosive 
2008 05 05 1830 Aqua   175343 Chaiten ash and so2 cloud; explosive 
2008 05 05 0455 Aqua    32396 Chaiten ash and so2 cloud; explosive 
2008 05 05 0315 Aqua   377022 Chaiten ash and so2 cloud; explosive 
2008 05 04 1750 Aqua    61637 Chaiten ash and so2 cloud; explosive 
2008 05 04 0550 Aqua    71127 Chaiten ash and so2 cloud; explosive 
2008 05 04 0415 Aqua   158763 Chaiten ash and so2 cloud; explosive 
2008 05 03 1845 Aqua    53610 Chaiten ash and so2 cloud; explosive 
2008 05 03 0510 Aqua    78957 Chaiten ash and so2 cloud; explosive 
2006 05 24 0000 Aqua      450 Cleveland ash and so2 plume 
2006 01 29 2235 Aqua     7575 Augustine ash and so2 cloud 
2006 01 29 2225 Terra     4196 Augustine ash and so2 cloud 
2006 01 29 2045 Terra    12556 Augustine ash and so2 cloud 
2006 01 29 1255 Aqua     1092 Augustine ash and so2 cloud 
2006 01 29 0715 Terra     3374 Augustine ash and so2 cloud 
2006 01 28 2330 Aqua     1210 Augustine ash and so2 cloud 
2006 01 28 2140 Terra     1645 Augustine ash and so2 cloud 
2006 01 28 1215 Aqua     3256 Augustine ash and so2 cloud 
2006 01 28 0810 Terra     3727 Augustine ash and so2 cloud 
2006 01 14 2130 Terra    10172 Augustine ash and so2 cloud 
2006 01 14 1200 Aqua    21606 Augustine ash and so2 cloud 
2006 01 14 0800 Terra    20355 Augustine ash and so2 cloud 
2006 01 13 2235 Aqua     5874 Augustine ash and so2 cloud 
2006 01 13 2225 Terra     3301 Augustine ash and so2 cloud 
2006 01 13 2045 Terra     1977 Augustine ash and so2 cloud 
2005 11 25 2225 Aqua    84077 Karthala ash cloud 
2005 11 25 1925 Terra    74758 Karthala ash cloud 
2005 11 25 1000 Aqua     3722 Karthala ash cloud 
2005 11 25 0710 Terra    18570 Karthala ash cloud 
2004 01 09 0435 Terra     1616 Fuego ash plume 
2003 09 22 0830 Terra    15358 Katmai ash resuspension 
2003 09 22 0655 Terra    11279 Katmai ash resuspension 
2003 09 21 2305 Aqua    19473 Katmai ash resuspension 
2003 09 21 2115 Terra    19045 Katmai ash resuspension 
2003 09 21 1150 Aqua     8165 Katmai ash resuspension 
2003 09 21 0750 Terra     7306 Katmai ash resuspension 
2002 10 27 2100 Terra    36082 Etna ash plume 
2002 10 27 1135 Aqua    12677 Etna ash plume 
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2002 10 27 1000 Terra    21113 Etna ash plume 
2002 09 26 1500 Terra    15866 Ruang ash and so2 cloud; explosive 
2002 09 26 0530 Aqua    21960 Ruang ash and so2 cloud; explosive 
2002 09 25 1710 Aqua    39819 Ruang ash and so2 cloud; explosive 
2002 09 25 1415 Terra    46634 Ruang ash and so2 cloud; explosive 
2002 09 25 0155 Terra     1107 Ruang ash and so2 cloud; explosive 
2001 07 23 2140 Terra    31821 Etna ash plume 
2001 07 23 1035 Terra     5557 Etna ash plume 
Total Number of Ash Pixels     6,505,254 
2010 05 03 2125 Aqua     6687 North American dust 
2009 09 24 1430 Aqua    43473 Australian dust 
2009 09 24 1425 Aqua    40731 Australian dust 
2009 09 24 0335 Aqua   101986 Australian dust 
2009 09 24 0330 Aqua    71484 Australian dust 
2009 09 22 0340 Aqua     9559 Australian dust 
2009 07 04 0255 Aqua    31503 African dust 
2009 07 03 1625 Aqua    46463 African dust 
2009 07 02 1545 Aqua    11633 African dust 
2009 07 02 1540 Aqua   150008 African dust 
2009 07 02 1405 Aqua    14585 African dust 
2009 07 02 0450 Aqua    93439 African dust 
2009 07 02 0310 Aqua    69159 African dust 
2009 07 01 1500 Aqua    60722 African dust 
2009 07 01 1455 Aqua   128702 African dust 
2009 07 01 0405 Aqua    34036 African dust 
2009 07 01 0230 Aqua    31562 African dust 
2009 07 01 0225 Aqua    42559 African dust 
2008 05 03 1435 Terra    12131 Asian dust 
2008 03 02 1745 Aqua    23528 Asian dust 
2007 06 26 1810 Aqua    28613 African dust 
2007 06 25 1730 Aqua   129038 African dust 
2007 06 25 1725 Aqua    64059 African dust 
2007 06 25 0500 Aqua    67841 African dust 
2007 06 25 0455 Aqua   196900 African dust 
2007 06 24 1645 Aqua   111679 African dust 
2007 06 24 0415 Aqua   105774 African dust 
2007 06 23 1600 Aqua   314085 African dust 
2007 06 23 0510 Aqua    32590 African dust 
2007 06 23 0335 Aqua   199801 African dust 
2007 06 23 0330 Aqua   144372 African dust 
2007 06 22 1515 Aqua   356340 African dust 
2007 06 22 0425 Aqua    13447 African dust 
2007 06 22 0250 Aqua   412780 African dust 
2007 05 01 1050 Aqua    10535 African dust 
2007 01 04 0255 Aqua    48481 African dust 
2007 01 03 1440 Aqua   162013 African dust 
2007 01 02 0305 Aqua   206049 African dust 
2007 01 01 1455 Aqua    35570 African dust 
Total Number of Dust Pixels     3,663,917 
Total Number of Ash + Dust Pixels    10,169,171 
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Appendix D: Cloud Property Retrieval Kernel Matrix 

Given the choice of forward model, an analytical expression for each element of 

the kernel matrix, K, can be derived from Equations ( 5.1) – ( 5.3), ( 5.6) - ( 5.10), and 

the Planck Function.  The derivative of each of the forward model simulated observations 

with respect to Teff is given by the following set of equations.  In these equations, 

∂B(λ)/∂Teff is the derivative of the Planck Function with respect to the effective cloud 

temperature, Teff, and ∂B(λ)/∂T is the derivative of the Planck Function with respect to 

the forward model derived brightness temperature.  All other symbols were defined in 

Chapter 5. 
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The following equations give the derivative of each forward model simulation with 

respect to ε(11µm). 
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Finally, the derivative of each forward model simulation with respect to β(12/11µm) is 

given by the following equations.  In Equation [ D.9], ∂β(13.3/11µm)/∂β(12/11µm) is 

applied to Equation ( 5.11). 
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Appendix E: Cloud Object Membership Criteria 

Cloud object membership is granted to a given satellite pixel if the ash/dust 

posterior probability [P(Cyes|F)] exceeds any of the five thresholds defined by Equation 

[ E.1], [ E.3], [ E.4], [ E.5], and [ E.6].  The first probability threshold (Pthresh1) is 

determined through sequential evaluation of the conditions listed in Equation [ E.1] (the 

evaluation stops once a true condition on the right hand side is encountered).  In Equation 

[ E.1], εtot(11µm) is the 11 µm top of troposphere emissivity (see Chapters 3 and 4), 

εerr(11µm) is the 11 µm ash/dust cloud emissivity retrieval uncertainty divided by the first 

guess uncertainty (see Chapter 5), and BTD(11-12µm) is the 11 – 12 µm brightness 

temperature difference. 

 

Pthresh1=
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The second probability threshold (Pthresh2) depends on the difference between the 

BTD(11-12µm) at the pixel of interest (BTDo) and the mean BTD(11-12µm) at locations 

within 25 km that have a P(Cyes|F) that is less than 1.0e-6 % (BTDregion) and a εtot(11µm) 

that differs by no more than 1/3 of the εtot(11µm) value at the pixel of interest.  Absolute 

[DBTDabs = BTDregion - BTDo] and relative [DBTDrel = (BTDregion - BTDo)/ BTDregion] 

differences are computed and a decision tree equivalent to Equation [ E.2], evaluated in 

sequential order (the evaluation stops once a true condition on the right hand side is 

encountered), is executed. 
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Condition2 =

False, BTD(11!12µm)> 2.0K
False, !tot(11µm)< 0.001 or !tot(11µm)> 0.25
False, !(11µm)> 0.50
False, BTsdev(11µm)> 2.0K
False, N 25km < 5
False, DBTDabs < 0.25K
True, DBTDrel < 0.25K  and !err(11µm)< 0.30
True, DBTDrel < 0.30K  and !err(11µm)< 0.35
True, DBTDrel < 0.35K  and !err(11µm)< 0.40
True, DBTDrel < 0.40K  and !err(11µm)< 0.45
True, DBTDrel < 0.45K  and !err(11µm)< 0.50
True, DBTDrel < 0.50K  and !err(11µm)< 0.55
True, DBTDrel < 0.55K  and !err(11µm)< 0.60
True, DBTDrel < 0.60K  and !err(11µm)< 0.65
True, DBTDrel < 0.65K  and !err(11µm)< 0.70
True, DBTDrel < 0.70K  and !err(11µm)< 0.75
True, DBTDrel < 0.75K  and !err(11µm)< 0.80
True, DBTDrel < 0.80K  and !err(11µm)< 0.85
True, DBTDrel < 0.85K  and !err(11µm)< 0.90
False, Otherwise

"
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$
$
$
$
$
$
$
$
$
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$
$
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[ E.2] 

In Equation [ E.2], ε(11µm) is the retrieved ash/dust cloud emissivity at 11 µm, 

BTsdev(11µm) is the standard deviation of the 11 µm brightness temperature in a 3x3 pixel 

window centered on the pixel of interest, and N25km is the number of pixels used to 

compute DBTDabs and DBTDrel.  The second cloud object membership (Pthresh2) threshold 

is then determined using the relationship shown in Equation [ E.3]. 

 
Pthresh2 =

0.001%, if  Condition2 is true
100%, otherwise

!
"
#

$#

 

[ E.3] 

The third probability threshold (Pthresh3) is determined through sequential evaluation of 

Equation [ E.4] (the evaluation stops once a “true” condition on the right hand side is 

encountered). 
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Pthresh3 =

100%, if  !tot(11µm)< 0.05
100%, if  BTD(11!12µm)> !0.50
0.00%, if  BTD_BIAS>1.50K
0.00%, if  BTD_BIAS>1.00K  and 0.30 " !(11µm) " 0.70
0.0001%, if  BTD_BIAS>1.00K
100%, otherwise

#

$

%
%
%%

&

%
%
%
%  

[ E.4] 

The fourth probability threshold (Pthresh4), given by Equation [ E.5], is designed to 

account for the presence of SO2, which is common in volcanic eruptions.  In Equation 

[ E.5], βtot(8.5µm,11µm), βopaque(8.5µm,11µm), and βtot(7.3µm,11µm) are SO2 sensitive 

formulations of the β-ratio discussed in detail in Chapter 4. 

 

Pthresh4 =
1.0e!8%,

if  ! tot(8.5µm,11µm)>1.50 and 
!opaque(8.5µm,11µm)> 2.50 and 
! tot(7.3µm,11µm)>1.0 and 
!tot(11µm)> 0.01

100%, otherwise

"

#

$
$
$

%

$
$
$

 

[ E.5] 

 

The fifth and final probability threshold (Pthresh5) simply depends on the retrieved ash/dust 

mass loading (ML) (see Equation [ E.6]). 

 
Pthresh5 =

1.0e!13%, if  ML  <  1g /m2

100%, otherwise

"
#
$

%$

 

[ E.6]
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